1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS superblock. The superblock is stored at the first 25 * LEB of the volume and is never changed by UBIFS. Only user-space tools may 26 * change it. The superblock node mostly contains geometry information. 27 */ 28 29 #include "ubifs.h" 30 #include <linux/slab.h> 31 #include <linux/random.h> 32 #include <linux/math64.h> 33 34 /* 35 * Default journal size in logical eraseblocks as a percent of total 36 * flash size. 37 */ 38 #define DEFAULT_JNL_PERCENT 5 39 40 /* Default maximum journal size in bytes */ 41 #define DEFAULT_MAX_JNL (32*1024*1024) 42 43 /* Default indexing tree fanout */ 44 #define DEFAULT_FANOUT 8 45 46 /* Default number of data journal heads */ 47 #define DEFAULT_JHEADS_CNT 1 48 49 /* Default positions of different LEBs in the main area */ 50 #define DEFAULT_IDX_LEB 0 51 #define DEFAULT_DATA_LEB 1 52 #define DEFAULT_GC_LEB 2 53 54 /* Default number of LEB numbers in LPT's save table */ 55 #define DEFAULT_LSAVE_CNT 256 56 57 /* Default reserved pool size as a percent of maximum free space */ 58 #define DEFAULT_RP_PERCENT 5 59 60 /* The default maximum size of reserved pool in bytes */ 61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024) 62 63 /* Default time granularity in nanoseconds */ 64 #define DEFAULT_TIME_GRAN 1000000000 65 66 /** 67 * create_default_filesystem - format empty UBI volume. 68 * @c: UBIFS file-system description object 69 * 70 * This function creates default empty file-system. Returns zero in case of 71 * success and a negative error code in case of failure. 72 */ 73 static int create_default_filesystem(struct ubifs_info *c) 74 { 75 struct ubifs_sb_node *sup; 76 struct ubifs_mst_node *mst; 77 struct ubifs_idx_node *idx; 78 struct ubifs_branch *br; 79 struct ubifs_ino_node *ino; 80 struct ubifs_cs_node *cs; 81 union ubifs_key key; 82 int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first; 83 int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0; 84 int min_leb_cnt = UBIFS_MIN_LEB_CNT; 85 long long tmp64, main_bytes; 86 __le64 tmp_le64; 87 88 /* Some functions called from here depend on the @c->key_len filed */ 89 c->key_len = UBIFS_SK_LEN; 90 91 /* 92 * First of all, we have to calculate default file-system geometry - 93 * log size, journal size, etc. 94 */ 95 if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT) 96 /* We can first multiply then divide and have no overflow */ 97 jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100; 98 else 99 jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT; 100 101 if (jnl_lebs < UBIFS_MIN_JNL_LEBS) 102 jnl_lebs = UBIFS_MIN_JNL_LEBS; 103 if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL) 104 jnl_lebs = DEFAULT_MAX_JNL / c->leb_size; 105 106 /* 107 * The log should be large enough to fit reference nodes for all bud 108 * LEBs. Because buds do not have to start from the beginning of LEBs 109 * (half of the LEB may contain committed data), the log should 110 * generally be larger, make it twice as large. 111 */ 112 tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1; 113 log_lebs = tmp / c->leb_size; 114 /* Plus one LEB reserved for commit */ 115 log_lebs += 1; 116 if (c->leb_cnt - min_leb_cnt > 8) { 117 /* And some extra space to allow writes while committing */ 118 log_lebs += 1; 119 min_leb_cnt += 1; 120 } 121 122 max_buds = jnl_lebs - log_lebs; 123 if (max_buds < UBIFS_MIN_BUD_LEBS) 124 max_buds = UBIFS_MIN_BUD_LEBS; 125 126 /* 127 * Orphan nodes are stored in a separate area. One node can store a lot 128 * of orphan inode numbers, but when new orphan comes we just add a new 129 * orphan node. At some point the nodes are consolidated into one 130 * orphan node. 131 */ 132 orph_lebs = UBIFS_MIN_ORPH_LEBS; 133 if (c->leb_cnt - min_leb_cnt > 1) 134 /* 135 * For debugging purposes it is better to have at least 2 136 * orphan LEBs, because the orphan subsystem would need to do 137 * consolidations and would be stressed more. 138 */ 139 orph_lebs += 1; 140 141 main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs; 142 main_lebs -= orph_lebs; 143 144 lpt_first = UBIFS_LOG_LNUM + log_lebs; 145 c->lsave_cnt = DEFAULT_LSAVE_CNT; 146 c->max_leb_cnt = c->leb_cnt; 147 err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs, 148 &big_lpt); 149 if (err) 150 return err; 151 152 dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first, 153 lpt_first + lpt_lebs - 1); 154 155 main_first = c->leb_cnt - main_lebs; 156 157 /* Create default superblock */ 158 tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 159 sup = kzalloc(tmp, GFP_KERNEL); 160 if (!sup) 161 return -ENOMEM; 162 163 tmp64 = (long long)max_buds * c->leb_size; 164 if (big_lpt) 165 sup_flags |= UBIFS_FLG_BIGLPT; 166 167 sup->ch.node_type = UBIFS_SB_NODE; 168 sup->key_hash = UBIFS_KEY_HASH_R5; 169 sup->flags = cpu_to_le32(sup_flags); 170 sup->min_io_size = cpu_to_le32(c->min_io_size); 171 sup->leb_size = cpu_to_le32(c->leb_size); 172 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 173 sup->max_leb_cnt = cpu_to_le32(c->max_leb_cnt); 174 sup->max_bud_bytes = cpu_to_le64(tmp64); 175 sup->log_lebs = cpu_to_le32(log_lebs); 176 sup->lpt_lebs = cpu_to_le32(lpt_lebs); 177 sup->orph_lebs = cpu_to_le32(orph_lebs); 178 sup->jhead_cnt = cpu_to_le32(DEFAULT_JHEADS_CNT); 179 sup->fanout = cpu_to_le32(DEFAULT_FANOUT); 180 sup->lsave_cnt = cpu_to_le32(c->lsave_cnt); 181 sup->fmt_version = cpu_to_le32(UBIFS_FORMAT_VERSION); 182 sup->time_gran = cpu_to_le32(DEFAULT_TIME_GRAN); 183 if (c->mount_opts.override_compr) 184 sup->default_compr = cpu_to_le16(c->mount_opts.compr_type); 185 else 186 sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO); 187 188 generate_random_uuid(sup->uuid); 189 190 main_bytes = (long long)main_lebs * c->leb_size; 191 tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100); 192 if (tmp64 > DEFAULT_MAX_RP_SIZE) 193 tmp64 = DEFAULT_MAX_RP_SIZE; 194 sup->rp_size = cpu_to_le64(tmp64); 195 sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION); 196 197 err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0); 198 kfree(sup); 199 if (err) 200 return err; 201 202 dbg_gen("default superblock created at LEB 0:0"); 203 204 /* Create default master node */ 205 mst = kzalloc(c->mst_node_alsz, GFP_KERNEL); 206 if (!mst) 207 return -ENOMEM; 208 209 mst->ch.node_type = UBIFS_MST_NODE; 210 mst->log_lnum = cpu_to_le32(UBIFS_LOG_LNUM); 211 mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO); 212 mst->cmt_no = 0; 213 mst->root_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 214 mst->root_offs = 0; 215 tmp = ubifs_idx_node_sz(c, 1); 216 mst->root_len = cpu_to_le32(tmp); 217 mst->gc_lnum = cpu_to_le32(main_first + DEFAULT_GC_LEB); 218 mst->ihead_lnum = cpu_to_le32(main_first + DEFAULT_IDX_LEB); 219 mst->ihead_offs = cpu_to_le32(ALIGN(tmp, c->min_io_size)); 220 mst->index_size = cpu_to_le64(ALIGN(tmp, 8)); 221 mst->lpt_lnum = cpu_to_le32(c->lpt_lnum); 222 mst->lpt_offs = cpu_to_le32(c->lpt_offs); 223 mst->nhead_lnum = cpu_to_le32(c->nhead_lnum); 224 mst->nhead_offs = cpu_to_le32(c->nhead_offs); 225 mst->ltab_lnum = cpu_to_le32(c->ltab_lnum); 226 mst->ltab_offs = cpu_to_le32(c->ltab_offs); 227 mst->lsave_lnum = cpu_to_le32(c->lsave_lnum); 228 mst->lsave_offs = cpu_to_le32(c->lsave_offs); 229 mst->lscan_lnum = cpu_to_le32(main_first); 230 mst->empty_lebs = cpu_to_le32(main_lebs - 2); 231 mst->idx_lebs = cpu_to_le32(1); 232 mst->leb_cnt = cpu_to_le32(c->leb_cnt); 233 234 /* Calculate lprops statistics */ 235 tmp64 = main_bytes; 236 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 237 tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 238 mst->total_free = cpu_to_le64(tmp64); 239 240 tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size); 241 ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) - 242 UBIFS_INO_NODE_SZ; 243 tmp64 += ino_waste; 244 tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8); 245 mst->total_dirty = cpu_to_le64(tmp64); 246 247 /* The indexing LEB does not contribute to dark space */ 248 tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm); 249 mst->total_dark = cpu_to_le64(tmp64); 250 251 mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ); 252 253 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0); 254 if (err) { 255 kfree(mst); 256 return err; 257 } 258 err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1, 259 0); 260 kfree(mst); 261 if (err) 262 return err; 263 264 dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM); 265 266 /* Create the root indexing node */ 267 tmp = ubifs_idx_node_sz(c, 1); 268 idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL); 269 if (!idx) 270 return -ENOMEM; 271 272 c->key_fmt = UBIFS_SIMPLE_KEY_FMT; 273 c->key_hash = key_r5_hash; 274 275 idx->ch.node_type = UBIFS_IDX_NODE; 276 idx->child_cnt = cpu_to_le16(1); 277 ino_key_init(c, &key, UBIFS_ROOT_INO); 278 br = ubifs_idx_branch(c, idx, 0); 279 key_write_idx(c, &key, &br->key); 280 br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB); 281 br->len = cpu_to_le32(UBIFS_INO_NODE_SZ); 282 err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0); 283 kfree(idx); 284 if (err) 285 return err; 286 287 dbg_gen("default root indexing node created LEB %d:0", 288 main_first + DEFAULT_IDX_LEB); 289 290 /* Create default root inode */ 291 tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size); 292 ino = kzalloc(tmp, GFP_KERNEL); 293 if (!ino) 294 return -ENOMEM; 295 296 ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO); 297 ino->ch.node_type = UBIFS_INO_NODE; 298 ino->creat_sqnum = cpu_to_le64(++c->max_sqnum); 299 ino->nlink = cpu_to_le32(2); 300 tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec); 301 ino->atime_sec = tmp_le64; 302 ino->ctime_sec = tmp_le64; 303 ino->mtime_sec = tmp_le64; 304 ino->atime_nsec = 0; 305 ino->ctime_nsec = 0; 306 ino->mtime_nsec = 0; 307 ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO); 308 ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ); 309 310 /* Set compression enabled by default */ 311 ino->flags = cpu_to_le32(UBIFS_COMPR_FL); 312 313 err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ, 314 main_first + DEFAULT_DATA_LEB, 0); 315 kfree(ino); 316 if (err) 317 return err; 318 319 dbg_gen("root inode created at LEB %d:0", 320 main_first + DEFAULT_DATA_LEB); 321 322 /* 323 * The first node in the log has to be the commit start node. This is 324 * always the case during normal file-system operation. Write a fake 325 * commit start node to the log. 326 */ 327 tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size); 328 cs = kzalloc(tmp, GFP_KERNEL); 329 if (!cs) 330 return -ENOMEM; 331 332 cs->ch.node_type = UBIFS_CS_NODE; 333 err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0); 334 kfree(cs); 335 336 ubifs_msg("default file-system created"); 337 return 0; 338 } 339 340 /** 341 * validate_sb - validate superblock node. 342 * @c: UBIFS file-system description object 343 * @sup: superblock node 344 * 345 * This function validates superblock node @sup. Since most of data was read 346 * from the superblock and stored in @c, the function validates fields in @c 347 * instead. Returns zero in case of success and %-EINVAL in case of validation 348 * failure. 349 */ 350 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup) 351 { 352 long long max_bytes; 353 int err = 1, min_leb_cnt; 354 355 if (!c->key_hash) { 356 err = 2; 357 goto failed; 358 } 359 360 if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) { 361 err = 3; 362 goto failed; 363 } 364 365 if (le32_to_cpu(sup->min_io_size) != c->min_io_size) { 366 ubifs_err("min. I/O unit mismatch: %d in superblock, %d real", 367 le32_to_cpu(sup->min_io_size), c->min_io_size); 368 goto failed; 369 } 370 371 if (le32_to_cpu(sup->leb_size) != c->leb_size) { 372 ubifs_err("LEB size mismatch: %d in superblock, %d real", 373 le32_to_cpu(sup->leb_size), c->leb_size); 374 goto failed; 375 } 376 377 if (c->log_lebs < UBIFS_MIN_LOG_LEBS || 378 c->lpt_lebs < UBIFS_MIN_LPT_LEBS || 379 c->orph_lebs < UBIFS_MIN_ORPH_LEBS || 380 c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 381 err = 4; 382 goto failed; 383 } 384 385 /* 386 * Calculate minimum allowed amount of main area LEBs. This is very 387 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we 388 * have just read from the superblock. 389 */ 390 min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs; 391 min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6; 392 393 if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) { 394 ubifs_err("bad LEB count: %d in superblock, %d on UBI volume, %d minimum required", 395 c->leb_cnt, c->vi.size, min_leb_cnt); 396 goto failed; 397 } 398 399 if (c->max_leb_cnt < c->leb_cnt) { 400 ubifs_err("max. LEB count %d less than LEB count %d", 401 c->max_leb_cnt, c->leb_cnt); 402 goto failed; 403 } 404 405 if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) { 406 ubifs_err("too few main LEBs count %d, must be at least %d", 407 c->main_lebs, UBIFS_MIN_MAIN_LEBS); 408 goto failed; 409 } 410 411 max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS; 412 if (c->max_bud_bytes < max_bytes) { 413 ubifs_err("too small journal (%lld bytes), must be at least %lld bytes", 414 c->max_bud_bytes, max_bytes); 415 goto failed; 416 } 417 418 max_bytes = (long long)c->leb_size * c->main_lebs; 419 if (c->max_bud_bytes > max_bytes) { 420 ubifs_err("too large journal size (%lld bytes), only %lld bytes available in the main area", 421 c->max_bud_bytes, max_bytes); 422 goto failed; 423 } 424 425 if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 || 426 c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) { 427 err = 9; 428 goto failed; 429 } 430 431 if (c->fanout < UBIFS_MIN_FANOUT || 432 ubifs_idx_node_sz(c, c->fanout) > c->leb_size) { 433 err = 10; 434 goto failed; 435 } 436 437 if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT && 438 c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - 439 c->log_lebs - c->lpt_lebs - c->orph_lebs)) { 440 err = 11; 441 goto failed; 442 } 443 444 if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs + 445 c->orph_lebs + c->main_lebs != c->leb_cnt) { 446 err = 12; 447 goto failed; 448 } 449 450 if (c->default_compr < 0 || c->default_compr >= UBIFS_COMPR_TYPES_CNT) { 451 err = 13; 452 goto failed; 453 } 454 455 if (c->rp_size < 0 || max_bytes < c->rp_size) { 456 err = 14; 457 goto failed; 458 } 459 460 if (le32_to_cpu(sup->time_gran) > 1000000000 || 461 le32_to_cpu(sup->time_gran) < 1) { 462 err = 15; 463 goto failed; 464 } 465 466 return 0; 467 468 failed: 469 ubifs_err("bad superblock, error %d", err); 470 ubifs_dump_node(c, sup); 471 return -EINVAL; 472 } 473 474 /** 475 * ubifs_read_sb_node - read superblock node. 476 * @c: UBIFS file-system description object 477 * 478 * This function returns a pointer to the superblock node or a negative error 479 * code. Note, the user of this function is responsible of kfree()'ing the 480 * returned superblock buffer. 481 */ 482 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c) 483 { 484 struct ubifs_sb_node *sup; 485 int err; 486 487 sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS); 488 if (!sup) 489 return ERR_PTR(-ENOMEM); 490 491 err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ, 492 UBIFS_SB_LNUM, 0); 493 if (err) { 494 kfree(sup); 495 return ERR_PTR(err); 496 } 497 498 return sup; 499 } 500 501 /** 502 * ubifs_write_sb_node - write superblock node. 503 * @c: UBIFS file-system description object 504 * @sup: superblock node read with 'ubifs_read_sb_node()' 505 * 506 * This function returns %0 on success and a negative error code on failure. 507 */ 508 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup) 509 { 510 int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size); 511 512 ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1); 513 return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len); 514 } 515 516 /** 517 * ubifs_read_superblock - read superblock. 518 * @c: UBIFS file-system description object 519 * 520 * This function finds, reads and checks the superblock. If an empty UBI volume 521 * is being mounted, this function creates default superblock. Returns zero in 522 * case of success, and a negative error code in case of failure. 523 */ 524 int ubifs_read_superblock(struct ubifs_info *c) 525 { 526 int err, sup_flags; 527 struct ubifs_sb_node *sup; 528 529 if (c->empty) { 530 err = create_default_filesystem(c); 531 if (err) 532 return err; 533 } 534 535 sup = ubifs_read_sb_node(c); 536 if (IS_ERR(sup)) 537 return PTR_ERR(sup); 538 539 c->fmt_version = le32_to_cpu(sup->fmt_version); 540 c->ro_compat_version = le32_to_cpu(sup->ro_compat_version); 541 542 /* 543 * The software supports all previous versions but not future versions, 544 * due to the unavailability of time-travelling equipment. 545 */ 546 if (c->fmt_version > UBIFS_FORMAT_VERSION) { 547 ubifs_assert(!c->ro_media || c->ro_mount); 548 if (!c->ro_mount || 549 c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) { 550 ubifs_err("on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d", 551 c->fmt_version, c->ro_compat_version, 552 UBIFS_FORMAT_VERSION, 553 UBIFS_RO_COMPAT_VERSION); 554 if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) { 555 ubifs_msg("only R/O mounting is possible"); 556 err = -EROFS; 557 } else 558 err = -EINVAL; 559 goto out; 560 } 561 562 /* 563 * The FS is mounted R/O, and the media format is 564 * R/O-compatible with the UBIFS implementation, so we can 565 * mount. 566 */ 567 c->rw_incompat = 1; 568 } 569 570 if (c->fmt_version < 3) { 571 ubifs_err("on-flash format version %d is not supported", 572 c->fmt_version); 573 err = -EINVAL; 574 goto out; 575 } 576 577 switch (sup->key_hash) { 578 case UBIFS_KEY_HASH_R5: 579 c->key_hash = key_r5_hash; 580 c->key_hash_type = UBIFS_KEY_HASH_R5; 581 break; 582 583 case UBIFS_KEY_HASH_TEST: 584 c->key_hash = key_test_hash; 585 c->key_hash_type = UBIFS_KEY_HASH_TEST; 586 break; 587 }; 588 589 c->key_fmt = sup->key_fmt; 590 591 switch (c->key_fmt) { 592 case UBIFS_SIMPLE_KEY_FMT: 593 c->key_len = UBIFS_SK_LEN; 594 break; 595 default: 596 ubifs_err("unsupported key format"); 597 err = -EINVAL; 598 goto out; 599 } 600 601 c->leb_cnt = le32_to_cpu(sup->leb_cnt); 602 c->max_leb_cnt = le32_to_cpu(sup->max_leb_cnt); 603 c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes); 604 c->log_lebs = le32_to_cpu(sup->log_lebs); 605 c->lpt_lebs = le32_to_cpu(sup->lpt_lebs); 606 c->orph_lebs = le32_to_cpu(sup->orph_lebs); 607 c->jhead_cnt = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT; 608 c->fanout = le32_to_cpu(sup->fanout); 609 c->lsave_cnt = le32_to_cpu(sup->lsave_cnt); 610 c->rp_size = le64_to_cpu(sup->rp_size); 611 c->rp_uid = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid)); 612 c->rp_gid = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid)); 613 sup_flags = le32_to_cpu(sup->flags); 614 if (!c->mount_opts.override_compr) 615 c->default_compr = le16_to_cpu(sup->default_compr); 616 617 c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran); 618 memcpy(&c->uuid, &sup->uuid, 16); 619 c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT); 620 c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP); 621 622 /* Automatically increase file system size to the maximum size */ 623 c->old_leb_cnt = c->leb_cnt; 624 if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) { 625 c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size); 626 if (c->ro_mount) 627 dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs", 628 c->old_leb_cnt, c->leb_cnt); 629 else { 630 dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs", 631 c->old_leb_cnt, c->leb_cnt); 632 sup->leb_cnt = cpu_to_le32(c->leb_cnt); 633 err = ubifs_write_sb_node(c, sup); 634 if (err) 635 goto out; 636 c->old_leb_cnt = c->leb_cnt; 637 } 638 } 639 640 c->log_bytes = (long long)c->log_lebs * c->leb_size; 641 c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1; 642 c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs; 643 c->lpt_last = c->lpt_first + c->lpt_lebs - 1; 644 c->orph_first = c->lpt_last + 1; 645 c->orph_last = c->orph_first + c->orph_lebs - 1; 646 c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS; 647 c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs; 648 c->main_first = c->leb_cnt - c->main_lebs; 649 650 err = validate_sb(c, sup); 651 out: 652 kfree(sup); 653 return err; 654 } 655 656 /** 657 * fixup_leb - fixup/unmap an LEB containing free space. 658 * @c: UBIFS file-system description object 659 * @lnum: the LEB number to fix up 660 * @len: number of used bytes in LEB (starting at offset 0) 661 * 662 * This function reads the contents of the given LEB number @lnum, then fixes 663 * it up, so that empty min. I/O units in the end of LEB are actually erased on 664 * flash (rather than being just all-0xff real data). If the LEB is completely 665 * empty, it is simply unmapped. 666 */ 667 static int fixup_leb(struct ubifs_info *c, int lnum, int len) 668 { 669 int err; 670 671 ubifs_assert(len >= 0); 672 ubifs_assert(len % c->min_io_size == 0); 673 ubifs_assert(len < c->leb_size); 674 675 if (len == 0) { 676 dbg_mnt("unmap empty LEB %d", lnum); 677 return ubifs_leb_unmap(c, lnum); 678 } 679 680 dbg_mnt("fixup LEB %d, data len %d", lnum, len); 681 err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1); 682 if (err) 683 return err; 684 685 return ubifs_leb_change(c, lnum, c->sbuf, len); 686 } 687 688 /** 689 * fixup_free_space - find & remap all LEBs containing free space. 690 * @c: UBIFS file-system description object 691 * 692 * This function walks through all LEBs in the filesystem and fiexes up those 693 * containing free/empty space. 694 */ 695 static int fixup_free_space(struct ubifs_info *c) 696 { 697 int lnum, err = 0; 698 struct ubifs_lprops *lprops; 699 700 ubifs_get_lprops(c); 701 702 /* Fixup LEBs in the master area */ 703 for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) { 704 err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz); 705 if (err) 706 goto out; 707 } 708 709 /* Unmap unused log LEBs */ 710 lnum = ubifs_next_log_lnum(c, c->lhead_lnum); 711 while (lnum != c->ltail_lnum) { 712 err = fixup_leb(c, lnum, 0); 713 if (err) 714 goto out; 715 lnum = ubifs_next_log_lnum(c, lnum); 716 } 717 718 /* 719 * Fixup the log head which contains the only a CS node at the 720 * beginning. 721 */ 722 err = fixup_leb(c, c->lhead_lnum, 723 ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size)); 724 if (err) 725 goto out; 726 727 /* Fixup LEBs in the LPT area */ 728 for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) { 729 int free = c->ltab[lnum - c->lpt_first].free; 730 731 if (free > 0) { 732 err = fixup_leb(c, lnum, c->leb_size - free); 733 if (err) 734 goto out; 735 } 736 } 737 738 /* Unmap LEBs in the orphans area */ 739 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 740 err = fixup_leb(c, lnum, 0); 741 if (err) 742 goto out; 743 } 744 745 /* Fixup LEBs in the main area */ 746 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 747 lprops = ubifs_lpt_lookup(c, lnum); 748 if (IS_ERR(lprops)) { 749 err = PTR_ERR(lprops); 750 goto out; 751 } 752 753 if (lprops->free > 0) { 754 err = fixup_leb(c, lnum, c->leb_size - lprops->free); 755 if (err) 756 goto out; 757 } 758 } 759 760 out: 761 ubifs_release_lprops(c); 762 return err; 763 } 764 765 /** 766 * ubifs_fixup_free_space - find & fix all LEBs with free space. 767 * @c: UBIFS file-system description object 768 * 769 * This function fixes up LEBs containing free space on first mount, if the 770 * appropriate flag was set when the FS was created. Each LEB with one or more 771 * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure 772 * the free space is actually erased. E.g., this is necessary for some NAND 773 * chips, since the free space may have been programmed like real "0xff" data 774 * (generating a non-0xff ECC), causing future writes to the not-really-erased 775 * NAND pages to behave badly. After the space is fixed up, the superblock flag 776 * is cleared, so that this is skipped for all future mounts. 777 */ 778 int ubifs_fixup_free_space(struct ubifs_info *c) 779 { 780 int err; 781 struct ubifs_sb_node *sup; 782 783 ubifs_assert(c->space_fixup); 784 ubifs_assert(!c->ro_mount); 785 786 ubifs_msg("start fixing up free space"); 787 788 err = fixup_free_space(c); 789 if (err) 790 return err; 791 792 sup = ubifs_read_sb_node(c); 793 if (IS_ERR(sup)) 794 return PTR_ERR(sup); 795 796 /* Free-space fixup is no longer required */ 797 c->space_fixup = 0; 798 sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP); 799 800 err = ubifs_write_sb_node(c, sup); 801 kfree(sup); 802 if (err) 803 return err; 804 805 ubifs_msg("free space fixup complete"); 806 return err; 807 } 808