xref: /linux/fs/ubifs/sb.c (revision ebf68996de0ab250c5d520eb2291ab65643e9a1e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS superblock. The superblock is stored at the first
13  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
14  * change it. The superblock node mostly contains geometry information.
15  */
16 
17 #include "ubifs.h"
18 #include <linux/slab.h>
19 #include <linux/math64.h>
20 #include <linux/uuid.h>
21 
22 /*
23  * Default journal size in logical eraseblocks as a percent of total
24  * flash size.
25  */
26 #define DEFAULT_JNL_PERCENT 5
27 
28 /* Default maximum journal size in bytes */
29 #define DEFAULT_MAX_JNL (32*1024*1024)
30 
31 /* Default indexing tree fanout */
32 #define DEFAULT_FANOUT 8
33 
34 /* Default number of data journal heads */
35 #define DEFAULT_JHEADS_CNT 1
36 
37 /* Default positions of different LEBs in the main area */
38 #define DEFAULT_IDX_LEB  0
39 #define DEFAULT_DATA_LEB 1
40 #define DEFAULT_GC_LEB   2
41 
42 /* Default number of LEB numbers in LPT's save table */
43 #define DEFAULT_LSAVE_CNT 256
44 
45 /* Default reserved pool size as a percent of maximum free space */
46 #define DEFAULT_RP_PERCENT 5
47 
48 /* The default maximum size of reserved pool in bytes */
49 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
50 
51 /* Default time granularity in nanoseconds */
52 #define DEFAULT_TIME_GRAN 1000000000
53 
54 static int get_default_compressor(struct ubifs_info *c)
55 {
56 	if (ubifs_compr_present(c, UBIFS_COMPR_LZO))
57 		return UBIFS_COMPR_LZO;
58 
59 	if (ubifs_compr_present(c, UBIFS_COMPR_ZLIB))
60 		return UBIFS_COMPR_ZLIB;
61 
62 	return UBIFS_COMPR_NONE;
63 }
64 
65 /**
66  * create_default_filesystem - format empty UBI volume.
67  * @c: UBIFS file-system description object
68  *
69  * This function creates default empty file-system. Returns zero in case of
70  * success and a negative error code in case of failure.
71  */
72 static int create_default_filesystem(struct ubifs_info *c)
73 {
74 	struct ubifs_sb_node *sup;
75 	struct ubifs_mst_node *mst;
76 	struct ubifs_idx_node *idx;
77 	struct ubifs_branch *br;
78 	struct ubifs_ino_node *ino;
79 	struct ubifs_cs_node *cs;
80 	union ubifs_key key;
81 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
82 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
83 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
84 	int idx_node_size;
85 	long long tmp64, main_bytes;
86 	__le64 tmp_le64;
87 	__le32 tmp_le32;
88 	struct timespec64 ts;
89 	u8 hash[UBIFS_HASH_ARR_SZ];
90 	u8 hash_lpt[UBIFS_HASH_ARR_SZ];
91 
92 	/* Some functions called from here depend on the @c->key_len filed */
93 	c->key_len = UBIFS_SK_LEN;
94 
95 	/*
96 	 * First of all, we have to calculate default file-system geometry -
97 	 * log size, journal size, etc.
98 	 */
99 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
100 		/* We can first multiply then divide and have no overflow */
101 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
102 	else
103 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
104 
105 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
106 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
107 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
108 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
109 
110 	/*
111 	 * The log should be large enough to fit reference nodes for all bud
112 	 * LEBs. Because buds do not have to start from the beginning of LEBs
113 	 * (half of the LEB may contain committed data), the log should
114 	 * generally be larger, make it twice as large.
115 	 */
116 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
117 	log_lebs = tmp / c->leb_size;
118 	/* Plus one LEB reserved for commit */
119 	log_lebs += 1;
120 	if (c->leb_cnt - min_leb_cnt > 8) {
121 		/* And some extra space to allow writes while committing */
122 		log_lebs += 1;
123 		min_leb_cnt += 1;
124 	}
125 
126 	max_buds = jnl_lebs - log_lebs;
127 	if (max_buds < UBIFS_MIN_BUD_LEBS)
128 		max_buds = UBIFS_MIN_BUD_LEBS;
129 
130 	/*
131 	 * Orphan nodes are stored in a separate area. One node can store a lot
132 	 * of orphan inode numbers, but when new orphan comes we just add a new
133 	 * orphan node. At some point the nodes are consolidated into one
134 	 * orphan node.
135 	 */
136 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
137 	if (c->leb_cnt - min_leb_cnt > 1)
138 		/*
139 		 * For debugging purposes it is better to have at least 2
140 		 * orphan LEBs, because the orphan subsystem would need to do
141 		 * consolidations and would be stressed more.
142 		 */
143 		orph_lebs += 1;
144 
145 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
146 	main_lebs -= orph_lebs;
147 
148 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
149 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
150 	c->max_leb_cnt = c->leb_cnt;
151 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
152 				    &big_lpt, hash_lpt);
153 	if (err)
154 		return err;
155 
156 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
157 		lpt_first + lpt_lebs - 1);
158 
159 	main_first = c->leb_cnt - main_lebs;
160 
161 	sup = kzalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_KERNEL);
162 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
163 	idx_node_size = ubifs_idx_node_sz(c, 1);
164 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
165 	ino = kzalloc(ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size), GFP_KERNEL);
166 	cs = kzalloc(ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size), GFP_KERNEL);
167 
168 	if (!sup || !mst || !idx || !ino || !cs) {
169 		err = -ENOMEM;
170 		goto out;
171 	}
172 
173 	/* Create default superblock */
174 
175 	tmp64 = (long long)max_buds * c->leb_size;
176 	if (big_lpt)
177 		sup_flags |= UBIFS_FLG_BIGLPT;
178 	sup_flags |= UBIFS_FLG_DOUBLE_HASH;
179 
180 	if (ubifs_authenticated(c)) {
181 		sup_flags |= UBIFS_FLG_AUTHENTICATION;
182 		sup->hash_algo = cpu_to_le16(c->auth_hash_algo);
183 		err = ubifs_hmac_wkm(c, sup->hmac_wkm);
184 		if (err)
185 			goto out;
186 	} else {
187 		sup->hash_algo = 0xffff;
188 	}
189 
190 	sup->ch.node_type  = UBIFS_SB_NODE;
191 	sup->key_hash      = UBIFS_KEY_HASH_R5;
192 	sup->flags         = cpu_to_le32(sup_flags);
193 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
194 	sup->leb_size      = cpu_to_le32(c->leb_size);
195 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
196 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
197 	sup->max_bud_bytes = cpu_to_le64(tmp64);
198 	sup->log_lebs      = cpu_to_le32(log_lebs);
199 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
200 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
201 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
202 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
203 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
204 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
205 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
206 	if (c->mount_opts.override_compr)
207 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
208 	else
209 		sup->default_compr = cpu_to_le16(get_default_compressor(c));
210 
211 	generate_random_uuid(sup->uuid);
212 
213 	main_bytes = (long long)main_lebs * c->leb_size;
214 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
215 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
216 		tmp64 = DEFAULT_MAX_RP_SIZE;
217 	sup->rp_size = cpu_to_le64(tmp64);
218 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
219 
220 	dbg_gen("default superblock created at LEB 0:0");
221 
222 	/* Create default master node */
223 
224 	mst->ch.node_type = UBIFS_MST_NODE;
225 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
226 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
227 	mst->cmt_no       = 0;
228 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
229 	mst->root_offs    = 0;
230 	tmp = ubifs_idx_node_sz(c, 1);
231 	mst->root_len     = cpu_to_le32(tmp);
232 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
233 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
234 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
235 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
236 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
237 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
238 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
239 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
240 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
241 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
242 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
243 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
244 	mst->lscan_lnum   = cpu_to_le32(main_first);
245 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
246 	mst->idx_lebs     = cpu_to_le32(1);
247 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
248 	ubifs_copy_hash(c, hash_lpt, mst->hash_lpt);
249 
250 	/* Calculate lprops statistics */
251 	tmp64 = main_bytes;
252 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
253 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
254 	mst->total_free = cpu_to_le64(tmp64);
255 
256 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
257 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
258 			  UBIFS_INO_NODE_SZ;
259 	tmp64 += ino_waste;
260 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
261 	mst->total_dirty = cpu_to_le64(tmp64);
262 
263 	/*  The indexing LEB does not contribute to dark space */
264 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
265 	mst->total_dark = cpu_to_le64(tmp64);
266 
267 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
268 
269 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
270 
271 	/* Create the root indexing node */
272 
273 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
274 	c->key_hash = key_r5_hash;
275 
276 	idx->ch.node_type = UBIFS_IDX_NODE;
277 	idx->child_cnt = cpu_to_le16(1);
278 	ino_key_init(c, &key, UBIFS_ROOT_INO);
279 	br = ubifs_idx_branch(c, idx, 0);
280 	key_write_idx(c, &key, &br->key);
281 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
282 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
283 
284 	dbg_gen("default root indexing node created LEB %d:0",
285 		main_first + DEFAULT_IDX_LEB);
286 
287 	/* Create default root inode */
288 
289 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
290 	ino->ch.node_type = UBIFS_INO_NODE;
291 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
292 	ino->nlink = cpu_to_le32(2);
293 
294 	ktime_get_real_ts64(&ts);
295 	ts = timespec64_trunc(ts, DEFAULT_TIME_GRAN);
296 	tmp_le64 = cpu_to_le64(ts.tv_sec);
297 	ino->atime_sec   = tmp_le64;
298 	ino->ctime_sec   = tmp_le64;
299 	ino->mtime_sec   = tmp_le64;
300 	tmp_le32 = cpu_to_le32(ts.tv_nsec);
301 	ino->atime_nsec  = tmp_le32;
302 	ino->ctime_nsec  = tmp_le32;
303 	ino->mtime_nsec  = tmp_le32;
304 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
305 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
306 
307 	/* Set compression enabled by default */
308 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
309 
310 	dbg_gen("root inode created at LEB %d:0",
311 		main_first + DEFAULT_DATA_LEB);
312 
313 	/*
314 	 * The first node in the log has to be the commit start node. This is
315 	 * always the case during normal file-system operation. Write a fake
316 	 * commit start node to the log.
317 	 */
318 
319 	cs->ch.node_type = UBIFS_CS_NODE;
320 
321 	err = ubifs_write_node_hmac(c, sup, UBIFS_SB_NODE_SZ, 0, 0,
322 				    offsetof(struct ubifs_sb_node, hmac));
323 	if (err)
324 		goto out;
325 
326 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
327 			       main_first + DEFAULT_DATA_LEB, 0);
328 	if (err)
329 		goto out;
330 
331 	ubifs_node_calc_hash(c, ino, hash);
332 	ubifs_copy_hash(c, hash, ubifs_branch_hash(c, br));
333 
334 	err = ubifs_write_node(c, idx, idx_node_size, main_first + DEFAULT_IDX_LEB, 0);
335 	if (err)
336 		goto out;
337 
338 	ubifs_node_calc_hash(c, idx, hash);
339 	ubifs_copy_hash(c, hash, mst->hash_root_idx);
340 
341 	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0,
342 		offsetof(struct ubifs_mst_node, hmac));
343 	if (err)
344 		goto out;
345 
346 	err = ubifs_write_node_hmac(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
347 			       0, offsetof(struct ubifs_mst_node, hmac));
348 	if (err)
349 		goto out;
350 
351 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
352 	if (err)
353 		goto out;
354 
355 	ubifs_msg(c, "default file-system created");
356 
357 	err = 0;
358 out:
359 	kfree(sup);
360 	kfree(mst);
361 	kfree(idx);
362 	kfree(ino);
363 	kfree(cs);
364 
365 	return err;
366 }
367 
368 /**
369  * validate_sb - validate superblock node.
370  * @c: UBIFS file-system description object
371  * @sup: superblock node
372  *
373  * This function validates superblock node @sup. Since most of data was read
374  * from the superblock and stored in @c, the function validates fields in @c
375  * instead. Returns zero in case of success and %-EINVAL in case of validation
376  * failure.
377  */
378 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
379 {
380 	long long max_bytes;
381 	int err = 1, min_leb_cnt;
382 
383 	if (!c->key_hash) {
384 		err = 2;
385 		goto failed;
386 	}
387 
388 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
389 		err = 3;
390 		goto failed;
391 	}
392 
393 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
394 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
395 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
396 		goto failed;
397 	}
398 
399 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
400 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
401 			  le32_to_cpu(sup->leb_size), c->leb_size);
402 		goto failed;
403 	}
404 
405 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
406 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
407 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
408 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
409 		err = 4;
410 		goto failed;
411 	}
412 
413 	/*
414 	 * Calculate minimum allowed amount of main area LEBs. This is very
415 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
416 	 * have just read from the superblock.
417 	 */
418 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
419 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
420 
421 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
422 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
423 			  c->leb_cnt, c->vi.size, min_leb_cnt);
424 		goto failed;
425 	}
426 
427 	if (c->max_leb_cnt < c->leb_cnt) {
428 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
429 			  c->max_leb_cnt, c->leb_cnt);
430 		goto failed;
431 	}
432 
433 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
434 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
435 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
436 		goto failed;
437 	}
438 
439 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
440 	if (c->max_bud_bytes < max_bytes) {
441 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
442 			  c->max_bud_bytes, max_bytes);
443 		goto failed;
444 	}
445 
446 	max_bytes = (long long)c->leb_size * c->main_lebs;
447 	if (c->max_bud_bytes > max_bytes) {
448 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
449 			  c->max_bud_bytes, max_bytes);
450 		goto failed;
451 	}
452 
453 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
454 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
455 		err = 9;
456 		goto failed;
457 	}
458 
459 	if (c->fanout < UBIFS_MIN_FANOUT ||
460 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
461 		err = 10;
462 		goto failed;
463 	}
464 
465 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
466 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
467 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
468 		err = 11;
469 		goto failed;
470 	}
471 
472 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
473 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
474 		err = 12;
475 		goto failed;
476 	}
477 
478 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
479 		err = 13;
480 		goto failed;
481 	}
482 
483 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
484 		err = 14;
485 		goto failed;
486 	}
487 
488 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
489 	    le32_to_cpu(sup->time_gran) < 1) {
490 		err = 15;
491 		goto failed;
492 	}
493 
494 	if (!c->double_hash && c->fmt_version >= 5) {
495 		err = 16;
496 		goto failed;
497 	}
498 
499 	if (c->encrypted && c->fmt_version < 5) {
500 		err = 17;
501 		goto failed;
502 	}
503 
504 	return 0;
505 
506 failed:
507 	ubifs_err(c, "bad superblock, error %d", err);
508 	ubifs_dump_node(c, sup);
509 	return -EINVAL;
510 }
511 
512 /**
513  * ubifs_read_sb_node - read superblock node.
514  * @c: UBIFS file-system description object
515  *
516  * This function returns a pointer to the superblock node or a negative error
517  * code. Note, the user of this function is responsible of kfree()'ing the
518  * returned superblock buffer.
519  */
520 static struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
521 {
522 	struct ubifs_sb_node *sup;
523 	int err;
524 
525 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
526 	if (!sup)
527 		return ERR_PTR(-ENOMEM);
528 
529 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
530 			      UBIFS_SB_LNUM, 0);
531 	if (err) {
532 		kfree(sup);
533 		return ERR_PTR(err);
534 	}
535 
536 	return sup;
537 }
538 
539 static int authenticate_sb_node(struct ubifs_info *c,
540 				const struct ubifs_sb_node *sup)
541 {
542 	unsigned int sup_flags = le32_to_cpu(sup->flags);
543 	u8 hmac_wkm[UBIFS_HMAC_ARR_SZ];
544 	int authenticated = !!(sup_flags & UBIFS_FLG_AUTHENTICATION);
545 	int hash_algo;
546 	int err;
547 
548 	if (c->authenticated && !authenticated) {
549 		ubifs_err(c, "authenticated FS forced, but found FS without authentication");
550 		return -EINVAL;
551 	}
552 
553 	if (!c->authenticated && authenticated) {
554 		ubifs_err(c, "authenticated FS found, but no key given");
555 		return -EINVAL;
556 	}
557 
558 	ubifs_msg(c, "Mounting in %sauthenticated mode",
559 		  c->authenticated ? "" : "un");
560 
561 	if (!c->authenticated)
562 		return 0;
563 
564 	if (!IS_ENABLED(CONFIG_UBIFS_FS_AUTHENTICATION))
565 		return -EOPNOTSUPP;
566 
567 	hash_algo = le16_to_cpu(sup->hash_algo);
568 	if (hash_algo >= HASH_ALGO__LAST) {
569 		ubifs_err(c, "superblock uses unknown hash algo %d",
570 			  hash_algo);
571 		return -EINVAL;
572 	}
573 
574 	if (strcmp(hash_algo_name[hash_algo], c->auth_hash_name)) {
575 		ubifs_err(c, "This filesystem uses %s for hashing,"
576 			     " but %s is specified", hash_algo_name[hash_algo],
577 			     c->auth_hash_name);
578 		return -EINVAL;
579 	}
580 
581 	err = ubifs_hmac_wkm(c, hmac_wkm);
582 	if (err)
583 		return err;
584 
585 	if (ubifs_check_hmac(c, hmac_wkm, sup->hmac_wkm)) {
586 		ubifs_err(c, "provided key does not fit");
587 		return -ENOKEY;
588 	}
589 
590 	err = ubifs_node_verify_hmac(c, sup, sizeof(*sup),
591 				     offsetof(struct ubifs_sb_node, hmac));
592 	if (err)
593 		ubifs_err(c, "Failed to authenticate superblock: %d", err);
594 
595 	return err;
596 }
597 
598 /**
599  * ubifs_write_sb_node - write superblock node.
600  * @c: UBIFS file-system description object
601  * @sup: superblock node read with 'ubifs_read_sb_node()'
602  *
603  * This function returns %0 on success and a negative error code on failure.
604  */
605 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
606 {
607 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
608 	int err;
609 
610 	err = ubifs_prepare_node_hmac(c, sup, UBIFS_SB_NODE_SZ,
611 				      offsetof(struct ubifs_sb_node, hmac), 1);
612 	if (err)
613 		return err;
614 
615 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
616 }
617 
618 /**
619  * ubifs_read_superblock - read superblock.
620  * @c: UBIFS file-system description object
621  *
622  * This function finds, reads and checks the superblock. If an empty UBI volume
623  * is being mounted, this function creates default superblock. Returns zero in
624  * case of success, and a negative error code in case of failure.
625  */
626 int ubifs_read_superblock(struct ubifs_info *c)
627 {
628 	int err, sup_flags;
629 	struct ubifs_sb_node *sup;
630 
631 	if (c->empty) {
632 		err = create_default_filesystem(c);
633 		if (err)
634 			return err;
635 	}
636 
637 	sup = ubifs_read_sb_node(c);
638 	if (IS_ERR(sup))
639 		return PTR_ERR(sup);
640 
641 	c->sup_node = sup;
642 
643 	c->fmt_version = le32_to_cpu(sup->fmt_version);
644 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
645 
646 	/*
647 	 * The software supports all previous versions but not future versions,
648 	 * due to the unavailability of time-travelling equipment.
649 	 */
650 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
651 		ubifs_assert(c, !c->ro_media || c->ro_mount);
652 		if (!c->ro_mount ||
653 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
654 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
655 				  c->fmt_version, c->ro_compat_version,
656 				  UBIFS_FORMAT_VERSION,
657 				  UBIFS_RO_COMPAT_VERSION);
658 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
659 				ubifs_msg(c, "only R/O mounting is possible");
660 				err = -EROFS;
661 			} else
662 				err = -EINVAL;
663 			goto out;
664 		}
665 
666 		/*
667 		 * The FS is mounted R/O, and the media format is
668 		 * R/O-compatible with the UBIFS implementation, so we can
669 		 * mount.
670 		 */
671 		c->rw_incompat = 1;
672 	}
673 
674 	if (c->fmt_version < 3) {
675 		ubifs_err(c, "on-flash format version %d is not supported",
676 			  c->fmt_version);
677 		err = -EINVAL;
678 		goto out;
679 	}
680 
681 	switch (sup->key_hash) {
682 	case UBIFS_KEY_HASH_R5:
683 		c->key_hash = key_r5_hash;
684 		c->key_hash_type = UBIFS_KEY_HASH_R5;
685 		break;
686 
687 	case UBIFS_KEY_HASH_TEST:
688 		c->key_hash = key_test_hash;
689 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
690 		break;
691 	}
692 
693 	c->key_fmt = sup->key_fmt;
694 
695 	switch (c->key_fmt) {
696 	case UBIFS_SIMPLE_KEY_FMT:
697 		c->key_len = UBIFS_SK_LEN;
698 		break;
699 	default:
700 		ubifs_err(c, "unsupported key format");
701 		err = -EINVAL;
702 		goto out;
703 	}
704 
705 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
706 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
707 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
708 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
709 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
710 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
711 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
712 	c->fanout        = le32_to_cpu(sup->fanout);
713 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
714 	c->rp_size       = le64_to_cpu(sup->rp_size);
715 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
716 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
717 	sup_flags        = le32_to_cpu(sup->flags);
718 	if (!c->mount_opts.override_compr)
719 		c->default_compr = le16_to_cpu(sup->default_compr);
720 
721 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
722 	memcpy(&c->uuid, &sup->uuid, 16);
723 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
724 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
725 	c->double_hash = !!(sup_flags & UBIFS_FLG_DOUBLE_HASH);
726 	c->encrypted = !!(sup_flags & UBIFS_FLG_ENCRYPTION);
727 
728 	err = authenticate_sb_node(c, sup);
729 	if (err)
730 		goto out;
731 
732 	if ((sup_flags & ~UBIFS_FLG_MASK) != 0) {
733 		ubifs_err(c, "Unknown feature flags found: %#x",
734 			  sup_flags & ~UBIFS_FLG_MASK);
735 		err = -EINVAL;
736 		goto out;
737 	}
738 
739 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION) && c->encrypted) {
740 		ubifs_err(c, "file system contains encrypted files but UBIFS"
741 			     " was built without crypto support.");
742 		err = -EINVAL;
743 		goto out;
744 	}
745 
746 	/* Automatically increase file system size to the maximum size */
747 	c->old_leb_cnt = c->leb_cnt;
748 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
749 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
750 		if (c->ro_mount)
751 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
752 				c->old_leb_cnt,	c->leb_cnt);
753 		else {
754 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
755 				c->old_leb_cnt, c->leb_cnt);
756 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
757 			err = ubifs_write_sb_node(c, sup);
758 			if (err)
759 				goto out;
760 			c->old_leb_cnt = c->leb_cnt;
761 		}
762 	}
763 
764 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
765 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
766 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
767 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
768 	c->orph_first = c->lpt_last + 1;
769 	c->orph_last = c->orph_first + c->orph_lebs - 1;
770 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
771 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
772 	c->main_first = c->leb_cnt - c->main_lebs;
773 
774 	err = validate_sb(c, sup);
775 out:
776 	return err;
777 }
778 
779 /**
780  * fixup_leb - fixup/unmap an LEB containing free space.
781  * @c: UBIFS file-system description object
782  * @lnum: the LEB number to fix up
783  * @len: number of used bytes in LEB (starting at offset 0)
784  *
785  * This function reads the contents of the given LEB number @lnum, then fixes
786  * it up, so that empty min. I/O units in the end of LEB are actually erased on
787  * flash (rather than being just all-0xff real data). If the LEB is completely
788  * empty, it is simply unmapped.
789  */
790 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
791 {
792 	int err;
793 
794 	ubifs_assert(c, len >= 0);
795 	ubifs_assert(c, len % c->min_io_size == 0);
796 	ubifs_assert(c, len < c->leb_size);
797 
798 	if (len == 0) {
799 		dbg_mnt("unmap empty LEB %d", lnum);
800 		return ubifs_leb_unmap(c, lnum);
801 	}
802 
803 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
804 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
805 	if (err)
806 		return err;
807 
808 	return ubifs_leb_change(c, lnum, c->sbuf, len);
809 }
810 
811 /**
812  * fixup_free_space - find & remap all LEBs containing free space.
813  * @c: UBIFS file-system description object
814  *
815  * This function walks through all LEBs in the filesystem and fiexes up those
816  * containing free/empty space.
817  */
818 static int fixup_free_space(struct ubifs_info *c)
819 {
820 	int lnum, err = 0;
821 	struct ubifs_lprops *lprops;
822 
823 	ubifs_get_lprops(c);
824 
825 	/* Fixup LEBs in the master area */
826 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
827 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
828 		if (err)
829 			goto out;
830 	}
831 
832 	/* Unmap unused log LEBs */
833 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
834 	while (lnum != c->ltail_lnum) {
835 		err = fixup_leb(c, lnum, 0);
836 		if (err)
837 			goto out;
838 		lnum = ubifs_next_log_lnum(c, lnum);
839 	}
840 
841 	/*
842 	 * Fixup the log head which contains the only a CS node at the
843 	 * beginning.
844 	 */
845 	err = fixup_leb(c, c->lhead_lnum,
846 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
847 	if (err)
848 		goto out;
849 
850 	/* Fixup LEBs in the LPT area */
851 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
852 		int free = c->ltab[lnum - c->lpt_first].free;
853 
854 		if (free > 0) {
855 			err = fixup_leb(c, lnum, c->leb_size - free);
856 			if (err)
857 				goto out;
858 		}
859 	}
860 
861 	/* Unmap LEBs in the orphans area */
862 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
863 		err = fixup_leb(c, lnum, 0);
864 		if (err)
865 			goto out;
866 	}
867 
868 	/* Fixup LEBs in the main area */
869 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
870 		lprops = ubifs_lpt_lookup(c, lnum);
871 		if (IS_ERR(lprops)) {
872 			err = PTR_ERR(lprops);
873 			goto out;
874 		}
875 
876 		if (lprops->free > 0) {
877 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
878 			if (err)
879 				goto out;
880 		}
881 	}
882 
883 out:
884 	ubifs_release_lprops(c);
885 	return err;
886 }
887 
888 /**
889  * ubifs_fixup_free_space - find & fix all LEBs with free space.
890  * @c: UBIFS file-system description object
891  *
892  * This function fixes up LEBs containing free space on first mount, if the
893  * appropriate flag was set when the FS was created. Each LEB with one or more
894  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
895  * the free space is actually erased. E.g., this is necessary for some NAND
896  * chips, since the free space may have been programmed like real "0xff" data
897  * (generating a non-0xff ECC), causing future writes to the not-really-erased
898  * NAND pages to behave badly. After the space is fixed up, the superblock flag
899  * is cleared, so that this is skipped for all future mounts.
900  */
901 int ubifs_fixup_free_space(struct ubifs_info *c)
902 {
903 	int err;
904 	struct ubifs_sb_node *sup = c->sup_node;
905 
906 	ubifs_assert(c, c->space_fixup);
907 	ubifs_assert(c, !c->ro_mount);
908 
909 	ubifs_msg(c, "start fixing up free space");
910 
911 	err = fixup_free_space(c);
912 	if (err)
913 		return err;
914 
915 	/* Free-space fixup is no longer required */
916 	c->space_fixup = 0;
917 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
918 
919 	err = ubifs_write_sb_node(c, sup);
920 	if (err)
921 		return err;
922 
923 	ubifs_msg(c, "free space fixup complete");
924 	return err;
925 }
926 
927 int ubifs_enable_encryption(struct ubifs_info *c)
928 {
929 	int err;
930 	struct ubifs_sb_node *sup = c->sup_node;
931 
932 	if (!IS_ENABLED(CONFIG_FS_ENCRYPTION))
933 		return -EOPNOTSUPP;
934 
935 	if (c->encrypted)
936 		return 0;
937 
938 	if (c->ro_mount || c->ro_media)
939 		return -EROFS;
940 
941 	if (c->fmt_version < 5) {
942 		ubifs_err(c, "on-flash format version 5 is needed for encryption");
943 		return -EINVAL;
944 	}
945 
946 	sup->flags |= cpu_to_le32(UBIFS_FLG_ENCRYPTION);
947 
948 	err = ubifs_write_sb_node(c, sup);
949 	if (!err)
950 		c->encrypted = 1;
951 
952 	return err;
953 }
954