xref: /linux/fs/ubifs/replay.c (revision a97673a1c43d005a3ae215f4ca8b4bbb5691aea1)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file contains journal replay code. It runs when the file-system is being
25  * mounted and requires no locking.
26  *
27  * The larger is the journal, the longer it takes to scan it, so the longer it
28  * takes to mount UBIFS. This is why the journal has limited size which may be
29  * changed depending on the system requirements. But a larger journal gives
30  * faster I/O speed because it writes the index less frequently. So this is a
31  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32  * larger is the journal, the more memory its index may consume.
33  */
34 
35 #include "ubifs.h"
36 #include <linux/list_sort.h>
37 #include <crypto/hash.h>
38 #include <crypto/algapi.h>
39 
40 /**
41  * struct replay_entry - replay list entry.
42  * @lnum: logical eraseblock number of the node
43  * @offs: node offset
44  * @len: node length
45  * @deletion: non-zero if this entry corresponds to a node deletion
46  * @sqnum: node sequence number
47  * @list: links the replay list
48  * @key: node key
49  * @nm: directory entry name
50  * @old_size: truncation old size
51  * @new_size: truncation new size
52  *
53  * The replay process first scans all buds and builds the replay list, then
54  * sorts the replay list in nodes sequence number order, and then inserts all
55  * the replay entries to the TNC.
56  */
57 struct replay_entry {
58 	int lnum;
59 	int offs;
60 	int len;
61 	u8 hash[UBIFS_HASH_ARR_SZ];
62 	unsigned int deletion:1;
63 	unsigned long long sqnum;
64 	struct list_head list;
65 	union ubifs_key key;
66 	union {
67 		struct fscrypt_name nm;
68 		struct {
69 			loff_t old_size;
70 			loff_t new_size;
71 		};
72 	};
73 };
74 
75 /**
76  * struct bud_entry - entry in the list of buds to replay.
77  * @list: next bud in the list
78  * @bud: bud description object
79  * @sqnum: reference node sequence number
80  * @free: free bytes in the bud
81  * @dirty: dirty bytes in the bud
82  */
83 struct bud_entry {
84 	struct list_head list;
85 	struct ubifs_bud *bud;
86 	unsigned long long sqnum;
87 	int free;
88 	int dirty;
89 };
90 
91 /**
92  * set_bud_lprops - set free and dirty space used by a bud.
93  * @c: UBIFS file-system description object
94  * @b: bud entry which describes the bud
95  *
96  * This function makes sure the LEB properties of bud @b are set correctly
97  * after the replay. Returns zero in case of success and a negative error code
98  * in case of failure.
99  */
100 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
101 {
102 	const struct ubifs_lprops *lp;
103 	int err = 0, dirty;
104 
105 	ubifs_get_lprops(c);
106 
107 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
108 	if (IS_ERR(lp)) {
109 		err = PTR_ERR(lp);
110 		goto out;
111 	}
112 
113 	dirty = lp->dirty;
114 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
115 		/*
116 		 * The LEB was added to the journal with a starting offset of
117 		 * zero which means the LEB must have been empty. The LEB
118 		 * property values should be @lp->free == @c->leb_size and
119 		 * @lp->dirty == 0, but that is not the case. The reason is that
120 		 * the LEB had been garbage collected before it became the bud,
121 		 * and there was not commit inbetween. The garbage collector
122 		 * resets the free and dirty space without recording it
123 		 * anywhere except lprops, so if there was no commit then
124 		 * lprops does not have that information.
125 		 *
126 		 * We do not need to adjust free space because the scan has told
127 		 * us the exact value which is recorded in the replay entry as
128 		 * @b->free.
129 		 *
130 		 * However we do need to subtract from the dirty space the
131 		 * amount of space that the garbage collector reclaimed, which
132 		 * is the whole LEB minus the amount of space that was free.
133 		 */
134 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
135 			lp->free, lp->dirty);
136 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
137 			lp->free, lp->dirty);
138 		dirty -= c->leb_size - lp->free;
139 		/*
140 		 * If the replay order was perfect the dirty space would now be
141 		 * zero. The order is not perfect because the journal heads
142 		 * race with each other. This is not a problem but is does mean
143 		 * that the dirty space may temporarily exceed c->leb_size
144 		 * during the replay.
145 		 */
146 		if (dirty != 0)
147 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
148 				b->bud->lnum, lp->free, lp->dirty, b->free,
149 				b->dirty);
150 	}
151 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
152 			     lp->flags | LPROPS_TAKEN, 0);
153 	if (IS_ERR(lp)) {
154 		err = PTR_ERR(lp);
155 		goto out;
156 	}
157 
158 	/* Make sure the journal head points to the latest bud */
159 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
160 				     b->bud->lnum, c->leb_size - b->free);
161 
162 out:
163 	ubifs_release_lprops(c);
164 	return err;
165 }
166 
167 /**
168  * set_buds_lprops - set free and dirty space for all replayed buds.
169  * @c: UBIFS file-system description object
170  *
171  * This function sets LEB properties for all replayed buds. Returns zero in
172  * case of success and a negative error code in case of failure.
173  */
174 static int set_buds_lprops(struct ubifs_info *c)
175 {
176 	struct bud_entry *b;
177 	int err;
178 
179 	list_for_each_entry(b, &c->replay_buds, list) {
180 		err = set_bud_lprops(c, b);
181 		if (err)
182 			return err;
183 	}
184 
185 	return 0;
186 }
187 
188 /**
189  * trun_remove_range - apply a replay entry for a truncation to the TNC.
190  * @c: UBIFS file-system description object
191  * @r: replay entry of truncation
192  */
193 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
194 {
195 	unsigned min_blk, max_blk;
196 	union ubifs_key min_key, max_key;
197 	ino_t ino;
198 
199 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
200 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
201 		min_blk += 1;
202 
203 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
204 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
205 		max_blk -= 1;
206 
207 	ino = key_inum(c, &r->key);
208 
209 	data_key_init(c, &min_key, ino, min_blk);
210 	data_key_init(c, &max_key, ino, max_blk);
211 
212 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
213 }
214 
215 /**
216  * apply_replay_entry - apply a replay entry to the TNC.
217  * @c: UBIFS file-system description object
218  * @r: replay entry to apply
219  *
220  * Apply a replay entry to the TNC.
221  */
222 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
223 {
224 	int err;
225 
226 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
227 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
228 
229 	if (is_hash_key(c, &r->key)) {
230 		if (r->deletion)
231 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
232 		else
233 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
234 					       r->len, r->hash, &r->nm);
235 	} else {
236 		if (r->deletion)
237 			switch (key_type(c, &r->key)) {
238 			case UBIFS_INO_KEY:
239 			{
240 				ino_t inum = key_inum(c, &r->key);
241 
242 				err = ubifs_tnc_remove_ino(c, inum);
243 				break;
244 			}
245 			case UBIFS_TRUN_KEY:
246 				err = trun_remove_range(c, r);
247 				break;
248 			default:
249 				err = ubifs_tnc_remove(c, &r->key);
250 				break;
251 			}
252 		else
253 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
254 					    r->len, r->hash);
255 		if (err)
256 			return err;
257 
258 		if (c->need_recovery)
259 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
260 						       r->new_size);
261 	}
262 
263 	return err;
264 }
265 
266 /**
267  * replay_entries_cmp - compare 2 replay entries.
268  * @priv: UBIFS file-system description object
269  * @a: first replay entry
270  * @b: second replay entry
271  *
272  * This is a comparios function for 'list_sort()' which compares 2 replay
273  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
274  * greater sequence number and %-1 otherwise.
275  */
276 static int replay_entries_cmp(void *priv, struct list_head *a,
277 			      struct list_head *b)
278 {
279 	struct ubifs_info *c = priv;
280 	struct replay_entry *ra, *rb;
281 
282 	cond_resched();
283 	if (a == b)
284 		return 0;
285 
286 	ra = list_entry(a, struct replay_entry, list);
287 	rb = list_entry(b, struct replay_entry, list);
288 	ubifs_assert(c, ra->sqnum != rb->sqnum);
289 	if (ra->sqnum > rb->sqnum)
290 		return 1;
291 	return -1;
292 }
293 
294 /**
295  * apply_replay_list - apply the replay list to the TNC.
296  * @c: UBIFS file-system description object
297  *
298  * Apply all entries in the replay list to the TNC. Returns zero in case of
299  * success and a negative error code in case of failure.
300  */
301 static int apply_replay_list(struct ubifs_info *c)
302 {
303 	struct replay_entry *r;
304 	int err;
305 
306 	list_sort(c, &c->replay_list, &replay_entries_cmp);
307 
308 	list_for_each_entry(r, &c->replay_list, list) {
309 		cond_resched();
310 
311 		err = apply_replay_entry(c, r);
312 		if (err)
313 			return err;
314 	}
315 
316 	return 0;
317 }
318 
319 /**
320  * destroy_replay_list - destroy the replay.
321  * @c: UBIFS file-system description object
322  *
323  * Destroy the replay list.
324  */
325 static void destroy_replay_list(struct ubifs_info *c)
326 {
327 	struct replay_entry *r, *tmp;
328 
329 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
330 		if (is_hash_key(c, &r->key))
331 			kfree(fname_name(&r->nm));
332 		list_del(&r->list);
333 		kfree(r);
334 	}
335 }
336 
337 /**
338  * insert_node - insert a node to the replay list
339  * @c: UBIFS file-system description object
340  * @lnum: node logical eraseblock number
341  * @offs: node offset
342  * @len: node length
343  * @key: node key
344  * @sqnum: sequence number
345  * @deletion: non-zero if this is a deletion
346  * @used: number of bytes in use in a LEB
347  * @old_size: truncation old size
348  * @new_size: truncation new size
349  *
350  * This function inserts a scanned non-direntry node to the replay list. The
351  * replay list contains @struct replay_entry elements, and we sort this list in
352  * sequence number order before applying it. The replay list is applied at the
353  * very end of the replay process. Since the list is sorted in sequence number
354  * order, the older modifications are applied first. This function returns zero
355  * in case of success and a negative error code in case of failure.
356  */
357 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
358 		       const u8 *hash, union ubifs_key *key,
359 		       unsigned long long sqnum, int deletion, int *used,
360 		       loff_t old_size, loff_t new_size)
361 {
362 	struct replay_entry *r;
363 
364 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
365 
366 	if (key_inum(c, key) >= c->highest_inum)
367 		c->highest_inum = key_inum(c, key);
368 
369 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
370 	if (!r)
371 		return -ENOMEM;
372 
373 	if (!deletion)
374 		*used += ALIGN(len, 8);
375 	r->lnum = lnum;
376 	r->offs = offs;
377 	r->len = len;
378 	ubifs_copy_hash(c, hash, r->hash);
379 	r->deletion = !!deletion;
380 	r->sqnum = sqnum;
381 	key_copy(c, key, &r->key);
382 	r->old_size = old_size;
383 	r->new_size = new_size;
384 
385 	list_add_tail(&r->list, &c->replay_list);
386 	return 0;
387 }
388 
389 /**
390  * insert_dent - insert a directory entry node into the replay list.
391  * @c: UBIFS file-system description object
392  * @lnum: node logical eraseblock number
393  * @offs: node offset
394  * @len: node length
395  * @key: node key
396  * @name: directory entry name
397  * @nlen: directory entry name length
398  * @sqnum: sequence number
399  * @deletion: non-zero if this is a deletion
400  * @used: number of bytes in use in a LEB
401  *
402  * This function inserts a scanned directory entry node or an extended
403  * attribute entry to the replay list. Returns zero in case of success and a
404  * negative error code in case of failure.
405  */
406 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
407 		       const u8 *hash, union ubifs_key *key,
408 		       const char *name, int nlen, unsigned long long sqnum,
409 		       int deletion, int *used)
410 {
411 	struct replay_entry *r;
412 	char *nbuf;
413 
414 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
415 	if (key_inum(c, key) >= c->highest_inum)
416 		c->highest_inum = key_inum(c, key);
417 
418 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
419 	if (!r)
420 		return -ENOMEM;
421 
422 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
423 	if (!nbuf) {
424 		kfree(r);
425 		return -ENOMEM;
426 	}
427 
428 	if (!deletion)
429 		*used += ALIGN(len, 8);
430 	r->lnum = lnum;
431 	r->offs = offs;
432 	r->len = len;
433 	ubifs_copy_hash(c, hash, r->hash);
434 	r->deletion = !!deletion;
435 	r->sqnum = sqnum;
436 	key_copy(c, key, &r->key);
437 	fname_len(&r->nm) = nlen;
438 	memcpy(nbuf, name, nlen);
439 	nbuf[nlen] = '\0';
440 	fname_name(&r->nm) = nbuf;
441 
442 	list_add_tail(&r->list, &c->replay_list);
443 	return 0;
444 }
445 
446 /**
447  * ubifs_validate_entry - validate directory or extended attribute entry node.
448  * @c: UBIFS file-system description object
449  * @dent: the node to validate
450  *
451  * This function validates directory or extended attribute entry node @dent.
452  * Returns zero if the node is all right and a %-EINVAL if not.
453  */
454 int ubifs_validate_entry(struct ubifs_info *c,
455 			 const struct ubifs_dent_node *dent)
456 {
457 	int key_type = key_type_flash(c, dent->key);
458 	int nlen = le16_to_cpu(dent->nlen);
459 
460 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
461 	    dent->type >= UBIFS_ITYPES_CNT ||
462 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
463 	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
464 	    le64_to_cpu(dent->inum) > MAX_INUM) {
465 		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
466 			  "directory entry" : "extended attribute entry");
467 		return -EINVAL;
468 	}
469 
470 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
471 		ubifs_err(c, "bad key type %d", key_type);
472 		return -EINVAL;
473 	}
474 
475 	return 0;
476 }
477 
478 /**
479  * is_last_bud - check if the bud is the last in the journal head.
480  * @c: UBIFS file-system description object
481  * @bud: bud description object
482  *
483  * This function checks if bud @bud is the last bud in its journal head. This
484  * information is then used by 'replay_bud()' to decide whether the bud can
485  * have corruptions or not. Indeed, only last buds can be corrupted by power
486  * cuts. Returns %1 if this is the last bud, and %0 if not.
487  */
488 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
489 {
490 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
491 	struct ubifs_bud *next;
492 	uint32_t data;
493 	int err;
494 
495 	if (list_is_last(&bud->list, &jh->buds_list))
496 		return 1;
497 
498 	/*
499 	 * The following is a quirk to make sure we work correctly with UBIFS
500 	 * images used with older UBIFS.
501 	 *
502 	 * Normally, the last bud will be the last in the journal head's list
503 	 * of bud. However, there is one exception if the UBIFS image belongs
504 	 * to older UBIFS. This is fairly unlikely: one would need to use old
505 	 * UBIFS, then have a power cut exactly at the right point, and then
506 	 * try to mount this image with new UBIFS.
507 	 *
508 	 * The exception is: it is possible to have 2 buds A and B, A goes
509 	 * before B, and B is the last, bud B is contains no data, and bud A is
510 	 * corrupted at the end. The reason is that in older versions when the
511 	 * journal code switched the next bud (from A to B), it first added a
512 	 * log reference node for the new bud (B), and only after this it
513 	 * synchronized the write-buffer of current bud (A). But later this was
514 	 * changed and UBIFS started to always synchronize the write-buffer of
515 	 * the bud (A) before writing the log reference for the new bud (B).
516 	 *
517 	 * But because older UBIFS always synchronized A's write-buffer before
518 	 * writing to B, we can recognize this exceptional situation but
519 	 * checking the contents of bud B - if it is empty, then A can be
520 	 * treated as the last and we can recover it.
521 	 *
522 	 * TODO: remove this piece of code in a couple of years (today it is
523 	 * 16.05.2011).
524 	 */
525 	next = list_entry(bud->list.next, struct ubifs_bud, list);
526 	if (!list_is_last(&next->list, &jh->buds_list))
527 		return 0;
528 
529 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
530 	if (err)
531 		return 0;
532 
533 	return data == 0xFFFFFFFF;
534 }
535 
536 /**
537  * authenticate_sleb - authenticate one scan LEB
538  * @c: UBIFS file-system description object
539  * @sleb: the scan LEB to authenticate
540  * @log_hash:
541  * @is_last: if true, this is is the last LEB
542  *
543  * This function iterates over the buds of a single LEB authenticating all buds
544  * with the authentication nodes on this LEB. Authentication nodes are written
545  * after some buds and contain a HMAC covering the authentication node itself
546  * and the buds between the last authentication node and the current
547  * authentication node. It can happen that the last buds cannot be authenticated
548  * because a powercut happened when some nodes were written but not the
549  * corresponding authentication node. This function returns the number of nodes
550  * that could be authenticated or a negative error code.
551  */
552 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
553 			     struct shash_desc *log_hash, int is_last)
554 {
555 	int n_not_auth = 0;
556 	struct ubifs_scan_node *snod;
557 	int n_nodes = 0;
558 	int err;
559 	u8 *hash, *hmac;
560 
561 	if (!ubifs_authenticated(c))
562 		return sleb->nodes_cnt;
563 
564 	hash = kmalloc(crypto_shash_descsize(c->hash_tfm), GFP_NOFS);
565 	hmac = kmalloc(c->hmac_desc_len, GFP_NOFS);
566 	if (!hash || !hmac) {
567 		err = -ENOMEM;
568 		goto out;
569 	}
570 
571 	list_for_each_entry(snod, &sleb->nodes, list) {
572 
573 		n_nodes++;
574 
575 		if (snod->type == UBIFS_AUTH_NODE) {
576 			struct ubifs_auth_node *auth = snod->node;
577 			SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
578 			SHASH_DESC_ON_STACK(hmac_desc, c->hmac_tfm);
579 
580 			hash_desc->tfm = c->hash_tfm;
581 			hash_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
582 
583 			ubifs_shash_copy_state(c, log_hash, hash_desc);
584 			err = crypto_shash_final(hash_desc, hash);
585 			if (err)
586 				goto out;
587 
588 			hmac_desc->tfm = c->hmac_tfm;
589 			hmac_desc->flags = CRYPTO_TFM_REQ_MAY_SLEEP;
590 			err = crypto_shash_digest(hmac_desc, hash, c->hash_len,
591 						  hmac);
592 			if (err)
593 				goto out;
594 
595 			err = ubifs_check_hmac(c, auth->hmac, hmac);
596 			if (err) {
597 				err = -EPERM;
598 				goto out;
599 			}
600 			n_not_auth = 0;
601 		} else {
602 			err = crypto_shash_update(log_hash, snod->node,
603 						  snod->len);
604 			if (err)
605 				goto out;
606 			n_not_auth++;
607 		}
608 	}
609 
610 	/*
611 	 * A powercut can happen when some nodes were written, but not yet
612 	 * the corresponding authentication node. This may only happen on
613 	 * the last bud though.
614 	 */
615 	if (n_not_auth) {
616 		if (is_last) {
617 			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
618 				n_not_auth, sleb->lnum);
619 			err = 0;
620 		} else {
621 			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
622 				n_not_auth, sleb->lnum);
623 			err = -EPERM;
624 		}
625 	} else {
626 		err = 0;
627 	}
628 out:
629 	kfree(hash);
630 	kfree(hmac);
631 
632 	return err ? err : n_nodes - n_not_auth;
633 }
634 
635 /**
636  * replay_bud - replay a bud logical eraseblock.
637  * @c: UBIFS file-system description object
638  * @b: bud entry which describes the bud
639  *
640  * This function replays bud @bud, recovers it if needed, and adds all nodes
641  * from this bud to the replay list. Returns zero in case of success and a
642  * negative error code in case of failure.
643  */
644 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
645 {
646 	int is_last = is_last_bud(c, b->bud);
647 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
648 	int n_nodes, n = 0;
649 	struct ubifs_scan_leb *sleb;
650 	struct ubifs_scan_node *snod;
651 
652 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
653 		lnum, b->bud->jhead, offs, is_last);
654 
655 	if (c->need_recovery && is_last)
656 		/*
657 		 * Recover only last LEBs in the journal heads, because power
658 		 * cuts may cause corruptions only in these LEBs, because only
659 		 * these LEBs could possibly be written to at the power cut
660 		 * time.
661 		 */
662 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
663 	else
664 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
665 	if (IS_ERR(sleb))
666 		return PTR_ERR(sleb);
667 
668 	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
669 	if (n_nodes < 0) {
670 		err = n_nodes;
671 		goto out;
672 	}
673 
674 	ubifs_shash_copy_state(c, b->bud->log_hash,
675 			       c->jheads[b->bud->jhead].log_hash);
676 
677 	/*
678 	 * The bud does not have to start from offset zero - the beginning of
679 	 * the 'lnum' LEB may contain previously committed data. One of the
680 	 * things we have to do in replay is to correctly update lprops with
681 	 * newer information about this LEB.
682 	 *
683 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
684 	 * bytes of free space because it only contain information about
685 	 * committed data.
686 	 *
687 	 * But we know that real amount of free space is 'c->leb_size -
688 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
689 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
690 	 * how much of these data are dirty and update lprops with this
691 	 * information.
692 	 *
693 	 * The dirt in that LEB region is comprised of padding nodes, deletion
694 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
695 	 * nodes in this LEB. So instead of calculating clean space, we
696 	 * calculate used space ('used' variable).
697 	 */
698 
699 	list_for_each_entry(snod, &sleb->nodes, list) {
700 		u8 hash[UBIFS_HASH_ARR_SZ];
701 		int deletion = 0;
702 
703 		cond_resched();
704 
705 		if (snod->sqnum >= SQNUM_WATERMARK) {
706 			ubifs_err(c, "file system's life ended");
707 			goto out_dump;
708 		}
709 
710 		ubifs_node_calc_hash(c, snod->node, hash);
711 
712 		if (snod->sqnum > c->max_sqnum)
713 			c->max_sqnum = snod->sqnum;
714 
715 		switch (snod->type) {
716 		case UBIFS_INO_NODE:
717 		{
718 			struct ubifs_ino_node *ino = snod->node;
719 			loff_t new_size = le64_to_cpu(ino->size);
720 
721 			if (le32_to_cpu(ino->nlink) == 0)
722 				deletion = 1;
723 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
724 					  &snod->key, snod->sqnum, deletion,
725 					  &used, 0, new_size);
726 			break;
727 		}
728 		case UBIFS_DATA_NODE:
729 		{
730 			struct ubifs_data_node *dn = snod->node;
731 			loff_t new_size = le32_to_cpu(dn->size) +
732 					  key_block(c, &snod->key) *
733 					  UBIFS_BLOCK_SIZE;
734 
735 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
736 					  &snod->key, snod->sqnum, deletion,
737 					  &used, 0, new_size);
738 			break;
739 		}
740 		case UBIFS_DENT_NODE:
741 		case UBIFS_XENT_NODE:
742 		{
743 			struct ubifs_dent_node *dent = snod->node;
744 
745 			err = ubifs_validate_entry(c, dent);
746 			if (err)
747 				goto out_dump;
748 
749 			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
750 					  &snod->key, dent->name,
751 					  le16_to_cpu(dent->nlen), snod->sqnum,
752 					  !le64_to_cpu(dent->inum), &used);
753 			break;
754 		}
755 		case UBIFS_TRUN_NODE:
756 		{
757 			struct ubifs_trun_node *trun = snod->node;
758 			loff_t old_size = le64_to_cpu(trun->old_size);
759 			loff_t new_size = le64_to_cpu(trun->new_size);
760 			union ubifs_key key;
761 
762 			/* Validate truncation node */
763 			if (old_size < 0 || old_size > c->max_inode_sz ||
764 			    new_size < 0 || new_size > c->max_inode_sz ||
765 			    old_size <= new_size) {
766 				ubifs_err(c, "bad truncation node");
767 				goto out_dump;
768 			}
769 
770 			/*
771 			 * Create a fake truncation key just to use the same
772 			 * functions which expect nodes to have keys.
773 			 */
774 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
775 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
776 					  &key, snod->sqnum, 1, &used,
777 					  old_size, new_size);
778 			break;
779 		}
780 		case UBIFS_AUTH_NODE:
781 			break;
782 		default:
783 			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
784 				  snod->type, lnum, snod->offs);
785 			err = -EINVAL;
786 			goto out_dump;
787 		}
788 		if (err)
789 			goto out;
790 
791 		n++;
792 		if (n == n_nodes)
793 			break;
794 	}
795 
796 	ubifs_assert(c, ubifs_search_bud(c, lnum));
797 	ubifs_assert(c, sleb->endpt - offs >= used);
798 	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
799 
800 	b->dirty = sleb->endpt - offs - used;
801 	b->free = c->leb_size - sleb->endpt;
802 	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
803 		lnum, b->dirty, b->free);
804 
805 out:
806 	ubifs_scan_destroy(sleb);
807 	return err;
808 
809 out_dump:
810 	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
811 	ubifs_dump_node(c, snod->node);
812 	ubifs_scan_destroy(sleb);
813 	return -EINVAL;
814 }
815 
816 /**
817  * replay_buds - replay all buds.
818  * @c: UBIFS file-system description object
819  *
820  * This function returns zero in case of success and a negative error code in
821  * case of failure.
822  */
823 static int replay_buds(struct ubifs_info *c)
824 {
825 	struct bud_entry *b;
826 	int err;
827 	unsigned long long prev_sqnum = 0;
828 
829 	list_for_each_entry(b, &c->replay_buds, list) {
830 		err = replay_bud(c, b);
831 		if (err)
832 			return err;
833 
834 		ubifs_assert(c, b->sqnum > prev_sqnum);
835 		prev_sqnum = b->sqnum;
836 	}
837 
838 	return 0;
839 }
840 
841 /**
842  * destroy_bud_list - destroy the list of buds to replay.
843  * @c: UBIFS file-system description object
844  */
845 static void destroy_bud_list(struct ubifs_info *c)
846 {
847 	struct bud_entry *b;
848 
849 	while (!list_empty(&c->replay_buds)) {
850 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
851 		list_del(&b->list);
852 		kfree(b);
853 	}
854 }
855 
856 /**
857  * add_replay_bud - add a bud to the list of buds to replay.
858  * @c: UBIFS file-system description object
859  * @lnum: bud logical eraseblock number to replay
860  * @offs: bud start offset
861  * @jhead: journal head to which this bud belongs
862  * @sqnum: reference node sequence number
863  *
864  * This function returns zero in case of success and a negative error code in
865  * case of failure.
866  */
867 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
868 			  unsigned long long sqnum)
869 {
870 	struct ubifs_bud *bud;
871 	struct bud_entry *b;
872 	int err;
873 
874 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
875 
876 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
877 	if (!bud)
878 		return -ENOMEM;
879 
880 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
881 	if (!b) {
882 		err = -ENOMEM;
883 		goto out;
884 	}
885 
886 	bud->lnum = lnum;
887 	bud->start = offs;
888 	bud->jhead = jhead;
889 	bud->log_hash = ubifs_hash_get_desc(c);
890 	if (IS_ERR(bud->log_hash)) {
891 		err = PTR_ERR(bud->log_hash);
892 		goto out;
893 	}
894 
895 	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
896 
897 	ubifs_add_bud(c, bud);
898 
899 	b->bud = bud;
900 	b->sqnum = sqnum;
901 	list_add_tail(&b->list, &c->replay_buds);
902 
903 	return 0;
904 out:
905 	kfree(bud);
906 	kfree(b);
907 
908 	return err;
909 }
910 
911 /**
912  * validate_ref - validate a reference node.
913  * @c: UBIFS file-system description object
914  * @ref: the reference node to validate
915  * @ref_lnum: LEB number of the reference node
916  * @ref_offs: reference node offset
917  *
918  * This function returns %1 if a bud reference already exists for the LEB. %0 is
919  * returned if the reference node is new, otherwise %-EINVAL is returned if
920  * validation failed.
921  */
922 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
923 {
924 	struct ubifs_bud *bud;
925 	int lnum = le32_to_cpu(ref->lnum);
926 	unsigned int offs = le32_to_cpu(ref->offs);
927 	unsigned int jhead = le32_to_cpu(ref->jhead);
928 
929 	/*
930 	 * ref->offs may point to the end of LEB when the journal head points
931 	 * to the end of LEB and we write reference node for it during commit.
932 	 * So this is why we require 'offs > c->leb_size'.
933 	 */
934 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
935 	    lnum < c->main_first || offs > c->leb_size ||
936 	    offs & (c->min_io_size - 1))
937 		return -EINVAL;
938 
939 	/* Make sure we have not already looked at this bud */
940 	bud = ubifs_search_bud(c, lnum);
941 	if (bud) {
942 		if (bud->jhead == jhead && bud->start <= offs)
943 			return 1;
944 		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
945 		return -EINVAL;
946 	}
947 
948 	return 0;
949 }
950 
951 /**
952  * replay_log_leb - replay a log logical eraseblock.
953  * @c: UBIFS file-system description object
954  * @lnum: log logical eraseblock to replay
955  * @offs: offset to start replaying from
956  * @sbuf: scan buffer
957  *
958  * This function replays a log LEB and returns zero in case of success, %1 if
959  * this is the last LEB in the log, and a negative error code in case of
960  * failure.
961  */
962 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
963 {
964 	int err;
965 	struct ubifs_scan_leb *sleb;
966 	struct ubifs_scan_node *snod;
967 	const struct ubifs_cs_node *node;
968 
969 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
970 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
971 	if (IS_ERR(sleb)) {
972 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
973 			return PTR_ERR(sleb);
974 		/*
975 		 * Note, the below function will recover this log LEB only if
976 		 * it is the last, because unclean reboots can possibly corrupt
977 		 * only the tail of the log.
978 		 */
979 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
980 		if (IS_ERR(sleb))
981 			return PTR_ERR(sleb);
982 	}
983 
984 	if (sleb->nodes_cnt == 0) {
985 		err = 1;
986 		goto out;
987 	}
988 
989 	node = sleb->buf;
990 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
991 	if (c->cs_sqnum == 0) {
992 		/*
993 		 * This is the first log LEB we are looking at, make sure that
994 		 * the first node is a commit start node. Also record its
995 		 * sequence number so that UBIFS can determine where the log
996 		 * ends, because all nodes which were have higher sequence
997 		 * numbers.
998 		 */
999 		if (snod->type != UBIFS_CS_NODE) {
1000 			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1001 				  lnum, offs);
1002 			goto out_dump;
1003 		}
1004 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1005 			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1006 				  lnum, offs,
1007 				  (unsigned long long)le64_to_cpu(node->cmt_no),
1008 				  c->cmt_no);
1009 			goto out_dump;
1010 		}
1011 
1012 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1013 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1014 
1015 		err = ubifs_shash_init(c, c->log_hash);
1016 		if (err)
1017 			goto out;
1018 
1019 		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1020 		if (err < 0)
1021 			goto out;
1022 	}
1023 
1024 	if (snod->sqnum < c->cs_sqnum) {
1025 		/*
1026 		 * This means that we reached end of log and now
1027 		 * look to the older log data, which was already
1028 		 * committed but the eraseblock was not erased (UBIFS
1029 		 * only un-maps it). So this basically means we have to
1030 		 * exit with "end of log" code.
1031 		 */
1032 		err = 1;
1033 		goto out;
1034 	}
1035 
1036 	/* Make sure the first node sits at offset zero of the LEB */
1037 	if (snod->offs != 0) {
1038 		ubifs_err(c, "first node is not at zero offset");
1039 		goto out_dump;
1040 	}
1041 
1042 	list_for_each_entry(snod, &sleb->nodes, list) {
1043 		cond_resched();
1044 
1045 		if (snod->sqnum >= SQNUM_WATERMARK) {
1046 			ubifs_err(c, "file system's life ended");
1047 			goto out_dump;
1048 		}
1049 
1050 		if (snod->sqnum < c->cs_sqnum) {
1051 			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1052 				  snod->sqnum, c->cs_sqnum);
1053 			goto out_dump;
1054 		}
1055 
1056 		if (snod->sqnum > c->max_sqnum)
1057 			c->max_sqnum = snod->sqnum;
1058 
1059 		switch (snod->type) {
1060 		case UBIFS_REF_NODE: {
1061 			const struct ubifs_ref_node *ref = snod->node;
1062 
1063 			err = validate_ref(c, ref);
1064 			if (err == 1)
1065 				break; /* Already have this bud */
1066 			if (err)
1067 				goto out_dump;
1068 
1069 			err = ubifs_shash_update(c, c->log_hash, ref,
1070 						 UBIFS_REF_NODE_SZ);
1071 			if (err)
1072 				goto out;
1073 
1074 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1075 					     le32_to_cpu(ref->offs),
1076 					     le32_to_cpu(ref->jhead),
1077 					     snod->sqnum);
1078 			if (err)
1079 				goto out;
1080 
1081 			break;
1082 		}
1083 		case UBIFS_CS_NODE:
1084 			/* Make sure it sits at the beginning of LEB */
1085 			if (snod->offs != 0) {
1086 				ubifs_err(c, "unexpected node in log");
1087 				goto out_dump;
1088 			}
1089 			break;
1090 		default:
1091 			ubifs_err(c, "unexpected node in log");
1092 			goto out_dump;
1093 		}
1094 	}
1095 
1096 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1097 		c->lhead_lnum = lnum;
1098 		c->lhead_offs = sleb->endpt;
1099 	}
1100 
1101 	err = !sleb->endpt;
1102 out:
1103 	ubifs_scan_destroy(sleb);
1104 	return err;
1105 
1106 out_dump:
1107 	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1108 		  lnum, offs + snod->offs);
1109 	ubifs_dump_node(c, snod->node);
1110 	ubifs_scan_destroy(sleb);
1111 	return -EINVAL;
1112 }
1113 
1114 /**
1115  * take_ihead - update the status of the index head in lprops to 'taken'.
1116  * @c: UBIFS file-system description object
1117  *
1118  * This function returns the amount of free space in the index head LEB or a
1119  * negative error code.
1120  */
1121 static int take_ihead(struct ubifs_info *c)
1122 {
1123 	const struct ubifs_lprops *lp;
1124 	int err, free;
1125 
1126 	ubifs_get_lprops(c);
1127 
1128 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1129 	if (IS_ERR(lp)) {
1130 		err = PTR_ERR(lp);
1131 		goto out;
1132 	}
1133 
1134 	free = lp->free;
1135 
1136 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1137 			     lp->flags | LPROPS_TAKEN, 0);
1138 	if (IS_ERR(lp)) {
1139 		err = PTR_ERR(lp);
1140 		goto out;
1141 	}
1142 
1143 	err = free;
1144 out:
1145 	ubifs_release_lprops(c);
1146 	return err;
1147 }
1148 
1149 /**
1150  * ubifs_replay_journal - replay journal.
1151  * @c: UBIFS file-system description object
1152  *
1153  * This function scans the journal, replays and cleans it up. It makes sure all
1154  * memory data structures related to uncommitted journal are built (dirty TNC
1155  * tree, tree of buds, modified lprops, etc).
1156  */
1157 int ubifs_replay_journal(struct ubifs_info *c)
1158 {
1159 	int err, lnum, free;
1160 
1161 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1162 
1163 	/* Update the status of the index head in lprops to 'taken' */
1164 	free = take_ihead(c);
1165 	if (free < 0)
1166 		return free; /* Error code */
1167 
1168 	if (c->ihead_offs != c->leb_size - free) {
1169 		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1170 			  c->ihead_offs);
1171 		return -EINVAL;
1172 	}
1173 
1174 	dbg_mnt("start replaying the journal");
1175 	c->replaying = 1;
1176 	lnum = c->ltail_lnum = c->lhead_lnum;
1177 
1178 	do {
1179 		err = replay_log_leb(c, lnum, 0, c->sbuf);
1180 		if (err == 1) {
1181 			if (lnum != c->lhead_lnum)
1182 				/* We hit the end of the log */
1183 				break;
1184 
1185 			/*
1186 			 * The head of the log must always start with the
1187 			 * "commit start" node on a properly formatted UBIFS.
1188 			 * But we found no nodes at all, which means that
1189 			 * something went wrong and we cannot proceed mounting
1190 			 * the file-system.
1191 			 */
1192 			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1193 				  lnum, 0);
1194 			err = -EINVAL;
1195 		}
1196 		if (err)
1197 			goto out;
1198 		lnum = ubifs_next_log_lnum(c, lnum);
1199 	} while (lnum != c->ltail_lnum);
1200 
1201 	err = replay_buds(c);
1202 	if (err)
1203 		goto out;
1204 
1205 	err = apply_replay_list(c);
1206 	if (err)
1207 		goto out;
1208 
1209 	err = set_buds_lprops(c);
1210 	if (err)
1211 		goto out;
1212 
1213 	/*
1214 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1215 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1216 	 * depend on it. This means we have to initialize it to make sure
1217 	 * budgeting works properly.
1218 	 */
1219 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1220 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1221 
1222 	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1223 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1224 		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1225 		(unsigned long)c->highest_inum);
1226 out:
1227 	destroy_replay_list(c);
1228 	destroy_bud_list(c);
1229 	c->replaying = 0;
1230 	return err;
1231 }
1232