xref: /linux/fs/ubifs/replay.c (revision 75b1a8f9d62e50f05d0e4e9f3c8bcde32527ffc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file contains journal replay code. It runs when the file-system is being
13  * mounted and requires no locking.
14  *
15  * The larger is the journal, the longer it takes to scan it, so the longer it
16  * takes to mount UBIFS. This is why the journal has limited size which may be
17  * changed depending on the system requirements. But a larger journal gives
18  * faster I/O speed because it writes the index less frequently. So this is a
19  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
20  * larger is the journal, the more memory its index may consume.
21  */
22 
23 #include "ubifs.h"
24 #include <linux/list_sort.h>
25 #include <crypto/hash.h>
26 #include <crypto/algapi.h>
27 
28 /**
29  * struct replay_entry - replay list entry.
30  * @lnum: logical eraseblock number of the node
31  * @offs: node offset
32  * @len: node length
33  * @deletion: non-zero if this entry corresponds to a node deletion
34  * @sqnum: node sequence number
35  * @list: links the replay list
36  * @key: node key
37  * @nm: directory entry name
38  * @old_size: truncation old size
39  * @new_size: truncation new size
40  *
41  * The replay process first scans all buds and builds the replay list, then
42  * sorts the replay list in nodes sequence number order, and then inserts all
43  * the replay entries to the TNC.
44  */
45 struct replay_entry {
46 	int lnum;
47 	int offs;
48 	int len;
49 	u8 hash[UBIFS_HASH_ARR_SZ];
50 	unsigned int deletion:1;
51 	unsigned long long sqnum;
52 	struct list_head list;
53 	union ubifs_key key;
54 	union {
55 		struct fscrypt_name nm;
56 		struct {
57 			loff_t old_size;
58 			loff_t new_size;
59 		};
60 	};
61 };
62 
63 /**
64  * struct bud_entry - entry in the list of buds to replay.
65  * @list: next bud in the list
66  * @bud: bud description object
67  * @sqnum: reference node sequence number
68  * @free: free bytes in the bud
69  * @dirty: dirty bytes in the bud
70  */
71 struct bud_entry {
72 	struct list_head list;
73 	struct ubifs_bud *bud;
74 	unsigned long long sqnum;
75 	int free;
76 	int dirty;
77 };
78 
79 /**
80  * set_bud_lprops - set free and dirty space used by a bud.
81  * @c: UBIFS file-system description object
82  * @b: bud entry which describes the bud
83  *
84  * This function makes sure the LEB properties of bud @b are set correctly
85  * after the replay. Returns zero in case of success and a negative error code
86  * in case of failure.
87  */
88 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
89 {
90 	const struct ubifs_lprops *lp;
91 	int err = 0, dirty;
92 
93 	ubifs_get_lprops(c);
94 
95 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
96 	if (IS_ERR(lp)) {
97 		err = PTR_ERR(lp);
98 		goto out;
99 	}
100 
101 	dirty = lp->dirty;
102 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
103 		/*
104 		 * The LEB was added to the journal with a starting offset of
105 		 * zero which means the LEB must have been empty. The LEB
106 		 * property values should be @lp->free == @c->leb_size and
107 		 * @lp->dirty == 0, but that is not the case. The reason is that
108 		 * the LEB had been garbage collected before it became the bud,
109 		 * and there was not commit inbetween. The garbage collector
110 		 * resets the free and dirty space without recording it
111 		 * anywhere except lprops, so if there was no commit then
112 		 * lprops does not have that information.
113 		 *
114 		 * We do not need to adjust free space because the scan has told
115 		 * us the exact value which is recorded in the replay entry as
116 		 * @b->free.
117 		 *
118 		 * However we do need to subtract from the dirty space the
119 		 * amount of space that the garbage collector reclaimed, which
120 		 * is the whole LEB minus the amount of space that was free.
121 		 */
122 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
123 			lp->free, lp->dirty);
124 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
125 			lp->free, lp->dirty);
126 		dirty -= c->leb_size - lp->free;
127 		/*
128 		 * If the replay order was perfect the dirty space would now be
129 		 * zero. The order is not perfect because the journal heads
130 		 * race with each other. This is not a problem but is does mean
131 		 * that the dirty space may temporarily exceed c->leb_size
132 		 * during the replay.
133 		 */
134 		if (dirty != 0)
135 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
136 				b->bud->lnum, lp->free, lp->dirty, b->free,
137 				b->dirty);
138 	}
139 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
140 			     lp->flags | LPROPS_TAKEN, 0);
141 	if (IS_ERR(lp)) {
142 		err = PTR_ERR(lp);
143 		goto out;
144 	}
145 
146 	/* Make sure the journal head points to the latest bud */
147 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
148 				     b->bud->lnum, c->leb_size - b->free);
149 
150 out:
151 	ubifs_release_lprops(c);
152 	return err;
153 }
154 
155 /**
156  * set_buds_lprops - set free and dirty space for all replayed buds.
157  * @c: UBIFS file-system description object
158  *
159  * This function sets LEB properties for all replayed buds. Returns zero in
160  * case of success and a negative error code in case of failure.
161  */
162 static int set_buds_lprops(struct ubifs_info *c)
163 {
164 	struct bud_entry *b;
165 	int err;
166 
167 	list_for_each_entry(b, &c->replay_buds, list) {
168 		err = set_bud_lprops(c, b);
169 		if (err)
170 			return err;
171 	}
172 
173 	return 0;
174 }
175 
176 /**
177  * trun_remove_range - apply a replay entry for a truncation to the TNC.
178  * @c: UBIFS file-system description object
179  * @r: replay entry of truncation
180  */
181 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
182 {
183 	unsigned min_blk, max_blk;
184 	union ubifs_key min_key, max_key;
185 	ino_t ino;
186 
187 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
188 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
189 		min_blk += 1;
190 
191 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
192 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
193 		max_blk -= 1;
194 
195 	ino = key_inum(c, &r->key);
196 
197 	data_key_init(c, &min_key, ino, min_blk);
198 	data_key_init(c, &max_key, ino, max_blk);
199 
200 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
201 }
202 
203 /**
204  * inode_still_linked - check whether inode in question will be re-linked.
205  * @c: UBIFS file-system description object
206  * @rino: replay entry to test
207  *
208  * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
209  * This case needs special care, otherwise all references to the inode will
210  * be removed upon the first replay entry of an inode with link count 0
211  * is found.
212  */
213 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
214 {
215 	struct replay_entry *r;
216 
217 	ubifs_assert(c, rino->deletion);
218 	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
219 
220 	/*
221 	 * Find the most recent entry for the inode behind @rino and check
222 	 * whether it is a deletion.
223 	 */
224 	list_for_each_entry_reverse(r, &c->replay_list, list) {
225 		ubifs_assert(c, r->sqnum >= rino->sqnum);
226 		if (key_inum(c, &r->key) == key_inum(c, &rino->key))
227 			return r->deletion == 0;
228 
229 	}
230 
231 	ubifs_assert(c, 0);
232 	return false;
233 }
234 
235 /**
236  * apply_replay_entry - apply a replay entry to the TNC.
237  * @c: UBIFS file-system description object
238  * @r: replay entry to apply
239  *
240  * Apply a replay entry to the TNC.
241  */
242 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
243 {
244 	int err;
245 
246 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
247 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
248 
249 	if (is_hash_key(c, &r->key)) {
250 		if (r->deletion)
251 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
252 		else
253 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
254 					       r->len, r->hash, &r->nm);
255 	} else {
256 		if (r->deletion)
257 			switch (key_type(c, &r->key)) {
258 			case UBIFS_INO_KEY:
259 			{
260 				ino_t inum = key_inum(c, &r->key);
261 
262 				if (inode_still_linked(c, r)) {
263 					err = 0;
264 					break;
265 				}
266 
267 				err = ubifs_tnc_remove_ino(c, inum);
268 				break;
269 			}
270 			case UBIFS_TRUN_KEY:
271 				err = trun_remove_range(c, r);
272 				break;
273 			default:
274 				err = ubifs_tnc_remove(c, &r->key);
275 				break;
276 			}
277 		else
278 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
279 					    r->len, r->hash);
280 		if (err)
281 			return err;
282 
283 		if (c->need_recovery)
284 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
285 						       r->new_size);
286 	}
287 
288 	return err;
289 }
290 
291 /**
292  * replay_entries_cmp - compare 2 replay entries.
293  * @priv: UBIFS file-system description object
294  * @a: first replay entry
295  * @b: second replay entry
296  *
297  * This is a comparios function for 'list_sort()' which compares 2 replay
298  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
299  * greater sequence number and %-1 otherwise.
300  */
301 static int replay_entries_cmp(void *priv, struct list_head *a,
302 			      struct list_head *b)
303 {
304 	struct ubifs_info *c = priv;
305 	struct replay_entry *ra, *rb;
306 
307 	cond_resched();
308 	if (a == b)
309 		return 0;
310 
311 	ra = list_entry(a, struct replay_entry, list);
312 	rb = list_entry(b, struct replay_entry, list);
313 	ubifs_assert(c, ra->sqnum != rb->sqnum);
314 	if (ra->sqnum > rb->sqnum)
315 		return 1;
316 	return -1;
317 }
318 
319 /**
320  * apply_replay_list - apply the replay list to the TNC.
321  * @c: UBIFS file-system description object
322  *
323  * Apply all entries in the replay list to the TNC. Returns zero in case of
324  * success and a negative error code in case of failure.
325  */
326 static int apply_replay_list(struct ubifs_info *c)
327 {
328 	struct replay_entry *r;
329 	int err;
330 
331 	list_sort(c, &c->replay_list, &replay_entries_cmp);
332 
333 	list_for_each_entry(r, &c->replay_list, list) {
334 		cond_resched();
335 
336 		err = apply_replay_entry(c, r);
337 		if (err)
338 			return err;
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  * destroy_replay_list - destroy the replay.
346  * @c: UBIFS file-system description object
347  *
348  * Destroy the replay list.
349  */
350 static void destroy_replay_list(struct ubifs_info *c)
351 {
352 	struct replay_entry *r, *tmp;
353 
354 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
355 		if (is_hash_key(c, &r->key))
356 			kfree(fname_name(&r->nm));
357 		list_del(&r->list);
358 		kfree(r);
359 	}
360 }
361 
362 /**
363  * insert_node - insert a node to the replay list
364  * @c: UBIFS file-system description object
365  * @lnum: node logical eraseblock number
366  * @offs: node offset
367  * @len: node length
368  * @key: node key
369  * @sqnum: sequence number
370  * @deletion: non-zero if this is a deletion
371  * @used: number of bytes in use in a LEB
372  * @old_size: truncation old size
373  * @new_size: truncation new size
374  *
375  * This function inserts a scanned non-direntry node to the replay list. The
376  * replay list contains @struct replay_entry elements, and we sort this list in
377  * sequence number order before applying it. The replay list is applied at the
378  * very end of the replay process. Since the list is sorted in sequence number
379  * order, the older modifications are applied first. This function returns zero
380  * in case of success and a negative error code in case of failure.
381  */
382 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
383 		       const u8 *hash, union ubifs_key *key,
384 		       unsigned long long sqnum, int deletion, int *used,
385 		       loff_t old_size, loff_t new_size)
386 {
387 	struct replay_entry *r;
388 
389 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
390 
391 	if (key_inum(c, key) >= c->highest_inum)
392 		c->highest_inum = key_inum(c, key);
393 
394 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
395 	if (!r)
396 		return -ENOMEM;
397 
398 	if (!deletion)
399 		*used += ALIGN(len, 8);
400 	r->lnum = lnum;
401 	r->offs = offs;
402 	r->len = len;
403 	ubifs_copy_hash(c, hash, r->hash);
404 	r->deletion = !!deletion;
405 	r->sqnum = sqnum;
406 	key_copy(c, key, &r->key);
407 	r->old_size = old_size;
408 	r->new_size = new_size;
409 
410 	list_add_tail(&r->list, &c->replay_list);
411 	return 0;
412 }
413 
414 /**
415  * insert_dent - insert a directory entry node into the replay list.
416  * @c: UBIFS file-system description object
417  * @lnum: node logical eraseblock number
418  * @offs: node offset
419  * @len: node length
420  * @key: node key
421  * @name: directory entry name
422  * @nlen: directory entry name length
423  * @sqnum: sequence number
424  * @deletion: non-zero if this is a deletion
425  * @used: number of bytes in use in a LEB
426  *
427  * This function inserts a scanned directory entry node or an extended
428  * attribute entry to the replay list. Returns zero in case of success and a
429  * negative error code in case of failure.
430  */
431 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
432 		       const u8 *hash, union ubifs_key *key,
433 		       const char *name, int nlen, unsigned long long sqnum,
434 		       int deletion, int *used)
435 {
436 	struct replay_entry *r;
437 	char *nbuf;
438 
439 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
440 	if (key_inum(c, key) >= c->highest_inum)
441 		c->highest_inum = key_inum(c, key);
442 
443 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
444 	if (!r)
445 		return -ENOMEM;
446 
447 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
448 	if (!nbuf) {
449 		kfree(r);
450 		return -ENOMEM;
451 	}
452 
453 	if (!deletion)
454 		*used += ALIGN(len, 8);
455 	r->lnum = lnum;
456 	r->offs = offs;
457 	r->len = len;
458 	ubifs_copy_hash(c, hash, r->hash);
459 	r->deletion = !!deletion;
460 	r->sqnum = sqnum;
461 	key_copy(c, key, &r->key);
462 	fname_len(&r->nm) = nlen;
463 	memcpy(nbuf, name, nlen);
464 	nbuf[nlen] = '\0';
465 	fname_name(&r->nm) = nbuf;
466 
467 	list_add_tail(&r->list, &c->replay_list);
468 	return 0;
469 }
470 
471 /**
472  * ubifs_validate_entry - validate directory or extended attribute entry node.
473  * @c: UBIFS file-system description object
474  * @dent: the node to validate
475  *
476  * This function validates directory or extended attribute entry node @dent.
477  * Returns zero if the node is all right and a %-EINVAL if not.
478  */
479 int ubifs_validate_entry(struct ubifs_info *c,
480 			 const struct ubifs_dent_node *dent)
481 {
482 	int key_type = key_type_flash(c, dent->key);
483 	int nlen = le16_to_cpu(dent->nlen);
484 
485 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
486 	    dent->type >= UBIFS_ITYPES_CNT ||
487 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
488 	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
489 	    le64_to_cpu(dent->inum) > MAX_INUM) {
490 		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
491 			  "directory entry" : "extended attribute entry");
492 		return -EINVAL;
493 	}
494 
495 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
496 		ubifs_err(c, "bad key type %d", key_type);
497 		return -EINVAL;
498 	}
499 
500 	return 0;
501 }
502 
503 /**
504  * is_last_bud - check if the bud is the last in the journal head.
505  * @c: UBIFS file-system description object
506  * @bud: bud description object
507  *
508  * This function checks if bud @bud is the last bud in its journal head. This
509  * information is then used by 'replay_bud()' to decide whether the bud can
510  * have corruptions or not. Indeed, only last buds can be corrupted by power
511  * cuts. Returns %1 if this is the last bud, and %0 if not.
512  */
513 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
514 {
515 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
516 	struct ubifs_bud *next;
517 	uint32_t data;
518 	int err;
519 
520 	if (list_is_last(&bud->list, &jh->buds_list))
521 		return 1;
522 
523 	/*
524 	 * The following is a quirk to make sure we work correctly with UBIFS
525 	 * images used with older UBIFS.
526 	 *
527 	 * Normally, the last bud will be the last in the journal head's list
528 	 * of bud. However, there is one exception if the UBIFS image belongs
529 	 * to older UBIFS. This is fairly unlikely: one would need to use old
530 	 * UBIFS, then have a power cut exactly at the right point, and then
531 	 * try to mount this image with new UBIFS.
532 	 *
533 	 * The exception is: it is possible to have 2 buds A and B, A goes
534 	 * before B, and B is the last, bud B is contains no data, and bud A is
535 	 * corrupted at the end. The reason is that in older versions when the
536 	 * journal code switched the next bud (from A to B), it first added a
537 	 * log reference node for the new bud (B), and only after this it
538 	 * synchronized the write-buffer of current bud (A). But later this was
539 	 * changed and UBIFS started to always synchronize the write-buffer of
540 	 * the bud (A) before writing the log reference for the new bud (B).
541 	 *
542 	 * But because older UBIFS always synchronized A's write-buffer before
543 	 * writing to B, we can recognize this exceptional situation but
544 	 * checking the contents of bud B - if it is empty, then A can be
545 	 * treated as the last and we can recover it.
546 	 *
547 	 * TODO: remove this piece of code in a couple of years (today it is
548 	 * 16.05.2011).
549 	 */
550 	next = list_entry(bud->list.next, struct ubifs_bud, list);
551 	if (!list_is_last(&next->list, &jh->buds_list))
552 		return 0;
553 
554 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
555 	if (err)
556 		return 0;
557 
558 	return data == 0xFFFFFFFF;
559 }
560 
561 /* authenticate_sleb_hash is split out for stack usage */
562 static int authenticate_sleb_hash(struct ubifs_info *c, struct shash_desc *log_hash, u8 *hash)
563 {
564 	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
565 
566 	hash_desc->tfm = c->hash_tfm;
567 
568 	ubifs_shash_copy_state(c, log_hash, hash_desc);
569 	return crypto_shash_final(hash_desc, hash);
570 }
571 
572 /**
573  * authenticate_sleb - authenticate one scan LEB
574  * @c: UBIFS file-system description object
575  * @sleb: the scan LEB to authenticate
576  * @log_hash:
577  * @is_last: if true, this is the last LEB
578  *
579  * This function iterates over the buds of a single LEB authenticating all buds
580  * with the authentication nodes on this LEB. Authentication nodes are written
581  * after some buds and contain a HMAC covering the authentication node itself
582  * and the buds between the last authentication node and the current
583  * authentication node. It can happen that the last buds cannot be authenticated
584  * because a powercut happened when some nodes were written but not the
585  * corresponding authentication node. This function returns the number of nodes
586  * that could be authenticated or a negative error code.
587  */
588 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
589 			     struct shash_desc *log_hash, int is_last)
590 {
591 	int n_not_auth = 0;
592 	struct ubifs_scan_node *snod;
593 	int n_nodes = 0;
594 	int err;
595 	u8 hash[UBIFS_HASH_ARR_SZ];
596 	u8 hmac[UBIFS_HMAC_ARR_SZ];
597 
598 	if (!ubifs_authenticated(c))
599 		return sleb->nodes_cnt;
600 
601 	list_for_each_entry(snod, &sleb->nodes, list) {
602 
603 		n_nodes++;
604 
605 		if (snod->type == UBIFS_AUTH_NODE) {
606 			struct ubifs_auth_node *auth = snod->node;
607 
608 			err = authenticate_sleb_hash(c, log_hash, hash);
609 			if (err)
610 				goto out;
611 
612 			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
613 						      c->hash_len, hmac);
614 			if (err)
615 				goto out;
616 
617 			err = ubifs_check_hmac(c, auth->hmac, hmac);
618 			if (err) {
619 				err = -EPERM;
620 				goto out;
621 			}
622 			n_not_auth = 0;
623 		} else {
624 			err = crypto_shash_update(log_hash, snod->node,
625 						  snod->len);
626 			if (err)
627 				goto out;
628 			n_not_auth++;
629 		}
630 	}
631 
632 	/*
633 	 * A powercut can happen when some nodes were written, but not yet
634 	 * the corresponding authentication node. This may only happen on
635 	 * the last bud though.
636 	 */
637 	if (n_not_auth) {
638 		if (is_last) {
639 			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
640 				n_not_auth, sleb->lnum);
641 			err = 0;
642 		} else {
643 			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
644 				n_not_auth, sleb->lnum);
645 			err = -EPERM;
646 		}
647 	} else {
648 		err = 0;
649 	}
650 out:
651 	return err ? err : n_nodes - n_not_auth;
652 }
653 
654 /**
655  * replay_bud - replay a bud logical eraseblock.
656  * @c: UBIFS file-system description object
657  * @b: bud entry which describes the bud
658  *
659  * This function replays bud @bud, recovers it if needed, and adds all nodes
660  * from this bud to the replay list. Returns zero in case of success and a
661  * negative error code in case of failure.
662  */
663 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
664 {
665 	int is_last = is_last_bud(c, b->bud);
666 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
667 	int n_nodes, n = 0;
668 	struct ubifs_scan_leb *sleb;
669 	struct ubifs_scan_node *snod;
670 
671 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
672 		lnum, b->bud->jhead, offs, is_last);
673 
674 	if (c->need_recovery && is_last)
675 		/*
676 		 * Recover only last LEBs in the journal heads, because power
677 		 * cuts may cause corruptions only in these LEBs, because only
678 		 * these LEBs could possibly be written to at the power cut
679 		 * time.
680 		 */
681 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
682 	else
683 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
684 	if (IS_ERR(sleb))
685 		return PTR_ERR(sleb);
686 
687 	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
688 	if (n_nodes < 0) {
689 		err = n_nodes;
690 		goto out;
691 	}
692 
693 	ubifs_shash_copy_state(c, b->bud->log_hash,
694 			       c->jheads[b->bud->jhead].log_hash);
695 
696 	/*
697 	 * The bud does not have to start from offset zero - the beginning of
698 	 * the 'lnum' LEB may contain previously committed data. One of the
699 	 * things we have to do in replay is to correctly update lprops with
700 	 * newer information about this LEB.
701 	 *
702 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
703 	 * bytes of free space because it only contain information about
704 	 * committed data.
705 	 *
706 	 * But we know that real amount of free space is 'c->leb_size -
707 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
708 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
709 	 * how much of these data are dirty and update lprops with this
710 	 * information.
711 	 *
712 	 * The dirt in that LEB region is comprised of padding nodes, deletion
713 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
714 	 * nodes in this LEB. So instead of calculating clean space, we
715 	 * calculate used space ('used' variable).
716 	 */
717 
718 	list_for_each_entry(snod, &sleb->nodes, list) {
719 		u8 hash[UBIFS_HASH_ARR_SZ];
720 		int deletion = 0;
721 
722 		cond_resched();
723 
724 		if (snod->sqnum >= SQNUM_WATERMARK) {
725 			ubifs_err(c, "file system's life ended");
726 			goto out_dump;
727 		}
728 
729 		ubifs_node_calc_hash(c, snod->node, hash);
730 
731 		if (snod->sqnum > c->max_sqnum)
732 			c->max_sqnum = snod->sqnum;
733 
734 		switch (snod->type) {
735 		case UBIFS_INO_NODE:
736 		{
737 			struct ubifs_ino_node *ino = snod->node;
738 			loff_t new_size = le64_to_cpu(ino->size);
739 
740 			if (le32_to_cpu(ino->nlink) == 0)
741 				deletion = 1;
742 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
743 					  &snod->key, snod->sqnum, deletion,
744 					  &used, 0, new_size);
745 			break;
746 		}
747 		case UBIFS_DATA_NODE:
748 		{
749 			struct ubifs_data_node *dn = snod->node;
750 			loff_t new_size = le32_to_cpu(dn->size) +
751 					  key_block(c, &snod->key) *
752 					  UBIFS_BLOCK_SIZE;
753 
754 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
755 					  &snod->key, snod->sqnum, deletion,
756 					  &used, 0, new_size);
757 			break;
758 		}
759 		case UBIFS_DENT_NODE:
760 		case UBIFS_XENT_NODE:
761 		{
762 			struct ubifs_dent_node *dent = snod->node;
763 
764 			err = ubifs_validate_entry(c, dent);
765 			if (err)
766 				goto out_dump;
767 
768 			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
769 					  &snod->key, dent->name,
770 					  le16_to_cpu(dent->nlen), snod->sqnum,
771 					  !le64_to_cpu(dent->inum), &used);
772 			break;
773 		}
774 		case UBIFS_TRUN_NODE:
775 		{
776 			struct ubifs_trun_node *trun = snod->node;
777 			loff_t old_size = le64_to_cpu(trun->old_size);
778 			loff_t new_size = le64_to_cpu(trun->new_size);
779 			union ubifs_key key;
780 
781 			/* Validate truncation node */
782 			if (old_size < 0 || old_size > c->max_inode_sz ||
783 			    new_size < 0 || new_size > c->max_inode_sz ||
784 			    old_size <= new_size) {
785 				ubifs_err(c, "bad truncation node");
786 				goto out_dump;
787 			}
788 
789 			/*
790 			 * Create a fake truncation key just to use the same
791 			 * functions which expect nodes to have keys.
792 			 */
793 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
794 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
795 					  &key, snod->sqnum, 1, &used,
796 					  old_size, new_size);
797 			break;
798 		}
799 		case UBIFS_AUTH_NODE:
800 			break;
801 		default:
802 			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
803 				  snod->type, lnum, snod->offs);
804 			err = -EINVAL;
805 			goto out_dump;
806 		}
807 		if (err)
808 			goto out;
809 
810 		n++;
811 		if (n == n_nodes)
812 			break;
813 	}
814 
815 	ubifs_assert(c, ubifs_search_bud(c, lnum));
816 	ubifs_assert(c, sleb->endpt - offs >= used);
817 	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
818 
819 	b->dirty = sleb->endpt - offs - used;
820 	b->free = c->leb_size - sleb->endpt;
821 	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
822 		lnum, b->dirty, b->free);
823 
824 out:
825 	ubifs_scan_destroy(sleb);
826 	return err;
827 
828 out_dump:
829 	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
830 	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
831 	ubifs_scan_destroy(sleb);
832 	return -EINVAL;
833 }
834 
835 /**
836  * replay_buds - replay all buds.
837  * @c: UBIFS file-system description object
838  *
839  * This function returns zero in case of success and a negative error code in
840  * case of failure.
841  */
842 static int replay_buds(struct ubifs_info *c)
843 {
844 	struct bud_entry *b;
845 	int err;
846 	unsigned long long prev_sqnum = 0;
847 
848 	list_for_each_entry(b, &c->replay_buds, list) {
849 		err = replay_bud(c, b);
850 		if (err)
851 			return err;
852 
853 		ubifs_assert(c, b->sqnum > prev_sqnum);
854 		prev_sqnum = b->sqnum;
855 	}
856 
857 	return 0;
858 }
859 
860 /**
861  * destroy_bud_list - destroy the list of buds to replay.
862  * @c: UBIFS file-system description object
863  */
864 static void destroy_bud_list(struct ubifs_info *c)
865 {
866 	struct bud_entry *b;
867 
868 	while (!list_empty(&c->replay_buds)) {
869 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
870 		list_del(&b->list);
871 		kfree(b);
872 	}
873 }
874 
875 /**
876  * add_replay_bud - add a bud to the list of buds to replay.
877  * @c: UBIFS file-system description object
878  * @lnum: bud logical eraseblock number to replay
879  * @offs: bud start offset
880  * @jhead: journal head to which this bud belongs
881  * @sqnum: reference node sequence number
882  *
883  * This function returns zero in case of success and a negative error code in
884  * case of failure.
885  */
886 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
887 			  unsigned long long sqnum)
888 {
889 	struct ubifs_bud *bud;
890 	struct bud_entry *b;
891 	int err;
892 
893 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
894 
895 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
896 	if (!bud)
897 		return -ENOMEM;
898 
899 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
900 	if (!b) {
901 		err = -ENOMEM;
902 		goto out;
903 	}
904 
905 	bud->lnum = lnum;
906 	bud->start = offs;
907 	bud->jhead = jhead;
908 	bud->log_hash = ubifs_hash_get_desc(c);
909 	if (IS_ERR(bud->log_hash)) {
910 		err = PTR_ERR(bud->log_hash);
911 		goto out;
912 	}
913 
914 	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
915 
916 	ubifs_add_bud(c, bud);
917 
918 	b->bud = bud;
919 	b->sqnum = sqnum;
920 	list_add_tail(&b->list, &c->replay_buds);
921 
922 	return 0;
923 out:
924 	kfree(bud);
925 	kfree(b);
926 
927 	return err;
928 }
929 
930 /**
931  * validate_ref - validate a reference node.
932  * @c: UBIFS file-system description object
933  * @ref: the reference node to validate
934  *
935  * This function returns %1 if a bud reference already exists for the LEB. %0 is
936  * returned if the reference node is new, otherwise %-EINVAL is returned if
937  * validation failed.
938  */
939 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
940 {
941 	struct ubifs_bud *bud;
942 	int lnum = le32_to_cpu(ref->lnum);
943 	unsigned int offs = le32_to_cpu(ref->offs);
944 	unsigned int jhead = le32_to_cpu(ref->jhead);
945 
946 	/*
947 	 * ref->offs may point to the end of LEB when the journal head points
948 	 * to the end of LEB and we write reference node for it during commit.
949 	 * So this is why we require 'offs > c->leb_size'.
950 	 */
951 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
952 	    lnum < c->main_first || offs > c->leb_size ||
953 	    offs & (c->min_io_size - 1))
954 		return -EINVAL;
955 
956 	/* Make sure we have not already looked at this bud */
957 	bud = ubifs_search_bud(c, lnum);
958 	if (bud) {
959 		if (bud->jhead == jhead && bud->start <= offs)
960 			return 1;
961 		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
962 		return -EINVAL;
963 	}
964 
965 	return 0;
966 }
967 
968 /**
969  * replay_log_leb - replay a log logical eraseblock.
970  * @c: UBIFS file-system description object
971  * @lnum: log logical eraseblock to replay
972  * @offs: offset to start replaying from
973  * @sbuf: scan buffer
974  *
975  * This function replays a log LEB and returns zero in case of success, %1 if
976  * this is the last LEB in the log, and a negative error code in case of
977  * failure.
978  */
979 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
980 {
981 	int err;
982 	struct ubifs_scan_leb *sleb;
983 	struct ubifs_scan_node *snod;
984 	const struct ubifs_cs_node *node;
985 
986 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
987 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
988 	if (IS_ERR(sleb)) {
989 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
990 			return PTR_ERR(sleb);
991 		/*
992 		 * Note, the below function will recover this log LEB only if
993 		 * it is the last, because unclean reboots can possibly corrupt
994 		 * only the tail of the log.
995 		 */
996 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
997 		if (IS_ERR(sleb))
998 			return PTR_ERR(sleb);
999 	}
1000 
1001 	if (sleb->nodes_cnt == 0) {
1002 		err = 1;
1003 		goto out;
1004 	}
1005 
1006 	node = sleb->buf;
1007 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1008 	if (c->cs_sqnum == 0) {
1009 		/*
1010 		 * This is the first log LEB we are looking at, make sure that
1011 		 * the first node is a commit start node. Also record its
1012 		 * sequence number so that UBIFS can determine where the log
1013 		 * ends, because all nodes which were have higher sequence
1014 		 * numbers.
1015 		 */
1016 		if (snod->type != UBIFS_CS_NODE) {
1017 			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1018 				  lnum, offs);
1019 			goto out_dump;
1020 		}
1021 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1022 			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1023 				  lnum, offs,
1024 				  (unsigned long long)le64_to_cpu(node->cmt_no),
1025 				  c->cmt_no);
1026 			goto out_dump;
1027 		}
1028 
1029 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1030 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1031 
1032 		err = ubifs_shash_init(c, c->log_hash);
1033 		if (err)
1034 			goto out;
1035 
1036 		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1037 		if (err < 0)
1038 			goto out;
1039 	}
1040 
1041 	if (snod->sqnum < c->cs_sqnum) {
1042 		/*
1043 		 * This means that we reached end of log and now
1044 		 * look to the older log data, which was already
1045 		 * committed but the eraseblock was not erased (UBIFS
1046 		 * only un-maps it). So this basically means we have to
1047 		 * exit with "end of log" code.
1048 		 */
1049 		err = 1;
1050 		goto out;
1051 	}
1052 
1053 	/* Make sure the first node sits at offset zero of the LEB */
1054 	if (snod->offs != 0) {
1055 		ubifs_err(c, "first node is not at zero offset");
1056 		goto out_dump;
1057 	}
1058 
1059 	list_for_each_entry(snod, &sleb->nodes, list) {
1060 		cond_resched();
1061 
1062 		if (snod->sqnum >= SQNUM_WATERMARK) {
1063 			ubifs_err(c, "file system's life ended");
1064 			goto out_dump;
1065 		}
1066 
1067 		if (snod->sqnum < c->cs_sqnum) {
1068 			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1069 				  snod->sqnum, c->cs_sqnum);
1070 			goto out_dump;
1071 		}
1072 
1073 		if (snod->sqnum > c->max_sqnum)
1074 			c->max_sqnum = snod->sqnum;
1075 
1076 		switch (snod->type) {
1077 		case UBIFS_REF_NODE: {
1078 			const struct ubifs_ref_node *ref = snod->node;
1079 
1080 			err = validate_ref(c, ref);
1081 			if (err == 1)
1082 				break; /* Already have this bud */
1083 			if (err)
1084 				goto out_dump;
1085 
1086 			err = ubifs_shash_update(c, c->log_hash, ref,
1087 						 UBIFS_REF_NODE_SZ);
1088 			if (err)
1089 				goto out;
1090 
1091 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1092 					     le32_to_cpu(ref->offs),
1093 					     le32_to_cpu(ref->jhead),
1094 					     snod->sqnum);
1095 			if (err)
1096 				goto out;
1097 
1098 			break;
1099 		}
1100 		case UBIFS_CS_NODE:
1101 			/* Make sure it sits at the beginning of LEB */
1102 			if (snod->offs != 0) {
1103 				ubifs_err(c, "unexpected node in log");
1104 				goto out_dump;
1105 			}
1106 			break;
1107 		default:
1108 			ubifs_err(c, "unexpected node in log");
1109 			goto out_dump;
1110 		}
1111 	}
1112 
1113 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1114 		c->lhead_lnum = lnum;
1115 		c->lhead_offs = sleb->endpt;
1116 	}
1117 
1118 	err = !sleb->endpt;
1119 out:
1120 	ubifs_scan_destroy(sleb);
1121 	return err;
1122 
1123 out_dump:
1124 	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1125 		  lnum, offs + snod->offs);
1126 	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1127 	ubifs_scan_destroy(sleb);
1128 	return -EINVAL;
1129 }
1130 
1131 /**
1132  * take_ihead - update the status of the index head in lprops to 'taken'.
1133  * @c: UBIFS file-system description object
1134  *
1135  * This function returns the amount of free space in the index head LEB or a
1136  * negative error code.
1137  */
1138 static int take_ihead(struct ubifs_info *c)
1139 {
1140 	const struct ubifs_lprops *lp;
1141 	int err, free;
1142 
1143 	ubifs_get_lprops(c);
1144 
1145 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1146 	if (IS_ERR(lp)) {
1147 		err = PTR_ERR(lp);
1148 		goto out;
1149 	}
1150 
1151 	free = lp->free;
1152 
1153 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1154 			     lp->flags | LPROPS_TAKEN, 0);
1155 	if (IS_ERR(lp)) {
1156 		err = PTR_ERR(lp);
1157 		goto out;
1158 	}
1159 
1160 	err = free;
1161 out:
1162 	ubifs_release_lprops(c);
1163 	return err;
1164 }
1165 
1166 /**
1167  * ubifs_replay_journal - replay journal.
1168  * @c: UBIFS file-system description object
1169  *
1170  * This function scans the journal, replays and cleans it up. It makes sure all
1171  * memory data structures related to uncommitted journal are built (dirty TNC
1172  * tree, tree of buds, modified lprops, etc).
1173  */
1174 int ubifs_replay_journal(struct ubifs_info *c)
1175 {
1176 	int err, lnum, free;
1177 
1178 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1179 
1180 	/* Update the status of the index head in lprops to 'taken' */
1181 	free = take_ihead(c);
1182 	if (free < 0)
1183 		return free; /* Error code */
1184 
1185 	if (c->ihead_offs != c->leb_size - free) {
1186 		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1187 			  c->ihead_offs);
1188 		return -EINVAL;
1189 	}
1190 
1191 	dbg_mnt("start replaying the journal");
1192 	c->replaying = 1;
1193 	lnum = c->ltail_lnum = c->lhead_lnum;
1194 
1195 	do {
1196 		err = replay_log_leb(c, lnum, 0, c->sbuf);
1197 		if (err == 1) {
1198 			if (lnum != c->lhead_lnum)
1199 				/* We hit the end of the log */
1200 				break;
1201 
1202 			/*
1203 			 * The head of the log must always start with the
1204 			 * "commit start" node on a properly formatted UBIFS.
1205 			 * But we found no nodes at all, which means that
1206 			 * something went wrong and we cannot proceed mounting
1207 			 * the file-system.
1208 			 */
1209 			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1210 				  lnum, 0);
1211 			err = -EINVAL;
1212 		}
1213 		if (err)
1214 			goto out;
1215 		lnum = ubifs_next_log_lnum(c, lnum);
1216 	} while (lnum != c->ltail_lnum);
1217 
1218 	err = replay_buds(c);
1219 	if (err)
1220 		goto out;
1221 
1222 	err = apply_replay_list(c);
1223 	if (err)
1224 		goto out;
1225 
1226 	err = set_buds_lprops(c);
1227 	if (err)
1228 		goto out;
1229 
1230 	/*
1231 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1232 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1233 	 * depend on it. This means we have to initialize it to make sure
1234 	 * budgeting works properly.
1235 	 */
1236 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1237 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1238 
1239 	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1240 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1241 		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1242 		(unsigned long)c->highest_inum);
1243 out:
1244 	destroy_replay_list(c);
1245 	destroy_bud_list(c);
1246 	c->replaying = 0;
1247 	return err;
1248 }
1249