1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS initialization and VFS superblock operations. Some 25 * initialization stuff which is rather large and complex is placed at 26 * corresponding subsystems, but most of it is here. 27 */ 28 29 #include <linux/init.h> 30 #include <linux/slab.h> 31 #include <linux/module.h> 32 #include <linux/ctype.h> 33 #include <linux/kthread.h> 34 #include <linux/parser.h> 35 #include <linux/seq_file.h> 36 #include <linux/mount.h> 37 #include <linux/math64.h> 38 #include <linux/writeback.h> 39 #include "ubifs.h" 40 41 /* 42 * Maximum amount of memory we may 'kmalloc()' without worrying that we are 43 * allocating too much. 44 */ 45 #define UBIFS_KMALLOC_OK (128*1024) 46 47 /* Slab cache for UBIFS inodes */ 48 static struct kmem_cache *ubifs_inode_slab; 49 50 /* UBIFS TNC shrinker description */ 51 static struct shrinker ubifs_shrinker_info = { 52 .scan_objects = ubifs_shrink_scan, 53 .count_objects = ubifs_shrink_count, 54 .seeks = DEFAULT_SEEKS, 55 }; 56 57 /** 58 * validate_inode - validate inode. 59 * @c: UBIFS file-system description object 60 * @inode: the inode to validate 61 * 62 * This is a helper function for 'ubifs_iget()' which validates various fields 63 * of a newly built inode to make sure they contain sane values and prevent 64 * possible vulnerabilities. Returns zero if the inode is all right and 65 * a non-zero error code if not. 66 */ 67 static int validate_inode(struct ubifs_info *c, const struct inode *inode) 68 { 69 int err; 70 const struct ubifs_inode *ui = ubifs_inode(inode); 71 72 if (inode->i_size > c->max_inode_sz) { 73 ubifs_err(c, "inode is too large (%lld)", 74 (long long)inode->i_size); 75 return 1; 76 } 77 78 if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) { 79 ubifs_err(c, "unknown compression type %d", ui->compr_type); 80 return 2; 81 } 82 83 if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX) 84 return 3; 85 86 if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA) 87 return 4; 88 89 if (ui->xattr && !S_ISREG(inode->i_mode)) 90 return 5; 91 92 if (!ubifs_compr_present(c, ui->compr_type)) { 93 ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in", 94 inode->i_ino, ubifs_compr_name(c, ui->compr_type)); 95 } 96 97 err = dbg_check_dir(c, inode); 98 return err; 99 } 100 101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum) 102 { 103 int err; 104 union ubifs_key key; 105 struct ubifs_ino_node *ino; 106 struct ubifs_info *c = sb->s_fs_info; 107 struct inode *inode; 108 struct ubifs_inode *ui; 109 110 dbg_gen("inode %lu", inum); 111 112 inode = iget_locked(sb, inum); 113 if (!inode) 114 return ERR_PTR(-ENOMEM); 115 if (!(inode->i_state & I_NEW)) 116 return inode; 117 ui = ubifs_inode(inode); 118 119 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 120 if (!ino) { 121 err = -ENOMEM; 122 goto out; 123 } 124 125 ino_key_init(c, &key, inode->i_ino); 126 127 err = ubifs_tnc_lookup(c, &key, ino); 128 if (err) 129 goto out_ino; 130 131 inode->i_flags |= S_NOCMTIME; 132 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 133 inode->i_flags |= S_NOATIME; 134 #endif 135 set_nlink(inode, le32_to_cpu(ino->nlink)); 136 i_uid_write(inode, le32_to_cpu(ino->uid)); 137 i_gid_write(inode, le32_to_cpu(ino->gid)); 138 inode->i_atime.tv_sec = (int64_t)le64_to_cpu(ino->atime_sec); 139 inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec); 140 inode->i_mtime.tv_sec = (int64_t)le64_to_cpu(ino->mtime_sec); 141 inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec); 142 inode->i_ctime.tv_sec = (int64_t)le64_to_cpu(ino->ctime_sec); 143 inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec); 144 inode->i_mode = le32_to_cpu(ino->mode); 145 inode->i_size = le64_to_cpu(ino->size); 146 147 ui->data_len = le32_to_cpu(ino->data_len); 148 ui->flags = le32_to_cpu(ino->flags); 149 ui->compr_type = le16_to_cpu(ino->compr_type); 150 ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum); 151 ui->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 152 ui->xattr_size = le32_to_cpu(ino->xattr_size); 153 ui->xattr_names = le32_to_cpu(ino->xattr_names); 154 ui->synced_i_size = ui->ui_size = inode->i_size; 155 156 ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0; 157 158 err = validate_inode(c, inode); 159 if (err) 160 goto out_invalid; 161 162 switch (inode->i_mode & S_IFMT) { 163 case S_IFREG: 164 inode->i_mapping->a_ops = &ubifs_file_address_operations; 165 inode->i_op = &ubifs_file_inode_operations; 166 inode->i_fop = &ubifs_file_operations; 167 if (ui->xattr) { 168 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 169 if (!ui->data) { 170 err = -ENOMEM; 171 goto out_ino; 172 } 173 memcpy(ui->data, ino->data, ui->data_len); 174 ((char *)ui->data)[ui->data_len] = '\0'; 175 } else if (ui->data_len != 0) { 176 err = 10; 177 goto out_invalid; 178 } 179 break; 180 case S_IFDIR: 181 inode->i_op = &ubifs_dir_inode_operations; 182 inode->i_fop = &ubifs_dir_operations; 183 if (ui->data_len != 0) { 184 err = 11; 185 goto out_invalid; 186 } 187 break; 188 case S_IFLNK: 189 inode->i_op = &ubifs_symlink_inode_operations; 190 if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) { 191 err = 12; 192 goto out_invalid; 193 } 194 ui->data = kmalloc(ui->data_len + 1, GFP_NOFS); 195 if (!ui->data) { 196 err = -ENOMEM; 197 goto out_ino; 198 } 199 memcpy(ui->data, ino->data, ui->data_len); 200 ((char *)ui->data)[ui->data_len] = '\0'; 201 break; 202 case S_IFBLK: 203 case S_IFCHR: 204 { 205 dev_t rdev; 206 union ubifs_dev_desc *dev; 207 208 ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS); 209 if (!ui->data) { 210 err = -ENOMEM; 211 goto out_ino; 212 } 213 214 dev = (union ubifs_dev_desc *)ino->data; 215 if (ui->data_len == sizeof(dev->new)) 216 rdev = new_decode_dev(le32_to_cpu(dev->new)); 217 else if (ui->data_len == sizeof(dev->huge)) 218 rdev = huge_decode_dev(le64_to_cpu(dev->huge)); 219 else { 220 err = 13; 221 goto out_invalid; 222 } 223 memcpy(ui->data, ino->data, ui->data_len); 224 inode->i_op = &ubifs_file_inode_operations; 225 init_special_inode(inode, inode->i_mode, rdev); 226 break; 227 } 228 case S_IFSOCK: 229 case S_IFIFO: 230 inode->i_op = &ubifs_file_inode_operations; 231 init_special_inode(inode, inode->i_mode, 0); 232 if (ui->data_len != 0) { 233 err = 14; 234 goto out_invalid; 235 } 236 break; 237 default: 238 err = 15; 239 goto out_invalid; 240 } 241 242 kfree(ino); 243 ubifs_set_inode_flags(inode); 244 unlock_new_inode(inode); 245 return inode; 246 247 out_invalid: 248 ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err); 249 ubifs_dump_node(c, ino); 250 ubifs_dump_inode(c, inode); 251 err = -EINVAL; 252 out_ino: 253 kfree(ino); 254 out: 255 ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err); 256 iget_failed(inode); 257 return ERR_PTR(err); 258 } 259 260 static struct inode *ubifs_alloc_inode(struct super_block *sb) 261 { 262 struct ubifs_inode *ui; 263 264 ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS); 265 if (!ui) 266 return NULL; 267 268 memset((void *)ui + sizeof(struct inode), 0, 269 sizeof(struct ubifs_inode) - sizeof(struct inode)); 270 mutex_init(&ui->ui_mutex); 271 spin_lock_init(&ui->ui_lock); 272 return &ui->vfs_inode; 273 }; 274 275 static void ubifs_i_callback(struct rcu_head *head) 276 { 277 struct inode *inode = container_of(head, struct inode, i_rcu); 278 struct ubifs_inode *ui = ubifs_inode(inode); 279 kmem_cache_free(ubifs_inode_slab, ui); 280 } 281 282 static void ubifs_destroy_inode(struct inode *inode) 283 { 284 struct ubifs_inode *ui = ubifs_inode(inode); 285 286 kfree(ui->data); 287 call_rcu(&inode->i_rcu, ubifs_i_callback); 288 } 289 290 /* 291 * Note, Linux write-back code calls this without 'i_mutex'. 292 */ 293 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc) 294 { 295 int err = 0; 296 struct ubifs_info *c = inode->i_sb->s_fs_info; 297 struct ubifs_inode *ui = ubifs_inode(inode); 298 299 ubifs_assert(c, !ui->xattr); 300 if (is_bad_inode(inode)) 301 return 0; 302 303 mutex_lock(&ui->ui_mutex); 304 /* 305 * Due to races between write-back forced by budgeting 306 * (see 'sync_some_inodes()') and background write-back, the inode may 307 * have already been synchronized, do not do this again. This might 308 * also happen if it was synchronized in an VFS operation, e.g. 309 * 'ubifs_link()'. 310 */ 311 if (!ui->dirty) { 312 mutex_unlock(&ui->ui_mutex); 313 return 0; 314 } 315 316 /* 317 * As an optimization, do not write orphan inodes to the media just 318 * because this is not needed. 319 */ 320 dbg_gen("inode %lu, mode %#x, nlink %u", 321 inode->i_ino, (int)inode->i_mode, inode->i_nlink); 322 if (inode->i_nlink) { 323 err = ubifs_jnl_write_inode(c, inode); 324 if (err) 325 ubifs_err(c, "can't write inode %lu, error %d", 326 inode->i_ino, err); 327 else 328 err = dbg_check_inode_size(c, inode, ui->ui_size); 329 } 330 331 ui->dirty = 0; 332 mutex_unlock(&ui->ui_mutex); 333 ubifs_release_dirty_inode_budget(c, ui); 334 return err; 335 } 336 337 static void ubifs_evict_inode(struct inode *inode) 338 { 339 int err; 340 struct ubifs_info *c = inode->i_sb->s_fs_info; 341 struct ubifs_inode *ui = ubifs_inode(inode); 342 343 if (ui->xattr) 344 /* 345 * Extended attribute inode deletions are fully handled in 346 * 'ubifs_removexattr()'. These inodes are special and have 347 * limited usage, so there is nothing to do here. 348 */ 349 goto out; 350 351 dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode); 352 ubifs_assert(c, !atomic_read(&inode->i_count)); 353 354 truncate_inode_pages_final(&inode->i_data); 355 356 if (inode->i_nlink) 357 goto done; 358 359 if (is_bad_inode(inode)) 360 goto out; 361 362 ui->ui_size = inode->i_size = 0; 363 err = ubifs_jnl_delete_inode(c, inode); 364 if (err) 365 /* 366 * Worst case we have a lost orphan inode wasting space, so a 367 * simple error message is OK here. 368 */ 369 ubifs_err(c, "can't delete inode %lu, error %d", 370 inode->i_ino, err); 371 372 out: 373 if (ui->dirty) 374 ubifs_release_dirty_inode_budget(c, ui); 375 else { 376 /* We've deleted something - clean the "no space" flags */ 377 c->bi.nospace = c->bi.nospace_rp = 0; 378 smp_wmb(); 379 } 380 done: 381 clear_inode(inode); 382 fscrypt_put_encryption_info(inode); 383 } 384 385 static void ubifs_dirty_inode(struct inode *inode, int flags) 386 { 387 struct ubifs_info *c = inode->i_sb->s_fs_info; 388 struct ubifs_inode *ui = ubifs_inode(inode); 389 390 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 391 if (!ui->dirty) { 392 ui->dirty = 1; 393 dbg_gen("inode %lu", inode->i_ino); 394 } 395 } 396 397 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf) 398 { 399 struct ubifs_info *c = dentry->d_sb->s_fs_info; 400 unsigned long long free; 401 __le32 *uuid = (__le32 *)c->uuid; 402 403 free = ubifs_get_free_space(c); 404 dbg_gen("free space %lld bytes (%lld blocks)", 405 free, free >> UBIFS_BLOCK_SHIFT); 406 407 buf->f_type = UBIFS_SUPER_MAGIC; 408 buf->f_bsize = UBIFS_BLOCK_SIZE; 409 buf->f_blocks = c->block_cnt; 410 buf->f_bfree = free >> UBIFS_BLOCK_SHIFT; 411 if (free > c->report_rp_size) 412 buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT; 413 else 414 buf->f_bavail = 0; 415 buf->f_files = 0; 416 buf->f_ffree = 0; 417 buf->f_namelen = UBIFS_MAX_NLEN; 418 buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]); 419 buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]); 420 ubifs_assert(c, buf->f_bfree <= c->block_cnt); 421 return 0; 422 } 423 424 static int ubifs_show_options(struct seq_file *s, struct dentry *root) 425 { 426 struct ubifs_info *c = root->d_sb->s_fs_info; 427 428 if (c->mount_opts.unmount_mode == 2) 429 seq_puts(s, ",fast_unmount"); 430 else if (c->mount_opts.unmount_mode == 1) 431 seq_puts(s, ",norm_unmount"); 432 433 if (c->mount_opts.bulk_read == 2) 434 seq_puts(s, ",bulk_read"); 435 else if (c->mount_opts.bulk_read == 1) 436 seq_puts(s, ",no_bulk_read"); 437 438 if (c->mount_opts.chk_data_crc == 2) 439 seq_puts(s, ",chk_data_crc"); 440 else if (c->mount_opts.chk_data_crc == 1) 441 seq_puts(s, ",no_chk_data_crc"); 442 443 if (c->mount_opts.override_compr) { 444 seq_printf(s, ",compr=%s", 445 ubifs_compr_name(c, c->mount_opts.compr_type)); 446 } 447 448 seq_printf(s, ",assert=%s", ubifs_assert_action_name(c)); 449 seq_printf(s, ",ubi=%d,vol=%d", c->vi.ubi_num, c->vi.vol_id); 450 451 return 0; 452 } 453 454 static int ubifs_sync_fs(struct super_block *sb, int wait) 455 { 456 int i, err; 457 struct ubifs_info *c = sb->s_fs_info; 458 459 /* 460 * Zero @wait is just an advisory thing to help the file system shove 461 * lots of data into the queues, and there will be the second 462 * '->sync_fs()' call, with non-zero @wait. 463 */ 464 if (!wait) 465 return 0; 466 467 /* 468 * Synchronize write buffers, because 'ubifs_run_commit()' does not 469 * do this if it waits for an already running commit. 470 */ 471 for (i = 0; i < c->jhead_cnt; i++) { 472 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 473 if (err) 474 return err; 475 } 476 477 /* 478 * Strictly speaking, it is not necessary to commit the journal here, 479 * synchronizing write-buffers would be enough. But committing makes 480 * UBIFS free space predictions much more accurate, so we want to let 481 * the user be able to get more accurate results of 'statfs()' after 482 * they synchronize the file system. 483 */ 484 err = ubifs_run_commit(c); 485 if (err) 486 return err; 487 488 return ubi_sync(c->vi.ubi_num); 489 } 490 491 /** 492 * init_constants_early - initialize UBIFS constants. 493 * @c: UBIFS file-system description object 494 * 495 * This function initialize UBIFS constants which do not need the superblock to 496 * be read. It also checks that the UBI volume satisfies basic UBIFS 497 * requirements. Returns zero in case of success and a negative error code in 498 * case of failure. 499 */ 500 static int init_constants_early(struct ubifs_info *c) 501 { 502 if (c->vi.corrupted) { 503 ubifs_warn(c, "UBI volume is corrupted - read-only mode"); 504 c->ro_media = 1; 505 } 506 507 if (c->di.ro_mode) { 508 ubifs_msg(c, "read-only UBI device"); 509 c->ro_media = 1; 510 } 511 512 if (c->vi.vol_type == UBI_STATIC_VOLUME) { 513 ubifs_msg(c, "static UBI volume - read-only mode"); 514 c->ro_media = 1; 515 } 516 517 c->leb_cnt = c->vi.size; 518 c->leb_size = c->vi.usable_leb_size; 519 c->leb_start = c->di.leb_start; 520 c->half_leb_size = c->leb_size / 2; 521 c->min_io_size = c->di.min_io_size; 522 c->min_io_shift = fls(c->min_io_size) - 1; 523 c->max_write_size = c->di.max_write_size; 524 c->max_write_shift = fls(c->max_write_size) - 1; 525 526 if (c->leb_size < UBIFS_MIN_LEB_SZ) { 527 ubifs_errc(c, "too small LEBs (%d bytes), min. is %d bytes", 528 c->leb_size, UBIFS_MIN_LEB_SZ); 529 return -EINVAL; 530 } 531 532 if (c->leb_cnt < UBIFS_MIN_LEB_CNT) { 533 ubifs_errc(c, "too few LEBs (%d), min. is %d", 534 c->leb_cnt, UBIFS_MIN_LEB_CNT); 535 return -EINVAL; 536 } 537 538 if (!is_power_of_2(c->min_io_size)) { 539 ubifs_errc(c, "bad min. I/O size %d", c->min_io_size); 540 return -EINVAL; 541 } 542 543 /* 544 * Maximum write size has to be greater or equivalent to min. I/O 545 * size, and be multiple of min. I/O size. 546 */ 547 if (c->max_write_size < c->min_io_size || 548 c->max_write_size % c->min_io_size || 549 !is_power_of_2(c->max_write_size)) { 550 ubifs_errc(c, "bad write buffer size %d for %d min. I/O unit", 551 c->max_write_size, c->min_io_size); 552 return -EINVAL; 553 } 554 555 /* 556 * UBIFS aligns all node to 8-byte boundary, so to make function in 557 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is 558 * less than 8. 559 */ 560 if (c->min_io_size < 8) { 561 c->min_io_size = 8; 562 c->min_io_shift = 3; 563 if (c->max_write_size < c->min_io_size) { 564 c->max_write_size = c->min_io_size; 565 c->max_write_shift = c->min_io_shift; 566 } 567 } 568 569 c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size); 570 c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size); 571 572 /* 573 * Initialize node length ranges which are mostly needed for node 574 * length validation. 575 */ 576 c->ranges[UBIFS_PAD_NODE].len = UBIFS_PAD_NODE_SZ; 577 c->ranges[UBIFS_SB_NODE].len = UBIFS_SB_NODE_SZ; 578 c->ranges[UBIFS_MST_NODE].len = UBIFS_MST_NODE_SZ; 579 c->ranges[UBIFS_REF_NODE].len = UBIFS_REF_NODE_SZ; 580 c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ; 581 c->ranges[UBIFS_CS_NODE].len = UBIFS_CS_NODE_SZ; 582 c->ranges[UBIFS_AUTH_NODE].min_len = UBIFS_AUTH_NODE_SZ; 583 c->ranges[UBIFS_AUTH_NODE].max_len = UBIFS_AUTH_NODE_SZ + 584 UBIFS_MAX_HMAC_LEN; 585 586 c->ranges[UBIFS_INO_NODE].min_len = UBIFS_INO_NODE_SZ; 587 c->ranges[UBIFS_INO_NODE].max_len = UBIFS_MAX_INO_NODE_SZ; 588 c->ranges[UBIFS_ORPH_NODE].min_len = 589 UBIFS_ORPH_NODE_SZ + sizeof(__le64); 590 c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size; 591 c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ; 592 c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ; 593 c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ; 594 c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ; 595 c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ; 596 c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ; 597 /* 598 * Minimum indexing node size is amended later when superblock is 599 * read and the key length is known. 600 */ 601 c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ; 602 /* 603 * Maximum indexing node size is amended later when superblock is 604 * read and the fanout is known. 605 */ 606 c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX; 607 608 /* 609 * Initialize dead and dark LEB space watermarks. See gc.c for comments 610 * about these values. 611 */ 612 c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size); 613 c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size); 614 615 /* 616 * Calculate how many bytes would be wasted at the end of LEB if it was 617 * fully filled with data nodes of maximum size. This is used in 618 * calculations when reporting free space. 619 */ 620 c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ; 621 622 /* Buffer size for bulk-reads */ 623 c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ; 624 if (c->max_bu_buf_len > c->leb_size) 625 c->max_bu_buf_len = c->leb_size; 626 return 0; 627 } 628 629 /** 630 * bud_wbuf_callback - bud LEB write-buffer synchronization call-back. 631 * @c: UBIFS file-system description object 632 * @lnum: LEB the write-buffer was synchronized to 633 * @free: how many free bytes left in this LEB 634 * @pad: how many bytes were padded 635 * 636 * This is a callback function which is called by the I/O unit when the 637 * write-buffer is synchronized. We need this to correctly maintain space 638 * accounting in bud logical eraseblocks. This function returns zero in case of 639 * success and a negative error code in case of failure. 640 * 641 * This function actually belongs to the journal, but we keep it here because 642 * we want to keep it static. 643 */ 644 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad) 645 { 646 return ubifs_update_one_lp(c, lnum, free, pad, 0, 0); 647 } 648 649 /* 650 * init_constants_sb - initialize UBIFS constants. 651 * @c: UBIFS file-system description object 652 * 653 * This is a helper function which initializes various UBIFS constants after 654 * the superblock has been read. It also checks various UBIFS parameters and 655 * makes sure they are all right. Returns zero in case of success and a 656 * negative error code in case of failure. 657 */ 658 static int init_constants_sb(struct ubifs_info *c) 659 { 660 int tmp, err; 661 long long tmp64; 662 663 c->main_bytes = (long long)c->main_lebs * c->leb_size; 664 c->max_znode_sz = sizeof(struct ubifs_znode) + 665 c->fanout * sizeof(struct ubifs_zbranch); 666 667 tmp = ubifs_idx_node_sz(c, 1); 668 c->ranges[UBIFS_IDX_NODE].min_len = tmp; 669 c->min_idx_node_sz = ALIGN(tmp, 8); 670 671 tmp = ubifs_idx_node_sz(c, c->fanout); 672 c->ranges[UBIFS_IDX_NODE].max_len = tmp; 673 c->max_idx_node_sz = ALIGN(tmp, 8); 674 675 /* Make sure LEB size is large enough to fit full commit */ 676 tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt; 677 tmp = ALIGN(tmp, c->min_io_size); 678 if (tmp > c->leb_size) { 679 ubifs_err(c, "too small LEB size %d, at least %d needed", 680 c->leb_size, tmp); 681 return -EINVAL; 682 } 683 684 /* 685 * Make sure that the log is large enough to fit reference nodes for 686 * all buds plus one reserved LEB. 687 */ 688 tmp64 = c->max_bud_bytes + c->leb_size - 1; 689 c->max_bud_cnt = div_u64(tmp64, c->leb_size); 690 tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1); 691 tmp /= c->leb_size; 692 tmp += 1; 693 if (c->log_lebs < tmp) { 694 ubifs_err(c, "too small log %d LEBs, required min. %d LEBs", 695 c->log_lebs, tmp); 696 return -EINVAL; 697 } 698 699 /* 700 * When budgeting we assume worst-case scenarios when the pages are not 701 * be compressed and direntries are of the maximum size. 702 * 703 * Note, data, which may be stored in inodes is budgeted separately, so 704 * it is not included into 'c->bi.inode_budget'. 705 */ 706 c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE; 707 c->bi.inode_budget = UBIFS_INO_NODE_SZ; 708 c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ; 709 710 /* 711 * When the amount of flash space used by buds becomes 712 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit. 713 * The writers are unblocked when the commit is finished. To avoid 714 * writers to be blocked UBIFS initiates background commit in advance, 715 * when number of bud bytes becomes above the limit defined below. 716 */ 717 c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4; 718 719 /* 720 * Ensure minimum journal size. All the bytes in the journal heads are 721 * considered to be used, when calculating the current journal usage. 722 * Consequently, if the journal is too small, UBIFS will treat it as 723 * always full. 724 */ 725 tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1; 726 if (c->bg_bud_bytes < tmp64) 727 c->bg_bud_bytes = tmp64; 728 if (c->max_bud_bytes < tmp64 + c->leb_size) 729 c->max_bud_bytes = tmp64 + c->leb_size; 730 731 err = ubifs_calc_lpt_geom(c); 732 if (err) 733 return err; 734 735 /* Initialize effective LEB size used in budgeting calculations */ 736 c->idx_leb_size = c->leb_size - c->max_idx_node_sz; 737 return 0; 738 } 739 740 /* 741 * init_constants_master - initialize UBIFS constants. 742 * @c: UBIFS file-system description object 743 * 744 * This is a helper function which initializes various UBIFS constants after 745 * the master node has been read. It also checks various UBIFS parameters and 746 * makes sure they are all right. 747 */ 748 static void init_constants_master(struct ubifs_info *c) 749 { 750 long long tmp64; 751 752 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 753 c->report_rp_size = ubifs_reported_space(c, c->rp_size); 754 755 /* 756 * Calculate total amount of FS blocks. This number is not used 757 * internally because it does not make much sense for UBIFS, but it is 758 * necessary to report something for the 'statfs()' call. 759 * 760 * Subtract the LEB reserved for GC, the LEB which is reserved for 761 * deletions, minimum LEBs for the index, and assume only one journal 762 * head is available. 763 */ 764 tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1; 765 tmp64 *= (long long)c->leb_size - c->leb_overhead; 766 tmp64 = ubifs_reported_space(c, tmp64); 767 c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT; 768 } 769 770 /** 771 * take_gc_lnum - reserve GC LEB. 772 * @c: UBIFS file-system description object 773 * 774 * This function ensures that the LEB reserved for garbage collection is marked 775 * as "taken" in lprops. We also have to set free space to LEB size and dirty 776 * space to zero, because lprops may contain out-of-date information if the 777 * file-system was un-mounted before it has been committed. This function 778 * returns zero in case of success and a negative error code in case of 779 * failure. 780 */ 781 static int take_gc_lnum(struct ubifs_info *c) 782 { 783 int err; 784 785 if (c->gc_lnum == -1) { 786 ubifs_err(c, "no LEB for GC"); 787 return -EINVAL; 788 } 789 790 /* And we have to tell lprops that this LEB is taken */ 791 err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0, 792 LPROPS_TAKEN, 0, 0); 793 return err; 794 } 795 796 /** 797 * alloc_wbufs - allocate write-buffers. 798 * @c: UBIFS file-system description object 799 * 800 * This helper function allocates and initializes UBIFS write-buffers. Returns 801 * zero in case of success and %-ENOMEM in case of failure. 802 */ 803 static int alloc_wbufs(struct ubifs_info *c) 804 { 805 int i, err; 806 807 c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead), 808 GFP_KERNEL); 809 if (!c->jheads) 810 return -ENOMEM; 811 812 /* Initialize journal heads */ 813 for (i = 0; i < c->jhead_cnt; i++) { 814 INIT_LIST_HEAD(&c->jheads[i].buds_list); 815 err = ubifs_wbuf_init(c, &c->jheads[i].wbuf); 816 if (err) 817 return err; 818 819 c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback; 820 c->jheads[i].wbuf.jhead = i; 821 c->jheads[i].grouped = 1; 822 c->jheads[i].log_hash = ubifs_hash_get_desc(c); 823 if (IS_ERR(c->jheads[i].log_hash)) 824 goto out; 825 } 826 827 /* 828 * Garbage Collector head does not need to be synchronized by timer. 829 * Also GC head nodes are not grouped. 830 */ 831 c->jheads[GCHD].wbuf.no_timer = 1; 832 c->jheads[GCHD].grouped = 0; 833 834 return 0; 835 836 out: 837 while (i--) 838 kfree(c->jheads[i].log_hash); 839 840 return err; 841 } 842 843 /** 844 * free_wbufs - free write-buffers. 845 * @c: UBIFS file-system description object 846 */ 847 static void free_wbufs(struct ubifs_info *c) 848 { 849 int i; 850 851 if (c->jheads) { 852 for (i = 0; i < c->jhead_cnt; i++) { 853 kfree(c->jheads[i].wbuf.buf); 854 kfree(c->jheads[i].wbuf.inodes); 855 kfree(c->jheads[i].log_hash); 856 } 857 kfree(c->jheads); 858 c->jheads = NULL; 859 } 860 } 861 862 /** 863 * free_orphans - free orphans. 864 * @c: UBIFS file-system description object 865 */ 866 static void free_orphans(struct ubifs_info *c) 867 { 868 struct ubifs_orphan *orph; 869 870 while (c->orph_dnext) { 871 orph = c->orph_dnext; 872 c->orph_dnext = orph->dnext; 873 list_del(&orph->list); 874 kfree(orph); 875 } 876 877 while (!list_empty(&c->orph_list)) { 878 orph = list_entry(c->orph_list.next, struct ubifs_orphan, list); 879 list_del(&orph->list); 880 kfree(orph); 881 ubifs_err(c, "orphan list not empty at unmount"); 882 } 883 884 vfree(c->orph_buf); 885 c->orph_buf = NULL; 886 } 887 888 /** 889 * free_buds - free per-bud objects. 890 * @c: UBIFS file-system description object 891 */ 892 static void free_buds(struct ubifs_info *c) 893 { 894 struct ubifs_bud *bud, *n; 895 896 rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb) 897 kfree(bud); 898 } 899 900 /** 901 * check_volume_empty - check if the UBI volume is empty. 902 * @c: UBIFS file-system description object 903 * 904 * This function checks if the UBIFS volume is empty by looking if its LEBs are 905 * mapped or not. The result of checking is stored in the @c->empty variable. 906 * Returns zero in case of success and a negative error code in case of 907 * failure. 908 */ 909 static int check_volume_empty(struct ubifs_info *c) 910 { 911 int lnum, err; 912 913 c->empty = 1; 914 for (lnum = 0; lnum < c->leb_cnt; lnum++) { 915 err = ubifs_is_mapped(c, lnum); 916 if (unlikely(err < 0)) 917 return err; 918 if (err == 1) { 919 c->empty = 0; 920 break; 921 } 922 923 cond_resched(); 924 } 925 926 return 0; 927 } 928 929 /* 930 * UBIFS mount options. 931 * 932 * Opt_fast_unmount: do not run a journal commit before un-mounting 933 * Opt_norm_unmount: run a journal commit before un-mounting 934 * Opt_bulk_read: enable bulk-reads 935 * Opt_no_bulk_read: disable bulk-reads 936 * Opt_chk_data_crc: check CRCs when reading data nodes 937 * Opt_no_chk_data_crc: do not check CRCs when reading data nodes 938 * Opt_override_compr: override default compressor 939 * Opt_assert: set ubifs_assert() action 940 * Opt_auth_key: The key name used for authentication 941 * Opt_auth_hash_name: The hash type used for authentication 942 * Opt_err: just end of array marker 943 */ 944 enum { 945 Opt_fast_unmount, 946 Opt_norm_unmount, 947 Opt_bulk_read, 948 Opt_no_bulk_read, 949 Opt_chk_data_crc, 950 Opt_no_chk_data_crc, 951 Opt_override_compr, 952 Opt_assert, 953 Opt_auth_key, 954 Opt_auth_hash_name, 955 Opt_ignore, 956 Opt_err, 957 }; 958 959 static const match_table_t tokens = { 960 {Opt_fast_unmount, "fast_unmount"}, 961 {Opt_norm_unmount, "norm_unmount"}, 962 {Opt_bulk_read, "bulk_read"}, 963 {Opt_no_bulk_read, "no_bulk_read"}, 964 {Opt_chk_data_crc, "chk_data_crc"}, 965 {Opt_no_chk_data_crc, "no_chk_data_crc"}, 966 {Opt_override_compr, "compr=%s"}, 967 {Opt_auth_key, "auth_key=%s"}, 968 {Opt_auth_hash_name, "auth_hash_name=%s"}, 969 {Opt_ignore, "ubi=%s"}, 970 {Opt_ignore, "vol=%s"}, 971 {Opt_assert, "assert=%s"}, 972 {Opt_err, NULL}, 973 }; 974 975 /** 976 * parse_standard_option - parse a standard mount option. 977 * @option: the option to parse 978 * 979 * Normally, standard mount options like "sync" are passed to file-systems as 980 * flags. However, when a "rootflags=" kernel boot parameter is used, they may 981 * be present in the options string. This function tries to deal with this 982 * situation and parse standard options. Returns 0 if the option was not 983 * recognized, and the corresponding integer flag if it was. 984 * 985 * UBIFS is only interested in the "sync" option, so do not check for anything 986 * else. 987 */ 988 static int parse_standard_option(const char *option) 989 { 990 991 pr_notice("UBIFS: parse %s\n", option); 992 if (!strcmp(option, "sync")) 993 return SB_SYNCHRONOUS; 994 return 0; 995 } 996 997 /** 998 * ubifs_parse_options - parse mount parameters. 999 * @c: UBIFS file-system description object 1000 * @options: parameters to parse 1001 * @is_remount: non-zero if this is FS re-mount 1002 * 1003 * This function parses UBIFS mount options and returns zero in case success 1004 * and a negative error code in case of failure. 1005 */ 1006 static int ubifs_parse_options(struct ubifs_info *c, char *options, 1007 int is_remount) 1008 { 1009 char *p; 1010 substring_t args[MAX_OPT_ARGS]; 1011 1012 if (!options) 1013 return 0; 1014 1015 while ((p = strsep(&options, ","))) { 1016 int token; 1017 1018 if (!*p) 1019 continue; 1020 1021 token = match_token(p, tokens, args); 1022 switch (token) { 1023 /* 1024 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored. 1025 * We accept them in order to be backward-compatible. But this 1026 * should be removed at some point. 1027 */ 1028 case Opt_fast_unmount: 1029 c->mount_opts.unmount_mode = 2; 1030 break; 1031 case Opt_norm_unmount: 1032 c->mount_opts.unmount_mode = 1; 1033 break; 1034 case Opt_bulk_read: 1035 c->mount_opts.bulk_read = 2; 1036 c->bulk_read = 1; 1037 break; 1038 case Opt_no_bulk_read: 1039 c->mount_opts.bulk_read = 1; 1040 c->bulk_read = 0; 1041 break; 1042 case Opt_chk_data_crc: 1043 c->mount_opts.chk_data_crc = 2; 1044 c->no_chk_data_crc = 0; 1045 break; 1046 case Opt_no_chk_data_crc: 1047 c->mount_opts.chk_data_crc = 1; 1048 c->no_chk_data_crc = 1; 1049 break; 1050 case Opt_override_compr: 1051 { 1052 char *name = match_strdup(&args[0]); 1053 1054 if (!name) 1055 return -ENOMEM; 1056 if (!strcmp(name, "none")) 1057 c->mount_opts.compr_type = UBIFS_COMPR_NONE; 1058 else if (!strcmp(name, "lzo")) 1059 c->mount_opts.compr_type = UBIFS_COMPR_LZO; 1060 else if (!strcmp(name, "zlib")) 1061 c->mount_opts.compr_type = UBIFS_COMPR_ZLIB; 1062 else { 1063 ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready? 1064 kfree(name); 1065 return -EINVAL; 1066 } 1067 kfree(name); 1068 c->mount_opts.override_compr = 1; 1069 c->default_compr = c->mount_opts.compr_type; 1070 break; 1071 } 1072 case Opt_assert: 1073 { 1074 char *act = match_strdup(&args[0]); 1075 1076 if (!act) 1077 return -ENOMEM; 1078 if (!strcmp(act, "report")) 1079 c->assert_action = ASSACT_REPORT; 1080 else if (!strcmp(act, "read-only")) 1081 c->assert_action = ASSACT_RO; 1082 else if (!strcmp(act, "panic")) 1083 c->assert_action = ASSACT_PANIC; 1084 else { 1085 ubifs_err(c, "unknown assert action \"%s\"", act); 1086 kfree(act); 1087 return -EINVAL; 1088 } 1089 kfree(act); 1090 break; 1091 } 1092 case Opt_auth_key: 1093 c->auth_key_name = kstrdup(args[0].from, GFP_KERNEL); 1094 if (!c->auth_key_name) 1095 return -ENOMEM; 1096 break; 1097 case Opt_auth_hash_name: 1098 c->auth_hash_name = kstrdup(args[0].from, GFP_KERNEL); 1099 if (!c->auth_hash_name) 1100 return -ENOMEM; 1101 break; 1102 case Opt_ignore: 1103 break; 1104 default: 1105 { 1106 unsigned long flag; 1107 struct super_block *sb = c->vfs_sb; 1108 1109 flag = parse_standard_option(p); 1110 if (!flag) { 1111 ubifs_err(c, "unrecognized mount option \"%s\" or missing value", 1112 p); 1113 return -EINVAL; 1114 } 1115 sb->s_flags |= flag; 1116 break; 1117 } 1118 } 1119 } 1120 1121 return 0; 1122 } 1123 1124 /** 1125 * destroy_journal - destroy journal data structures. 1126 * @c: UBIFS file-system description object 1127 * 1128 * This function destroys journal data structures including those that may have 1129 * been created by recovery functions. 1130 */ 1131 static void destroy_journal(struct ubifs_info *c) 1132 { 1133 while (!list_empty(&c->unclean_leb_list)) { 1134 struct ubifs_unclean_leb *ucleb; 1135 1136 ucleb = list_entry(c->unclean_leb_list.next, 1137 struct ubifs_unclean_leb, list); 1138 list_del(&ucleb->list); 1139 kfree(ucleb); 1140 } 1141 while (!list_empty(&c->old_buds)) { 1142 struct ubifs_bud *bud; 1143 1144 bud = list_entry(c->old_buds.next, struct ubifs_bud, list); 1145 list_del(&bud->list); 1146 kfree(bud); 1147 } 1148 ubifs_destroy_idx_gc(c); 1149 ubifs_destroy_size_tree(c); 1150 ubifs_tnc_close(c); 1151 free_buds(c); 1152 } 1153 1154 /** 1155 * bu_init - initialize bulk-read information. 1156 * @c: UBIFS file-system description object 1157 */ 1158 static void bu_init(struct ubifs_info *c) 1159 { 1160 ubifs_assert(c, c->bulk_read == 1); 1161 1162 if (c->bu.buf) 1163 return; /* Already initialized */ 1164 1165 again: 1166 c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN); 1167 if (!c->bu.buf) { 1168 if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) { 1169 c->max_bu_buf_len = UBIFS_KMALLOC_OK; 1170 goto again; 1171 } 1172 1173 /* Just disable bulk-read */ 1174 ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it", 1175 c->max_bu_buf_len); 1176 c->mount_opts.bulk_read = 1; 1177 c->bulk_read = 0; 1178 return; 1179 } 1180 } 1181 1182 /** 1183 * check_free_space - check if there is enough free space to mount. 1184 * @c: UBIFS file-system description object 1185 * 1186 * This function makes sure UBIFS has enough free space to be mounted in 1187 * read/write mode. UBIFS must always have some free space to allow deletions. 1188 */ 1189 static int check_free_space(struct ubifs_info *c) 1190 { 1191 ubifs_assert(c, c->dark_wm > 0); 1192 if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) { 1193 ubifs_err(c, "insufficient free space to mount in R/W mode"); 1194 ubifs_dump_budg(c, &c->bi); 1195 ubifs_dump_lprops(c); 1196 return -ENOSPC; 1197 } 1198 return 0; 1199 } 1200 1201 /** 1202 * mount_ubifs - mount UBIFS file-system. 1203 * @c: UBIFS file-system description object 1204 * 1205 * This function mounts UBIFS file system. Returns zero in case of success and 1206 * a negative error code in case of failure. 1207 */ 1208 static int mount_ubifs(struct ubifs_info *c) 1209 { 1210 int err; 1211 long long x, y; 1212 size_t sz; 1213 1214 c->ro_mount = !!sb_rdonly(c->vfs_sb); 1215 /* Suppress error messages while probing if SB_SILENT is set */ 1216 c->probing = !!(c->vfs_sb->s_flags & SB_SILENT); 1217 1218 err = init_constants_early(c); 1219 if (err) 1220 return err; 1221 1222 err = ubifs_debugging_init(c); 1223 if (err) 1224 return err; 1225 1226 err = check_volume_empty(c); 1227 if (err) 1228 goto out_free; 1229 1230 if (c->empty && (c->ro_mount || c->ro_media)) { 1231 /* 1232 * This UBI volume is empty, and read-only, or the file system 1233 * is mounted read-only - we cannot format it. 1234 */ 1235 ubifs_err(c, "can't format empty UBI volume: read-only %s", 1236 c->ro_media ? "UBI volume" : "mount"); 1237 err = -EROFS; 1238 goto out_free; 1239 } 1240 1241 if (c->ro_media && !c->ro_mount) { 1242 ubifs_err(c, "cannot mount read-write - read-only media"); 1243 err = -EROFS; 1244 goto out_free; 1245 } 1246 1247 /* 1248 * The requirement for the buffer is that it should fit indexing B-tree 1249 * height amount of integers. We assume the height if the TNC tree will 1250 * never exceed 64. 1251 */ 1252 err = -ENOMEM; 1253 c->bottom_up_buf = kmalloc_array(BOTTOM_UP_HEIGHT, sizeof(int), 1254 GFP_KERNEL); 1255 if (!c->bottom_up_buf) 1256 goto out_free; 1257 1258 c->sbuf = vmalloc(c->leb_size); 1259 if (!c->sbuf) 1260 goto out_free; 1261 1262 if (!c->ro_mount) { 1263 c->ileb_buf = vmalloc(c->leb_size); 1264 if (!c->ileb_buf) 1265 goto out_free; 1266 } 1267 1268 if (c->bulk_read == 1) 1269 bu_init(c); 1270 1271 if (!c->ro_mount) { 1272 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1273 UBIFS_CIPHER_BLOCK_SIZE, 1274 GFP_KERNEL); 1275 if (!c->write_reserve_buf) 1276 goto out_free; 1277 } 1278 1279 c->mounting = 1; 1280 1281 if (c->auth_key_name) { 1282 if (IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION)) { 1283 err = ubifs_init_authentication(c); 1284 if (err) 1285 goto out_free; 1286 } else { 1287 ubifs_err(c, "auth_key_name, but UBIFS is built without" 1288 " authentication support"); 1289 err = -EINVAL; 1290 goto out_free; 1291 } 1292 } 1293 1294 err = ubifs_read_superblock(c); 1295 if (err) 1296 goto out_free; 1297 1298 c->probing = 0; 1299 1300 /* 1301 * Make sure the compressor which is set as default in the superblock 1302 * or overridden by mount options is actually compiled in. 1303 */ 1304 if (!ubifs_compr_present(c, c->default_compr)) { 1305 ubifs_err(c, "'compressor \"%s\" is not compiled in", 1306 ubifs_compr_name(c, c->default_compr)); 1307 err = -ENOTSUPP; 1308 goto out_free; 1309 } 1310 1311 err = init_constants_sb(c); 1312 if (err) 1313 goto out_free; 1314 1315 sz = ALIGN(c->max_idx_node_sz, c->min_io_size); 1316 sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size); 1317 c->cbuf = kmalloc(sz, GFP_NOFS); 1318 if (!c->cbuf) { 1319 err = -ENOMEM; 1320 goto out_free; 1321 } 1322 1323 err = alloc_wbufs(c); 1324 if (err) 1325 goto out_cbuf; 1326 1327 sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id); 1328 if (!c->ro_mount) { 1329 /* Create background thread */ 1330 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1331 if (IS_ERR(c->bgt)) { 1332 err = PTR_ERR(c->bgt); 1333 c->bgt = NULL; 1334 ubifs_err(c, "cannot spawn \"%s\", error %d", 1335 c->bgt_name, err); 1336 goto out_wbufs; 1337 } 1338 wake_up_process(c->bgt); 1339 } 1340 1341 err = ubifs_read_master(c); 1342 if (err) 1343 goto out_master; 1344 1345 init_constants_master(c); 1346 1347 if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) { 1348 ubifs_msg(c, "recovery needed"); 1349 c->need_recovery = 1; 1350 } 1351 1352 if (c->need_recovery && !c->ro_mount) { 1353 err = ubifs_recover_inl_heads(c, c->sbuf); 1354 if (err) 1355 goto out_master; 1356 } 1357 1358 err = ubifs_lpt_init(c, 1, !c->ro_mount); 1359 if (err) 1360 goto out_master; 1361 1362 if (!c->ro_mount && c->space_fixup) { 1363 err = ubifs_fixup_free_space(c); 1364 if (err) 1365 goto out_lpt; 1366 } 1367 1368 if (!c->ro_mount && !c->need_recovery) { 1369 /* 1370 * Set the "dirty" flag so that if we reboot uncleanly we 1371 * will notice this immediately on the next mount. 1372 */ 1373 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1374 err = ubifs_write_master(c); 1375 if (err) 1376 goto out_lpt; 1377 } 1378 1379 err = dbg_check_idx_size(c, c->bi.old_idx_sz); 1380 if (err) 1381 goto out_lpt; 1382 1383 err = ubifs_replay_journal(c); 1384 if (err) 1385 goto out_journal; 1386 1387 /* Calculate 'min_idx_lebs' after journal replay */ 1388 c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c); 1389 1390 err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount); 1391 if (err) 1392 goto out_orphans; 1393 1394 if (!c->ro_mount) { 1395 int lnum; 1396 1397 err = check_free_space(c); 1398 if (err) 1399 goto out_orphans; 1400 1401 /* Check for enough log space */ 1402 lnum = c->lhead_lnum + 1; 1403 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1404 lnum = UBIFS_LOG_LNUM; 1405 if (lnum == c->ltail_lnum) { 1406 err = ubifs_consolidate_log(c); 1407 if (err) 1408 goto out_orphans; 1409 } 1410 1411 if (c->need_recovery) { 1412 if (!ubifs_authenticated(c)) { 1413 err = ubifs_recover_size(c, true); 1414 if (err) 1415 goto out_orphans; 1416 } 1417 1418 err = ubifs_rcvry_gc_commit(c); 1419 if (err) 1420 goto out_orphans; 1421 1422 if (ubifs_authenticated(c)) { 1423 err = ubifs_recover_size(c, false); 1424 if (err) 1425 goto out_orphans; 1426 } 1427 } else { 1428 err = take_gc_lnum(c); 1429 if (err) 1430 goto out_orphans; 1431 1432 /* 1433 * GC LEB may contain garbage if there was an unclean 1434 * reboot, and it should be un-mapped. 1435 */ 1436 err = ubifs_leb_unmap(c, c->gc_lnum); 1437 if (err) 1438 goto out_orphans; 1439 } 1440 1441 err = dbg_check_lprops(c); 1442 if (err) 1443 goto out_orphans; 1444 } else if (c->need_recovery) { 1445 err = ubifs_recover_size(c, false); 1446 if (err) 1447 goto out_orphans; 1448 } else { 1449 /* 1450 * Even if we mount read-only, we have to set space in GC LEB 1451 * to proper value because this affects UBIFS free space 1452 * reporting. We do not want to have a situation when 1453 * re-mounting from R/O to R/W changes amount of free space. 1454 */ 1455 err = take_gc_lnum(c); 1456 if (err) 1457 goto out_orphans; 1458 } 1459 1460 spin_lock(&ubifs_infos_lock); 1461 list_add_tail(&c->infos_list, &ubifs_infos); 1462 spin_unlock(&ubifs_infos_lock); 1463 1464 if (c->need_recovery) { 1465 if (c->ro_mount) 1466 ubifs_msg(c, "recovery deferred"); 1467 else { 1468 c->need_recovery = 0; 1469 ubifs_msg(c, "recovery completed"); 1470 /* 1471 * GC LEB has to be empty and taken at this point. But 1472 * the journal head LEBs may also be accounted as 1473 * "empty taken" if they are empty. 1474 */ 1475 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1476 } 1477 } else 1478 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1479 1480 err = dbg_check_filesystem(c); 1481 if (err) 1482 goto out_infos; 1483 1484 err = dbg_debugfs_init_fs(c); 1485 if (err) 1486 goto out_infos; 1487 1488 c->mounting = 0; 1489 1490 ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s", 1491 c->vi.ubi_num, c->vi.vol_id, c->vi.name, 1492 c->ro_mount ? ", R/O mode" : ""); 1493 x = (long long)c->main_lebs * c->leb_size; 1494 y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes; 1495 ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes", 1496 c->leb_size, c->leb_size >> 10, c->min_io_size, 1497 c->max_write_size); 1498 ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)", 1499 x, x >> 20, c->main_lebs, 1500 y, y >> 20, c->log_lebs + c->max_bud_cnt); 1501 ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)", 1502 c->report_rp_size, c->report_rp_size >> 10); 1503 ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s", 1504 c->fmt_version, c->ro_compat_version, 1505 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid, 1506 c->big_lpt ? ", big LPT model" : ", small LPT model"); 1507 1508 dbg_gen("default compressor: %s", ubifs_compr_name(c, c->default_compr)); 1509 dbg_gen("data journal heads: %d", 1510 c->jhead_cnt - NONDATA_JHEADS_CNT); 1511 dbg_gen("log LEBs: %d (%d - %d)", 1512 c->log_lebs, UBIFS_LOG_LNUM, c->log_last); 1513 dbg_gen("LPT area LEBs: %d (%d - %d)", 1514 c->lpt_lebs, c->lpt_first, c->lpt_last); 1515 dbg_gen("orphan area LEBs: %d (%d - %d)", 1516 c->orph_lebs, c->orph_first, c->orph_last); 1517 dbg_gen("main area LEBs: %d (%d - %d)", 1518 c->main_lebs, c->main_first, c->leb_cnt - 1); 1519 dbg_gen("index LEBs: %d", c->lst.idx_lebs); 1520 dbg_gen("total index bytes: %lld (%lld KiB, %lld MiB)", 1521 c->bi.old_idx_sz, c->bi.old_idx_sz >> 10, 1522 c->bi.old_idx_sz >> 20); 1523 dbg_gen("key hash type: %d", c->key_hash_type); 1524 dbg_gen("tree fanout: %d", c->fanout); 1525 dbg_gen("reserved GC LEB: %d", c->gc_lnum); 1526 dbg_gen("max. znode size %d", c->max_znode_sz); 1527 dbg_gen("max. index node size %d", c->max_idx_node_sz); 1528 dbg_gen("node sizes: data %zu, inode %zu, dentry %zu", 1529 UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ); 1530 dbg_gen("node sizes: trun %zu, sb %zu, master %zu", 1531 UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ); 1532 dbg_gen("node sizes: ref %zu, cmt. start %zu, orph %zu", 1533 UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ); 1534 dbg_gen("max. node sizes: data %zu, inode %zu dentry %zu, idx %d", 1535 UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ, 1536 UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout)); 1537 dbg_gen("dead watermark: %d", c->dead_wm); 1538 dbg_gen("dark watermark: %d", c->dark_wm); 1539 dbg_gen("LEB overhead: %d", c->leb_overhead); 1540 x = (long long)c->main_lebs * c->dark_wm; 1541 dbg_gen("max. dark space: %lld (%lld KiB, %lld MiB)", 1542 x, x >> 10, x >> 20); 1543 dbg_gen("maximum bud bytes: %lld (%lld KiB, %lld MiB)", 1544 c->max_bud_bytes, c->max_bud_bytes >> 10, 1545 c->max_bud_bytes >> 20); 1546 dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)", 1547 c->bg_bud_bytes, c->bg_bud_bytes >> 10, 1548 c->bg_bud_bytes >> 20); 1549 dbg_gen("current bud bytes %lld (%lld KiB, %lld MiB)", 1550 c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20); 1551 dbg_gen("max. seq. number: %llu", c->max_sqnum); 1552 dbg_gen("commit number: %llu", c->cmt_no); 1553 1554 return 0; 1555 1556 out_infos: 1557 spin_lock(&ubifs_infos_lock); 1558 list_del(&c->infos_list); 1559 spin_unlock(&ubifs_infos_lock); 1560 out_orphans: 1561 free_orphans(c); 1562 out_journal: 1563 destroy_journal(c); 1564 out_lpt: 1565 ubifs_lpt_free(c, 0); 1566 out_master: 1567 kfree(c->mst_node); 1568 kfree(c->rcvrd_mst_node); 1569 if (c->bgt) 1570 kthread_stop(c->bgt); 1571 out_wbufs: 1572 free_wbufs(c); 1573 out_cbuf: 1574 kfree(c->cbuf); 1575 out_free: 1576 kfree(c->write_reserve_buf); 1577 kfree(c->bu.buf); 1578 vfree(c->ileb_buf); 1579 vfree(c->sbuf); 1580 kfree(c->bottom_up_buf); 1581 ubifs_debugging_exit(c); 1582 return err; 1583 } 1584 1585 /** 1586 * ubifs_umount - un-mount UBIFS file-system. 1587 * @c: UBIFS file-system description object 1588 * 1589 * Note, this function is called to free allocated resourced when un-mounting, 1590 * as well as free resources when an error occurred while we were half way 1591 * through mounting (error path cleanup function). So it has to make sure the 1592 * resource was actually allocated before freeing it. 1593 */ 1594 static void ubifs_umount(struct ubifs_info *c) 1595 { 1596 dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num, 1597 c->vi.vol_id); 1598 1599 dbg_debugfs_exit_fs(c); 1600 spin_lock(&ubifs_infos_lock); 1601 list_del(&c->infos_list); 1602 spin_unlock(&ubifs_infos_lock); 1603 1604 if (c->bgt) 1605 kthread_stop(c->bgt); 1606 1607 destroy_journal(c); 1608 free_wbufs(c); 1609 free_orphans(c); 1610 ubifs_lpt_free(c, 0); 1611 ubifs_exit_authentication(c); 1612 1613 kfree(c->auth_key_name); 1614 kfree(c->auth_hash_name); 1615 kfree(c->cbuf); 1616 kfree(c->rcvrd_mst_node); 1617 kfree(c->mst_node); 1618 kfree(c->write_reserve_buf); 1619 kfree(c->bu.buf); 1620 vfree(c->ileb_buf); 1621 vfree(c->sbuf); 1622 kfree(c->bottom_up_buf); 1623 ubifs_debugging_exit(c); 1624 } 1625 1626 /** 1627 * ubifs_remount_rw - re-mount in read-write mode. 1628 * @c: UBIFS file-system description object 1629 * 1630 * UBIFS avoids allocating many unnecessary resources when mounted in read-only 1631 * mode. This function allocates the needed resources and re-mounts UBIFS in 1632 * read-write mode. 1633 */ 1634 static int ubifs_remount_rw(struct ubifs_info *c) 1635 { 1636 int err, lnum; 1637 1638 if (c->rw_incompat) { 1639 ubifs_err(c, "the file-system is not R/W-compatible"); 1640 ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 1641 c->fmt_version, c->ro_compat_version, 1642 UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION); 1643 return -EROFS; 1644 } 1645 1646 mutex_lock(&c->umount_mutex); 1647 dbg_save_space_info(c); 1648 c->remounting_rw = 1; 1649 c->ro_mount = 0; 1650 1651 if (c->space_fixup) { 1652 err = ubifs_fixup_free_space(c); 1653 if (err) 1654 goto out; 1655 } 1656 1657 err = check_free_space(c); 1658 if (err) 1659 goto out; 1660 1661 if (c->old_leb_cnt != c->leb_cnt) { 1662 struct ubifs_sb_node *sup = c->sup_node; 1663 1664 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 1665 err = ubifs_write_sb_node(c, sup); 1666 if (err) 1667 goto out; 1668 } 1669 1670 if (c->need_recovery) { 1671 ubifs_msg(c, "completing deferred recovery"); 1672 err = ubifs_write_rcvrd_mst_node(c); 1673 if (err) 1674 goto out; 1675 if (!ubifs_authenticated(c)) { 1676 err = ubifs_recover_size(c, true); 1677 if (err) 1678 goto out; 1679 } 1680 err = ubifs_clean_lebs(c, c->sbuf); 1681 if (err) 1682 goto out; 1683 err = ubifs_recover_inl_heads(c, c->sbuf); 1684 if (err) 1685 goto out; 1686 } else { 1687 /* A readonly mount is not allowed to have orphans */ 1688 ubifs_assert(c, c->tot_orphans == 0); 1689 err = ubifs_clear_orphans(c); 1690 if (err) 1691 goto out; 1692 } 1693 1694 if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) { 1695 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 1696 err = ubifs_write_master(c); 1697 if (err) 1698 goto out; 1699 } 1700 1701 c->ileb_buf = vmalloc(c->leb_size); 1702 if (!c->ileb_buf) { 1703 err = -ENOMEM; 1704 goto out; 1705 } 1706 1707 c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ + \ 1708 UBIFS_CIPHER_BLOCK_SIZE, GFP_KERNEL); 1709 if (!c->write_reserve_buf) { 1710 err = -ENOMEM; 1711 goto out; 1712 } 1713 1714 err = ubifs_lpt_init(c, 0, 1); 1715 if (err) 1716 goto out; 1717 1718 /* Create background thread */ 1719 c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name); 1720 if (IS_ERR(c->bgt)) { 1721 err = PTR_ERR(c->bgt); 1722 c->bgt = NULL; 1723 ubifs_err(c, "cannot spawn \"%s\", error %d", 1724 c->bgt_name, err); 1725 goto out; 1726 } 1727 wake_up_process(c->bgt); 1728 1729 c->orph_buf = vmalloc(c->leb_size); 1730 if (!c->orph_buf) { 1731 err = -ENOMEM; 1732 goto out; 1733 } 1734 1735 /* Check for enough log space */ 1736 lnum = c->lhead_lnum + 1; 1737 if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) 1738 lnum = UBIFS_LOG_LNUM; 1739 if (lnum == c->ltail_lnum) { 1740 err = ubifs_consolidate_log(c); 1741 if (err) 1742 goto out; 1743 } 1744 1745 if (c->need_recovery) { 1746 err = ubifs_rcvry_gc_commit(c); 1747 if (err) 1748 goto out; 1749 1750 if (ubifs_authenticated(c)) { 1751 err = ubifs_recover_size(c, false); 1752 if (err) 1753 goto out; 1754 } 1755 } else { 1756 err = ubifs_leb_unmap(c, c->gc_lnum); 1757 } 1758 if (err) 1759 goto out; 1760 1761 dbg_gen("re-mounted read-write"); 1762 c->remounting_rw = 0; 1763 1764 if (c->need_recovery) { 1765 c->need_recovery = 0; 1766 ubifs_msg(c, "deferred recovery completed"); 1767 } else { 1768 /* 1769 * Do not run the debugging space check if the were doing 1770 * recovery, because when we saved the information we had the 1771 * file-system in a state where the TNC and lprops has been 1772 * modified in memory, but all the I/O operations (including a 1773 * commit) were deferred. So the file-system was in 1774 * "non-committed" state. Now the file-system is in committed 1775 * state, and of course the amount of free space will change 1776 * because, for example, the old index size was imprecise. 1777 */ 1778 err = dbg_check_space_info(c); 1779 } 1780 1781 mutex_unlock(&c->umount_mutex); 1782 return err; 1783 1784 out: 1785 c->ro_mount = 1; 1786 vfree(c->orph_buf); 1787 c->orph_buf = NULL; 1788 if (c->bgt) { 1789 kthread_stop(c->bgt); 1790 c->bgt = NULL; 1791 } 1792 free_wbufs(c); 1793 kfree(c->write_reserve_buf); 1794 c->write_reserve_buf = NULL; 1795 vfree(c->ileb_buf); 1796 c->ileb_buf = NULL; 1797 ubifs_lpt_free(c, 1); 1798 c->remounting_rw = 0; 1799 mutex_unlock(&c->umount_mutex); 1800 return err; 1801 } 1802 1803 /** 1804 * ubifs_remount_ro - re-mount in read-only mode. 1805 * @c: UBIFS file-system description object 1806 * 1807 * We assume VFS has stopped writing. Possibly the background thread could be 1808 * running a commit, however kthread_stop will wait in that case. 1809 */ 1810 static void ubifs_remount_ro(struct ubifs_info *c) 1811 { 1812 int i, err; 1813 1814 ubifs_assert(c, !c->need_recovery); 1815 ubifs_assert(c, !c->ro_mount); 1816 1817 mutex_lock(&c->umount_mutex); 1818 if (c->bgt) { 1819 kthread_stop(c->bgt); 1820 c->bgt = NULL; 1821 } 1822 1823 dbg_save_space_info(c); 1824 1825 for (i = 0; i < c->jhead_cnt; i++) { 1826 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1827 if (err) 1828 ubifs_ro_mode(c, err); 1829 } 1830 1831 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1832 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1833 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1834 err = ubifs_write_master(c); 1835 if (err) 1836 ubifs_ro_mode(c, err); 1837 1838 vfree(c->orph_buf); 1839 c->orph_buf = NULL; 1840 kfree(c->write_reserve_buf); 1841 c->write_reserve_buf = NULL; 1842 vfree(c->ileb_buf); 1843 c->ileb_buf = NULL; 1844 ubifs_lpt_free(c, 1); 1845 c->ro_mount = 1; 1846 err = dbg_check_space_info(c); 1847 if (err) 1848 ubifs_ro_mode(c, err); 1849 mutex_unlock(&c->umount_mutex); 1850 } 1851 1852 static void ubifs_put_super(struct super_block *sb) 1853 { 1854 int i; 1855 struct ubifs_info *c = sb->s_fs_info; 1856 1857 ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num); 1858 1859 /* 1860 * The following asserts are only valid if there has not been a failure 1861 * of the media. For example, there will be dirty inodes if we failed 1862 * to write them back because of I/O errors. 1863 */ 1864 if (!c->ro_error) { 1865 ubifs_assert(c, c->bi.idx_growth == 0); 1866 ubifs_assert(c, c->bi.dd_growth == 0); 1867 ubifs_assert(c, c->bi.data_growth == 0); 1868 } 1869 1870 /* 1871 * The 'c->umount_lock' prevents races between UBIFS memory shrinker 1872 * and file system un-mount. Namely, it prevents the shrinker from 1873 * picking this superblock for shrinking - it will be just skipped if 1874 * the mutex is locked. 1875 */ 1876 mutex_lock(&c->umount_mutex); 1877 if (!c->ro_mount) { 1878 /* 1879 * First of all kill the background thread to make sure it does 1880 * not interfere with un-mounting and freeing resources. 1881 */ 1882 if (c->bgt) { 1883 kthread_stop(c->bgt); 1884 c->bgt = NULL; 1885 } 1886 1887 /* 1888 * On fatal errors c->ro_error is set to 1, in which case we do 1889 * not write the master node. 1890 */ 1891 if (!c->ro_error) { 1892 int err; 1893 1894 /* Synchronize write-buffers */ 1895 for (i = 0; i < c->jhead_cnt; i++) { 1896 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 1897 if (err) 1898 ubifs_ro_mode(c, err); 1899 } 1900 1901 /* 1902 * We are being cleanly unmounted which means the 1903 * orphans were killed - indicate this in the master 1904 * node. Also save the reserved GC LEB number. 1905 */ 1906 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY); 1907 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 1908 c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum); 1909 err = ubifs_write_master(c); 1910 if (err) 1911 /* 1912 * Recovery will attempt to fix the master area 1913 * next mount, so we just print a message and 1914 * continue to unmount normally. 1915 */ 1916 ubifs_err(c, "failed to write master node, error %d", 1917 err); 1918 } else { 1919 for (i = 0; i < c->jhead_cnt; i++) 1920 /* Make sure write-buffer timers are canceled */ 1921 hrtimer_cancel(&c->jheads[i].wbuf.timer); 1922 } 1923 } 1924 1925 ubifs_umount(c); 1926 ubi_close_volume(c->ubi); 1927 mutex_unlock(&c->umount_mutex); 1928 } 1929 1930 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data) 1931 { 1932 int err; 1933 struct ubifs_info *c = sb->s_fs_info; 1934 1935 sync_filesystem(sb); 1936 dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags); 1937 1938 err = ubifs_parse_options(c, data, 1); 1939 if (err) { 1940 ubifs_err(c, "invalid or unknown remount parameter"); 1941 return err; 1942 } 1943 1944 if (c->ro_mount && !(*flags & SB_RDONLY)) { 1945 if (c->ro_error) { 1946 ubifs_msg(c, "cannot re-mount R/W due to prior errors"); 1947 return -EROFS; 1948 } 1949 if (c->ro_media) { 1950 ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O"); 1951 return -EROFS; 1952 } 1953 err = ubifs_remount_rw(c); 1954 if (err) 1955 return err; 1956 } else if (!c->ro_mount && (*flags & SB_RDONLY)) { 1957 if (c->ro_error) { 1958 ubifs_msg(c, "cannot re-mount R/O due to prior errors"); 1959 return -EROFS; 1960 } 1961 ubifs_remount_ro(c); 1962 } 1963 1964 if (c->bulk_read == 1) 1965 bu_init(c); 1966 else { 1967 dbg_gen("disable bulk-read"); 1968 mutex_lock(&c->bu_mutex); 1969 kfree(c->bu.buf); 1970 c->bu.buf = NULL; 1971 mutex_unlock(&c->bu_mutex); 1972 } 1973 1974 if (!c->need_recovery) 1975 ubifs_assert(c, c->lst.taken_empty_lebs > 0); 1976 1977 return 0; 1978 } 1979 1980 const struct super_operations ubifs_super_operations = { 1981 .alloc_inode = ubifs_alloc_inode, 1982 .destroy_inode = ubifs_destroy_inode, 1983 .put_super = ubifs_put_super, 1984 .write_inode = ubifs_write_inode, 1985 .evict_inode = ubifs_evict_inode, 1986 .statfs = ubifs_statfs, 1987 .dirty_inode = ubifs_dirty_inode, 1988 .remount_fs = ubifs_remount_fs, 1989 .show_options = ubifs_show_options, 1990 .sync_fs = ubifs_sync_fs, 1991 }; 1992 1993 /** 1994 * open_ubi - parse UBI device name string and open the UBI device. 1995 * @name: UBI volume name 1996 * @mode: UBI volume open mode 1997 * 1998 * The primary method of mounting UBIFS is by specifying the UBI volume 1999 * character device node path. However, UBIFS may also be mounted withoug any 2000 * character device node using one of the following methods: 2001 * 2002 * o ubiX_Y - mount UBI device number X, volume Y; 2003 * o ubiY - mount UBI device number 0, volume Y; 2004 * o ubiX:NAME - mount UBI device X, volume with name NAME; 2005 * o ubi:NAME - mount UBI device 0, volume with name NAME. 2006 * 2007 * Alternative '!' separator may be used instead of ':' (because some shells 2008 * like busybox may interpret ':' as an NFS host name separator). This function 2009 * returns UBI volume description object in case of success and a negative 2010 * error code in case of failure. 2011 */ 2012 static struct ubi_volume_desc *open_ubi(const char *name, int mode) 2013 { 2014 struct ubi_volume_desc *ubi; 2015 int dev, vol; 2016 char *endptr; 2017 2018 if (!name || !*name) 2019 return ERR_PTR(-EINVAL); 2020 2021 /* First, try to open using the device node path method */ 2022 ubi = ubi_open_volume_path(name, mode); 2023 if (!IS_ERR(ubi)) 2024 return ubi; 2025 2026 /* Try the "nodev" method */ 2027 if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i') 2028 return ERR_PTR(-EINVAL); 2029 2030 /* ubi:NAME method */ 2031 if ((name[3] == ':' || name[3] == '!') && name[4] != '\0') 2032 return ubi_open_volume_nm(0, name + 4, mode); 2033 2034 if (!isdigit(name[3])) 2035 return ERR_PTR(-EINVAL); 2036 2037 dev = simple_strtoul(name + 3, &endptr, 0); 2038 2039 /* ubiY method */ 2040 if (*endptr == '\0') 2041 return ubi_open_volume(0, dev, mode); 2042 2043 /* ubiX_Y method */ 2044 if (*endptr == '_' && isdigit(endptr[1])) { 2045 vol = simple_strtoul(endptr + 1, &endptr, 0); 2046 if (*endptr != '\0') 2047 return ERR_PTR(-EINVAL); 2048 return ubi_open_volume(dev, vol, mode); 2049 } 2050 2051 /* ubiX:NAME method */ 2052 if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0') 2053 return ubi_open_volume_nm(dev, ++endptr, mode); 2054 2055 return ERR_PTR(-EINVAL); 2056 } 2057 2058 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi) 2059 { 2060 struct ubifs_info *c; 2061 2062 c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL); 2063 if (c) { 2064 spin_lock_init(&c->cnt_lock); 2065 spin_lock_init(&c->cs_lock); 2066 spin_lock_init(&c->buds_lock); 2067 spin_lock_init(&c->space_lock); 2068 spin_lock_init(&c->orphan_lock); 2069 init_rwsem(&c->commit_sem); 2070 mutex_init(&c->lp_mutex); 2071 mutex_init(&c->tnc_mutex); 2072 mutex_init(&c->log_mutex); 2073 mutex_init(&c->umount_mutex); 2074 mutex_init(&c->bu_mutex); 2075 mutex_init(&c->write_reserve_mutex); 2076 init_waitqueue_head(&c->cmt_wq); 2077 c->buds = RB_ROOT; 2078 c->old_idx = RB_ROOT; 2079 c->size_tree = RB_ROOT; 2080 c->orph_tree = RB_ROOT; 2081 INIT_LIST_HEAD(&c->infos_list); 2082 INIT_LIST_HEAD(&c->idx_gc); 2083 INIT_LIST_HEAD(&c->replay_list); 2084 INIT_LIST_HEAD(&c->replay_buds); 2085 INIT_LIST_HEAD(&c->uncat_list); 2086 INIT_LIST_HEAD(&c->empty_list); 2087 INIT_LIST_HEAD(&c->freeable_list); 2088 INIT_LIST_HEAD(&c->frdi_idx_list); 2089 INIT_LIST_HEAD(&c->unclean_leb_list); 2090 INIT_LIST_HEAD(&c->old_buds); 2091 INIT_LIST_HEAD(&c->orph_list); 2092 INIT_LIST_HEAD(&c->orph_new); 2093 c->no_chk_data_crc = 1; 2094 c->assert_action = ASSACT_RO; 2095 2096 c->highest_inum = UBIFS_FIRST_INO; 2097 c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM; 2098 2099 ubi_get_volume_info(ubi, &c->vi); 2100 ubi_get_device_info(c->vi.ubi_num, &c->di); 2101 } 2102 return c; 2103 } 2104 2105 static int ubifs_fill_super(struct super_block *sb, void *data, int silent) 2106 { 2107 struct ubifs_info *c = sb->s_fs_info; 2108 struct inode *root; 2109 int err; 2110 2111 c->vfs_sb = sb; 2112 /* Re-open the UBI device in read-write mode */ 2113 c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE); 2114 if (IS_ERR(c->ubi)) { 2115 err = PTR_ERR(c->ubi); 2116 goto out; 2117 } 2118 2119 err = ubifs_parse_options(c, data, 0); 2120 if (err) 2121 goto out_close; 2122 2123 /* 2124 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For 2125 * UBIFS, I/O is not deferred, it is done immediately in readpage, 2126 * which means the user would have to wait not just for their own I/O 2127 * but the read-ahead I/O as well i.e. completely pointless. 2128 * 2129 * Read-ahead will be disabled because @sb->s_bdi->ra_pages is 0. Also 2130 * @sb->s_bdi->capabilities are initialized to 0 so there won't be any 2131 * writeback happening. 2132 */ 2133 err = super_setup_bdi_name(sb, "ubifs_%d_%d", c->vi.ubi_num, 2134 c->vi.vol_id); 2135 if (err) 2136 goto out_close; 2137 2138 sb->s_fs_info = c; 2139 sb->s_magic = UBIFS_SUPER_MAGIC; 2140 sb->s_blocksize = UBIFS_BLOCK_SIZE; 2141 sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT; 2142 sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c); 2143 if (c->max_inode_sz > MAX_LFS_FILESIZE) 2144 sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE; 2145 sb->s_op = &ubifs_super_operations; 2146 #ifdef CONFIG_UBIFS_FS_XATTR 2147 sb->s_xattr = ubifs_xattr_handlers; 2148 #endif 2149 #ifdef CONFIG_FS_ENCRYPTION 2150 sb->s_cop = &ubifs_crypt_operations; 2151 #endif 2152 2153 mutex_lock(&c->umount_mutex); 2154 err = mount_ubifs(c); 2155 if (err) { 2156 ubifs_assert(c, err < 0); 2157 goto out_unlock; 2158 } 2159 2160 /* Read the root inode */ 2161 root = ubifs_iget(sb, UBIFS_ROOT_INO); 2162 if (IS_ERR(root)) { 2163 err = PTR_ERR(root); 2164 goto out_umount; 2165 } 2166 2167 sb->s_root = d_make_root(root); 2168 if (!sb->s_root) { 2169 err = -ENOMEM; 2170 goto out_umount; 2171 } 2172 2173 mutex_unlock(&c->umount_mutex); 2174 return 0; 2175 2176 out_umount: 2177 ubifs_umount(c); 2178 out_unlock: 2179 mutex_unlock(&c->umount_mutex); 2180 out_close: 2181 ubi_close_volume(c->ubi); 2182 out: 2183 return err; 2184 } 2185 2186 static int sb_test(struct super_block *sb, void *data) 2187 { 2188 struct ubifs_info *c1 = data; 2189 struct ubifs_info *c = sb->s_fs_info; 2190 2191 return c->vi.cdev == c1->vi.cdev; 2192 } 2193 2194 static int sb_set(struct super_block *sb, void *data) 2195 { 2196 sb->s_fs_info = data; 2197 return set_anon_super(sb, NULL); 2198 } 2199 2200 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags, 2201 const char *name, void *data) 2202 { 2203 struct ubi_volume_desc *ubi; 2204 struct ubifs_info *c; 2205 struct super_block *sb; 2206 int err; 2207 2208 dbg_gen("name %s, flags %#x", name, flags); 2209 2210 /* 2211 * Get UBI device number and volume ID. Mount it read-only so far 2212 * because this might be a new mount point, and UBI allows only one 2213 * read-write user at a time. 2214 */ 2215 ubi = open_ubi(name, UBI_READONLY); 2216 if (IS_ERR(ubi)) { 2217 if (!(flags & SB_SILENT)) 2218 pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d", 2219 current->pid, name, (int)PTR_ERR(ubi)); 2220 return ERR_CAST(ubi); 2221 } 2222 2223 c = alloc_ubifs_info(ubi); 2224 if (!c) { 2225 err = -ENOMEM; 2226 goto out_close; 2227 } 2228 2229 dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2230 2231 sb = sget(fs_type, sb_test, sb_set, flags, c); 2232 if (IS_ERR(sb)) { 2233 err = PTR_ERR(sb); 2234 kfree(c); 2235 goto out_close; 2236 } 2237 2238 if (sb->s_root) { 2239 struct ubifs_info *c1 = sb->s_fs_info; 2240 kfree(c); 2241 /* A new mount point for already mounted UBIFS */ 2242 dbg_gen("this ubi volume is already mounted"); 2243 if (!!(flags & SB_RDONLY) != c1->ro_mount) { 2244 err = -EBUSY; 2245 goto out_deact; 2246 } 2247 } else { 2248 err = ubifs_fill_super(sb, data, flags & SB_SILENT ? 1 : 0); 2249 if (err) 2250 goto out_deact; 2251 /* We do not support atime */ 2252 sb->s_flags |= SB_ACTIVE; 2253 #ifndef CONFIG_UBIFS_ATIME_SUPPORT 2254 sb->s_flags |= SB_NOATIME; 2255 #else 2256 ubifs_msg(c, "full atime support is enabled."); 2257 #endif 2258 } 2259 2260 /* 'fill_super()' opens ubi again so we must close it here */ 2261 ubi_close_volume(ubi); 2262 2263 return dget(sb->s_root); 2264 2265 out_deact: 2266 deactivate_locked_super(sb); 2267 out_close: 2268 ubi_close_volume(ubi); 2269 return ERR_PTR(err); 2270 } 2271 2272 static void kill_ubifs_super(struct super_block *s) 2273 { 2274 struct ubifs_info *c = s->s_fs_info; 2275 kill_anon_super(s); 2276 kfree(c); 2277 } 2278 2279 static struct file_system_type ubifs_fs_type = { 2280 .name = "ubifs", 2281 .owner = THIS_MODULE, 2282 .mount = ubifs_mount, 2283 .kill_sb = kill_ubifs_super, 2284 }; 2285 MODULE_ALIAS_FS("ubifs"); 2286 2287 /* 2288 * Inode slab cache constructor. 2289 */ 2290 static void inode_slab_ctor(void *obj) 2291 { 2292 struct ubifs_inode *ui = obj; 2293 inode_init_once(&ui->vfs_inode); 2294 } 2295 2296 static int __init ubifs_init(void) 2297 { 2298 int err; 2299 2300 BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24); 2301 2302 /* Make sure node sizes are 8-byte aligned */ 2303 BUILD_BUG_ON(UBIFS_CH_SZ & 7); 2304 BUILD_BUG_ON(UBIFS_INO_NODE_SZ & 7); 2305 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7); 2306 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7); 2307 BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7); 2308 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7); 2309 BUILD_BUG_ON(UBIFS_SB_NODE_SZ & 7); 2310 BUILD_BUG_ON(UBIFS_MST_NODE_SZ & 7); 2311 BUILD_BUG_ON(UBIFS_REF_NODE_SZ & 7); 2312 BUILD_BUG_ON(UBIFS_CS_NODE_SZ & 7); 2313 BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7); 2314 2315 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7); 2316 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7); 2317 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7); 2318 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ & 7); 2319 BUILD_BUG_ON(UBIFS_MAX_NODE_SZ & 7); 2320 BUILD_BUG_ON(MIN_WRITE_SZ & 7); 2321 2322 /* Check min. node size */ 2323 BUILD_BUG_ON(UBIFS_INO_NODE_SZ < MIN_WRITE_SZ); 2324 BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ); 2325 BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ); 2326 BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ); 2327 2328 BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2329 BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ); 2330 BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ); 2331 BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ > UBIFS_MAX_NODE_SZ); 2332 2333 /* Defined node sizes */ 2334 BUILD_BUG_ON(UBIFS_SB_NODE_SZ != 4096); 2335 BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512); 2336 BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160); 2337 BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64); 2338 2339 /* 2340 * We use 2 bit wide bit-fields to store compression type, which should 2341 * be amended if more compressors are added. The bit-fields are: 2342 * @compr_type in 'struct ubifs_inode', @default_compr in 2343 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'. 2344 */ 2345 BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4); 2346 2347 /* 2348 * We require that PAGE_SIZE is greater-than-or-equal-to 2349 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2. 2350 */ 2351 if (PAGE_SIZE < UBIFS_BLOCK_SIZE) { 2352 pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes", 2353 current->pid, (unsigned int)PAGE_SIZE); 2354 return -EINVAL; 2355 } 2356 2357 ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab", 2358 sizeof(struct ubifs_inode), 0, 2359 SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT | 2360 SLAB_ACCOUNT, &inode_slab_ctor); 2361 if (!ubifs_inode_slab) 2362 return -ENOMEM; 2363 2364 err = register_shrinker(&ubifs_shrinker_info); 2365 if (err) 2366 goto out_slab; 2367 2368 err = ubifs_compressors_init(); 2369 if (err) 2370 goto out_shrinker; 2371 2372 err = dbg_debugfs_init(); 2373 if (err) 2374 goto out_compr; 2375 2376 err = register_filesystem(&ubifs_fs_type); 2377 if (err) { 2378 pr_err("UBIFS error (pid %d): cannot register file system, error %d", 2379 current->pid, err); 2380 goto out_dbg; 2381 } 2382 return 0; 2383 2384 out_dbg: 2385 dbg_debugfs_exit(); 2386 out_compr: 2387 ubifs_compressors_exit(); 2388 out_shrinker: 2389 unregister_shrinker(&ubifs_shrinker_info); 2390 out_slab: 2391 kmem_cache_destroy(ubifs_inode_slab); 2392 return err; 2393 } 2394 /* late_initcall to let compressors initialize first */ 2395 late_initcall(ubifs_init); 2396 2397 static void __exit ubifs_exit(void) 2398 { 2399 WARN_ON(!list_empty(&ubifs_infos)); 2400 WARN_ON(atomic_long_read(&ubifs_clean_zn_cnt) != 0); 2401 2402 dbg_debugfs_exit(); 2403 ubifs_compressors_exit(); 2404 unregister_shrinker(&ubifs_shrinker_info); 2405 2406 /* 2407 * Make sure all delayed rcu free inodes are flushed before we 2408 * destroy cache. 2409 */ 2410 rcu_barrier(); 2411 kmem_cache_destroy(ubifs_inode_slab); 2412 unregister_filesystem(&ubifs_fs_type); 2413 } 2414 module_exit(ubifs_exit); 2415 2416 MODULE_LICENSE("GPL"); 2417 MODULE_VERSION(__stringify(UBIFS_VERSION)); 2418 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter"); 2419 MODULE_DESCRIPTION("UBIFS - UBI File System"); 2420