xref: /linux/fs/ubifs/sb.c (revision 827634added7f38b7d724cab1dccdb2b004c13c3)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS superblock. The superblock is stored at the first
25  * LEB of the volume and is never changed by UBIFS. Only user-space tools may
26  * change it. The superblock node mostly contains geometry information.
27  */
28 
29 #include "ubifs.h"
30 #include <linux/slab.h>
31 #include <linux/random.h>
32 #include <linux/math64.h>
33 
34 /*
35  * Default journal size in logical eraseblocks as a percent of total
36  * flash size.
37  */
38 #define DEFAULT_JNL_PERCENT 5
39 
40 /* Default maximum journal size in bytes */
41 #define DEFAULT_MAX_JNL (32*1024*1024)
42 
43 /* Default indexing tree fanout */
44 #define DEFAULT_FANOUT 8
45 
46 /* Default number of data journal heads */
47 #define DEFAULT_JHEADS_CNT 1
48 
49 /* Default positions of different LEBs in the main area */
50 #define DEFAULT_IDX_LEB  0
51 #define DEFAULT_DATA_LEB 1
52 #define DEFAULT_GC_LEB   2
53 
54 /* Default number of LEB numbers in LPT's save table */
55 #define DEFAULT_LSAVE_CNT 256
56 
57 /* Default reserved pool size as a percent of maximum free space */
58 #define DEFAULT_RP_PERCENT 5
59 
60 /* The default maximum size of reserved pool in bytes */
61 #define DEFAULT_MAX_RP_SIZE (5*1024*1024)
62 
63 /* Default time granularity in nanoseconds */
64 #define DEFAULT_TIME_GRAN 1000000000
65 
66 /**
67  * create_default_filesystem - format empty UBI volume.
68  * @c: UBIFS file-system description object
69  *
70  * This function creates default empty file-system. Returns zero in case of
71  * success and a negative error code in case of failure.
72  */
73 static int create_default_filesystem(struct ubifs_info *c)
74 {
75 	struct ubifs_sb_node *sup;
76 	struct ubifs_mst_node *mst;
77 	struct ubifs_idx_node *idx;
78 	struct ubifs_branch *br;
79 	struct ubifs_ino_node *ino;
80 	struct ubifs_cs_node *cs;
81 	union ubifs_key key;
82 	int err, tmp, jnl_lebs, log_lebs, max_buds, main_lebs, main_first;
83 	int lpt_lebs, lpt_first, orph_lebs, big_lpt, ino_waste, sup_flags = 0;
84 	int min_leb_cnt = UBIFS_MIN_LEB_CNT;
85 	long long tmp64, main_bytes;
86 	__le64 tmp_le64;
87 
88 	/* Some functions called from here depend on the @c->key_len filed */
89 	c->key_len = UBIFS_SK_LEN;
90 
91 	/*
92 	 * First of all, we have to calculate default file-system geometry -
93 	 * log size, journal size, etc.
94 	 */
95 	if (c->leb_cnt < 0x7FFFFFFF / DEFAULT_JNL_PERCENT)
96 		/* We can first multiply then divide and have no overflow */
97 		jnl_lebs = c->leb_cnt * DEFAULT_JNL_PERCENT / 100;
98 	else
99 		jnl_lebs = (c->leb_cnt / 100) * DEFAULT_JNL_PERCENT;
100 
101 	if (jnl_lebs < UBIFS_MIN_JNL_LEBS)
102 		jnl_lebs = UBIFS_MIN_JNL_LEBS;
103 	if (jnl_lebs * c->leb_size > DEFAULT_MAX_JNL)
104 		jnl_lebs = DEFAULT_MAX_JNL / c->leb_size;
105 
106 	/*
107 	 * The log should be large enough to fit reference nodes for all bud
108 	 * LEBs. Because buds do not have to start from the beginning of LEBs
109 	 * (half of the LEB may contain committed data), the log should
110 	 * generally be larger, make it twice as large.
111 	 */
112 	tmp = 2 * (c->ref_node_alsz * jnl_lebs) + c->leb_size - 1;
113 	log_lebs = tmp / c->leb_size;
114 	/* Plus one LEB reserved for commit */
115 	log_lebs += 1;
116 	if (c->leb_cnt - min_leb_cnt > 8) {
117 		/* And some extra space to allow writes while committing */
118 		log_lebs += 1;
119 		min_leb_cnt += 1;
120 	}
121 
122 	max_buds = jnl_lebs - log_lebs;
123 	if (max_buds < UBIFS_MIN_BUD_LEBS)
124 		max_buds = UBIFS_MIN_BUD_LEBS;
125 
126 	/*
127 	 * Orphan nodes are stored in a separate area. One node can store a lot
128 	 * of orphan inode numbers, but when new orphan comes we just add a new
129 	 * orphan node. At some point the nodes are consolidated into one
130 	 * orphan node.
131 	 */
132 	orph_lebs = UBIFS_MIN_ORPH_LEBS;
133 	if (c->leb_cnt - min_leb_cnt > 1)
134 		/*
135 		 * For debugging purposes it is better to have at least 2
136 		 * orphan LEBs, because the orphan subsystem would need to do
137 		 * consolidations and would be stressed more.
138 		 */
139 		orph_lebs += 1;
140 
141 	main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS - log_lebs;
142 	main_lebs -= orph_lebs;
143 
144 	lpt_first = UBIFS_LOG_LNUM + log_lebs;
145 	c->lsave_cnt = DEFAULT_LSAVE_CNT;
146 	c->max_leb_cnt = c->leb_cnt;
147 	err = ubifs_create_dflt_lpt(c, &main_lebs, lpt_first, &lpt_lebs,
148 				    &big_lpt);
149 	if (err)
150 		return err;
151 
152 	dbg_gen("LEB Properties Tree created (LEBs %d-%d)", lpt_first,
153 		lpt_first + lpt_lebs - 1);
154 
155 	main_first = c->leb_cnt - main_lebs;
156 
157 	/* Create default superblock */
158 	tmp = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
159 	sup = kzalloc(tmp, GFP_KERNEL);
160 	if (!sup)
161 		return -ENOMEM;
162 
163 	tmp64 = (long long)max_buds * c->leb_size;
164 	if (big_lpt)
165 		sup_flags |= UBIFS_FLG_BIGLPT;
166 
167 	sup->ch.node_type  = UBIFS_SB_NODE;
168 	sup->key_hash      = UBIFS_KEY_HASH_R5;
169 	sup->flags         = cpu_to_le32(sup_flags);
170 	sup->min_io_size   = cpu_to_le32(c->min_io_size);
171 	sup->leb_size      = cpu_to_le32(c->leb_size);
172 	sup->leb_cnt       = cpu_to_le32(c->leb_cnt);
173 	sup->max_leb_cnt   = cpu_to_le32(c->max_leb_cnt);
174 	sup->max_bud_bytes = cpu_to_le64(tmp64);
175 	sup->log_lebs      = cpu_to_le32(log_lebs);
176 	sup->lpt_lebs      = cpu_to_le32(lpt_lebs);
177 	sup->orph_lebs     = cpu_to_le32(orph_lebs);
178 	sup->jhead_cnt     = cpu_to_le32(DEFAULT_JHEADS_CNT);
179 	sup->fanout        = cpu_to_le32(DEFAULT_FANOUT);
180 	sup->lsave_cnt     = cpu_to_le32(c->lsave_cnt);
181 	sup->fmt_version   = cpu_to_le32(UBIFS_FORMAT_VERSION);
182 	sup->time_gran     = cpu_to_le32(DEFAULT_TIME_GRAN);
183 	if (c->mount_opts.override_compr)
184 		sup->default_compr = cpu_to_le16(c->mount_opts.compr_type);
185 	else
186 		sup->default_compr = cpu_to_le16(UBIFS_COMPR_LZO);
187 
188 	generate_random_uuid(sup->uuid);
189 
190 	main_bytes = (long long)main_lebs * c->leb_size;
191 	tmp64 = div_u64(main_bytes * DEFAULT_RP_PERCENT, 100);
192 	if (tmp64 > DEFAULT_MAX_RP_SIZE)
193 		tmp64 = DEFAULT_MAX_RP_SIZE;
194 	sup->rp_size = cpu_to_le64(tmp64);
195 	sup->ro_compat_version = cpu_to_le32(UBIFS_RO_COMPAT_VERSION);
196 
197 	err = ubifs_write_node(c, sup, UBIFS_SB_NODE_SZ, 0, 0);
198 	kfree(sup);
199 	if (err)
200 		return err;
201 
202 	dbg_gen("default superblock created at LEB 0:0");
203 
204 	/* Create default master node */
205 	mst = kzalloc(c->mst_node_alsz, GFP_KERNEL);
206 	if (!mst)
207 		return -ENOMEM;
208 
209 	mst->ch.node_type = UBIFS_MST_NODE;
210 	mst->log_lnum     = cpu_to_le32(UBIFS_LOG_LNUM);
211 	mst->highest_inum = cpu_to_le64(UBIFS_FIRST_INO);
212 	mst->cmt_no       = 0;
213 	mst->root_lnum    = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
214 	mst->root_offs    = 0;
215 	tmp = ubifs_idx_node_sz(c, 1);
216 	mst->root_len     = cpu_to_le32(tmp);
217 	mst->gc_lnum      = cpu_to_le32(main_first + DEFAULT_GC_LEB);
218 	mst->ihead_lnum   = cpu_to_le32(main_first + DEFAULT_IDX_LEB);
219 	mst->ihead_offs   = cpu_to_le32(ALIGN(tmp, c->min_io_size));
220 	mst->index_size   = cpu_to_le64(ALIGN(tmp, 8));
221 	mst->lpt_lnum     = cpu_to_le32(c->lpt_lnum);
222 	mst->lpt_offs     = cpu_to_le32(c->lpt_offs);
223 	mst->nhead_lnum   = cpu_to_le32(c->nhead_lnum);
224 	mst->nhead_offs   = cpu_to_le32(c->nhead_offs);
225 	mst->ltab_lnum    = cpu_to_le32(c->ltab_lnum);
226 	mst->ltab_offs    = cpu_to_le32(c->ltab_offs);
227 	mst->lsave_lnum   = cpu_to_le32(c->lsave_lnum);
228 	mst->lsave_offs   = cpu_to_le32(c->lsave_offs);
229 	mst->lscan_lnum   = cpu_to_le32(main_first);
230 	mst->empty_lebs   = cpu_to_le32(main_lebs - 2);
231 	mst->idx_lebs     = cpu_to_le32(1);
232 	mst->leb_cnt      = cpu_to_le32(c->leb_cnt);
233 
234 	/* Calculate lprops statistics */
235 	tmp64 = main_bytes;
236 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
237 	tmp64 -= ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
238 	mst->total_free = cpu_to_le64(tmp64);
239 
240 	tmp64 = ALIGN(ubifs_idx_node_sz(c, 1), c->min_io_size);
241 	ino_waste = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size) -
242 			  UBIFS_INO_NODE_SZ;
243 	tmp64 += ino_waste;
244 	tmp64 -= ALIGN(ubifs_idx_node_sz(c, 1), 8);
245 	mst->total_dirty = cpu_to_le64(tmp64);
246 
247 	/*  The indexing LEB does not contribute to dark space */
248 	tmp64 = ((long long)(c->main_lebs - 1) * c->dark_wm);
249 	mst->total_dark = cpu_to_le64(tmp64);
250 
251 	mst->total_used = cpu_to_le64(UBIFS_INO_NODE_SZ);
252 
253 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM, 0);
254 	if (err) {
255 		kfree(mst);
256 		return err;
257 	}
258 	err = ubifs_write_node(c, mst, UBIFS_MST_NODE_SZ, UBIFS_MST_LNUM + 1,
259 			       0);
260 	kfree(mst);
261 	if (err)
262 		return err;
263 
264 	dbg_gen("default master node created at LEB %d:0", UBIFS_MST_LNUM);
265 
266 	/* Create the root indexing node */
267 	tmp = ubifs_idx_node_sz(c, 1);
268 	idx = kzalloc(ALIGN(tmp, c->min_io_size), GFP_KERNEL);
269 	if (!idx)
270 		return -ENOMEM;
271 
272 	c->key_fmt = UBIFS_SIMPLE_KEY_FMT;
273 	c->key_hash = key_r5_hash;
274 
275 	idx->ch.node_type = UBIFS_IDX_NODE;
276 	idx->child_cnt = cpu_to_le16(1);
277 	ino_key_init(c, &key, UBIFS_ROOT_INO);
278 	br = ubifs_idx_branch(c, idx, 0);
279 	key_write_idx(c, &key, &br->key);
280 	br->lnum = cpu_to_le32(main_first + DEFAULT_DATA_LEB);
281 	br->len  = cpu_to_le32(UBIFS_INO_NODE_SZ);
282 	err = ubifs_write_node(c, idx, tmp, main_first + DEFAULT_IDX_LEB, 0);
283 	kfree(idx);
284 	if (err)
285 		return err;
286 
287 	dbg_gen("default root indexing node created LEB %d:0",
288 		main_first + DEFAULT_IDX_LEB);
289 
290 	/* Create default root inode */
291 	tmp = ALIGN(UBIFS_INO_NODE_SZ, c->min_io_size);
292 	ino = kzalloc(tmp, GFP_KERNEL);
293 	if (!ino)
294 		return -ENOMEM;
295 
296 	ino_key_init_flash(c, &ino->key, UBIFS_ROOT_INO);
297 	ino->ch.node_type = UBIFS_INO_NODE;
298 	ino->creat_sqnum = cpu_to_le64(++c->max_sqnum);
299 	ino->nlink = cpu_to_le32(2);
300 	tmp_le64 = cpu_to_le64(CURRENT_TIME_SEC.tv_sec);
301 	ino->atime_sec   = tmp_le64;
302 	ino->ctime_sec   = tmp_le64;
303 	ino->mtime_sec   = tmp_le64;
304 	ino->atime_nsec  = 0;
305 	ino->ctime_nsec  = 0;
306 	ino->mtime_nsec  = 0;
307 	ino->mode = cpu_to_le32(S_IFDIR | S_IRUGO | S_IWUSR | S_IXUGO);
308 	ino->size = cpu_to_le64(UBIFS_INO_NODE_SZ);
309 
310 	/* Set compression enabled by default */
311 	ino->flags = cpu_to_le32(UBIFS_COMPR_FL);
312 
313 	err = ubifs_write_node(c, ino, UBIFS_INO_NODE_SZ,
314 			       main_first + DEFAULT_DATA_LEB, 0);
315 	kfree(ino);
316 	if (err)
317 		return err;
318 
319 	dbg_gen("root inode created at LEB %d:0",
320 		main_first + DEFAULT_DATA_LEB);
321 
322 	/*
323 	 * The first node in the log has to be the commit start node. This is
324 	 * always the case during normal file-system operation. Write a fake
325 	 * commit start node to the log.
326 	 */
327 	tmp = ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size);
328 	cs = kzalloc(tmp, GFP_KERNEL);
329 	if (!cs)
330 		return -ENOMEM;
331 
332 	cs->ch.node_type = UBIFS_CS_NODE;
333 	err = ubifs_write_node(c, cs, UBIFS_CS_NODE_SZ, UBIFS_LOG_LNUM, 0);
334 	kfree(cs);
335 	if (err)
336 		return err;
337 
338 	ubifs_msg(c, "default file-system created");
339 	return 0;
340 }
341 
342 /**
343  * validate_sb - validate superblock node.
344  * @c: UBIFS file-system description object
345  * @sup: superblock node
346  *
347  * This function validates superblock node @sup. Since most of data was read
348  * from the superblock and stored in @c, the function validates fields in @c
349  * instead. Returns zero in case of success and %-EINVAL in case of validation
350  * failure.
351  */
352 static int validate_sb(struct ubifs_info *c, struct ubifs_sb_node *sup)
353 {
354 	long long max_bytes;
355 	int err = 1, min_leb_cnt;
356 
357 	if (!c->key_hash) {
358 		err = 2;
359 		goto failed;
360 	}
361 
362 	if (sup->key_fmt != UBIFS_SIMPLE_KEY_FMT) {
363 		err = 3;
364 		goto failed;
365 	}
366 
367 	if (le32_to_cpu(sup->min_io_size) != c->min_io_size) {
368 		ubifs_err(c, "min. I/O unit mismatch: %d in superblock, %d real",
369 			  le32_to_cpu(sup->min_io_size), c->min_io_size);
370 		goto failed;
371 	}
372 
373 	if (le32_to_cpu(sup->leb_size) != c->leb_size) {
374 		ubifs_err(c, "LEB size mismatch: %d in superblock, %d real",
375 			  le32_to_cpu(sup->leb_size), c->leb_size);
376 		goto failed;
377 	}
378 
379 	if (c->log_lebs < UBIFS_MIN_LOG_LEBS ||
380 	    c->lpt_lebs < UBIFS_MIN_LPT_LEBS ||
381 	    c->orph_lebs < UBIFS_MIN_ORPH_LEBS ||
382 	    c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
383 		err = 4;
384 		goto failed;
385 	}
386 
387 	/*
388 	 * Calculate minimum allowed amount of main area LEBs. This is very
389 	 * similar to %UBIFS_MIN_LEB_CNT, but we take into account real what we
390 	 * have just read from the superblock.
391 	 */
392 	min_leb_cnt = UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs;
393 	min_leb_cnt += c->lpt_lebs + c->orph_lebs + c->jhead_cnt + 6;
394 
395 	if (c->leb_cnt < min_leb_cnt || c->leb_cnt > c->vi.size) {
396 		ubifs_err(c, "bad LEB count: %d in superblock, %d on UBI volume, %d minimum required",
397 			  c->leb_cnt, c->vi.size, min_leb_cnt);
398 		goto failed;
399 	}
400 
401 	if (c->max_leb_cnt < c->leb_cnt) {
402 		ubifs_err(c, "max. LEB count %d less than LEB count %d",
403 			  c->max_leb_cnt, c->leb_cnt);
404 		goto failed;
405 	}
406 
407 	if (c->main_lebs < UBIFS_MIN_MAIN_LEBS) {
408 		ubifs_err(c, "too few main LEBs count %d, must be at least %d",
409 			  c->main_lebs, UBIFS_MIN_MAIN_LEBS);
410 		goto failed;
411 	}
412 
413 	max_bytes = (long long)c->leb_size * UBIFS_MIN_BUD_LEBS;
414 	if (c->max_bud_bytes < max_bytes) {
415 		ubifs_err(c, "too small journal (%lld bytes), must be at least %lld bytes",
416 			  c->max_bud_bytes, max_bytes);
417 		goto failed;
418 	}
419 
420 	max_bytes = (long long)c->leb_size * c->main_lebs;
421 	if (c->max_bud_bytes > max_bytes) {
422 		ubifs_err(c, "too large journal size (%lld bytes), only %lld bytes available in the main area",
423 			  c->max_bud_bytes, max_bytes);
424 		goto failed;
425 	}
426 
427 	if (c->jhead_cnt < NONDATA_JHEADS_CNT + 1 ||
428 	    c->jhead_cnt > NONDATA_JHEADS_CNT + UBIFS_MAX_JHEADS) {
429 		err = 9;
430 		goto failed;
431 	}
432 
433 	if (c->fanout < UBIFS_MIN_FANOUT ||
434 	    ubifs_idx_node_sz(c, c->fanout) > c->leb_size) {
435 		err = 10;
436 		goto failed;
437 	}
438 
439 	if (c->lsave_cnt < 0 || (c->lsave_cnt > DEFAULT_LSAVE_CNT &&
440 	    c->lsave_cnt > c->max_leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS -
441 	    c->log_lebs - c->lpt_lebs - c->orph_lebs)) {
442 		err = 11;
443 		goto failed;
444 	}
445 
446 	if (UBIFS_SB_LEBS + UBIFS_MST_LEBS + c->log_lebs + c->lpt_lebs +
447 	    c->orph_lebs + c->main_lebs != c->leb_cnt) {
448 		err = 12;
449 		goto failed;
450 	}
451 
452 	if (c->default_compr >= UBIFS_COMPR_TYPES_CNT) {
453 		err = 13;
454 		goto failed;
455 	}
456 
457 	if (c->rp_size < 0 || max_bytes < c->rp_size) {
458 		err = 14;
459 		goto failed;
460 	}
461 
462 	if (le32_to_cpu(sup->time_gran) > 1000000000 ||
463 	    le32_to_cpu(sup->time_gran) < 1) {
464 		err = 15;
465 		goto failed;
466 	}
467 
468 	return 0;
469 
470 failed:
471 	ubifs_err(c, "bad superblock, error %d", err);
472 	ubifs_dump_node(c, sup);
473 	return -EINVAL;
474 }
475 
476 /**
477  * ubifs_read_sb_node - read superblock node.
478  * @c: UBIFS file-system description object
479  *
480  * This function returns a pointer to the superblock node or a negative error
481  * code. Note, the user of this function is responsible of kfree()'ing the
482  * returned superblock buffer.
483  */
484 struct ubifs_sb_node *ubifs_read_sb_node(struct ubifs_info *c)
485 {
486 	struct ubifs_sb_node *sup;
487 	int err;
488 
489 	sup = kmalloc(ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size), GFP_NOFS);
490 	if (!sup)
491 		return ERR_PTR(-ENOMEM);
492 
493 	err = ubifs_read_node(c, sup, UBIFS_SB_NODE, UBIFS_SB_NODE_SZ,
494 			      UBIFS_SB_LNUM, 0);
495 	if (err) {
496 		kfree(sup);
497 		return ERR_PTR(err);
498 	}
499 
500 	return sup;
501 }
502 
503 /**
504  * ubifs_write_sb_node - write superblock node.
505  * @c: UBIFS file-system description object
506  * @sup: superblock node read with 'ubifs_read_sb_node()'
507  *
508  * This function returns %0 on success and a negative error code on failure.
509  */
510 int ubifs_write_sb_node(struct ubifs_info *c, struct ubifs_sb_node *sup)
511 {
512 	int len = ALIGN(UBIFS_SB_NODE_SZ, c->min_io_size);
513 
514 	ubifs_prepare_node(c, sup, UBIFS_SB_NODE_SZ, 1);
515 	return ubifs_leb_change(c, UBIFS_SB_LNUM, sup, len);
516 }
517 
518 /**
519  * ubifs_read_superblock - read superblock.
520  * @c: UBIFS file-system description object
521  *
522  * This function finds, reads and checks the superblock. If an empty UBI volume
523  * is being mounted, this function creates default superblock. Returns zero in
524  * case of success, and a negative error code in case of failure.
525  */
526 int ubifs_read_superblock(struct ubifs_info *c)
527 {
528 	int err, sup_flags;
529 	struct ubifs_sb_node *sup;
530 
531 	if (c->empty) {
532 		err = create_default_filesystem(c);
533 		if (err)
534 			return err;
535 	}
536 
537 	sup = ubifs_read_sb_node(c);
538 	if (IS_ERR(sup))
539 		return PTR_ERR(sup);
540 
541 	c->fmt_version = le32_to_cpu(sup->fmt_version);
542 	c->ro_compat_version = le32_to_cpu(sup->ro_compat_version);
543 
544 	/*
545 	 * The software supports all previous versions but not future versions,
546 	 * due to the unavailability of time-travelling equipment.
547 	 */
548 	if (c->fmt_version > UBIFS_FORMAT_VERSION) {
549 		ubifs_assert(!c->ro_media || c->ro_mount);
550 		if (!c->ro_mount ||
551 		    c->ro_compat_version > UBIFS_RO_COMPAT_VERSION) {
552 			ubifs_err(c, "on-flash format version is w%d/r%d, but software only supports up to version w%d/r%d",
553 				  c->fmt_version, c->ro_compat_version,
554 				  UBIFS_FORMAT_VERSION,
555 				  UBIFS_RO_COMPAT_VERSION);
556 			if (c->ro_compat_version <= UBIFS_RO_COMPAT_VERSION) {
557 				ubifs_msg(c, "only R/O mounting is possible");
558 				err = -EROFS;
559 			} else
560 				err = -EINVAL;
561 			goto out;
562 		}
563 
564 		/*
565 		 * The FS is mounted R/O, and the media format is
566 		 * R/O-compatible with the UBIFS implementation, so we can
567 		 * mount.
568 		 */
569 		c->rw_incompat = 1;
570 	}
571 
572 	if (c->fmt_version < 3) {
573 		ubifs_err(c, "on-flash format version %d is not supported",
574 			  c->fmt_version);
575 		err = -EINVAL;
576 		goto out;
577 	}
578 
579 	switch (sup->key_hash) {
580 	case UBIFS_KEY_HASH_R5:
581 		c->key_hash = key_r5_hash;
582 		c->key_hash_type = UBIFS_KEY_HASH_R5;
583 		break;
584 
585 	case UBIFS_KEY_HASH_TEST:
586 		c->key_hash = key_test_hash;
587 		c->key_hash_type = UBIFS_KEY_HASH_TEST;
588 		break;
589 	};
590 
591 	c->key_fmt = sup->key_fmt;
592 
593 	switch (c->key_fmt) {
594 	case UBIFS_SIMPLE_KEY_FMT:
595 		c->key_len = UBIFS_SK_LEN;
596 		break;
597 	default:
598 		ubifs_err(c, "unsupported key format");
599 		err = -EINVAL;
600 		goto out;
601 	}
602 
603 	c->leb_cnt       = le32_to_cpu(sup->leb_cnt);
604 	c->max_leb_cnt   = le32_to_cpu(sup->max_leb_cnt);
605 	c->max_bud_bytes = le64_to_cpu(sup->max_bud_bytes);
606 	c->log_lebs      = le32_to_cpu(sup->log_lebs);
607 	c->lpt_lebs      = le32_to_cpu(sup->lpt_lebs);
608 	c->orph_lebs     = le32_to_cpu(sup->orph_lebs);
609 	c->jhead_cnt     = le32_to_cpu(sup->jhead_cnt) + NONDATA_JHEADS_CNT;
610 	c->fanout        = le32_to_cpu(sup->fanout);
611 	c->lsave_cnt     = le32_to_cpu(sup->lsave_cnt);
612 	c->rp_size       = le64_to_cpu(sup->rp_size);
613 	c->rp_uid        = make_kuid(&init_user_ns, le32_to_cpu(sup->rp_uid));
614 	c->rp_gid        = make_kgid(&init_user_ns, le32_to_cpu(sup->rp_gid));
615 	sup_flags        = le32_to_cpu(sup->flags);
616 	if (!c->mount_opts.override_compr)
617 		c->default_compr = le16_to_cpu(sup->default_compr);
618 
619 	c->vfs_sb->s_time_gran = le32_to_cpu(sup->time_gran);
620 	memcpy(&c->uuid, &sup->uuid, 16);
621 	c->big_lpt = !!(sup_flags & UBIFS_FLG_BIGLPT);
622 	c->space_fixup = !!(sup_flags & UBIFS_FLG_SPACE_FIXUP);
623 
624 	/* Automatically increase file system size to the maximum size */
625 	c->old_leb_cnt = c->leb_cnt;
626 	if (c->leb_cnt < c->vi.size && c->leb_cnt < c->max_leb_cnt) {
627 		c->leb_cnt = min_t(int, c->max_leb_cnt, c->vi.size);
628 		if (c->ro_mount)
629 			dbg_mnt("Auto resizing (ro) from %d LEBs to %d LEBs",
630 				c->old_leb_cnt,	c->leb_cnt);
631 		else {
632 			dbg_mnt("Auto resizing (sb) from %d LEBs to %d LEBs",
633 				c->old_leb_cnt, c->leb_cnt);
634 			sup->leb_cnt = cpu_to_le32(c->leb_cnt);
635 			err = ubifs_write_sb_node(c, sup);
636 			if (err)
637 				goto out;
638 			c->old_leb_cnt = c->leb_cnt;
639 		}
640 	}
641 
642 	c->log_bytes = (long long)c->log_lebs * c->leb_size;
643 	c->log_last = UBIFS_LOG_LNUM + c->log_lebs - 1;
644 	c->lpt_first = UBIFS_LOG_LNUM + c->log_lebs;
645 	c->lpt_last = c->lpt_first + c->lpt_lebs - 1;
646 	c->orph_first = c->lpt_last + 1;
647 	c->orph_last = c->orph_first + c->orph_lebs - 1;
648 	c->main_lebs = c->leb_cnt - UBIFS_SB_LEBS - UBIFS_MST_LEBS;
649 	c->main_lebs -= c->log_lebs + c->lpt_lebs + c->orph_lebs;
650 	c->main_first = c->leb_cnt - c->main_lebs;
651 
652 	err = validate_sb(c, sup);
653 out:
654 	kfree(sup);
655 	return err;
656 }
657 
658 /**
659  * fixup_leb - fixup/unmap an LEB containing free space.
660  * @c: UBIFS file-system description object
661  * @lnum: the LEB number to fix up
662  * @len: number of used bytes in LEB (starting at offset 0)
663  *
664  * This function reads the contents of the given LEB number @lnum, then fixes
665  * it up, so that empty min. I/O units in the end of LEB are actually erased on
666  * flash (rather than being just all-0xff real data). If the LEB is completely
667  * empty, it is simply unmapped.
668  */
669 static int fixup_leb(struct ubifs_info *c, int lnum, int len)
670 {
671 	int err;
672 
673 	ubifs_assert(len >= 0);
674 	ubifs_assert(len % c->min_io_size == 0);
675 	ubifs_assert(len < c->leb_size);
676 
677 	if (len == 0) {
678 		dbg_mnt("unmap empty LEB %d", lnum);
679 		return ubifs_leb_unmap(c, lnum);
680 	}
681 
682 	dbg_mnt("fixup LEB %d, data len %d", lnum, len);
683 	err = ubifs_leb_read(c, lnum, c->sbuf, 0, len, 1);
684 	if (err)
685 		return err;
686 
687 	return ubifs_leb_change(c, lnum, c->sbuf, len);
688 }
689 
690 /**
691  * fixup_free_space - find & remap all LEBs containing free space.
692  * @c: UBIFS file-system description object
693  *
694  * This function walks through all LEBs in the filesystem and fiexes up those
695  * containing free/empty space.
696  */
697 static int fixup_free_space(struct ubifs_info *c)
698 {
699 	int lnum, err = 0;
700 	struct ubifs_lprops *lprops;
701 
702 	ubifs_get_lprops(c);
703 
704 	/* Fixup LEBs in the master area */
705 	for (lnum = UBIFS_MST_LNUM; lnum < UBIFS_LOG_LNUM; lnum++) {
706 		err = fixup_leb(c, lnum, c->mst_offs + c->mst_node_alsz);
707 		if (err)
708 			goto out;
709 	}
710 
711 	/* Unmap unused log LEBs */
712 	lnum = ubifs_next_log_lnum(c, c->lhead_lnum);
713 	while (lnum != c->ltail_lnum) {
714 		err = fixup_leb(c, lnum, 0);
715 		if (err)
716 			goto out;
717 		lnum = ubifs_next_log_lnum(c, lnum);
718 	}
719 
720 	/*
721 	 * Fixup the log head which contains the only a CS node at the
722 	 * beginning.
723 	 */
724 	err = fixup_leb(c, c->lhead_lnum,
725 			ALIGN(UBIFS_CS_NODE_SZ, c->min_io_size));
726 	if (err)
727 		goto out;
728 
729 	/* Fixup LEBs in the LPT area */
730 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
731 		int free = c->ltab[lnum - c->lpt_first].free;
732 
733 		if (free > 0) {
734 			err = fixup_leb(c, lnum, c->leb_size - free);
735 			if (err)
736 				goto out;
737 		}
738 	}
739 
740 	/* Unmap LEBs in the orphans area */
741 	for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) {
742 		err = fixup_leb(c, lnum, 0);
743 		if (err)
744 			goto out;
745 	}
746 
747 	/* Fixup LEBs in the main area */
748 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
749 		lprops = ubifs_lpt_lookup(c, lnum);
750 		if (IS_ERR(lprops)) {
751 			err = PTR_ERR(lprops);
752 			goto out;
753 		}
754 
755 		if (lprops->free > 0) {
756 			err = fixup_leb(c, lnum, c->leb_size - lprops->free);
757 			if (err)
758 				goto out;
759 		}
760 	}
761 
762 out:
763 	ubifs_release_lprops(c);
764 	return err;
765 }
766 
767 /**
768  * ubifs_fixup_free_space - find & fix all LEBs with free space.
769  * @c: UBIFS file-system description object
770  *
771  * This function fixes up LEBs containing free space on first mount, if the
772  * appropriate flag was set when the FS was created. Each LEB with one or more
773  * empty min. I/O unit (i.e. free-space-count > 0) is re-written, to make sure
774  * the free space is actually erased. E.g., this is necessary for some NAND
775  * chips, since the free space may have been programmed like real "0xff" data
776  * (generating a non-0xff ECC), causing future writes to the not-really-erased
777  * NAND pages to behave badly. After the space is fixed up, the superblock flag
778  * is cleared, so that this is skipped for all future mounts.
779  */
780 int ubifs_fixup_free_space(struct ubifs_info *c)
781 {
782 	int err;
783 	struct ubifs_sb_node *sup;
784 
785 	ubifs_assert(c->space_fixup);
786 	ubifs_assert(!c->ro_mount);
787 
788 	ubifs_msg(c, "start fixing up free space");
789 
790 	err = fixup_free_space(c);
791 	if (err)
792 		return err;
793 
794 	sup = ubifs_read_sb_node(c);
795 	if (IS_ERR(sup))
796 		return PTR_ERR(sup);
797 
798 	/* Free-space fixup is no longer required */
799 	c->space_fixup = 0;
800 	sup->flags &= cpu_to_le32(~UBIFS_FLG_SPACE_FIXUP);
801 
802 	err = ubifs_write_sb_node(c, sup);
803 	kfree(sup);
804 	if (err)
805 		return err;
806 
807 	ubifs_msg(c, "free space fixup complete");
808 	return err;
809 }
810