1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file contains journal replay code. It runs when the file-system is being 25 * mounted and requires no locking. 26 * 27 * The larger is the journal, the longer it takes to scan it, so the longer it 28 * takes to mount UBIFS. This is why the journal has limited size which may be 29 * changed depending on the system requirements. But a larger journal gives 30 * faster I/O speed because it writes the index less frequently. So this is a 31 * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the 32 * larger is the journal, the more memory its index may consume. 33 */ 34 35 #include "ubifs.h" 36 #include <linux/list_sort.h> 37 38 /** 39 * struct replay_entry - replay list entry. 40 * @lnum: logical eraseblock number of the node 41 * @offs: node offset 42 * @len: node length 43 * @deletion: non-zero if this entry corresponds to a node deletion 44 * @sqnum: node sequence number 45 * @list: links the replay list 46 * @key: node key 47 * @nm: directory entry name 48 * @old_size: truncation old size 49 * @new_size: truncation new size 50 * 51 * The replay process first scans all buds and builds the replay list, then 52 * sorts the replay list in nodes sequence number order, and then inserts all 53 * the replay entries to the TNC. 54 */ 55 struct replay_entry { 56 int lnum; 57 int offs; 58 int len; 59 unsigned int deletion:1; 60 unsigned long long sqnum; 61 struct list_head list; 62 union ubifs_key key; 63 union { 64 struct qstr nm; 65 struct { 66 loff_t old_size; 67 loff_t new_size; 68 }; 69 }; 70 }; 71 72 /** 73 * struct bud_entry - entry in the list of buds to replay. 74 * @list: next bud in the list 75 * @bud: bud description object 76 * @sqnum: reference node sequence number 77 * @free: free bytes in the bud 78 * @dirty: dirty bytes in the bud 79 */ 80 struct bud_entry { 81 struct list_head list; 82 struct ubifs_bud *bud; 83 unsigned long long sqnum; 84 int free; 85 int dirty; 86 }; 87 88 /** 89 * set_bud_lprops - set free and dirty space used by a bud. 90 * @c: UBIFS file-system description object 91 * @b: bud entry which describes the bud 92 * 93 * This function makes sure the LEB properties of bud @b are set correctly 94 * after the replay. Returns zero in case of success and a negative error code 95 * in case of failure. 96 */ 97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b) 98 { 99 const struct ubifs_lprops *lp; 100 int err = 0, dirty; 101 102 ubifs_get_lprops(c); 103 104 lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum); 105 if (IS_ERR(lp)) { 106 err = PTR_ERR(lp); 107 goto out; 108 } 109 110 dirty = lp->dirty; 111 if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) { 112 /* 113 * The LEB was added to the journal with a starting offset of 114 * zero which means the LEB must have been empty. The LEB 115 * property values should be @lp->free == @c->leb_size and 116 * @lp->dirty == 0, but that is not the case. The reason is that 117 * the LEB had been garbage collected before it became the bud, 118 * and there was not commit inbetween. The garbage collector 119 * resets the free and dirty space without recording it 120 * anywhere except lprops, so if there was no commit then 121 * lprops does not have that information. 122 * 123 * We do not need to adjust free space because the scan has told 124 * us the exact value which is recorded in the replay entry as 125 * @b->free. 126 * 127 * However we do need to subtract from the dirty space the 128 * amount of space that the garbage collector reclaimed, which 129 * is the whole LEB minus the amount of space that was free. 130 */ 131 dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 132 lp->free, lp->dirty); 133 dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum, 134 lp->free, lp->dirty); 135 dirty -= c->leb_size - lp->free; 136 /* 137 * If the replay order was perfect the dirty space would now be 138 * zero. The order is not perfect because the journal heads 139 * race with each other. This is not a problem but is does mean 140 * that the dirty space may temporarily exceed c->leb_size 141 * during the replay. 142 */ 143 if (dirty != 0) 144 dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty", 145 b->bud->lnum, lp->free, lp->dirty, b->free, 146 b->dirty); 147 } 148 lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty, 149 lp->flags | LPROPS_TAKEN, 0); 150 if (IS_ERR(lp)) { 151 err = PTR_ERR(lp); 152 goto out; 153 } 154 155 /* Make sure the journal head points to the latest bud */ 156 err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf, 157 b->bud->lnum, c->leb_size - b->free); 158 159 out: 160 ubifs_release_lprops(c); 161 return err; 162 } 163 164 /** 165 * set_buds_lprops - set free and dirty space for all replayed buds. 166 * @c: UBIFS file-system description object 167 * 168 * This function sets LEB properties for all replayed buds. Returns zero in 169 * case of success and a negative error code in case of failure. 170 */ 171 static int set_buds_lprops(struct ubifs_info *c) 172 { 173 struct bud_entry *b; 174 int err; 175 176 list_for_each_entry(b, &c->replay_buds, list) { 177 err = set_bud_lprops(c, b); 178 if (err) 179 return err; 180 } 181 182 return 0; 183 } 184 185 /** 186 * trun_remove_range - apply a replay entry for a truncation to the TNC. 187 * @c: UBIFS file-system description object 188 * @r: replay entry of truncation 189 */ 190 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r) 191 { 192 unsigned min_blk, max_blk; 193 union ubifs_key min_key, max_key; 194 ino_t ino; 195 196 min_blk = r->new_size / UBIFS_BLOCK_SIZE; 197 if (r->new_size & (UBIFS_BLOCK_SIZE - 1)) 198 min_blk += 1; 199 200 max_blk = r->old_size / UBIFS_BLOCK_SIZE; 201 if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0) 202 max_blk -= 1; 203 204 ino = key_inum(c, &r->key); 205 206 data_key_init(c, &min_key, ino, min_blk); 207 data_key_init(c, &max_key, ino, max_blk); 208 209 return ubifs_tnc_remove_range(c, &min_key, &max_key); 210 } 211 212 /** 213 * apply_replay_entry - apply a replay entry to the TNC. 214 * @c: UBIFS file-system description object 215 * @r: replay entry to apply 216 * 217 * Apply a replay entry to the TNC. 218 */ 219 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r) 220 { 221 int err; 222 223 dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ", 224 r->lnum, r->offs, r->len, r->deletion, r->sqnum); 225 226 /* Set c->replay_sqnum to help deal with dangling branches. */ 227 c->replay_sqnum = r->sqnum; 228 229 if (is_hash_key(c, &r->key)) { 230 if (r->deletion) 231 err = ubifs_tnc_remove_nm(c, &r->key, &r->nm); 232 else 233 err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs, 234 r->len, &r->nm); 235 } else { 236 if (r->deletion) 237 switch (key_type(c, &r->key)) { 238 case UBIFS_INO_KEY: 239 { 240 ino_t inum = key_inum(c, &r->key); 241 242 err = ubifs_tnc_remove_ino(c, inum); 243 break; 244 } 245 case UBIFS_TRUN_KEY: 246 err = trun_remove_range(c, r); 247 break; 248 default: 249 err = ubifs_tnc_remove(c, &r->key); 250 break; 251 } 252 else 253 err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs, 254 r->len); 255 if (err) 256 return err; 257 258 if (c->need_recovery) 259 err = ubifs_recover_size_accum(c, &r->key, r->deletion, 260 r->new_size); 261 } 262 263 return err; 264 } 265 266 /** 267 * replay_entries_cmp - compare 2 replay entries. 268 * @priv: UBIFS file-system description object 269 * @a: first replay entry 270 * @a: second replay entry 271 * 272 * This is a comparios function for 'list_sort()' which compares 2 replay 273 * entries @a and @b by comparing their sequence numer. Returns %1 if @a has 274 * greater sequence number and %-1 otherwise. 275 */ 276 static int replay_entries_cmp(void *priv, struct list_head *a, 277 struct list_head *b) 278 { 279 struct replay_entry *ra, *rb; 280 281 cond_resched(); 282 if (a == b) 283 return 0; 284 285 ra = list_entry(a, struct replay_entry, list); 286 rb = list_entry(b, struct replay_entry, list); 287 ubifs_assert(ra->sqnum != rb->sqnum); 288 if (ra->sqnum > rb->sqnum) 289 return 1; 290 return -1; 291 } 292 293 /** 294 * apply_replay_list - apply the replay list to the TNC. 295 * @c: UBIFS file-system description object 296 * 297 * Apply all entries in the replay list to the TNC. Returns zero in case of 298 * success and a negative error code in case of failure. 299 */ 300 static int apply_replay_list(struct ubifs_info *c) 301 { 302 struct replay_entry *r; 303 int err; 304 305 list_sort(c, &c->replay_list, &replay_entries_cmp); 306 307 list_for_each_entry(r, &c->replay_list, list) { 308 cond_resched(); 309 310 err = apply_replay_entry(c, r); 311 if (err) 312 return err; 313 } 314 315 return 0; 316 } 317 318 /** 319 * destroy_replay_list - destroy the replay. 320 * @c: UBIFS file-system description object 321 * 322 * Destroy the replay list. 323 */ 324 static void destroy_replay_list(struct ubifs_info *c) 325 { 326 struct replay_entry *r, *tmp; 327 328 list_for_each_entry_safe(r, tmp, &c->replay_list, list) { 329 if (is_hash_key(c, &r->key)) 330 kfree(r->nm.name); 331 list_del(&r->list); 332 kfree(r); 333 } 334 } 335 336 /** 337 * insert_node - insert a node to the replay list 338 * @c: UBIFS file-system description object 339 * @lnum: node logical eraseblock number 340 * @offs: node offset 341 * @len: node length 342 * @key: node key 343 * @sqnum: sequence number 344 * @deletion: non-zero if this is a deletion 345 * @used: number of bytes in use in a LEB 346 * @old_size: truncation old size 347 * @new_size: truncation new size 348 * 349 * This function inserts a scanned non-direntry node to the replay list. The 350 * replay list contains @struct replay_entry elements, and we sort this list in 351 * sequence number order before applying it. The replay list is applied at the 352 * very end of the replay process. Since the list is sorted in sequence number 353 * order, the older modifications are applied first. This function returns zero 354 * in case of success and a negative error code in case of failure. 355 */ 356 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len, 357 union ubifs_key *key, unsigned long long sqnum, 358 int deletion, int *used, loff_t old_size, 359 loff_t new_size) 360 { 361 struct replay_entry *r; 362 363 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 364 365 if (key_inum(c, key) >= c->highest_inum) 366 c->highest_inum = key_inum(c, key); 367 368 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 369 if (!r) 370 return -ENOMEM; 371 372 if (!deletion) 373 *used += ALIGN(len, 8); 374 r->lnum = lnum; 375 r->offs = offs; 376 r->len = len; 377 r->deletion = !!deletion; 378 r->sqnum = sqnum; 379 key_copy(c, key, &r->key); 380 r->old_size = old_size; 381 r->new_size = new_size; 382 383 list_add_tail(&r->list, &c->replay_list); 384 return 0; 385 } 386 387 /** 388 * insert_dent - insert a directory entry node into the replay list. 389 * @c: UBIFS file-system description object 390 * @lnum: node logical eraseblock number 391 * @offs: node offset 392 * @len: node length 393 * @key: node key 394 * @name: directory entry name 395 * @nlen: directory entry name length 396 * @sqnum: sequence number 397 * @deletion: non-zero if this is a deletion 398 * @used: number of bytes in use in a LEB 399 * 400 * This function inserts a scanned directory entry node or an extended 401 * attribute entry to the replay list. Returns zero in case of success and a 402 * negative error code in case of failure. 403 */ 404 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len, 405 union ubifs_key *key, const char *name, int nlen, 406 unsigned long long sqnum, int deletion, int *used) 407 { 408 struct replay_entry *r; 409 char *nbuf; 410 411 dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs); 412 if (key_inum(c, key) >= c->highest_inum) 413 c->highest_inum = key_inum(c, key); 414 415 r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL); 416 if (!r) 417 return -ENOMEM; 418 419 nbuf = kmalloc(nlen + 1, GFP_KERNEL); 420 if (!nbuf) { 421 kfree(r); 422 return -ENOMEM; 423 } 424 425 if (!deletion) 426 *used += ALIGN(len, 8); 427 r->lnum = lnum; 428 r->offs = offs; 429 r->len = len; 430 r->deletion = !!deletion; 431 r->sqnum = sqnum; 432 key_copy(c, key, &r->key); 433 r->nm.len = nlen; 434 memcpy(nbuf, name, nlen); 435 nbuf[nlen] = '\0'; 436 r->nm.name = nbuf; 437 438 list_add_tail(&r->list, &c->replay_list); 439 return 0; 440 } 441 442 /** 443 * ubifs_validate_entry - validate directory or extended attribute entry node. 444 * @c: UBIFS file-system description object 445 * @dent: the node to validate 446 * 447 * This function validates directory or extended attribute entry node @dent. 448 * Returns zero if the node is all right and a %-EINVAL if not. 449 */ 450 int ubifs_validate_entry(struct ubifs_info *c, 451 const struct ubifs_dent_node *dent) 452 { 453 int key_type = key_type_flash(c, dent->key); 454 int nlen = le16_to_cpu(dent->nlen); 455 456 if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 || 457 dent->type >= UBIFS_ITYPES_CNT || 458 nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 || 459 strnlen(dent->name, nlen) != nlen || 460 le64_to_cpu(dent->inum) > MAX_INUM) { 461 ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ? 462 "directory entry" : "extended attribute entry"); 463 return -EINVAL; 464 } 465 466 if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) { 467 ubifs_err("bad key type %d", key_type); 468 return -EINVAL; 469 } 470 471 return 0; 472 } 473 474 /** 475 * is_last_bud - check if the bud is the last in the journal head. 476 * @c: UBIFS file-system description object 477 * @bud: bud description object 478 * 479 * This function checks if bud @bud is the last bud in its journal head. This 480 * information is then used by 'replay_bud()' to decide whether the bud can 481 * have corruptions or not. Indeed, only last buds can be corrupted by power 482 * cuts. Returns %1 if this is the last bud, and %0 if not. 483 */ 484 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud) 485 { 486 struct ubifs_jhead *jh = &c->jheads[bud->jhead]; 487 struct ubifs_bud *next; 488 uint32_t data; 489 int err; 490 491 if (list_is_last(&bud->list, &jh->buds_list)) 492 return 1; 493 494 /* 495 * The following is a quirk to make sure we work correctly with UBIFS 496 * images used with older UBIFS. 497 * 498 * Normally, the last bud will be the last in the journal head's list 499 * of bud. However, there is one exception if the UBIFS image belongs 500 * to older UBIFS. This is fairly unlikely: one would need to use old 501 * UBIFS, then have a power cut exactly at the right point, and then 502 * try to mount this image with new UBIFS. 503 * 504 * The exception is: it is possible to have 2 buds A and B, A goes 505 * before B, and B is the last, bud B is contains no data, and bud A is 506 * corrupted at the end. The reason is that in older versions when the 507 * journal code switched the next bud (from A to B), it first added a 508 * log reference node for the new bud (B), and only after this it 509 * synchronized the write-buffer of current bud (A). But later this was 510 * changed and UBIFS started to always synchronize the write-buffer of 511 * the bud (A) before writing the log reference for the new bud (B). 512 * 513 * But because older UBIFS always synchronized A's write-buffer before 514 * writing to B, we can recognize this exceptional situation but 515 * checking the contents of bud B - if it is empty, then A can be 516 * treated as the last and we can recover it. 517 * 518 * TODO: remove this piece of code in a couple of years (today it is 519 * 16.05.2011). 520 */ 521 next = list_entry(bud->list.next, struct ubifs_bud, list); 522 if (!list_is_last(&next->list, &jh->buds_list)) 523 return 0; 524 525 err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1); 526 if (err) 527 return 0; 528 529 return data == 0xFFFFFFFF; 530 } 531 532 /** 533 * replay_bud - replay a bud logical eraseblock. 534 * @c: UBIFS file-system description object 535 * @b: bud entry which describes the bud 536 * 537 * This function replays bud @bud, recovers it if needed, and adds all nodes 538 * from this bud to the replay list. Returns zero in case of success and a 539 * negative error code in case of failure. 540 */ 541 static int replay_bud(struct ubifs_info *c, struct bud_entry *b) 542 { 543 int is_last = is_last_bud(c, b->bud); 544 int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start; 545 struct ubifs_scan_leb *sleb; 546 struct ubifs_scan_node *snod; 547 548 dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d", 549 lnum, b->bud->jhead, offs, is_last); 550 551 if (c->need_recovery && is_last) 552 /* 553 * Recover only last LEBs in the journal heads, because power 554 * cuts may cause corruptions only in these LEBs, because only 555 * these LEBs could possibly be written to at the power cut 556 * time. 557 */ 558 sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead); 559 else 560 sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0); 561 if (IS_ERR(sleb)) 562 return PTR_ERR(sleb); 563 564 /* 565 * The bud does not have to start from offset zero - the beginning of 566 * the 'lnum' LEB may contain previously committed data. One of the 567 * things we have to do in replay is to correctly update lprops with 568 * newer information about this LEB. 569 * 570 * At this point lprops thinks that this LEB has 'c->leb_size - offs' 571 * bytes of free space because it only contain information about 572 * committed data. 573 * 574 * But we know that real amount of free space is 'c->leb_size - 575 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and 576 * 'sleb->endpt' is used by bud data. We have to correctly calculate 577 * how much of these data are dirty and update lprops with this 578 * information. 579 * 580 * The dirt in that LEB region is comprised of padding nodes, deletion 581 * nodes, truncation nodes and nodes which are obsoleted by subsequent 582 * nodes in this LEB. So instead of calculating clean space, we 583 * calculate used space ('used' variable). 584 */ 585 586 list_for_each_entry(snod, &sleb->nodes, list) { 587 int deletion = 0; 588 589 cond_resched(); 590 591 if (snod->sqnum >= SQNUM_WATERMARK) { 592 ubifs_err("file system's life ended"); 593 goto out_dump; 594 } 595 596 if (snod->sqnum > c->max_sqnum) 597 c->max_sqnum = snod->sqnum; 598 599 switch (snod->type) { 600 case UBIFS_INO_NODE: 601 { 602 struct ubifs_ino_node *ino = snod->node; 603 loff_t new_size = le64_to_cpu(ino->size); 604 605 if (le32_to_cpu(ino->nlink) == 0) 606 deletion = 1; 607 err = insert_node(c, lnum, snod->offs, snod->len, 608 &snod->key, snod->sqnum, deletion, 609 &used, 0, new_size); 610 break; 611 } 612 case UBIFS_DATA_NODE: 613 { 614 struct ubifs_data_node *dn = snod->node; 615 loff_t new_size = le32_to_cpu(dn->size) + 616 key_block(c, &snod->key) * 617 UBIFS_BLOCK_SIZE; 618 619 err = insert_node(c, lnum, snod->offs, snod->len, 620 &snod->key, snod->sqnum, deletion, 621 &used, 0, new_size); 622 break; 623 } 624 case UBIFS_DENT_NODE: 625 case UBIFS_XENT_NODE: 626 { 627 struct ubifs_dent_node *dent = snod->node; 628 629 err = ubifs_validate_entry(c, dent); 630 if (err) 631 goto out_dump; 632 633 err = insert_dent(c, lnum, snod->offs, snod->len, 634 &snod->key, dent->name, 635 le16_to_cpu(dent->nlen), snod->sqnum, 636 !le64_to_cpu(dent->inum), &used); 637 break; 638 } 639 case UBIFS_TRUN_NODE: 640 { 641 struct ubifs_trun_node *trun = snod->node; 642 loff_t old_size = le64_to_cpu(trun->old_size); 643 loff_t new_size = le64_to_cpu(trun->new_size); 644 union ubifs_key key; 645 646 /* Validate truncation node */ 647 if (old_size < 0 || old_size > c->max_inode_sz || 648 new_size < 0 || new_size > c->max_inode_sz || 649 old_size <= new_size) { 650 ubifs_err("bad truncation node"); 651 goto out_dump; 652 } 653 654 /* 655 * Create a fake truncation key just to use the same 656 * functions which expect nodes to have keys. 657 */ 658 trun_key_init(c, &key, le32_to_cpu(trun->inum)); 659 err = insert_node(c, lnum, snod->offs, snod->len, 660 &key, snod->sqnum, 1, &used, 661 old_size, new_size); 662 break; 663 } 664 default: 665 ubifs_err("unexpected node type %d in bud LEB %d:%d", 666 snod->type, lnum, snod->offs); 667 err = -EINVAL; 668 goto out_dump; 669 } 670 if (err) 671 goto out; 672 } 673 674 ubifs_assert(ubifs_search_bud(c, lnum)); 675 ubifs_assert(sleb->endpt - offs >= used); 676 ubifs_assert(sleb->endpt % c->min_io_size == 0); 677 678 b->dirty = sleb->endpt - offs - used; 679 b->free = c->leb_size - sleb->endpt; 680 dbg_mnt("bud LEB %d replied: dirty %d, free %d", 681 lnum, b->dirty, b->free); 682 683 out: 684 ubifs_scan_destroy(sleb); 685 return err; 686 687 out_dump: 688 ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs); 689 ubifs_dump_node(c, snod->node); 690 ubifs_scan_destroy(sleb); 691 return -EINVAL; 692 } 693 694 /** 695 * replay_buds - replay all buds. 696 * @c: UBIFS file-system description object 697 * 698 * This function returns zero in case of success and a negative error code in 699 * case of failure. 700 */ 701 static int replay_buds(struct ubifs_info *c) 702 { 703 struct bud_entry *b; 704 int err; 705 unsigned long long prev_sqnum = 0; 706 707 list_for_each_entry(b, &c->replay_buds, list) { 708 err = replay_bud(c, b); 709 if (err) 710 return err; 711 712 ubifs_assert(b->sqnum > prev_sqnum); 713 prev_sqnum = b->sqnum; 714 } 715 716 return 0; 717 } 718 719 /** 720 * destroy_bud_list - destroy the list of buds to replay. 721 * @c: UBIFS file-system description object 722 */ 723 static void destroy_bud_list(struct ubifs_info *c) 724 { 725 struct bud_entry *b; 726 727 while (!list_empty(&c->replay_buds)) { 728 b = list_entry(c->replay_buds.next, struct bud_entry, list); 729 list_del(&b->list); 730 kfree(b); 731 } 732 } 733 734 /** 735 * add_replay_bud - add a bud to the list of buds to replay. 736 * @c: UBIFS file-system description object 737 * @lnum: bud logical eraseblock number to replay 738 * @offs: bud start offset 739 * @jhead: journal head to which this bud belongs 740 * @sqnum: reference node sequence number 741 * 742 * This function returns zero in case of success and a negative error code in 743 * case of failure. 744 */ 745 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead, 746 unsigned long long sqnum) 747 { 748 struct ubifs_bud *bud; 749 struct bud_entry *b; 750 751 dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead); 752 753 bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL); 754 if (!bud) 755 return -ENOMEM; 756 757 b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL); 758 if (!b) { 759 kfree(bud); 760 return -ENOMEM; 761 } 762 763 bud->lnum = lnum; 764 bud->start = offs; 765 bud->jhead = jhead; 766 ubifs_add_bud(c, bud); 767 768 b->bud = bud; 769 b->sqnum = sqnum; 770 list_add_tail(&b->list, &c->replay_buds); 771 772 return 0; 773 } 774 775 /** 776 * validate_ref - validate a reference node. 777 * @c: UBIFS file-system description object 778 * @ref: the reference node to validate 779 * @ref_lnum: LEB number of the reference node 780 * @ref_offs: reference node offset 781 * 782 * This function returns %1 if a bud reference already exists for the LEB. %0 is 783 * returned if the reference node is new, otherwise %-EINVAL is returned if 784 * validation failed. 785 */ 786 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref) 787 { 788 struct ubifs_bud *bud; 789 int lnum = le32_to_cpu(ref->lnum); 790 unsigned int offs = le32_to_cpu(ref->offs); 791 unsigned int jhead = le32_to_cpu(ref->jhead); 792 793 /* 794 * ref->offs may point to the end of LEB when the journal head points 795 * to the end of LEB and we write reference node for it during commit. 796 * So this is why we require 'offs > c->leb_size'. 797 */ 798 if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt || 799 lnum < c->main_first || offs > c->leb_size || 800 offs & (c->min_io_size - 1)) 801 return -EINVAL; 802 803 /* Make sure we have not already looked at this bud */ 804 bud = ubifs_search_bud(c, lnum); 805 if (bud) { 806 if (bud->jhead == jhead && bud->start <= offs) 807 return 1; 808 ubifs_err("bud at LEB %d:%d was already referred", lnum, offs); 809 return -EINVAL; 810 } 811 812 return 0; 813 } 814 815 /** 816 * replay_log_leb - replay a log logical eraseblock. 817 * @c: UBIFS file-system description object 818 * @lnum: log logical eraseblock to replay 819 * @offs: offset to start replaying from 820 * @sbuf: scan buffer 821 * 822 * This function replays a log LEB and returns zero in case of success, %1 if 823 * this is the last LEB in the log, and a negative error code in case of 824 * failure. 825 */ 826 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf) 827 { 828 int err; 829 struct ubifs_scan_leb *sleb; 830 struct ubifs_scan_node *snod; 831 const struct ubifs_cs_node *node; 832 833 dbg_mnt("replay log LEB %d:%d", lnum, offs); 834 sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery); 835 if (IS_ERR(sleb)) { 836 if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery) 837 return PTR_ERR(sleb); 838 /* 839 * Note, the below function will recover this log LEB only if 840 * it is the last, because unclean reboots can possibly corrupt 841 * only the tail of the log. 842 */ 843 sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf); 844 if (IS_ERR(sleb)) 845 return PTR_ERR(sleb); 846 } 847 848 if (sleb->nodes_cnt == 0) { 849 err = 1; 850 goto out; 851 } 852 853 node = sleb->buf; 854 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 855 if (c->cs_sqnum == 0) { 856 /* 857 * This is the first log LEB we are looking at, make sure that 858 * the first node is a commit start node. Also record its 859 * sequence number so that UBIFS can determine where the log 860 * ends, because all nodes which were have higher sequence 861 * numbers. 862 */ 863 if (snod->type != UBIFS_CS_NODE) { 864 ubifs_err("first log node at LEB %d:%d is not CS node", 865 lnum, offs); 866 goto out_dump; 867 } 868 if (le64_to_cpu(node->cmt_no) != c->cmt_no) { 869 ubifs_err("first CS node at LEB %d:%d has wrong commit number %llu expected %llu", 870 lnum, offs, 871 (unsigned long long)le64_to_cpu(node->cmt_no), 872 c->cmt_no); 873 goto out_dump; 874 } 875 876 c->cs_sqnum = le64_to_cpu(node->ch.sqnum); 877 dbg_mnt("commit start sqnum %llu", c->cs_sqnum); 878 } 879 880 if (snod->sqnum < c->cs_sqnum) { 881 /* 882 * This means that we reached end of log and now 883 * look to the older log data, which was already 884 * committed but the eraseblock was not erased (UBIFS 885 * only un-maps it). So this basically means we have to 886 * exit with "end of log" code. 887 */ 888 err = 1; 889 goto out; 890 } 891 892 /* Make sure the first node sits at offset zero of the LEB */ 893 if (snod->offs != 0) { 894 ubifs_err("first node is not at zero offset"); 895 goto out_dump; 896 } 897 898 list_for_each_entry(snod, &sleb->nodes, list) { 899 cond_resched(); 900 901 if (snod->sqnum >= SQNUM_WATERMARK) { 902 ubifs_err("file system's life ended"); 903 goto out_dump; 904 } 905 906 if (snod->sqnum < c->cs_sqnum) { 907 ubifs_err("bad sqnum %llu, commit sqnum %llu", 908 snod->sqnum, c->cs_sqnum); 909 goto out_dump; 910 } 911 912 if (snod->sqnum > c->max_sqnum) 913 c->max_sqnum = snod->sqnum; 914 915 switch (snod->type) { 916 case UBIFS_REF_NODE: { 917 const struct ubifs_ref_node *ref = snod->node; 918 919 err = validate_ref(c, ref); 920 if (err == 1) 921 break; /* Already have this bud */ 922 if (err) 923 goto out_dump; 924 925 err = add_replay_bud(c, le32_to_cpu(ref->lnum), 926 le32_to_cpu(ref->offs), 927 le32_to_cpu(ref->jhead), 928 snod->sqnum); 929 if (err) 930 goto out; 931 932 break; 933 } 934 case UBIFS_CS_NODE: 935 /* Make sure it sits at the beginning of LEB */ 936 if (snod->offs != 0) { 937 ubifs_err("unexpected node in log"); 938 goto out_dump; 939 } 940 break; 941 default: 942 ubifs_err("unexpected node in log"); 943 goto out_dump; 944 } 945 } 946 947 if (sleb->endpt || c->lhead_offs >= c->leb_size) { 948 c->lhead_lnum = lnum; 949 c->lhead_offs = sleb->endpt; 950 } 951 952 err = !sleb->endpt; 953 out: 954 ubifs_scan_destroy(sleb); 955 return err; 956 957 out_dump: 958 ubifs_err("log error detected while replaying the log at LEB %d:%d", 959 lnum, offs + snod->offs); 960 ubifs_dump_node(c, snod->node); 961 ubifs_scan_destroy(sleb); 962 return -EINVAL; 963 } 964 965 /** 966 * take_ihead - update the status of the index head in lprops to 'taken'. 967 * @c: UBIFS file-system description object 968 * 969 * This function returns the amount of free space in the index head LEB or a 970 * negative error code. 971 */ 972 static int take_ihead(struct ubifs_info *c) 973 { 974 const struct ubifs_lprops *lp; 975 int err, free; 976 977 ubifs_get_lprops(c); 978 979 lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum); 980 if (IS_ERR(lp)) { 981 err = PTR_ERR(lp); 982 goto out; 983 } 984 985 free = lp->free; 986 987 lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC, 988 lp->flags | LPROPS_TAKEN, 0); 989 if (IS_ERR(lp)) { 990 err = PTR_ERR(lp); 991 goto out; 992 } 993 994 err = free; 995 out: 996 ubifs_release_lprops(c); 997 return err; 998 } 999 1000 /** 1001 * ubifs_replay_journal - replay journal. 1002 * @c: UBIFS file-system description object 1003 * 1004 * This function scans the journal, replays and cleans it up. It makes sure all 1005 * memory data structures related to uncommitted journal are built (dirty TNC 1006 * tree, tree of buds, modified lprops, etc). 1007 */ 1008 int ubifs_replay_journal(struct ubifs_info *c) 1009 { 1010 int err, lnum, free; 1011 1012 BUILD_BUG_ON(UBIFS_TRUN_KEY > 5); 1013 1014 /* Update the status of the index head in lprops to 'taken' */ 1015 free = take_ihead(c); 1016 if (free < 0) 1017 return free; /* Error code */ 1018 1019 if (c->ihead_offs != c->leb_size - free) { 1020 ubifs_err("bad index head LEB %d:%d", c->ihead_lnum, 1021 c->ihead_offs); 1022 return -EINVAL; 1023 } 1024 1025 dbg_mnt("start replaying the journal"); 1026 c->replaying = 1; 1027 lnum = c->ltail_lnum = c->lhead_lnum; 1028 1029 do { 1030 err = replay_log_leb(c, lnum, 0, c->sbuf); 1031 if (err == 1) 1032 /* We hit the end of the log */ 1033 break; 1034 if (err) 1035 goto out; 1036 lnum = ubifs_next_log_lnum(c, lnum); 1037 } while (lnum != c->ltail_lnum); 1038 1039 err = replay_buds(c); 1040 if (err) 1041 goto out; 1042 1043 err = apply_replay_list(c); 1044 if (err) 1045 goto out; 1046 1047 err = set_buds_lprops(c); 1048 if (err) 1049 goto out; 1050 1051 /* 1052 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable 1053 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs 1054 * depend on it. This means we have to initialize it to make sure 1055 * budgeting works properly. 1056 */ 1057 c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt); 1058 c->bi.uncommitted_idx *= c->max_idx_node_sz; 1059 1060 ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery); 1061 dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu", 1062 c->lhead_lnum, c->lhead_offs, c->max_sqnum, 1063 (unsigned long)c->highest_inum); 1064 out: 1065 destroy_replay_list(c); 1066 destroy_bud_list(c); 1067 c->replaying = 0; 1068 return err; 1069 } 1070