xref: /linux/fs/ubifs/super.c (revision 005438a8eef063495ac059d128eea71b58de50e5)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS initialization and VFS superblock operations. Some
25  * initialization stuff which is rather large and complex is placed at
26  * corresponding subsystems, but most of it is here.
27  */
28 
29 #include <linux/init.h>
30 #include <linux/slab.h>
31 #include <linux/module.h>
32 #include <linux/ctype.h>
33 #include <linux/kthread.h>
34 #include <linux/parser.h>
35 #include <linux/seq_file.h>
36 #include <linux/mount.h>
37 #include <linux/math64.h>
38 #include <linux/writeback.h>
39 #include "ubifs.h"
40 
41 /*
42  * Maximum amount of memory we may 'kmalloc()' without worrying that we are
43  * allocating too much.
44  */
45 #define UBIFS_KMALLOC_OK (128*1024)
46 
47 /* Slab cache for UBIFS inodes */
48 struct kmem_cache *ubifs_inode_slab;
49 
50 /* UBIFS TNC shrinker description */
51 static struct shrinker ubifs_shrinker_info = {
52 	.scan_objects = ubifs_shrink_scan,
53 	.count_objects = ubifs_shrink_count,
54 	.seeks = DEFAULT_SEEKS,
55 };
56 
57 /**
58  * validate_inode - validate inode.
59  * @c: UBIFS file-system description object
60  * @inode: the inode to validate
61  *
62  * This is a helper function for 'ubifs_iget()' which validates various fields
63  * of a newly built inode to make sure they contain sane values and prevent
64  * possible vulnerabilities. Returns zero if the inode is all right and
65  * a non-zero error code if not.
66  */
67 static int validate_inode(struct ubifs_info *c, const struct inode *inode)
68 {
69 	int err;
70 	const struct ubifs_inode *ui = ubifs_inode(inode);
71 
72 	if (inode->i_size > c->max_inode_sz) {
73 		ubifs_err(c, "inode is too large (%lld)",
74 			  (long long)inode->i_size);
75 		return 1;
76 	}
77 
78 	if (ui->compr_type >= UBIFS_COMPR_TYPES_CNT) {
79 		ubifs_err(c, "unknown compression type %d", ui->compr_type);
80 		return 2;
81 	}
82 
83 	if (ui->xattr_names + ui->xattr_cnt > XATTR_LIST_MAX)
84 		return 3;
85 
86 	if (ui->data_len < 0 || ui->data_len > UBIFS_MAX_INO_DATA)
87 		return 4;
88 
89 	if (ui->xattr && !S_ISREG(inode->i_mode))
90 		return 5;
91 
92 	if (!ubifs_compr_present(ui->compr_type)) {
93 		ubifs_warn(c, "inode %lu uses '%s' compression, but it was not compiled in",
94 			   inode->i_ino, ubifs_compr_name(ui->compr_type));
95 	}
96 
97 	err = dbg_check_dir(c, inode);
98 	return err;
99 }
100 
101 struct inode *ubifs_iget(struct super_block *sb, unsigned long inum)
102 {
103 	int err;
104 	union ubifs_key key;
105 	struct ubifs_ino_node *ino;
106 	struct ubifs_info *c = sb->s_fs_info;
107 	struct inode *inode;
108 	struct ubifs_inode *ui;
109 
110 	dbg_gen("inode %lu", inum);
111 
112 	inode = iget_locked(sb, inum);
113 	if (!inode)
114 		return ERR_PTR(-ENOMEM);
115 	if (!(inode->i_state & I_NEW))
116 		return inode;
117 	ui = ubifs_inode(inode);
118 
119 	ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS);
120 	if (!ino) {
121 		err = -ENOMEM;
122 		goto out;
123 	}
124 
125 	ino_key_init(c, &key, inode->i_ino);
126 
127 	err = ubifs_tnc_lookup(c, &key, ino);
128 	if (err)
129 		goto out_ino;
130 
131 	inode->i_flags |= (S_NOCMTIME | S_NOATIME);
132 	set_nlink(inode, le32_to_cpu(ino->nlink));
133 	i_uid_write(inode, le32_to_cpu(ino->uid));
134 	i_gid_write(inode, le32_to_cpu(ino->gid));
135 	inode->i_atime.tv_sec  = (int64_t)le64_to_cpu(ino->atime_sec);
136 	inode->i_atime.tv_nsec = le32_to_cpu(ino->atime_nsec);
137 	inode->i_mtime.tv_sec  = (int64_t)le64_to_cpu(ino->mtime_sec);
138 	inode->i_mtime.tv_nsec = le32_to_cpu(ino->mtime_nsec);
139 	inode->i_ctime.tv_sec  = (int64_t)le64_to_cpu(ino->ctime_sec);
140 	inode->i_ctime.tv_nsec = le32_to_cpu(ino->ctime_nsec);
141 	inode->i_mode = le32_to_cpu(ino->mode);
142 	inode->i_size = le64_to_cpu(ino->size);
143 
144 	ui->data_len    = le32_to_cpu(ino->data_len);
145 	ui->flags       = le32_to_cpu(ino->flags);
146 	ui->compr_type  = le16_to_cpu(ino->compr_type);
147 	ui->creat_sqnum = le64_to_cpu(ino->creat_sqnum);
148 	ui->xattr_cnt   = le32_to_cpu(ino->xattr_cnt);
149 	ui->xattr_size  = le32_to_cpu(ino->xattr_size);
150 	ui->xattr_names = le32_to_cpu(ino->xattr_names);
151 	ui->synced_i_size = ui->ui_size = inode->i_size;
152 
153 	ui->xattr = (ui->flags & UBIFS_XATTR_FL) ? 1 : 0;
154 
155 	err = validate_inode(c, inode);
156 	if (err)
157 		goto out_invalid;
158 
159 	switch (inode->i_mode & S_IFMT) {
160 	case S_IFREG:
161 		inode->i_mapping->a_ops = &ubifs_file_address_operations;
162 		inode->i_op = &ubifs_file_inode_operations;
163 		inode->i_fop = &ubifs_file_operations;
164 		if (ui->xattr) {
165 			ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
166 			if (!ui->data) {
167 				err = -ENOMEM;
168 				goto out_ino;
169 			}
170 			memcpy(ui->data, ino->data, ui->data_len);
171 			((char *)ui->data)[ui->data_len] = '\0';
172 		} else if (ui->data_len != 0) {
173 			err = 10;
174 			goto out_invalid;
175 		}
176 		break;
177 	case S_IFDIR:
178 		inode->i_op  = &ubifs_dir_inode_operations;
179 		inode->i_fop = &ubifs_dir_operations;
180 		if (ui->data_len != 0) {
181 			err = 11;
182 			goto out_invalid;
183 		}
184 		break;
185 	case S_IFLNK:
186 		inode->i_op = &ubifs_symlink_inode_operations;
187 		if (ui->data_len <= 0 || ui->data_len > UBIFS_MAX_INO_DATA) {
188 			err = 12;
189 			goto out_invalid;
190 		}
191 		ui->data = kmalloc(ui->data_len + 1, GFP_NOFS);
192 		if (!ui->data) {
193 			err = -ENOMEM;
194 			goto out_ino;
195 		}
196 		memcpy(ui->data, ino->data, ui->data_len);
197 		((char *)ui->data)[ui->data_len] = '\0';
198 		inode->i_link = ui->data;
199 		break;
200 	case S_IFBLK:
201 	case S_IFCHR:
202 	{
203 		dev_t rdev;
204 		union ubifs_dev_desc *dev;
205 
206 		ui->data = kmalloc(sizeof(union ubifs_dev_desc), GFP_NOFS);
207 		if (!ui->data) {
208 			err = -ENOMEM;
209 			goto out_ino;
210 		}
211 
212 		dev = (union ubifs_dev_desc *)ino->data;
213 		if (ui->data_len == sizeof(dev->new))
214 			rdev = new_decode_dev(le32_to_cpu(dev->new));
215 		else if (ui->data_len == sizeof(dev->huge))
216 			rdev = huge_decode_dev(le64_to_cpu(dev->huge));
217 		else {
218 			err = 13;
219 			goto out_invalid;
220 		}
221 		memcpy(ui->data, ino->data, ui->data_len);
222 		inode->i_op = &ubifs_file_inode_operations;
223 		init_special_inode(inode, inode->i_mode, rdev);
224 		break;
225 	}
226 	case S_IFSOCK:
227 	case S_IFIFO:
228 		inode->i_op = &ubifs_file_inode_operations;
229 		init_special_inode(inode, inode->i_mode, 0);
230 		if (ui->data_len != 0) {
231 			err = 14;
232 			goto out_invalid;
233 		}
234 		break;
235 	default:
236 		err = 15;
237 		goto out_invalid;
238 	}
239 
240 	kfree(ino);
241 	ubifs_set_inode_flags(inode);
242 	unlock_new_inode(inode);
243 	return inode;
244 
245 out_invalid:
246 	ubifs_err(c, "inode %lu validation failed, error %d", inode->i_ino, err);
247 	ubifs_dump_node(c, ino);
248 	ubifs_dump_inode(c, inode);
249 	err = -EINVAL;
250 out_ino:
251 	kfree(ino);
252 out:
253 	ubifs_err(c, "failed to read inode %lu, error %d", inode->i_ino, err);
254 	iget_failed(inode);
255 	return ERR_PTR(err);
256 }
257 
258 static struct inode *ubifs_alloc_inode(struct super_block *sb)
259 {
260 	struct ubifs_inode *ui;
261 
262 	ui = kmem_cache_alloc(ubifs_inode_slab, GFP_NOFS);
263 	if (!ui)
264 		return NULL;
265 
266 	memset((void *)ui + sizeof(struct inode), 0,
267 	       sizeof(struct ubifs_inode) - sizeof(struct inode));
268 	mutex_init(&ui->ui_mutex);
269 	spin_lock_init(&ui->ui_lock);
270 	return &ui->vfs_inode;
271 };
272 
273 static void ubifs_i_callback(struct rcu_head *head)
274 {
275 	struct inode *inode = container_of(head, struct inode, i_rcu);
276 	struct ubifs_inode *ui = ubifs_inode(inode);
277 	kmem_cache_free(ubifs_inode_slab, ui);
278 }
279 
280 static void ubifs_destroy_inode(struct inode *inode)
281 {
282 	struct ubifs_inode *ui = ubifs_inode(inode);
283 
284 	kfree(ui->data);
285 	call_rcu(&inode->i_rcu, ubifs_i_callback);
286 }
287 
288 /*
289  * Note, Linux write-back code calls this without 'i_mutex'.
290  */
291 static int ubifs_write_inode(struct inode *inode, struct writeback_control *wbc)
292 {
293 	int err = 0;
294 	struct ubifs_info *c = inode->i_sb->s_fs_info;
295 	struct ubifs_inode *ui = ubifs_inode(inode);
296 
297 	ubifs_assert(!ui->xattr);
298 	if (is_bad_inode(inode))
299 		return 0;
300 
301 	mutex_lock(&ui->ui_mutex);
302 	/*
303 	 * Due to races between write-back forced by budgeting
304 	 * (see 'sync_some_inodes()') and background write-back, the inode may
305 	 * have already been synchronized, do not do this again. This might
306 	 * also happen if it was synchronized in an VFS operation, e.g.
307 	 * 'ubifs_link()'.
308 	 */
309 	if (!ui->dirty) {
310 		mutex_unlock(&ui->ui_mutex);
311 		return 0;
312 	}
313 
314 	/*
315 	 * As an optimization, do not write orphan inodes to the media just
316 	 * because this is not needed.
317 	 */
318 	dbg_gen("inode %lu, mode %#x, nlink %u",
319 		inode->i_ino, (int)inode->i_mode, inode->i_nlink);
320 	if (inode->i_nlink) {
321 		err = ubifs_jnl_write_inode(c, inode);
322 		if (err)
323 			ubifs_err(c, "can't write inode %lu, error %d",
324 				  inode->i_ino, err);
325 		else
326 			err = dbg_check_inode_size(c, inode, ui->ui_size);
327 	}
328 
329 	ui->dirty = 0;
330 	mutex_unlock(&ui->ui_mutex);
331 	ubifs_release_dirty_inode_budget(c, ui);
332 	return err;
333 }
334 
335 static void ubifs_evict_inode(struct inode *inode)
336 {
337 	int err;
338 	struct ubifs_info *c = inode->i_sb->s_fs_info;
339 	struct ubifs_inode *ui = ubifs_inode(inode);
340 
341 	if (ui->xattr)
342 		/*
343 		 * Extended attribute inode deletions are fully handled in
344 		 * 'ubifs_removexattr()'. These inodes are special and have
345 		 * limited usage, so there is nothing to do here.
346 		 */
347 		goto out;
348 
349 	dbg_gen("inode %lu, mode %#x", inode->i_ino, (int)inode->i_mode);
350 	ubifs_assert(!atomic_read(&inode->i_count));
351 
352 	truncate_inode_pages_final(&inode->i_data);
353 
354 	if (inode->i_nlink)
355 		goto done;
356 
357 	if (is_bad_inode(inode))
358 		goto out;
359 
360 	ui->ui_size = inode->i_size = 0;
361 	err = ubifs_jnl_delete_inode(c, inode);
362 	if (err)
363 		/*
364 		 * Worst case we have a lost orphan inode wasting space, so a
365 		 * simple error message is OK here.
366 		 */
367 		ubifs_err(c, "can't delete inode %lu, error %d",
368 			  inode->i_ino, err);
369 
370 out:
371 	if (ui->dirty)
372 		ubifs_release_dirty_inode_budget(c, ui);
373 	else {
374 		/* We've deleted something - clean the "no space" flags */
375 		c->bi.nospace = c->bi.nospace_rp = 0;
376 		smp_wmb();
377 	}
378 done:
379 	clear_inode(inode);
380 }
381 
382 static void ubifs_dirty_inode(struct inode *inode, int flags)
383 {
384 	struct ubifs_inode *ui = ubifs_inode(inode);
385 
386 	ubifs_assert(mutex_is_locked(&ui->ui_mutex));
387 	if (!ui->dirty) {
388 		ui->dirty = 1;
389 		dbg_gen("inode %lu",  inode->i_ino);
390 	}
391 }
392 
393 static int ubifs_statfs(struct dentry *dentry, struct kstatfs *buf)
394 {
395 	struct ubifs_info *c = dentry->d_sb->s_fs_info;
396 	unsigned long long free;
397 	__le32 *uuid = (__le32 *)c->uuid;
398 
399 	free = ubifs_get_free_space(c);
400 	dbg_gen("free space %lld bytes (%lld blocks)",
401 		free, free >> UBIFS_BLOCK_SHIFT);
402 
403 	buf->f_type = UBIFS_SUPER_MAGIC;
404 	buf->f_bsize = UBIFS_BLOCK_SIZE;
405 	buf->f_blocks = c->block_cnt;
406 	buf->f_bfree = free >> UBIFS_BLOCK_SHIFT;
407 	if (free > c->report_rp_size)
408 		buf->f_bavail = (free - c->report_rp_size) >> UBIFS_BLOCK_SHIFT;
409 	else
410 		buf->f_bavail = 0;
411 	buf->f_files = 0;
412 	buf->f_ffree = 0;
413 	buf->f_namelen = UBIFS_MAX_NLEN;
414 	buf->f_fsid.val[0] = le32_to_cpu(uuid[0]) ^ le32_to_cpu(uuid[2]);
415 	buf->f_fsid.val[1] = le32_to_cpu(uuid[1]) ^ le32_to_cpu(uuid[3]);
416 	ubifs_assert(buf->f_bfree <= c->block_cnt);
417 	return 0;
418 }
419 
420 static int ubifs_show_options(struct seq_file *s, struct dentry *root)
421 {
422 	struct ubifs_info *c = root->d_sb->s_fs_info;
423 
424 	if (c->mount_opts.unmount_mode == 2)
425 		seq_puts(s, ",fast_unmount");
426 	else if (c->mount_opts.unmount_mode == 1)
427 		seq_puts(s, ",norm_unmount");
428 
429 	if (c->mount_opts.bulk_read == 2)
430 		seq_puts(s, ",bulk_read");
431 	else if (c->mount_opts.bulk_read == 1)
432 		seq_puts(s, ",no_bulk_read");
433 
434 	if (c->mount_opts.chk_data_crc == 2)
435 		seq_puts(s, ",chk_data_crc");
436 	else if (c->mount_opts.chk_data_crc == 1)
437 		seq_puts(s, ",no_chk_data_crc");
438 
439 	if (c->mount_opts.override_compr) {
440 		seq_printf(s, ",compr=%s",
441 			   ubifs_compr_name(c->mount_opts.compr_type));
442 	}
443 
444 	return 0;
445 }
446 
447 static int ubifs_sync_fs(struct super_block *sb, int wait)
448 {
449 	int i, err;
450 	struct ubifs_info *c = sb->s_fs_info;
451 
452 	/*
453 	 * Zero @wait is just an advisory thing to help the file system shove
454 	 * lots of data into the queues, and there will be the second
455 	 * '->sync_fs()' call, with non-zero @wait.
456 	 */
457 	if (!wait)
458 		return 0;
459 
460 	/*
461 	 * Synchronize write buffers, because 'ubifs_run_commit()' does not
462 	 * do this if it waits for an already running commit.
463 	 */
464 	for (i = 0; i < c->jhead_cnt; i++) {
465 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
466 		if (err)
467 			return err;
468 	}
469 
470 	/*
471 	 * Strictly speaking, it is not necessary to commit the journal here,
472 	 * synchronizing write-buffers would be enough. But committing makes
473 	 * UBIFS free space predictions much more accurate, so we want to let
474 	 * the user be able to get more accurate results of 'statfs()' after
475 	 * they synchronize the file system.
476 	 */
477 	err = ubifs_run_commit(c);
478 	if (err)
479 		return err;
480 
481 	return ubi_sync(c->vi.ubi_num);
482 }
483 
484 /**
485  * init_constants_early - initialize UBIFS constants.
486  * @c: UBIFS file-system description object
487  *
488  * This function initialize UBIFS constants which do not need the superblock to
489  * be read. It also checks that the UBI volume satisfies basic UBIFS
490  * requirements. Returns zero in case of success and a negative error code in
491  * case of failure.
492  */
493 static int init_constants_early(struct ubifs_info *c)
494 {
495 	if (c->vi.corrupted) {
496 		ubifs_warn(c, "UBI volume is corrupted - read-only mode");
497 		c->ro_media = 1;
498 	}
499 
500 	if (c->di.ro_mode) {
501 		ubifs_msg(c, "read-only UBI device");
502 		c->ro_media = 1;
503 	}
504 
505 	if (c->vi.vol_type == UBI_STATIC_VOLUME) {
506 		ubifs_msg(c, "static UBI volume - read-only mode");
507 		c->ro_media = 1;
508 	}
509 
510 	c->leb_cnt = c->vi.size;
511 	c->leb_size = c->vi.usable_leb_size;
512 	c->leb_start = c->di.leb_start;
513 	c->half_leb_size = c->leb_size / 2;
514 	c->min_io_size = c->di.min_io_size;
515 	c->min_io_shift = fls(c->min_io_size) - 1;
516 	c->max_write_size = c->di.max_write_size;
517 	c->max_write_shift = fls(c->max_write_size) - 1;
518 
519 	if (c->leb_size < UBIFS_MIN_LEB_SZ) {
520 		ubifs_err(c, "too small LEBs (%d bytes), min. is %d bytes",
521 			  c->leb_size, UBIFS_MIN_LEB_SZ);
522 		return -EINVAL;
523 	}
524 
525 	if (c->leb_cnt < UBIFS_MIN_LEB_CNT) {
526 		ubifs_err(c, "too few LEBs (%d), min. is %d",
527 			  c->leb_cnt, UBIFS_MIN_LEB_CNT);
528 		return -EINVAL;
529 	}
530 
531 	if (!is_power_of_2(c->min_io_size)) {
532 		ubifs_err(c, "bad min. I/O size %d", c->min_io_size);
533 		return -EINVAL;
534 	}
535 
536 	/*
537 	 * Maximum write size has to be greater or equivalent to min. I/O
538 	 * size, and be multiple of min. I/O size.
539 	 */
540 	if (c->max_write_size < c->min_io_size ||
541 	    c->max_write_size % c->min_io_size ||
542 	    !is_power_of_2(c->max_write_size)) {
543 		ubifs_err(c, "bad write buffer size %d for %d min. I/O unit",
544 			  c->max_write_size, c->min_io_size);
545 		return -EINVAL;
546 	}
547 
548 	/*
549 	 * UBIFS aligns all node to 8-byte boundary, so to make function in
550 	 * io.c simpler, assume minimum I/O unit size to be 8 bytes if it is
551 	 * less than 8.
552 	 */
553 	if (c->min_io_size < 8) {
554 		c->min_io_size = 8;
555 		c->min_io_shift = 3;
556 		if (c->max_write_size < c->min_io_size) {
557 			c->max_write_size = c->min_io_size;
558 			c->max_write_shift = c->min_io_shift;
559 		}
560 	}
561 
562 	c->ref_node_alsz = ALIGN(UBIFS_REF_NODE_SZ, c->min_io_size);
563 	c->mst_node_alsz = ALIGN(UBIFS_MST_NODE_SZ, c->min_io_size);
564 
565 	/*
566 	 * Initialize node length ranges which are mostly needed for node
567 	 * length validation.
568 	 */
569 	c->ranges[UBIFS_PAD_NODE].len  = UBIFS_PAD_NODE_SZ;
570 	c->ranges[UBIFS_SB_NODE].len   = UBIFS_SB_NODE_SZ;
571 	c->ranges[UBIFS_MST_NODE].len  = UBIFS_MST_NODE_SZ;
572 	c->ranges[UBIFS_REF_NODE].len  = UBIFS_REF_NODE_SZ;
573 	c->ranges[UBIFS_TRUN_NODE].len = UBIFS_TRUN_NODE_SZ;
574 	c->ranges[UBIFS_CS_NODE].len   = UBIFS_CS_NODE_SZ;
575 
576 	c->ranges[UBIFS_INO_NODE].min_len  = UBIFS_INO_NODE_SZ;
577 	c->ranges[UBIFS_INO_NODE].max_len  = UBIFS_MAX_INO_NODE_SZ;
578 	c->ranges[UBIFS_ORPH_NODE].min_len =
579 				UBIFS_ORPH_NODE_SZ + sizeof(__le64);
580 	c->ranges[UBIFS_ORPH_NODE].max_len = c->leb_size;
581 	c->ranges[UBIFS_DENT_NODE].min_len = UBIFS_DENT_NODE_SZ;
582 	c->ranges[UBIFS_DENT_NODE].max_len = UBIFS_MAX_DENT_NODE_SZ;
583 	c->ranges[UBIFS_XENT_NODE].min_len = UBIFS_XENT_NODE_SZ;
584 	c->ranges[UBIFS_XENT_NODE].max_len = UBIFS_MAX_XENT_NODE_SZ;
585 	c->ranges[UBIFS_DATA_NODE].min_len = UBIFS_DATA_NODE_SZ;
586 	c->ranges[UBIFS_DATA_NODE].max_len = UBIFS_MAX_DATA_NODE_SZ;
587 	/*
588 	 * Minimum indexing node size is amended later when superblock is
589 	 * read and the key length is known.
590 	 */
591 	c->ranges[UBIFS_IDX_NODE].min_len = UBIFS_IDX_NODE_SZ + UBIFS_BRANCH_SZ;
592 	/*
593 	 * Maximum indexing node size is amended later when superblock is
594 	 * read and the fanout is known.
595 	 */
596 	c->ranges[UBIFS_IDX_NODE].max_len = INT_MAX;
597 
598 	/*
599 	 * Initialize dead and dark LEB space watermarks. See gc.c for comments
600 	 * about these values.
601 	 */
602 	c->dead_wm = ALIGN(MIN_WRITE_SZ, c->min_io_size);
603 	c->dark_wm = ALIGN(UBIFS_MAX_NODE_SZ, c->min_io_size);
604 
605 	/*
606 	 * Calculate how many bytes would be wasted at the end of LEB if it was
607 	 * fully filled with data nodes of maximum size. This is used in
608 	 * calculations when reporting free space.
609 	 */
610 	c->leb_overhead = c->leb_size % UBIFS_MAX_DATA_NODE_SZ;
611 
612 	/* Buffer size for bulk-reads */
613 	c->max_bu_buf_len = UBIFS_MAX_BULK_READ * UBIFS_MAX_DATA_NODE_SZ;
614 	if (c->max_bu_buf_len > c->leb_size)
615 		c->max_bu_buf_len = c->leb_size;
616 	return 0;
617 }
618 
619 /**
620  * bud_wbuf_callback - bud LEB write-buffer synchronization call-back.
621  * @c: UBIFS file-system description object
622  * @lnum: LEB the write-buffer was synchronized to
623  * @free: how many free bytes left in this LEB
624  * @pad: how many bytes were padded
625  *
626  * This is a callback function which is called by the I/O unit when the
627  * write-buffer is synchronized. We need this to correctly maintain space
628  * accounting in bud logical eraseblocks. This function returns zero in case of
629  * success and a negative error code in case of failure.
630  *
631  * This function actually belongs to the journal, but we keep it here because
632  * we want to keep it static.
633  */
634 static int bud_wbuf_callback(struct ubifs_info *c, int lnum, int free, int pad)
635 {
636 	return ubifs_update_one_lp(c, lnum, free, pad, 0, 0);
637 }
638 
639 /*
640  * init_constants_sb - initialize UBIFS constants.
641  * @c: UBIFS file-system description object
642  *
643  * This is a helper function which initializes various UBIFS constants after
644  * the superblock has been read. It also checks various UBIFS parameters and
645  * makes sure they are all right. Returns zero in case of success and a
646  * negative error code in case of failure.
647  */
648 static int init_constants_sb(struct ubifs_info *c)
649 {
650 	int tmp, err;
651 	long long tmp64;
652 
653 	c->main_bytes = (long long)c->main_lebs * c->leb_size;
654 	c->max_znode_sz = sizeof(struct ubifs_znode) +
655 				c->fanout * sizeof(struct ubifs_zbranch);
656 
657 	tmp = ubifs_idx_node_sz(c, 1);
658 	c->ranges[UBIFS_IDX_NODE].min_len = tmp;
659 	c->min_idx_node_sz = ALIGN(tmp, 8);
660 
661 	tmp = ubifs_idx_node_sz(c, c->fanout);
662 	c->ranges[UBIFS_IDX_NODE].max_len = tmp;
663 	c->max_idx_node_sz = ALIGN(tmp, 8);
664 
665 	/* Make sure LEB size is large enough to fit full commit */
666 	tmp = UBIFS_CS_NODE_SZ + UBIFS_REF_NODE_SZ * c->jhead_cnt;
667 	tmp = ALIGN(tmp, c->min_io_size);
668 	if (tmp > c->leb_size) {
669 		ubifs_err(c, "too small LEB size %d, at least %d needed",
670 			  c->leb_size, tmp);
671 		return -EINVAL;
672 	}
673 
674 	/*
675 	 * Make sure that the log is large enough to fit reference nodes for
676 	 * all buds plus one reserved LEB.
677 	 */
678 	tmp64 = c->max_bud_bytes + c->leb_size - 1;
679 	c->max_bud_cnt = div_u64(tmp64, c->leb_size);
680 	tmp = (c->ref_node_alsz * c->max_bud_cnt + c->leb_size - 1);
681 	tmp /= c->leb_size;
682 	tmp += 1;
683 	if (c->log_lebs < tmp) {
684 		ubifs_err(c, "too small log %d LEBs, required min. %d LEBs",
685 			  c->log_lebs, tmp);
686 		return -EINVAL;
687 	}
688 
689 	/*
690 	 * When budgeting we assume worst-case scenarios when the pages are not
691 	 * be compressed and direntries are of the maximum size.
692 	 *
693 	 * Note, data, which may be stored in inodes is budgeted separately, so
694 	 * it is not included into 'c->bi.inode_budget'.
695 	 */
696 	c->bi.page_budget = UBIFS_MAX_DATA_NODE_SZ * UBIFS_BLOCKS_PER_PAGE;
697 	c->bi.inode_budget = UBIFS_INO_NODE_SZ;
698 	c->bi.dent_budget = UBIFS_MAX_DENT_NODE_SZ;
699 
700 	/*
701 	 * When the amount of flash space used by buds becomes
702 	 * 'c->max_bud_bytes', UBIFS just blocks all writers and starts commit.
703 	 * The writers are unblocked when the commit is finished. To avoid
704 	 * writers to be blocked UBIFS initiates background commit in advance,
705 	 * when number of bud bytes becomes above the limit defined below.
706 	 */
707 	c->bg_bud_bytes = (c->max_bud_bytes * 13) >> 4;
708 
709 	/*
710 	 * Ensure minimum journal size. All the bytes in the journal heads are
711 	 * considered to be used, when calculating the current journal usage.
712 	 * Consequently, if the journal is too small, UBIFS will treat it as
713 	 * always full.
714 	 */
715 	tmp64 = (long long)(c->jhead_cnt + 1) * c->leb_size + 1;
716 	if (c->bg_bud_bytes < tmp64)
717 		c->bg_bud_bytes = tmp64;
718 	if (c->max_bud_bytes < tmp64 + c->leb_size)
719 		c->max_bud_bytes = tmp64 + c->leb_size;
720 
721 	err = ubifs_calc_lpt_geom(c);
722 	if (err)
723 		return err;
724 
725 	/* Initialize effective LEB size used in budgeting calculations */
726 	c->idx_leb_size = c->leb_size - c->max_idx_node_sz;
727 	return 0;
728 }
729 
730 /*
731  * init_constants_master - initialize UBIFS constants.
732  * @c: UBIFS file-system description object
733  *
734  * This is a helper function which initializes various UBIFS constants after
735  * the master node has been read. It also checks various UBIFS parameters and
736  * makes sure they are all right.
737  */
738 static void init_constants_master(struct ubifs_info *c)
739 {
740 	long long tmp64;
741 
742 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
743 	c->report_rp_size = ubifs_reported_space(c, c->rp_size);
744 
745 	/*
746 	 * Calculate total amount of FS blocks. This number is not used
747 	 * internally because it does not make much sense for UBIFS, but it is
748 	 * necessary to report something for the 'statfs()' call.
749 	 *
750 	 * Subtract the LEB reserved for GC, the LEB which is reserved for
751 	 * deletions, minimum LEBs for the index, and assume only one journal
752 	 * head is available.
753 	 */
754 	tmp64 = c->main_lebs - 1 - 1 - MIN_INDEX_LEBS - c->jhead_cnt + 1;
755 	tmp64 *= (long long)c->leb_size - c->leb_overhead;
756 	tmp64 = ubifs_reported_space(c, tmp64);
757 	c->block_cnt = tmp64 >> UBIFS_BLOCK_SHIFT;
758 }
759 
760 /**
761  * take_gc_lnum - reserve GC LEB.
762  * @c: UBIFS file-system description object
763  *
764  * This function ensures that the LEB reserved for garbage collection is marked
765  * as "taken" in lprops. We also have to set free space to LEB size and dirty
766  * space to zero, because lprops may contain out-of-date information if the
767  * file-system was un-mounted before it has been committed. This function
768  * returns zero in case of success and a negative error code in case of
769  * failure.
770  */
771 static int take_gc_lnum(struct ubifs_info *c)
772 {
773 	int err;
774 
775 	if (c->gc_lnum == -1) {
776 		ubifs_err(c, "no LEB for GC");
777 		return -EINVAL;
778 	}
779 
780 	/* And we have to tell lprops that this LEB is taken */
781 	err = ubifs_change_one_lp(c, c->gc_lnum, c->leb_size, 0,
782 				  LPROPS_TAKEN, 0, 0);
783 	return err;
784 }
785 
786 /**
787  * alloc_wbufs - allocate write-buffers.
788  * @c: UBIFS file-system description object
789  *
790  * This helper function allocates and initializes UBIFS write-buffers. Returns
791  * zero in case of success and %-ENOMEM in case of failure.
792  */
793 static int alloc_wbufs(struct ubifs_info *c)
794 {
795 	int i, err;
796 
797 	c->jheads = kcalloc(c->jhead_cnt, sizeof(struct ubifs_jhead),
798 			    GFP_KERNEL);
799 	if (!c->jheads)
800 		return -ENOMEM;
801 
802 	/* Initialize journal heads */
803 	for (i = 0; i < c->jhead_cnt; i++) {
804 		INIT_LIST_HEAD(&c->jheads[i].buds_list);
805 		err = ubifs_wbuf_init(c, &c->jheads[i].wbuf);
806 		if (err)
807 			return err;
808 
809 		c->jheads[i].wbuf.sync_callback = &bud_wbuf_callback;
810 		c->jheads[i].wbuf.jhead = i;
811 		c->jheads[i].grouped = 1;
812 	}
813 
814 	/*
815 	 * Garbage Collector head does not need to be synchronized by timer.
816 	 * Also GC head nodes are not grouped.
817 	 */
818 	c->jheads[GCHD].wbuf.no_timer = 1;
819 	c->jheads[GCHD].grouped = 0;
820 
821 	return 0;
822 }
823 
824 /**
825  * free_wbufs - free write-buffers.
826  * @c: UBIFS file-system description object
827  */
828 static void free_wbufs(struct ubifs_info *c)
829 {
830 	int i;
831 
832 	if (c->jheads) {
833 		for (i = 0; i < c->jhead_cnt; i++) {
834 			kfree(c->jheads[i].wbuf.buf);
835 			kfree(c->jheads[i].wbuf.inodes);
836 		}
837 		kfree(c->jheads);
838 		c->jheads = NULL;
839 	}
840 }
841 
842 /**
843  * free_orphans - free orphans.
844  * @c: UBIFS file-system description object
845  */
846 static void free_orphans(struct ubifs_info *c)
847 {
848 	struct ubifs_orphan *orph;
849 
850 	while (c->orph_dnext) {
851 		orph = c->orph_dnext;
852 		c->orph_dnext = orph->dnext;
853 		list_del(&orph->list);
854 		kfree(orph);
855 	}
856 
857 	while (!list_empty(&c->orph_list)) {
858 		orph = list_entry(c->orph_list.next, struct ubifs_orphan, list);
859 		list_del(&orph->list);
860 		kfree(orph);
861 		ubifs_err(c, "orphan list not empty at unmount");
862 	}
863 
864 	vfree(c->orph_buf);
865 	c->orph_buf = NULL;
866 }
867 
868 /**
869  * free_buds - free per-bud objects.
870  * @c: UBIFS file-system description object
871  */
872 static void free_buds(struct ubifs_info *c)
873 {
874 	struct ubifs_bud *bud, *n;
875 
876 	rbtree_postorder_for_each_entry_safe(bud, n, &c->buds, rb)
877 		kfree(bud);
878 }
879 
880 /**
881  * check_volume_empty - check if the UBI volume is empty.
882  * @c: UBIFS file-system description object
883  *
884  * This function checks if the UBIFS volume is empty by looking if its LEBs are
885  * mapped or not. The result of checking is stored in the @c->empty variable.
886  * Returns zero in case of success and a negative error code in case of
887  * failure.
888  */
889 static int check_volume_empty(struct ubifs_info *c)
890 {
891 	int lnum, err;
892 
893 	c->empty = 1;
894 	for (lnum = 0; lnum < c->leb_cnt; lnum++) {
895 		err = ubifs_is_mapped(c, lnum);
896 		if (unlikely(err < 0))
897 			return err;
898 		if (err == 1) {
899 			c->empty = 0;
900 			break;
901 		}
902 
903 		cond_resched();
904 	}
905 
906 	return 0;
907 }
908 
909 /*
910  * UBIFS mount options.
911  *
912  * Opt_fast_unmount: do not run a journal commit before un-mounting
913  * Opt_norm_unmount: run a journal commit before un-mounting
914  * Opt_bulk_read: enable bulk-reads
915  * Opt_no_bulk_read: disable bulk-reads
916  * Opt_chk_data_crc: check CRCs when reading data nodes
917  * Opt_no_chk_data_crc: do not check CRCs when reading data nodes
918  * Opt_override_compr: override default compressor
919  * Opt_err: just end of array marker
920  */
921 enum {
922 	Opt_fast_unmount,
923 	Opt_norm_unmount,
924 	Opt_bulk_read,
925 	Opt_no_bulk_read,
926 	Opt_chk_data_crc,
927 	Opt_no_chk_data_crc,
928 	Opt_override_compr,
929 	Opt_err,
930 };
931 
932 static const match_table_t tokens = {
933 	{Opt_fast_unmount, "fast_unmount"},
934 	{Opt_norm_unmount, "norm_unmount"},
935 	{Opt_bulk_read, "bulk_read"},
936 	{Opt_no_bulk_read, "no_bulk_read"},
937 	{Opt_chk_data_crc, "chk_data_crc"},
938 	{Opt_no_chk_data_crc, "no_chk_data_crc"},
939 	{Opt_override_compr, "compr=%s"},
940 	{Opt_err, NULL},
941 };
942 
943 /**
944  * parse_standard_option - parse a standard mount option.
945  * @option: the option to parse
946  *
947  * Normally, standard mount options like "sync" are passed to file-systems as
948  * flags. However, when a "rootflags=" kernel boot parameter is used, they may
949  * be present in the options string. This function tries to deal with this
950  * situation and parse standard options. Returns 0 if the option was not
951  * recognized, and the corresponding integer flag if it was.
952  *
953  * UBIFS is only interested in the "sync" option, so do not check for anything
954  * else.
955  */
956 static int parse_standard_option(const char *option)
957 {
958 
959 	pr_notice("UBIFS: parse %s\n", option);
960 	if (!strcmp(option, "sync"))
961 		return MS_SYNCHRONOUS;
962 	return 0;
963 }
964 
965 /**
966  * ubifs_parse_options - parse mount parameters.
967  * @c: UBIFS file-system description object
968  * @options: parameters to parse
969  * @is_remount: non-zero if this is FS re-mount
970  *
971  * This function parses UBIFS mount options and returns zero in case success
972  * and a negative error code in case of failure.
973  */
974 static int ubifs_parse_options(struct ubifs_info *c, char *options,
975 			       int is_remount)
976 {
977 	char *p;
978 	substring_t args[MAX_OPT_ARGS];
979 
980 	if (!options)
981 		return 0;
982 
983 	while ((p = strsep(&options, ","))) {
984 		int token;
985 
986 		if (!*p)
987 			continue;
988 
989 		token = match_token(p, tokens, args);
990 		switch (token) {
991 		/*
992 		 * %Opt_fast_unmount and %Opt_norm_unmount options are ignored.
993 		 * We accept them in order to be backward-compatible. But this
994 		 * should be removed at some point.
995 		 */
996 		case Opt_fast_unmount:
997 			c->mount_opts.unmount_mode = 2;
998 			break;
999 		case Opt_norm_unmount:
1000 			c->mount_opts.unmount_mode = 1;
1001 			break;
1002 		case Opt_bulk_read:
1003 			c->mount_opts.bulk_read = 2;
1004 			c->bulk_read = 1;
1005 			break;
1006 		case Opt_no_bulk_read:
1007 			c->mount_opts.bulk_read = 1;
1008 			c->bulk_read = 0;
1009 			break;
1010 		case Opt_chk_data_crc:
1011 			c->mount_opts.chk_data_crc = 2;
1012 			c->no_chk_data_crc = 0;
1013 			break;
1014 		case Opt_no_chk_data_crc:
1015 			c->mount_opts.chk_data_crc = 1;
1016 			c->no_chk_data_crc = 1;
1017 			break;
1018 		case Opt_override_compr:
1019 		{
1020 			char *name = match_strdup(&args[0]);
1021 
1022 			if (!name)
1023 				return -ENOMEM;
1024 			if (!strcmp(name, "none"))
1025 				c->mount_opts.compr_type = UBIFS_COMPR_NONE;
1026 			else if (!strcmp(name, "lzo"))
1027 				c->mount_opts.compr_type = UBIFS_COMPR_LZO;
1028 			else if (!strcmp(name, "zlib"))
1029 				c->mount_opts.compr_type = UBIFS_COMPR_ZLIB;
1030 			else {
1031 				ubifs_err(c, "unknown compressor \"%s\"", name); //FIXME: is c ready?
1032 				kfree(name);
1033 				return -EINVAL;
1034 			}
1035 			kfree(name);
1036 			c->mount_opts.override_compr = 1;
1037 			c->default_compr = c->mount_opts.compr_type;
1038 			break;
1039 		}
1040 		default:
1041 		{
1042 			unsigned long flag;
1043 			struct super_block *sb = c->vfs_sb;
1044 
1045 			flag = parse_standard_option(p);
1046 			if (!flag) {
1047 				ubifs_err(c, "unrecognized mount option \"%s\" or missing value",
1048 					  p);
1049 				return -EINVAL;
1050 			}
1051 			sb->s_flags |= flag;
1052 			break;
1053 		}
1054 		}
1055 	}
1056 
1057 	return 0;
1058 }
1059 
1060 /**
1061  * destroy_journal - destroy journal data structures.
1062  * @c: UBIFS file-system description object
1063  *
1064  * This function destroys journal data structures including those that may have
1065  * been created by recovery functions.
1066  */
1067 static void destroy_journal(struct ubifs_info *c)
1068 {
1069 	while (!list_empty(&c->unclean_leb_list)) {
1070 		struct ubifs_unclean_leb *ucleb;
1071 
1072 		ucleb = list_entry(c->unclean_leb_list.next,
1073 				   struct ubifs_unclean_leb, list);
1074 		list_del(&ucleb->list);
1075 		kfree(ucleb);
1076 	}
1077 	while (!list_empty(&c->old_buds)) {
1078 		struct ubifs_bud *bud;
1079 
1080 		bud = list_entry(c->old_buds.next, struct ubifs_bud, list);
1081 		list_del(&bud->list);
1082 		kfree(bud);
1083 	}
1084 	ubifs_destroy_idx_gc(c);
1085 	ubifs_destroy_size_tree(c);
1086 	ubifs_tnc_close(c);
1087 	free_buds(c);
1088 }
1089 
1090 /**
1091  * bu_init - initialize bulk-read information.
1092  * @c: UBIFS file-system description object
1093  */
1094 static void bu_init(struct ubifs_info *c)
1095 {
1096 	ubifs_assert(c->bulk_read == 1);
1097 
1098 	if (c->bu.buf)
1099 		return; /* Already initialized */
1100 
1101 again:
1102 	c->bu.buf = kmalloc(c->max_bu_buf_len, GFP_KERNEL | __GFP_NOWARN);
1103 	if (!c->bu.buf) {
1104 		if (c->max_bu_buf_len > UBIFS_KMALLOC_OK) {
1105 			c->max_bu_buf_len = UBIFS_KMALLOC_OK;
1106 			goto again;
1107 		}
1108 
1109 		/* Just disable bulk-read */
1110 		ubifs_warn(c, "cannot allocate %d bytes of memory for bulk-read, disabling it",
1111 			   c->max_bu_buf_len);
1112 		c->mount_opts.bulk_read = 1;
1113 		c->bulk_read = 0;
1114 		return;
1115 	}
1116 }
1117 
1118 /**
1119  * check_free_space - check if there is enough free space to mount.
1120  * @c: UBIFS file-system description object
1121  *
1122  * This function makes sure UBIFS has enough free space to be mounted in
1123  * read/write mode. UBIFS must always have some free space to allow deletions.
1124  */
1125 static int check_free_space(struct ubifs_info *c)
1126 {
1127 	ubifs_assert(c->dark_wm > 0);
1128 	if (c->lst.total_free + c->lst.total_dirty < c->dark_wm) {
1129 		ubifs_err(c, "insufficient free space to mount in R/W mode");
1130 		ubifs_dump_budg(c, &c->bi);
1131 		ubifs_dump_lprops(c);
1132 		return -ENOSPC;
1133 	}
1134 	return 0;
1135 }
1136 
1137 /**
1138  * mount_ubifs - mount UBIFS file-system.
1139  * @c: UBIFS file-system description object
1140  *
1141  * This function mounts UBIFS file system. Returns zero in case of success and
1142  * a negative error code in case of failure.
1143  */
1144 static int mount_ubifs(struct ubifs_info *c)
1145 {
1146 	int err;
1147 	long long x, y;
1148 	size_t sz;
1149 
1150 	c->ro_mount = !!(c->vfs_sb->s_flags & MS_RDONLY);
1151 	/* Suppress error messages while probing if MS_SILENT is set */
1152 	c->probing = !!(c->vfs_sb->s_flags & MS_SILENT);
1153 
1154 	err = init_constants_early(c);
1155 	if (err)
1156 		return err;
1157 
1158 	err = ubifs_debugging_init(c);
1159 	if (err)
1160 		return err;
1161 
1162 	err = check_volume_empty(c);
1163 	if (err)
1164 		goto out_free;
1165 
1166 	if (c->empty && (c->ro_mount || c->ro_media)) {
1167 		/*
1168 		 * This UBI volume is empty, and read-only, or the file system
1169 		 * is mounted read-only - we cannot format it.
1170 		 */
1171 		ubifs_err(c, "can't format empty UBI volume: read-only %s",
1172 			  c->ro_media ? "UBI volume" : "mount");
1173 		err = -EROFS;
1174 		goto out_free;
1175 	}
1176 
1177 	if (c->ro_media && !c->ro_mount) {
1178 		ubifs_err(c, "cannot mount read-write - read-only media");
1179 		err = -EROFS;
1180 		goto out_free;
1181 	}
1182 
1183 	/*
1184 	 * The requirement for the buffer is that it should fit indexing B-tree
1185 	 * height amount of integers. We assume the height if the TNC tree will
1186 	 * never exceed 64.
1187 	 */
1188 	err = -ENOMEM;
1189 	c->bottom_up_buf = kmalloc(BOTTOM_UP_HEIGHT * sizeof(int), GFP_KERNEL);
1190 	if (!c->bottom_up_buf)
1191 		goto out_free;
1192 
1193 	c->sbuf = vmalloc(c->leb_size);
1194 	if (!c->sbuf)
1195 		goto out_free;
1196 
1197 	if (!c->ro_mount) {
1198 		c->ileb_buf = vmalloc(c->leb_size);
1199 		if (!c->ileb_buf)
1200 			goto out_free;
1201 	}
1202 
1203 	if (c->bulk_read == 1)
1204 		bu_init(c);
1205 
1206 	if (!c->ro_mount) {
1207 		c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ,
1208 					       GFP_KERNEL);
1209 		if (!c->write_reserve_buf)
1210 			goto out_free;
1211 	}
1212 
1213 	c->mounting = 1;
1214 
1215 	err = ubifs_read_superblock(c);
1216 	if (err)
1217 		goto out_free;
1218 
1219 	c->probing = 0;
1220 
1221 	/*
1222 	 * Make sure the compressor which is set as default in the superblock
1223 	 * or overridden by mount options is actually compiled in.
1224 	 */
1225 	if (!ubifs_compr_present(c->default_compr)) {
1226 		ubifs_err(c, "'compressor \"%s\" is not compiled in",
1227 			  ubifs_compr_name(c->default_compr));
1228 		err = -ENOTSUPP;
1229 		goto out_free;
1230 	}
1231 
1232 	err = init_constants_sb(c);
1233 	if (err)
1234 		goto out_free;
1235 
1236 	sz = ALIGN(c->max_idx_node_sz, c->min_io_size);
1237 	sz = ALIGN(sz + c->max_idx_node_sz, c->min_io_size);
1238 	c->cbuf = kmalloc(sz, GFP_NOFS);
1239 	if (!c->cbuf) {
1240 		err = -ENOMEM;
1241 		goto out_free;
1242 	}
1243 
1244 	err = alloc_wbufs(c);
1245 	if (err)
1246 		goto out_cbuf;
1247 
1248 	sprintf(c->bgt_name, BGT_NAME_PATTERN, c->vi.ubi_num, c->vi.vol_id);
1249 	if (!c->ro_mount) {
1250 		/* Create background thread */
1251 		c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1252 		if (IS_ERR(c->bgt)) {
1253 			err = PTR_ERR(c->bgt);
1254 			c->bgt = NULL;
1255 			ubifs_err(c, "cannot spawn \"%s\", error %d",
1256 				  c->bgt_name, err);
1257 			goto out_wbufs;
1258 		}
1259 		wake_up_process(c->bgt);
1260 	}
1261 
1262 	err = ubifs_read_master(c);
1263 	if (err)
1264 		goto out_master;
1265 
1266 	init_constants_master(c);
1267 
1268 	if ((c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY)) != 0) {
1269 		ubifs_msg(c, "recovery needed");
1270 		c->need_recovery = 1;
1271 	}
1272 
1273 	if (c->need_recovery && !c->ro_mount) {
1274 		err = ubifs_recover_inl_heads(c, c->sbuf);
1275 		if (err)
1276 			goto out_master;
1277 	}
1278 
1279 	err = ubifs_lpt_init(c, 1, !c->ro_mount);
1280 	if (err)
1281 		goto out_master;
1282 
1283 	if (!c->ro_mount && c->space_fixup) {
1284 		err = ubifs_fixup_free_space(c);
1285 		if (err)
1286 			goto out_lpt;
1287 	}
1288 
1289 	if (!c->ro_mount && !c->need_recovery) {
1290 		/*
1291 		 * Set the "dirty" flag so that if we reboot uncleanly we
1292 		 * will notice this immediately on the next mount.
1293 		 */
1294 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1295 		err = ubifs_write_master(c);
1296 		if (err)
1297 			goto out_lpt;
1298 	}
1299 
1300 	err = dbg_check_idx_size(c, c->bi.old_idx_sz);
1301 	if (err)
1302 		goto out_lpt;
1303 
1304 	err = ubifs_replay_journal(c);
1305 	if (err)
1306 		goto out_journal;
1307 
1308 	/* Calculate 'min_idx_lebs' after journal replay */
1309 	c->bi.min_idx_lebs = ubifs_calc_min_idx_lebs(c);
1310 
1311 	err = ubifs_mount_orphans(c, c->need_recovery, c->ro_mount);
1312 	if (err)
1313 		goto out_orphans;
1314 
1315 	if (!c->ro_mount) {
1316 		int lnum;
1317 
1318 		err = check_free_space(c);
1319 		if (err)
1320 			goto out_orphans;
1321 
1322 		/* Check for enough log space */
1323 		lnum = c->lhead_lnum + 1;
1324 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1325 			lnum = UBIFS_LOG_LNUM;
1326 		if (lnum == c->ltail_lnum) {
1327 			err = ubifs_consolidate_log(c);
1328 			if (err)
1329 				goto out_orphans;
1330 		}
1331 
1332 		if (c->need_recovery) {
1333 			err = ubifs_recover_size(c);
1334 			if (err)
1335 				goto out_orphans;
1336 			err = ubifs_rcvry_gc_commit(c);
1337 			if (err)
1338 				goto out_orphans;
1339 		} else {
1340 			err = take_gc_lnum(c);
1341 			if (err)
1342 				goto out_orphans;
1343 
1344 			/*
1345 			 * GC LEB may contain garbage if there was an unclean
1346 			 * reboot, and it should be un-mapped.
1347 			 */
1348 			err = ubifs_leb_unmap(c, c->gc_lnum);
1349 			if (err)
1350 				goto out_orphans;
1351 		}
1352 
1353 		err = dbg_check_lprops(c);
1354 		if (err)
1355 			goto out_orphans;
1356 	} else if (c->need_recovery) {
1357 		err = ubifs_recover_size(c);
1358 		if (err)
1359 			goto out_orphans;
1360 	} else {
1361 		/*
1362 		 * Even if we mount read-only, we have to set space in GC LEB
1363 		 * to proper value because this affects UBIFS free space
1364 		 * reporting. We do not want to have a situation when
1365 		 * re-mounting from R/O to R/W changes amount of free space.
1366 		 */
1367 		err = take_gc_lnum(c);
1368 		if (err)
1369 			goto out_orphans;
1370 	}
1371 
1372 	spin_lock(&ubifs_infos_lock);
1373 	list_add_tail(&c->infos_list, &ubifs_infos);
1374 	spin_unlock(&ubifs_infos_lock);
1375 
1376 	if (c->need_recovery) {
1377 		if (c->ro_mount)
1378 			ubifs_msg(c, "recovery deferred");
1379 		else {
1380 			c->need_recovery = 0;
1381 			ubifs_msg(c, "recovery completed");
1382 			/*
1383 			 * GC LEB has to be empty and taken at this point. But
1384 			 * the journal head LEBs may also be accounted as
1385 			 * "empty taken" if they are empty.
1386 			 */
1387 			ubifs_assert(c->lst.taken_empty_lebs > 0);
1388 		}
1389 	} else
1390 		ubifs_assert(c->lst.taken_empty_lebs > 0);
1391 
1392 	err = dbg_check_filesystem(c);
1393 	if (err)
1394 		goto out_infos;
1395 
1396 	err = dbg_debugfs_init_fs(c);
1397 	if (err)
1398 		goto out_infos;
1399 
1400 	c->mounting = 0;
1401 
1402 	ubifs_msg(c, "UBIFS: mounted UBI device %d, volume %d, name \"%s\"%s",
1403 		  c->vi.ubi_num, c->vi.vol_id, c->vi.name,
1404 		  c->ro_mount ? ", R/O mode" : "");
1405 	x = (long long)c->main_lebs * c->leb_size;
1406 	y = (long long)c->log_lebs * c->leb_size + c->max_bud_bytes;
1407 	ubifs_msg(c, "LEB size: %d bytes (%d KiB), min./max. I/O unit sizes: %d bytes/%d bytes",
1408 		  c->leb_size, c->leb_size >> 10, c->min_io_size,
1409 		  c->max_write_size);
1410 	ubifs_msg(c, "FS size: %lld bytes (%lld MiB, %d LEBs), journal size %lld bytes (%lld MiB, %d LEBs)",
1411 		  x, x >> 20, c->main_lebs,
1412 		  y, y >> 20, c->log_lebs + c->max_bud_cnt);
1413 	ubifs_msg(c, "reserved for root: %llu bytes (%llu KiB)",
1414 		  c->report_rp_size, c->report_rp_size >> 10);
1415 	ubifs_msg(c, "media format: w%d/r%d (latest is w%d/r%d), UUID %pUB%s",
1416 		  c->fmt_version, c->ro_compat_version,
1417 		  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION, c->uuid,
1418 		  c->big_lpt ? ", big LPT model" : ", small LPT model");
1419 
1420 	dbg_gen("default compressor:  %s", ubifs_compr_name(c->default_compr));
1421 	dbg_gen("data journal heads:  %d",
1422 		c->jhead_cnt - NONDATA_JHEADS_CNT);
1423 	dbg_gen("log LEBs:            %d (%d - %d)",
1424 		c->log_lebs, UBIFS_LOG_LNUM, c->log_last);
1425 	dbg_gen("LPT area LEBs:       %d (%d - %d)",
1426 		c->lpt_lebs, c->lpt_first, c->lpt_last);
1427 	dbg_gen("orphan area LEBs:    %d (%d - %d)",
1428 		c->orph_lebs, c->orph_first, c->orph_last);
1429 	dbg_gen("main area LEBs:      %d (%d - %d)",
1430 		c->main_lebs, c->main_first, c->leb_cnt - 1);
1431 	dbg_gen("index LEBs:          %d", c->lst.idx_lebs);
1432 	dbg_gen("total index bytes:   %lld (%lld KiB, %lld MiB)",
1433 		c->bi.old_idx_sz, c->bi.old_idx_sz >> 10,
1434 		c->bi.old_idx_sz >> 20);
1435 	dbg_gen("key hash type:       %d", c->key_hash_type);
1436 	dbg_gen("tree fanout:         %d", c->fanout);
1437 	dbg_gen("reserved GC LEB:     %d", c->gc_lnum);
1438 	dbg_gen("max. znode size      %d", c->max_znode_sz);
1439 	dbg_gen("max. index node size %d", c->max_idx_node_sz);
1440 	dbg_gen("node sizes:          data %zu, inode %zu, dentry %zu",
1441 		UBIFS_DATA_NODE_SZ, UBIFS_INO_NODE_SZ, UBIFS_DENT_NODE_SZ);
1442 	dbg_gen("node sizes:          trun %zu, sb %zu, master %zu",
1443 		UBIFS_TRUN_NODE_SZ, UBIFS_SB_NODE_SZ, UBIFS_MST_NODE_SZ);
1444 	dbg_gen("node sizes:          ref %zu, cmt. start %zu, orph %zu",
1445 		UBIFS_REF_NODE_SZ, UBIFS_CS_NODE_SZ, UBIFS_ORPH_NODE_SZ);
1446 	dbg_gen("max. node sizes:     data %zu, inode %zu dentry %zu, idx %d",
1447 		UBIFS_MAX_DATA_NODE_SZ, UBIFS_MAX_INO_NODE_SZ,
1448 		UBIFS_MAX_DENT_NODE_SZ, ubifs_idx_node_sz(c, c->fanout));
1449 	dbg_gen("dead watermark:      %d", c->dead_wm);
1450 	dbg_gen("dark watermark:      %d", c->dark_wm);
1451 	dbg_gen("LEB overhead:        %d", c->leb_overhead);
1452 	x = (long long)c->main_lebs * c->dark_wm;
1453 	dbg_gen("max. dark space:     %lld (%lld KiB, %lld MiB)",
1454 		x, x >> 10, x >> 20);
1455 	dbg_gen("maximum bud bytes:   %lld (%lld KiB, %lld MiB)",
1456 		c->max_bud_bytes, c->max_bud_bytes >> 10,
1457 		c->max_bud_bytes >> 20);
1458 	dbg_gen("BG commit bud bytes: %lld (%lld KiB, %lld MiB)",
1459 		c->bg_bud_bytes, c->bg_bud_bytes >> 10,
1460 		c->bg_bud_bytes >> 20);
1461 	dbg_gen("current bud bytes    %lld (%lld KiB, %lld MiB)",
1462 		c->bud_bytes, c->bud_bytes >> 10, c->bud_bytes >> 20);
1463 	dbg_gen("max. seq. number:    %llu", c->max_sqnum);
1464 	dbg_gen("commit number:       %llu", c->cmt_no);
1465 
1466 	return 0;
1467 
1468 out_infos:
1469 	spin_lock(&ubifs_infos_lock);
1470 	list_del(&c->infos_list);
1471 	spin_unlock(&ubifs_infos_lock);
1472 out_orphans:
1473 	free_orphans(c);
1474 out_journal:
1475 	destroy_journal(c);
1476 out_lpt:
1477 	ubifs_lpt_free(c, 0);
1478 out_master:
1479 	kfree(c->mst_node);
1480 	kfree(c->rcvrd_mst_node);
1481 	if (c->bgt)
1482 		kthread_stop(c->bgt);
1483 out_wbufs:
1484 	free_wbufs(c);
1485 out_cbuf:
1486 	kfree(c->cbuf);
1487 out_free:
1488 	kfree(c->write_reserve_buf);
1489 	kfree(c->bu.buf);
1490 	vfree(c->ileb_buf);
1491 	vfree(c->sbuf);
1492 	kfree(c->bottom_up_buf);
1493 	ubifs_debugging_exit(c);
1494 	return err;
1495 }
1496 
1497 /**
1498  * ubifs_umount - un-mount UBIFS file-system.
1499  * @c: UBIFS file-system description object
1500  *
1501  * Note, this function is called to free allocated resourced when un-mounting,
1502  * as well as free resources when an error occurred while we were half way
1503  * through mounting (error path cleanup function). So it has to make sure the
1504  * resource was actually allocated before freeing it.
1505  */
1506 static void ubifs_umount(struct ubifs_info *c)
1507 {
1508 	dbg_gen("un-mounting UBI device %d, volume %d", c->vi.ubi_num,
1509 		c->vi.vol_id);
1510 
1511 	dbg_debugfs_exit_fs(c);
1512 	spin_lock(&ubifs_infos_lock);
1513 	list_del(&c->infos_list);
1514 	spin_unlock(&ubifs_infos_lock);
1515 
1516 	if (c->bgt)
1517 		kthread_stop(c->bgt);
1518 
1519 	destroy_journal(c);
1520 	free_wbufs(c);
1521 	free_orphans(c);
1522 	ubifs_lpt_free(c, 0);
1523 
1524 	kfree(c->cbuf);
1525 	kfree(c->rcvrd_mst_node);
1526 	kfree(c->mst_node);
1527 	kfree(c->write_reserve_buf);
1528 	kfree(c->bu.buf);
1529 	vfree(c->ileb_buf);
1530 	vfree(c->sbuf);
1531 	kfree(c->bottom_up_buf);
1532 	ubifs_debugging_exit(c);
1533 }
1534 
1535 /**
1536  * ubifs_remount_rw - re-mount in read-write mode.
1537  * @c: UBIFS file-system description object
1538  *
1539  * UBIFS avoids allocating many unnecessary resources when mounted in read-only
1540  * mode. This function allocates the needed resources and re-mounts UBIFS in
1541  * read-write mode.
1542  */
1543 static int ubifs_remount_rw(struct ubifs_info *c)
1544 {
1545 	int err, lnum;
1546 
1547 	if (c->rw_incompat) {
1548 		ubifs_err(c, "the file-system is not R/W-compatible");
1549 		ubifs_msg(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
1550 			  c->fmt_version, c->ro_compat_version,
1551 			  UBIFS_FORMAT_VERSION, UBIFS_RO_COMPAT_VERSION);
1552 		return -EROFS;
1553 	}
1554 
1555 	mutex_lock(&c->umount_mutex);
1556 	dbg_save_space_info(c);
1557 	c->remounting_rw = 1;
1558 	c->ro_mount = 0;
1559 
1560 	if (c->space_fixup) {
1561 		err = ubifs_fixup_free_space(c);
1562 		if (err)
1563 			goto out;
1564 	}
1565 
1566 	err = check_free_space(c);
1567 	if (err)
1568 		goto out;
1569 
1570 	if (c->old_leb_cnt != c->leb_cnt) {
1571 		struct ubifs_sb_node *sup;
1572 
1573 		sup = ubifs_read_sb_node(c);
1574 		if (IS_ERR(sup)) {
1575 			err = PTR_ERR(sup);
1576 			goto out;
1577 		}
1578 		sup->leb_cnt = cpu_to_le32(c->leb_cnt);
1579 		err = ubifs_write_sb_node(c, sup);
1580 		kfree(sup);
1581 		if (err)
1582 			goto out;
1583 	}
1584 
1585 	if (c->need_recovery) {
1586 		ubifs_msg(c, "completing deferred recovery");
1587 		err = ubifs_write_rcvrd_mst_node(c);
1588 		if (err)
1589 			goto out;
1590 		err = ubifs_recover_size(c);
1591 		if (err)
1592 			goto out;
1593 		err = ubifs_clean_lebs(c, c->sbuf);
1594 		if (err)
1595 			goto out;
1596 		err = ubifs_recover_inl_heads(c, c->sbuf);
1597 		if (err)
1598 			goto out;
1599 	} else {
1600 		/* A readonly mount is not allowed to have orphans */
1601 		ubifs_assert(c->tot_orphans == 0);
1602 		err = ubifs_clear_orphans(c);
1603 		if (err)
1604 			goto out;
1605 	}
1606 
1607 	if (!(c->mst_node->flags & cpu_to_le32(UBIFS_MST_DIRTY))) {
1608 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY);
1609 		err = ubifs_write_master(c);
1610 		if (err)
1611 			goto out;
1612 	}
1613 
1614 	c->ileb_buf = vmalloc(c->leb_size);
1615 	if (!c->ileb_buf) {
1616 		err = -ENOMEM;
1617 		goto out;
1618 	}
1619 
1620 	c->write_reserve_buf = kmalloc(COMPRESSED_DATA_NODE_BUF_SZ, GFP_KERNEL);
1621 	if (!c->write_reserve_buf) {
1622 		err = -ENOMEM;
1623 		goto out;
1624 	}
1625 
1626 	err = ubifs_lpt_init(c, 0, 1);
1627 	if (err)
1628 		goto out;
1629 
1630 	/* Create background thread */
1631 	c->bgt = kthread_create(ubifs_bg_thread, c, "%s", c->bgt_name);
1632 	if (IS_ERR(c->bgt)) {
1633 		err = PTR_ERR(c->bgt);
1634 		c->bgt = NULL;
1635 		ubifs_err(c, "cannot spawn \"%s\", error %d",
1636 			  c->bgt_name, err);
1637 		goto out;
1638 	}
1639 	wake_up_process(c->bgt);
1640 
1641 	c->orph_buf = vmalloc(c->leb_size);
1642 	if (!c->orph_buf) {
1643 		err = -ENOMEM;
1644 		goto out;
1645 	}
1646 
1647 	/* Check for enough log space */
1648 	lnum = c->lhead_lnum + 1;
1649 	if (lnum >= UBIFS_LOG_LNUM + c->log_lebs)
1650 		lnum = UBIFS_LOG_LNUM;
1651 	if (lnum == c->ltail_lnum) {
1652 		err = ubifs_consolidate_log(c);
1653 		if (err)
1654 			goto out;
1655 	}
1656 
1657 	if (c->need_recovery)
1658 		err = ubifs_rcvry_gc_commit(c);
1659 	else
1660 		err = ubifs_leb_unmap(c, c->gc_lnum);
1661 	if (err)
1662 		goto out;
1663 
1664 	dbg_gen("re-mounted read-write");
1665 	c->remounting_rw = 0;
1666 
1667 	if (c->need_recovery) {
1668 		c->need_recovery = 0;
1669 		ubifs_msg(c, "deferred recovery completed");
1670 	} else {
1671 		/*
1672 		 * Do not run the debugging space check if the were doing
1673 		 * recovery, because when we saved the information we had the
1674 		 * file-system in a state where the TNC and lprops has been
1675 		 * modified in memory, but all the I/O operations (including a
1676 		 * commit) were deferred. So the file-system was in
1677 		 * "non-committed" state. Now the file-system is in committed
1678 		 * state, and of course the amount of free space will change
1679 		 * because, for example, the old index size was imprecise.
1680 		 */
1681 		err = dbg_check_space_info(c);
1682 	}
1683 
1684 	mutex_unlock(&c->umount_mutex);
1685 	return err;
1686 
1687 out:
1688 	c->ro_mount = 1;
1689 	vfree(c->orph_buf);
1690 	c->orph_buf = NULL;
1691 	if (c->bgt) {
1692 		kthread_stop(c->bgt);
1693 		c->bgt = NULL;
1694 	}
1695 	free_wbufs(c);
1696 	kfree(c->write_reserve_buf);
1697 	c->write_reserve_buf = NULL;
1698 	vfree(c->ileb_buf);
1699 	c->ileb_buf = NULL;
1700 	ubifs_lpt_free(c, 1);
1701 	c->remounting_rw = 0;
1702 	mutex_unlock(&c->umount_mutex);
1703 	return err;
1704 }
1705 
1706 /**
1707  * ubifs_remount_ro - re-mount in read-only mode.
1708  * @c: UBIFS file-system description object
1709  *
1710  * We assume VFS has stopped writing. Possibly the background thread could be
1711  * running a commit, however kthread_stop will wait in that case.
1712  */
1713 static void ubifs_remount_ro(struct ubifs_info *c)
1714 {
1715 	int i, err;
1716 
1717 	ubifs_assert(!c->need_recovery);
1718 	ubifs_assert(!c->ro_mount);
1719 
1720 	mutex_lock(&c->umount_mutex);
1721 	if (c->bgt) {
1722 		kthread_stop(c->bgt);
1723 		c->bgt = NULL;
1724 	}
1725 
1726 	dbg_save_space_info(c);
1727 
1728 	for (i = 0; i < c->jhead_cnt; i++)
1729 		ubifs_wbuf_sync(&c->jheads[i].wbuf);
1730 
1731 	c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1732 	c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1733 	c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1734 	err = ubifs_write_master(c);
1735 	if (err)
1736 		ubifs_ro_mode(c, err);
1737 
1738 	vfree(c->orph_buf);
1739 	c->orph_buf = NULL;
1740 	kfree(c->write_reserve_buf);
1741 	c->write_reserve_buf = NULL;
1742 	vfree(c->ileb_buf);
1743 	c->ileb_buf = NULL;
1744 	ubifs_lpt_free(c, 1);
1745 	c->ro_mount = 1;
1746 	err = dbg_check_space_info(c);
1747 	if (err)
1748 		ubifs_ro_mode(c, err);
1749 	mutex_unlock(&c->umount_mutex);
1750 }
1751 
1752 static void ubifs_put_super(struct super_block *sb)
1753 {
1754 	int i;
1755 	struct ubifs_info *c = sb->s_fs_info;
1756 
1757 	ubifs_msg(c, "un-mount UBI device %d", c->vi.ubi_num);
1758 
1759 	/*
1760 	 * The following asserts are only valid if there has not been a failure
1761 	 * of the media. For example, there will be dirty inodes if we failed
1762 	 * to write them back because of I/O errors.
1763 	 */
1764 	if (!c->ro_error) {
1765 		ubifs_assert(c->bi.idx_growth == 0);
1766 		ubifs_assert(c->bi.dd_growth == 0);
1767 		ubifs_assert(c->bi.data_growth == 0);
1768 	}
1769 
1770 	/*
1771 	 * The 'c->umount_lock' prevents races between UBIFS memory shrinker
1772 	 * and file system un-mount. Namely, it prevents the shrinker from
1773 	 * picking this superblock for shrinking - it will be just skipped if
1774 	 * the mutex is locked.
1775 	 */
1776 	mutex_lock(&c->umount_mutex);
1777 	if (!c->ro_mount) {
1778 		/*
1779 		 * First of all kill the background thread to make sure it does
1780 		 * not interfere with un-mounting and freeing resources.
1781 		 */
1782 		if (c->bgt) {
1783 			kthread_stop(c->bgt);
1784 			c->bgt = NULL;
1785 		}
1786 
1787 		/*
1788 		 * On fatal errors c->ro_error is set to 1, in which case we do
1789 		 * not write the master node.
1790 		 */
1791 		if (!c->ro_error) {
1792 			int err;
1793 
1794 			/* Synchronize write-buffers */
1795 			for (i = 0; i < c->jhead_cnt; i++)
1796 				ubifs_wbuf_sync(&c->jheads[i].wbuf);
1797 
1798 			/*
1799 			 * We are being cleanly unmounted which means the
1800 			 * orphans were killed - indicate this in the master
1801 			 * node. Also save the reserved GC LEB number.
1802 			 */
1803 			c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_DIRTY);
1804 			c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
1805 			c->mst_node->gc_lnum = cpu_to_le32(c->gc_lnum);
1806 			err = ubifs_write_master(c);
1807 			if (err)
1808 				/*
1809 				 * Recovery will attempt to fix the master area
1810 				 * next mount, so we just print a message and
1811 				 * continue to unmount normally.
1812 				 */
1813 				ubifs_err(c, "failed to write master node, error %d",
1814 					  err);
1815 		} else {
1816 			for (i = 0; i < c->jhead_cnt; i++)
1817 				/* Make sure write-buffer timers are canceled */
1818 				hrtimer_cancel(&c->jheads[i].wbuf.timer);
1819 		}
1820 	}
1821 
1822 	ubifs_umount(c);
1823 	bdi_destroy(&c->bdi);
1824 	ubi_close_volume(c->ubi);
1825 	mutex_unlock(&c->umount_mutex);
1826 }
1827 
1828 static int ubifs_remount_fs(struct super_block *sb, int *flags, char *data)
1829 {
1830 	int err;
1831 	struct ubifs_info *c = sb->s_fs_info;
1832 
1833 	sync_filesystem(sb);
1834 	dbg_gen("old flags %#lx, new flags %#x", sb->s_flags, *flags);
1835 
1836 	err = ubifs_parse_options(c, data, 1);
1837 	if (err) {
1838 		ubifs_err(c, "invalid or unknown remount parameter");
1839 		return err;
1840 	}
1841 
1842 	if (c->ro_mount && !(*flags & MS_RDONLY)) {
1843 		if (c->ro_error) {
1844 			ubifs_msg(c, "cannot re-mount R/W due to prior errors");
1845 			return -EROFS;
1846 		}
1847 		if (c->ro_media) {
1848 			ubifs_msg(c, "cannot re-mount R/W - UBI volume is R/O");
1849 			return -EROFS;
1850 		}
1851 		err = ubifs_remount_rw(c);
1852 		if (err)
1853 			return err;
1854 	} else if (!c->ro_mount && (*flags & MS_RDONLY)) {
1855 		if (c->ro_error) {
1856 			ubifs_msg(c, "cannot re-mount R/O due to prior errors");
1857 			return -EROFS;
1858 		}
1859 		ubifs_remount_ro(c);
1860 	}
1861 
1862 	if (c->bulk_read == 1)
1863 		bu_init(c);
1864 	else {
1865 		dbg_gen("disable bulk-read");
1866 		kfree(c->bu.buf);
1867 		c->bu.buf = NULL;
1868 	}
1869 
1870 	ubifs_assert(c->lst.taken_empty_lebs > 0);
1871 	return 0;
1872 }
1873 
1874 const struct super_operations ubifs_super_operations = {
1875 	.alloc_inode   = ubifs_alloc_inode,
1876 	.destroy_inode = ubifs_destroy_inode,
1877 	.put_super     = ubifs_put_super,
1878 	.write_inode   = ubifs_write_inode,
1879 	.evict_inode   = ubifs_evict_inode,
1880 	.statfs        = ubifs_statfs,
1881 	.dirty_inode   = ubifs_dirty_inode,
1882 	.remount_fs    = ubifs_remount_fs,
1883 	.show_options  = ubifs_show_options,
1884 	.sync_fs       = ubifs_sync_fs,
1885 };
1886 
1887 /**
1888  * open_ubi - parse UBI device name string and open the UBI device.
1889  * @name: UBI volume name
1890  * @mode: UBI volume open mode
1891  *
1892  * The primary method of mounting UBIFS is by specifying the UBI volume
1893  * character device node path. However, UBIFS may also be mounted withoug any
1894  * character device node using one of the following methods:
1895  *
1896  * o ubiX_Y    - mount UBI device number X, volume Y;
1897  * o ubiY      - mount UBI device number 0, volume Y;
1898  * o ubiX:NAME - mount UBI device X, volume with name NAME;
1899  * o ubi:NAME  - mount UBI device 0, volume with name NAME.
1900  *
1901  * Alternative '!' separator may be used instead of ':' (because some shells
1902  * like busybox may interpret ':' as an NFS host name separator). This function
1903  * returns UBI volume description object in case of success and a negative
1904  * error code in case of failure.
1905  */
1906 static struct ubi_volume_desc *open_ubi(const char *name, int mode)
1907 {
1908 	struct ubi_volume_desc *ubi;
1909 	int dev, vol;
1910 	char *endptr;
1911 
1912 	/* First, try to open using the device node path method */
1913 	ubi = ubi_open_volume_path(name, mode);
1914 	if (!IS_ERR(ubi))
1915 		return ubi;
1916 
1917 	/* Try the "nodev" method */
1918 	if (name[0] != 'u' || name[1] != 'b' || name[2] != 'i')
1919 		return ERR_PTR(-EINVAL);
1920 
1921 	/* ubi:NAME method */
1922 	if ((name[3] == ':' || name[3] == '!') && name[4] != '\0')
1923 		return ubi_open_volume_nm(0, name + 4, mode);
1924 
1925 	if (!isdigit(name[3]))
1926 		return ERR_PTR(-EINVAL);
1927 
1928 	dev = simple_strtoul(name + 3, &endptr, 0);
1929 
1930 	/* ubiY method */
1931 	if (*endptr == '\0')
1932 		return ubi_open_volume(0, dev, mode);
1933 
1934 	/* ubiX_Y method */
1935 	if (*endptr == '_' && isdigit(endptr[1])) {
1936 		vol = simple_strtoul(endptr + 1, &endptr, 0);
1937 		if (*endptr != '\0')
1938 			return ERR_PTR(-EINVAL);
1939 		return ubi_open_volume(dev, vol, mode);
1940 	}
1941 
1942 	/* ubiX:NAME method */
1943 	if ((*endptr == ':' || *endptr == '!') && endptr[1] != '\0')
1944 		return ubi_open_volume_nm(dev, ++endptr, mode);
1945 
1946 	return ERR_PTR(-EINVAL);
1947 }
1948 
1949 static struct ubifs_info *alloc_ubifs_info(struct ubi_volume_desc *ubi)
1950 {
1951 	struct ubifs_info *c;
1952 
1953 	c = kzalloc(sizeof(struct ubifs_info), GFP_KERNEL);
1954 	if (c) {
1955 		spin_lock_init(&c->cnt_lock);
1956 		spin_lock_init(&c->cs_lock);
1957 		spin_lock_init(&c->buds_lock);
1958 		spin_lock_init(&c->space_lock);
1959 		spin_lock_init(&c->orphan_lock);
1960 		init_rwsem(&c->commit_sem);
1961 		mutex_init(&c->lp_mutex);
1962 		mutex_init(&c->tnc_mutex);
1963 		mutex_init(&c->log_mutex);
1964 		mutex_init(&c->umount_mutex);
1965 		mutex_init(&c->bu_mutex);
1966 		mutex_init(&c->write_reserve_mutex);
1967 		init_waitqueue_head(&c->cmt_wq);
1968 		c->buds = RB_ROOT;
1969 		c->old_idx = RB_ROOT;
1970 		c->size_tree = RB_ROOT;
1971 		c->orph_tree = RB_ROOT;
1972 		INIT_LIST_HEAD(&c->infos_list);
1973 		INIT_LIST_HEAD(&c->idx_gc);
1974 		INIT_LIST_HEAD(&c->replay_list);
1975 		INIT_LIST_HEAD(&c->replay_buds);
1976 		INIT_LIST_HEAD(&c->uncat_list);
1977 		INIT_LIST_HEAD(&c->empty_list);
1978 		INIT_LIST_HEAD(&c->freeable_list);
1979 		INIT_LIST_HEAD(&c->frdi_idx_list);
1980 		INIT_LIST_HEAD(&c->unclean_leb_list);
1981 		INIT_LIST_HEAD(&c->old_buds);
1982 		INIT_LIST_HEAD(&c->orph_list);
1983 		INIT_LIST_HEAD(&c->orph_new);
1984 		c->no_chk_data_crc = 1;
1985 
1986 		c->highest_inum = UBIFS_FIRST_INO;
1987 		c->lhead_lnum = c->ltail_lnum = UBIFS_LOG_LNUM;
1988 
1989 		ubi_get_volume_info(ubi, &c->vi);
1990 		ubi_get_device_info(c->vi.ubi_num, &c->di);
1991 	}
1992 	return c;
1993 }
1994 
1995 static int ubifs_fill_super(struct super_block *sb, void *data, int silent)
1996 {
1997 	struct ubifs_info *c = sb->s_fs_info;
1998 	struct inode *root;
1999 	int err;
2000 
2001 	c->vfs_sb = sb;
2002 	/* Re-open the UBI device in read-write mode */
2003 	c->ubi = ubi_open_volume(c->vi.ubi_num, c->vi.vol_id, UBI_READWRITE);
2004 	if (IS_ERR(c->ubi)) {
2005 		err = PTR_ERR(c->ubi);
2006 		goto out;
2007 	}
2008 
2009 	/*
2010 	 * UBIFS provides 'backing_dev_info' in order to disable read-ahead. For
2011 	 * UBIFS, I/O is not deferred, it is done immediately in readpage,
2012 	 * which means the user would have to wait not just for their own I/O
2013 	 * but the read-ahead I/O as well i.e. completely pointless.
2014 	 *
2015 	 * Read-ahead will be disabled because @c->bdi.ra_pages is 0.
2016 	 */
2017 	c->bdi.name = "ubifs",
2018 	c->bdi.capabilities = 0;
2019 	err  = bdi_init(&c->bdi);
2020 	if (err)
2021 		goto out_close;
2022 	err = bdi_register(&c->bdi, NULL, "ubifs_%d_%d",
2023 			   c->vi.ubi_num, c->vi.vol_id);
2024 	if (err)
2025 		goto out_bdi;
2026 
2027 	err = ubifs_parse_options(c, data, 0);
2028 	if (err)
2029 		goto out_bdi;
2030 
2031 	sb->s_bdi = &c->bdi;
2032 	sb->s_fs_info = c;
2033 	sb->s_magic = UBIFS_SUPER_MAGIC;
2034 	sb->s_blocksize = UBIFS_BLOCK_SIZE;
2035 	sb->s_blocksize_bits = UBIFS_BLOCK_SHIFT;
2036 	sb->s_maxbytes = c->max_inode_sz = key_max_inode_size(c);
2037 	if (c->max_inode_sz > MAX_LFS_FILESIZE)
2038 		sb->s_maxbytes = c->max_inode_sz = MAX_LFS_FILESIZE;
2039 	sb->s_op = &ubifs_super_operations;
2040 	sb->s_xattr = ubifs_xattr_handlers;
2041 
2042 	mutex_lock(&c->umount_mutex);
2043 	err = mount_ubifs(c);
2044 	if (err) {
2045 		ubifs_assert(err < 0);
2046 		goto out_unlock;
2047 	}
2048 
2049 	/* Read the root inode */
2050 	root = ubifs_iget(sb, UBIFS_ROOT_INO);
2051 	if (IS_ERR(root)) {
2052 		err = PTR_ERR(root);
2053 		goto out_umount;
2054 	}
2055 
2056 	sb->s_root = d_make_root(root);
2057 	if (!sb->s_root) {
2058 		err = -ENOMEM;
2059 		goto out_umount;
2060 	}
2061 
2062 	mutex_unlock(&c->umount_mutex);
2063 	return 0;
2064 
2065 out_umount:
2066 	ubifs_umount(c);
2067 out_unlock:
2068 	mutex_unlock(&c->umount_mutex);
2069 out_bdi:
2070 	bdi_destroy(&c->bdi);
2071 out_close:
2072 	ubi_close_volume(c->ubi);
2073 out:
2074 	return err;
2075 }
2076 
2077 static int sb_test(struct super_block *sb, void *data)
2078 {
2079 	struct ubifs_info *c1 = data;
2080 	struct ubifs_info *c = sb->s_fs_info;
2081 
2082 	return c->vi.cdev == c1->vi.cdev;
2083 }
2084 
2085 static int sb_set(struct super_block *sb, void *data)
2086 {
2087 	sb->s_fs_info = data;
2088 	return set_anon_super(sb, NULL);
2089 }
2090 
2091 static struct dentry *ubifs_mount(struct file_system_type *fs_type, int flags,
2092 			const char *name, void *data)
2093 {
2094 	struct ubi_volume_desc *ubi;
2095 	struct ubifs_info *c;
2096 	struct super_block *sb;
2097 	int err;
2098 
2099 	dbg_gen("name %s, flags %#x", name, flags);
2100 
2101 	/*
2102 	 * Get UBI device number and volume ID. Mount it read-only so far
2103 	 * because this might be a new mount point, and UBI allows only one
2104 	 * read-write user at a time.
2105 	 */
2106 	ubi = open_ubi(name, UBI_READONLY);
2107 	if (IS_ERR(ubi)) {
2108 		pr_err("UBIFS error (pid: %d): cannot open \"%s\", error %d",
2109 		       current->pid, name, (int)PTR_ERR(ubi));
2110 		return ERR_CAST(ubi);
2111 	}
2112 
2113 	c = alloc_ubifs_info(ubi);
2114 	if (!c) {
2115 		err = -ENOMEM;
2116 		goto out_close;
2117 	}
2118 
2119 	dbg_gen("opened ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2120 
2121 	sb = sget(fs_type, sb_test, sb_set, flags, c);
2122 	if (IS_ERR(sb)) {
2123 		err = PTR_ERR(sb);
2124 		kfree(c);
2125 		goto out_close;
2126 	}
2127 
2128 	if (sb->s_root) {
2129 		struct ubifs_info *c1 = sb->s_fs_info;
2130 		kfree(c);
2131 		/* A new mount point for already mounted UBIFS */
2132 		dbg_gen("this ubi volume is already mounted");
2133 		if (!!(flags & MS_RDONLY) != c1->ro_mount) {
2134 			err = -EBUSY;
2135 			goto out_deact;
2136 		}
2137 	} else {
2138 		err = ubifs_fill_super(sb, data, flags & MS_SILENT ? 1 : 0);
2139 		if (err)
2140 			goto out_deact;
2141 		/* We do not support atime */
2142 		sb->s_flags |= MS_ACTIVE | MS_NOATIME;
2143 	}
2144 
2145 	/* 'fill_super()' opens ubi again so we must close it here */
2146 	ubi_close_volume(ubi);
2147 
2148 	return dget(sb->s_root);
2149 
2150 out_deact:
2151 	deactivate_locked_super(sb);
2152 out_close:
2153 	ubi_close_volume(ubi);
2154 	return ERR_PTR(err);
2155 }
2156 
2157 static void kill_ubifs_super(struct super_block *s)
2158 {
2159 	struct ubifs_info *c = s->s_fs_info;
2160 	kill_anon_super(s);
2161 	kfree(c);
2162 }
2163 
2164 static struct file_system_type ubifs_fs_type = {
2165 	.name    = "ubifs",
2166 	.owner   = THIS_MODULE,
2167 	.mount   = ubifs_mount,
2168 	.kill_sb = kill_ubifs_super,
2169 };
2170 MODULE_ALIAS_FS("ubifs");
2171 
2172 /*
2173  * Inode slab cache constructor.
2174  */
2175 static void inode_slab_ctor(void *obj)
2176 {
2177 	struct ubifs_inode *ui = obj;
2178 	inode_init_once(&ui->vfs_inode);
2179 }
2180 
2181 static int __init ubifs_init(void)
2182 {
2183 	int err;
2184 
2185 	BUILD_BUG_ON(sizeof(struct ubifs_ch) != 24);
2186 
2187 	/* Make sure node sizes are 8-byte aligned */
2188 	BUILD_BUG_ON(UBIFS_CH_SZ        & 7);
2189 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  & 7);
2190 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ & 7);
2191 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ & 7);
2192 	BUILD_BUG_ON(UBIFS_DATA_NODE_SZ & 7);
2193 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ & 7);
2194 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ   & 7);
2195 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ  & 7);
2196 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ  & 7);
2197 	BUILD_BUG_ON(UBIFS_CS_NODE_SZ   & 7);
2198 	BUILD_BUG_ON(UBIFS_ORPH_NODE_SZ & 7);
2199 
2200 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ & 7);
2201 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ & 7);
2202 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ & 7);
2203 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  & 7);
2204 	BUILD_BUG_ON(UBIFS_MAX_NODE_SZ      & 7);
2205 	BUILD_BUG_ON(MIN_WRITE_SZ           & 7);
2206 
2207 	/* Check min. node size */
2208 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ  < MIN_WRITE_SZ);
2209 	BUILD_BUG_ON(UBIFS_DENT_NODE_SZ < MIN_WRITE_SZ);
2210 	BUILD_BUG_ON(UBIFS_XENT_NODE_SZ < MIN_WRITE_SZ);
2211 	BUILD_BUG_ON(UBIFS_TRUN_NODE_SZ < MIN_WRITE_SZ);
2212 
2213 	BUILD_BUG_ON(UBIFS_MAX_DENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2214 	BUILD_BUG_ON(UBIFS_MAX_XENT_NODE_SZ > UBIFS_MAX_NODE_SZ);
2215 	BUILD_BUG_ON(UBIFS_MAX_DATA_NODE_SZ > UBIFS_MAX_NODE_SZ);
2216 	BUILD_BUG_ON(UBIFS_MAX_INO_NODE_SZ  > UBIFS_MAX_NODE_SZ);
2217 
2218 	/* Defined node sizes */
2219 	BUILD_BUG_ON(UBIFS_SB_NODE_SZ  != 4096);
2220 	BUILD_BUG_ON(UBIFS_MST_NODE_SZ != 512);
2221 	BUILD_BUG_ON(UBIFS_INO_NODE_SZ != 160);
2222 	BUILD_BUG_ON(UBIFS_REF_NODE_SZ != 64);
2223 
2224 	/*
2225 	 * We use 2 bit wide bit-fields to store compression type, which should
2226 	 * be amended if more compressors are added. The bit-fields are:
2227 	 * @compr_type in 'struct ubifs_inode', @default_compr in
2228 	 * 'struct ubifs_info' and @compr_type in 'struct ubifs_mount_opts'.
2229 	 */
2230 	BUILD_BUG_ON(UBIFS_COMPR_TYPES_CNT > 4);
2231 
2232 	/*
2233 	 * We require that PAGE_CACHE_SIZE is greater-than-or-equal-to
2234 	 * UBIFS_BLOCK_SIZE. It is assumed that both are powers of 2.
2235 	 */
2236 	if (PAGE_CACHE_SIZE < UBIFS_BLOCK_SIZE) {
2237 		pr_err("UBIFS error (pid %d): VFS page cache size is %u bytes, but UBIFS requires at least 4096 bytes",
2238 		       current->pid, (unsigned int)PAGE_CACHE_SIZE);
2239 		return -EINVAL;
2240 	}
2241 
2242 	ubifs_inode_slab = kmem_cache_create("ubifs_inode_slab",
2243 				sizeof(struct ubifs_inode), 0,
2244 				SLAB_MEM_SPREAD | SLAB_RECLAIM_ACCOUNT,
2245 				&inode_slab_ctor);
2246 	if (!ubifs_inode_slab)
2247 		return -ENOMEM;
2248 
2249 	err = register_shrinker(&ubifs_shrinker_info);
2250 	if (err)
2251 		goto out_slab;
2252 
2253 	err = ubifs_compressors_init();
2254 	if (err)
2255 		goto out_shrinker;
2256 
2257 	err = dbg_debugfs_init();
2258 	if (err)
2259 		goto out_compr;
2260 
2261 	err = register_filesystem(&ubifs_fs_type);
2262 	if (err) {
2263 		pr_err("UBIFS error (pid %d): cannot register file system, error %d",
2264 		       current->pid, err);
2265 		goto out_dbg;
2266 	}
2267 	return 0;
2268 
2269 out_dbg:
2270 	dbg_debugfs_exit();
2271 out_compr:
2272 	ubifs_compressors_exit();
2273 out_shrinker:
2274 	unregister_shrinker(&ubifs_shrinker_info);
2275 out_slab:
2276 	kmem_cache_destroy(ubifs_inode_slab);
2277 	return err;
2278 }
2279 /* late_initcall to let compressors initialize first */
2280 late_initcall(ubifs_init);
2281 
2282 static void __exit ubifs_exit(void)
2283 {
2284 	ubifs_assert(list_empty(&ubifs_infos));
2285 	ubifs_assert(atomic_long_read(&ubifs_clean_zn_cnt) == 0);
2286 
2287 	dbg_debugfs_exit();
2288 	ubifs_compressors_exit();
2289 	unregister_shrinker(&ubifs_shrinker_info);
2290 
2291 	/*
2292 	 * Make sure all delayed rcu free inodes are flushed before we
2293 	 * destroy cache.
2294 	 */
2295 	rcu_barrier();
2296 	kmem_cache_destroy(ubifs_inode_slab);
2297 	unregister_filesystem(&ubifs_fs_type);
2298 }
2299 module_exit(ubifs_exit);
2300 
2301 MODULE_LICENSE("GPL");
2302 MODULE_VERSION(__stringify(UBIFS_VERSION));
2303 MODULE_AUTHOR("Artem Bityutskiy, Adrian Hunter");
2304 MODULE_DESCRIPTION("UBIFS - UBI File System");
2305