xref: /linux/fs/ubifs/replay.c (revision 40d269c000bda9fcd276a0412a9cebd3f6e344c5)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file contains journal replay code. It runs when the file-system is being
13  * mounted and requires no locking.
14  *
15  * The larger is the journal, the longer it takes to scan it, so the longer it
16  * takes to mount UBIFS. This is why the journal has limited size which may be
17  * changed depending on the system requirements. But a larger journal gives
18  * faster I/O speed because it writes the index less frequently. So this is a
19  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
20  * larger is the journal, the more memory its index may consume.
21  */
22 
23 #include "ubifs.h"
24 #include <linux/list_sort.h>
25 #include <crypto/hash.h>
26 
27 /**
28  * struct replay_entry - replay list entry.
29  * @lnum: logical eraseblock number of the node
30  * @offs: node offset
31  * @len: node length
32  * @deletion: non-zero if this entry corresponds to a node deletion
33  * @sqnum: node sequence number
34  * @list: links the replay list
35  * @key: node key
36  * @nm: directory entry name
37  * @old_size: truncation old size
38  * @new_size: truncation new size
39  *
40  * The replay process first scans all buds and builds the replay list, then
41  * sorts the replay list in nodes sequence number order, and then inserts all
42  * the replay entries to the TNC.
43  */
44 struct replay_entry {
45 	int lnum;
46 	int offs;
47 	int len;
48 	u8 hash[UBIFS_HASH_ARR_SZ];
49 	unsigned int deletion:1;
50 	unsigned long long sqnum;
51 	struct list_head list;
52 	union ubifs_key key;
53 	union {
54 		struct fscrypt_name nm;
55 		struct {
56 			loff_t old_size;
57 			loff_t new_size;
58 		};
59 	};
60 };
61 
62 /**
63  * struct bud_entry - entry in the list of buds to replay.
64  * @list: next bud in the list
65  * @bud: bud description object
66  * @sqnum: reference node sequence number
67  * @free: free bytes in the bud
68  * @dirty: dirty bytes in the bud
69  */
70 struct bud_entry {
71 	struct list_head list;
72 	struct ubifs_bud *bud;
73 	unsigned long long sqnum;
74 	int free;
75 	int dirty;
76 };
77 
78 /**
79  * set_bud_lprops - set free and dirty space used by a bud.
80  * @c: UBIFS file-system description object
81  * @b: bud entry which describes the bud
82  *
83  * This function makes sure the LEB properties of bud @b are set correctly
84  * after the replay. Returns zero in case of success and a negative error code
85  * in case of failure.
86  */
87 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
88 {
89 	const struct ubifs_lprops *lp;
90 	int err = 0, dirty;
91 
92 	ubifs_get_lprops(c);
93 
94 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
95 	if (IS_ERR(lp)) {
96 		err = PTR_ERR(lp);
97 		goto out;
98 	}
99 
100 	dirty = lp->dirty;
101 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
102 		/*
103 		 * The LEB was added to the journal with a starting offset of
104 		 * zero which means the LEB must have been empty. The LEB
105 		 * property values should be @lp->free == @c->leb_size and
106 		 * @lp->dirty == 0, but that is not the case. The reason is that
107 		 * the LEB had been garbage collected before it became the bud,
108 		 * and there was no commit in between. The garbage collector
109 		 * resets the free and dirty space without recording it
110 		 * anywhere except lprops, so if there was no commit then
111 		 * lprops does not have that information.
112 		 *
113 		 * We do not need to adjust free space because the scan has told
114 		 * us the exact value which is recorded in the replay entry as
115 		 * @b->free.
116 		 *
117 		 * However we do need to subtract from the dirty space the
118 		 * amount of space that the garbage collector reclaimed, which
119 		 * is the whole LEB minus the amount of space that was free.
120 		 */
121 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
122 			lp->free, lp->dirty);
123 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
124 			lp->free, lp->dirty);
125 		dirty -= c->leb_size - lp->free;
126 		/*
127 		 * If the replay order was perfect the dirty space would now be
128 		 * zero. The order is not perfect because the journal heads
129 		 * race with each other. This is not a problem but is does mean
130 		 * that the dirty space may temporarily exceed c->leb_size
131 		 * during the replay.
132 		 */
133 		if (dirty != 0)
134 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
135 				b->bud->lnum, lp->free, lp->dirty, b->free,
136 				b->dirty);
137 	}
138 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
139 			     lp->flags | LPROPS_TAKEN, 0);
140 	if (IS_ERR(lp)) {
141 		err = PTR_ERR(lp);
142 		goto out;
143 	}
144 
145 	/* Make sure the journal head points to the latest bud */
146 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
147 				     b->bud->lnum, c->leb_size - b->free);
148 
149 out:
150 	ubifs_release_lprops(c);
151 	return err;
152 }
153 
154 /**
155  * set_buds_lprops - set free and dirty space for all replayed buds.
156  * @c: UBIFS file-system description object
157  *
158  * This function sets LEB properties for all replayed buds. Returns zero in
159  * case of success and a negative error code in case of failure.
160  */
161 static int set_buds_lprops(struct ubifs_info *c)
162 {
163 	struct bud_entry *b;
164 	int err;
165 
166 	list_for_each_entry(b, &c->replay_buds, list) {
167 		err = set_bud_lprops(c, b);
168 		if (err)
169 			return err;
170 	}
171 
172 	return 0;
173 }
174 
175 /**
176  * trun_remove_range - apply a replay entry for a truncation to the TNC.
177  * @c: UBIFS file-system description object
178  * @r: replay entry of truncation
179  */
180 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
181 {
182 	unsigned min_blk, max_blk;
183 	union ubifs_key min_key, max_key;
184 	ino_t ino;
185 
186 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
187 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
188 		min_blk += 1;
189 
190 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
191 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
192 		max_blk -= 1;
193 
194 	ino = key_inum(c, &r->key);
195 
196 	data_key_init(c, &min_key, ino, min_blk);
197 	data_key_init(c, &max_key, ino, max_blk);
198 
199 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
200 }
201 
202 /**
203  * inode_still_linked - check whether inode in question will be re-linked.
204  * @c: UBIFS file-system description object
205  * @rino: replay entry to test
206  *
207  * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
208  * This case needs special care, otherwise all references to the inode will
209  * be removed upon the first replay entry of an inode with link count 0
210  * is found.
211  */
212 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
213 {
214 	struct replay_entry *r;
215 
216 	ubifs_assert(c, rino->deletion);
217 	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
218 
219 	/*
220 	 * Find the most recent entry for the inode behind @rino and check
221 	 * whether it is a deletion.
222 	 */
223 	list_for_each_entry_reverse(r, &c->replay_list, list) {
224 		ubifs_assert(c, r->sqnum >= rino->sqnum);
225 		if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
226 		    key_type(c, &r->key) == UBIFS_INO_KEY)
227 			return r->deletion == 0;
228 
229 	}
230 
231 	ubifs_assert(c, 0);
232 	return false;
233 }
234 
235 /**
236  * apply_replay_entry - apply a replay entry to the TNC.
237  * @c: UBIFS file-system description object
238  * @r: replay entry to apply
239  *
240  * Apply a replay entry to the TNC.
241  */
242 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
243 {
244 	int err;
245 
246 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
247 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
248 
249 	if (is_hash_key(c, &r->key)) {
250 		if (r->deletion)
251 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
252 		else
253 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
254 					       r->len, r->hash, &r->nm);
255 	} else {
256 		if (r->deletion)
257 			switch (key_type(c, &r->key)) {
258 			case UBIFS_INO_KEY:
259 			{
260 				ino_t inum = key_inum(c, &r->key);
261 
262 				if (inode_still_linked(c, r)) {
263 					err = 0;
264 					break;
265 				}
266 
267 				err = ubifs_tnc_remove_ino(c, inum);
268 				break;
269 			}
270 			case UBIFS_TRUN_KEY:
271 				err = trun_remove_range(c, r);
272 				break;
273 			default:
274 				err = ubifs_tnc_remove(c, &r->key);
275 				break;
276 			}
277 		else
278 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
279 					    r->len, r->hash);
280 		if (err)
281 			return err;
282 
283 		if (c->need_recovery)
284 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
285 						       r->new_size);
286 	}
287 
288 	return err;
289 }
290 
291 /**
292  * replay_entries_cmp - compare 2 replay entries.
293  * @priv: UBIFS file-system description object
294  * @a: first replay entry
295  * @b: second replay entry
296  *
297  * This is a comparios function for 'list_sort()' which compares 2 replay
298  * entries @a and @b by comparing their sequence number.  Returns %1 if @a has
299  * greater sequence number and %-1 otherwise.
300  */
301 static int replay_entries_cmp(void *priv, const struct list_head *a,
302 			      const struct list_head *b)
303 {
304 	struct ubifs_info *c = priv;
305 	struct replay_entry *ra, *rb;
306 
307 	cond_resched();
308 	if (a == b)
309 		return 0;
310 
311 	ra = list_entry(a, struct replay_entry, list);
312 	rb = list_entry(b, struct replay_entry, list);
313 	ubifs_assert(c, ra->sqnum != rb->sqnum);
314 	if (ra->sqnum > rb->sqnum)
315 		return 1;
316 	return -1;
317 }
318 
319 /**
320  * apply_replay_list - apply the replay list to the TNC.
321  * @c: UBIFS file-system description object
322  *
323  * Apply all entries in the replay list to the TNC. Returns zero in case of
324  * success and a negative error code in case of failure.
325  */
326 static int apply_replay_list(struct ubifs_info *c)
327 {
328 	struct replay_entry *r;
329 	int err;
330 
331 	list_sort(c, &c->replay_list, &replay_entries_cmp);
332 
333 	list_for_each_entry(r, &c->replay_list, list) {
334 		cond_resched();
335 
336 		err = apply_replay_entry(c, r);
337 		if (err)
338 			return err;
339 	}
340 
341 	return 0;
342 }
343 
344 /**
345  * destroy_replay_list - destroy the replay.
346  * @c: UBIFS file-system description object
347  *
348  * Destroy the replay list.
349  */
350 static void destroy_replay_list(struct ubifs_info *c)
351 {
352 	struct replay_entry *r, *tmp;
353 
354 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
355 		if (is_hash_key(c, &r->key))
356 			kfree(fname_name(&r->nm));
357 		list_del(&r->list);
358 		kfree(r);
359 	}
360 }
361 
362 /**
363  * insert_node - insert a node to the replay list
364  * @c: UBIFS file-system description object
365  * @lnum: node logical eraseblock number
366  * @offs: node offset
367  * @len: node length
368  * @hash: node hash
369  * @key: node key
370  * @sqnum: sequence number
371  * @deletion: non-zero if this is a deletion
372  * @used: number of bytes in use in a LEB
373  * @old_size: truncation old size
374  * @new_size: truncation new size
375  *
376  * This function inserts a scanned non-direntry node to the replay list. The
377  * replay list contains @struct replay_entry elements, and we sort this list in
378  * sequence number order before applying it. The replay list is applied at the
379  * very end of the replay process. Since the list is sorted in sequence number
380  * order, the older modifications are applied first. This function returns zero
381  * in case of success and a negative error code in case of failure.
382  */
383 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
384 		       const u8 *hash, union ubifs_key *key,
385 		       unsigned long long sqnum, int deletion, int *used,
386 		       loff_t old_size, loff_t new_size)
387 {
388 	struct replay_entry *r;
389 
390 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
391 
392 	if (key_inum(c, key) >= c->highest_inum)
393 		c->highest_inum = key_inum(c, key);
394 
395 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
396 	if (!r)
397 		return -ENOMEM;
398 
399 	if (!deletion)
400 		*used += ALIGN(len, 8);
401 	r->lnum = lnum;
402 	r->offs = offs;
403 	r->len = len;
404 	ubifs_copy_hash(c, hash, r->hash);
405 	r->deletion = !!deletion;
406 	r->sqnum = sqnum;
407 	key_copy(c, key, &r->key);
408 	r->old_size = old_size;
409 	r->new_size = new_size;
410 
411 	list_add_tail(&r->list, &c->replay_list);
412 	return 0;
413 }
414 
415 /**
416  * insert_dent - insert a directory entry node into the replay list.
417  * @c: UBIFS file-system description object
418  * @lnum: node logical eraseblock number
419  * @offs: node offset
420  * @len: node length
421  * @hash: node hash
422  * @key: node key
423  * @name: directory entry name
424  * @nlen: directory entry name length
425  * @sqnum: sequence number
426  * @deletion: non-zero if this is a deletion
427  * @used: number of bytes in use in a LEB
428  *
429  * This function inserts a scanned directory entry node or an extended
430  * attribute entry to the replay list. Returns zero in case of success and a
431  * negative error code in case of failure.
432  */
433 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
434 		       const u8 *hash, union ubifs_key *key,
435 		       const char *name, int nlen, unsigned long long sqnum,
436 		       int deletion, int *used)
437 {
438 	struct replay_entry *r;
439 	char *nbuf;
440 
441 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
442 	if (key_inum(c, key) >= c->highest_inum)
443 		c->highest_inum = key_inum(c, key);
444 
445 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
446 	if (!r)
447 		return -ENOMEM;
448 
449 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
450 	if (!nbuf) {
451 		kfree(r);
452 		return -ENOMEM;
453 	}
454 
455 	if (!deletion)
456 		*used += ALIGN(len, 8);
457 	r->lnum = lnum;
458 	r->offs = offs;
459 	r->len = len;
460 	ubifs_copy_hash(c, hash, r->hash);
461 	r->deletion = !!deletion;
462 	r->sqnum = sqnum;
463 	key_copy(c, key, &r->key);
464 	fname_len(&r->nm) = nlen;
465 	memcpy(nbuf, name, nlen);
466 	nbuf[nlen] = '\0';
467 	fname_name(&r->nm) = nbuf;
468 
469 	list_add_tail(&r->list, &c->replay_list);
470 	return 0;
471 }
472 
473 /**
474  * ubifs_validate_entry - validate directory or extended attribute entry node.
475  * @c: UBIFS file-system description object
476  * @dent: the node to validate
477  *
478  * This function validates directory or extended attribute entry node @dent.
479  * Returns zero if the node is all right and a %-EINVAL if not.
480  */
481 int ubifs_validate_entry(struct ubifs_info *c,
482 			 const struct ubifs_dent_node *dent)
483 {
484 	int key_type = key_type_flash(c, dent->key);
485 	int nlen = le16_to_cpu(dent->nlen);
486 
487 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
488 	    dent->type >= UBIFS_ITYPES_CNT ||
489 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
490 	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
491 	    le64_to_cpu(dent->inum) > MAX_INUM) {
492 		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
493 			  "directory entry" : "extended attribute entry");
494 		return -EINVAL;
495 	}
496 
497 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
498 		ubifs_err(c, "bad key type %d", key_type);
499 		return -EINVAL;
500 	}
501 
502 	return 0;
503 }
504 
505 /**
506  * is_last_bud - check if the bud is the last in the journal head.
507  * @c: UBIFS file-system description object
508  * @bud: bud description object
509  *
510  * This function checks if bud @bud is the last bud in its journal head. This
511  * information is then used by 'replay_bud()' to decide whether the bud can
512  * have corruptions or not. Indeed, only last buds can be corrupted by power
513  * cuts. Returns %1 if this is the last bud, and %0 if not.
514  */
515 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
516 {
517 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
518 	struct ubifs_bud *next;
519 	uint32_t data;
520 	int err;
521 
522 	if (list_is_last(&bud->list, &jh->buds_list))
523 		return 1;
524 
525 	/*
526 	 * The following is a quirk to make sure we work correctly with UBIFS
527 	 * images used with older UBIFS.
528 	 *
529 	 * Normally, the last bud will be the last in the journal head's list
530 	 * of bud. However, there is one exception if the UBIFS image belongs
531 	 * to older UBIFS. This is fairly unlikely: one would need to use old
532 	 * UBIFS, then have a power cut exactly at the right point, and then
533 	 * try to mount this image with new UBIFS.
534 	 *
535 	 * The exception is: it is possible to have 2 buds A and B, A goes
536 	 * before B, and B is the last, bud B is contains no data, and bud A is
537 	 * corrupted at the end. The reason is that in older versions when the
538 	 * journal code switched the next bud (from A to B), it first added a
539 	 * log reference node for the new bud (B), and only after this it
540 	 * synchronized the write-buffer of current bud (A). But later this was
541 	 * changed and UBIFS started to always synchronize the write-buffer of
542 	 * the bud (A) before writing the log reference for the new bud (B).
543 	 *
544 	 * But because older UBIFS always synchronized A's write-buffer before
545 	 * writing to B, we can recognize this exceptional situation but
546 	 * checking the contents of bud B - if it is empty, then A can be
547 	 * treated as the last and we can recover it.
548 	 *
549 	 * TODO: remove this piece of code in a couple of years (today it is
550 	 * 16.05.2011).
551 	 */
552 	next = list_entry(bud->list.next, struct ubifs_bud, list);
553 	if (!list_is_last(&next->list, &jh->buds_list))
554 		return 0;
555 
556 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
557 	if (err)
558 		return 0;
559 
560 	return data == 0xFFFFFFFF;
561 }
562 
563 /* authenticate_sleb_hash is split out for stack usage */
564 static int noinline_for_stack
565 authenticate_sleb_hash(struct ubifs_info *c,
566 		       struct shash_desc *log_hash, u8 *hash)
567 {
568 	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
569 
570 	hash_desc->tfm = c->hash_tfm;
571 
572 	ubifs_shash_copy_state(c, log_hash, hash_desc);
573 	return crypto_shash_final(hash_desc, hash);
574 }
575 
576 /**
577  * authenticate_sleb - authenticate one scan LEB
578  * @c: UBIFS file-system description object
579  * @sleb: the scan LEB to authenticate
580  * @log_hash:
581  * @is_last: if true, this is the last LEB
582  *
583  * This function iterates over the buds of a single LEB authenticating all buds
584  * with the authentication nodes on this LEB. Authentication nodes are written
585  * after some buds and contain a HMAC covering the authentication node itself
586  * and the buds between the last authentication node and the current
587  * authentication node. It can happen that the last buds cannot be authenticated
588  * because a powercut happened when some nodes were written but not the
589  * corresponding authentication node. This function returns the number of nodes
590  * that could be authenticated or a negative error code.
591  */
592 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
593 			     struct shash_desc *log_hash, int is_last)
594 {
595 	int n_not_auth = 0;
596 	struct ubifs_scan_node *snod;
597 	int n_nodes = 0;
598 	int err;
599 	u8 hash[UBIFS_HASH_ARR_SZ];
600 	u8 hmac[UBIFS_HMAC_ARR_SZ];
601 
602 	if (!ubifs_authenticated(c))
603 		return sleb->nodes_cnt;
604 
605 	list_for_each_entry(snod, &sleb->nodes, list) {
606 
607 		n_nodes++;
608 
609 		if (snod->type == UBIFS_AUTH_NODE) {
610 			struct ubifs_auth_node *auth = snod->node;
611 
612 			err = authenticate_sleb_hash(c, log_hash, hash);
613 			if (err)
614 				goto out;
615 
616 			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
617 						      c->hash_len, hmac);
618 			if (err)
619 				goto out;
620 
621 			err = ubifs_check_hmac(c, auth->hmac, hmac);
622 			if (err) {
623 				err = -EPERM;
624 				goto out;
625 			}
626 			n_not_auth = 0;
627 		} else {
628 			err = crypto_shash_update(log_hash, snod->node,
629 						  snod->len);
630 			if (err)
631 				goto out;
632 			n_not_auth++;
633 		}
634 	}
635 
636 	/*
637 	 * A powercut can happen when some nodes were written, but not yet
638 	 * the corresponding authentication node. This may only happen on
639 	 * the last bud though.
640 	 */
641 	if (n_not_auth) {
642 		if (is_last) {
643 			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
644 				n_not_auth, sleb->lnum);
645 			err = 0;
646 		} else {
647 			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
648 				n_not_auth, sleb->lnum);
649 			err = -EPERM;
650 		}
651 	} else {
652 		err = 0;
653 	}
654 out:
655 	return err ? err : n_nodes - n_not_auth;
656 }
657 
658 /**
659  * replay_bud - replay a bud logical eraseblock.
660  * @c: UBIFS file-system description object
661  * @b: bud entry which describes the bud
662  *
663  * This function replays bud @bud, recovers it if needed, and adds all nodes
664  * from this bud to the replay list. Returns zero in case of success and a
665  * negative error code in case of failure.
666  */
667 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
668 {
669 	int is_last = is_last_bud(c, b->bud);
670 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
671 	int n_nodes, n = 0;
672 	struct ubifs_scan_leb *sleb;
673 	struct ubifs_scan_node *snod;
674 
675 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
676 		lnum, b->bud->jhead, offs, is_last);
677 
678 	if (c->need_recovery && is_last)
679 		/*
680 		 * Recover only last LEBs in the journal heads, because power
681 		 * cuts may cause corruptions only in these LEBs, because only
682 		 * these LEBs could possibly be written to at the power cut
683 		 * time.
684 		 */
685 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
686 	else
687 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
688 	if (IS_ERR(sleb))
689 		return PTR_ERR(sleb);
690 
691 	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
692 	if (n_nodes < 0) {
693 		err = n_nodes;
694 		goto out;
695 	}
696 
697 	ubifs_shash_copy_state(c, b->bud->log_hash,
698 			       c->jheads[b->bud->jhead].log_hash);
699 
700 	/*
701 	 * The bud does not have to start from offset zero - the beginning of
702 	 * the 'lnum' LEB may contain previously committed data. One of the
703 	 * things we have to do in replay is to correctly update lprops with
704 	 * newer information about this LEB.
705 	 *
706 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
707 	 * bytes of free space because it only contain information about
708 	 * committed data.
709 	 *
710 	 * But we know that real amount of free space is 'c->leb_size -
711 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
712 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
713 	 * how much of these data are dirty and update lprops with this
714 	 * information.
715 	 *
716 	 * The dirt in that LEB region is comprised of padding nodes, deletion
717 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
718 	 * nodes in this LEB. So instead of calculating clean space, we
719 	 * calculate used space ('used' variable).
720 	 */
721 
722 	list_for_each_entry(snod, &sleb->nodes, list) {
723 		u8 hash[UBIFS_HASH_ARR_SZ];
724 		int deletion = 0;
725 
726 		cond_resched();
727 
728 		if (snod->sqnum >= SQNUM_WATERMARK) {
729 			ubifs_err(c, "file system's life ended");
730 			goto out_dump;
731 		}
732 
733 		ubifs_node_calc_hash(c, snod->node, hash);
734 
735 		if (snod->sqnum > c->max_sqnum)
736 			c->max_sqnum = snod->sqnum;
737 
738 		switch (snod->type) {
739 		case UBIFS_INO_NODE:
740 		{
741 			struct ubifs_ino_node *ino = snod->node;
742 			loff_t new_size = le64_to_cpu(ino->size);
743 
744 			if (le32_to_cpu(ino->nlink) == 0)
745 				deletion = 1;
746 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
747 					  &snod->key, snod->sqnum, deletion,
748 					  &used, 0, new_size);
749 			break;
750 		}
751 		case UBIFS_DATA_NODE:
752 		{
753 			struct ubifs_data_node *dn = snod->node;
754 			loff_t new_size = le32_to_cpu(dn->size) +
755 					  key_block(c, &snod->key) *
756 					  UBIFS_BLOCK_SIZE;
757 
758 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
759 					  &snod->key, snod->sqnum, deletion,
760 					  &used, 0, new_size);
761 			break;
762 		}
763 		case UBIFS_DENT_NODE:
764 		case UBIFS_XENT_NODE:
765 		{
766 			struct ubifs_dent_node *dent = snod->node;
767 
768 			err = ubifs_validate_entry(c, dent);
769 			if (err)
770 				goto out_dump;
771 
772 			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
773 					  &snod->key, dent->name,
774 					  le16_to_cpu(dent->nlen), snod->sqnum,
775 					  !le64_to_cpu(dent->inum), &used);
776 			break;
777 		}
778 		case UBIFS_TRUN_NODE:
779 		{
780 			struct ubifs_trun_node *trun = snod->node;
781 			loff_t old_size = le64_to_cpu(trun->old_size);
782 			loff_t new_size = le64_to_cpu(trun->new_size);
783 			union ubifs_key key;
784 
785 			/* Validate truncation node */
786 			if (old_size < 0 || old_size > c->max_inode_sz ||
787 			    new_size < 0 || new_size > c->max_inode_sz ||
788 			    old_size <= new_size) {
789 				ubifs_err(c, "bad truncation node");
790 				goto out_dump;
791 			}
792 
793 			/*
794 			 * Create a fake truncation key just to use the same
795 			 * functions which expect nodes to have keys.
796 			 */
797 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
798 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
799 					  &key, snod->sqnum, 1, &used,
800 					  old_size, new_size);
801 			break;
802 		}
803 		case UBIFS_AUTH_NODE:
804 			break;
805 		default:
806 			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
807 				  snod->type, lnum, snod->offs);
808 			err = -EINVAL;
809 			goto out_dump;
810 		}
811 		if (err)
812 			goto out;
813 
814 		n++;
815 		if (n == n_nodes)
816 			break;
817 	}
818 
819 	ubifs_assert(c, ubifs_search_bud(c, lnum));
820 	ubifs_assert(c, sleb->endpt - offs >= used);
821 	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
822 
823 	b->dirty = sleb->endpt - offs - used;
824 	b->free = c->leb_size - sleb->endpt;
825 	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
826 		lnum, b->dirty, b->free);
827 
828 out:
829 	ubifs_scan_destroy(sleb);
830 	return err;
831 
832 out_dump:
833 	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
834 	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
835 	ubifs_scan_destroy(sleb);
836 	return -EINVAL;
837 }
838 
839 /**
840  * replay_buds - replay all buds.
841  * @c: UBIFS file-system description object
842  *
843  * This function returns zero in case of success and a negative error code in
844  * case of failure.
845  */
846 static int replay_buds(struct ubifs_info *c)
847 {
848 	struct bud_entry *b;
849 	int err;
850 	unsigned long long prev_sqnum = 0;
851 
852 	list_for_each_entry(b, &c->replay_buds, list) {
853 		err = replay_bud(c, b);
854 		if (err)
855 			return err;
856 
857 		ubifs_assert(c, b->sqnum > prev_sqnum);
858 		prev_sqnum = b->sqnum;
859 	}
860 
861 	return 0;
862 }
863 
864 /**
865  * destroy_bud_list - destroy the list of buds to replay.
866  * @c: UBIFS file-system description object
867  */
868 static void destroy_bud_list(struct ubifs_info *c)
869 {
870 	struct bud_entry *b;
871 
872 	while (!list_empty(&c->replay_buds)) {
873 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
874 		list_del(&b->list);
875 		kfree(b);
876 	}
877 }
878 
879 /**
880  * add_replay_bud - add a bud to the list of buds to replay.
881  * @c: UBIFS file-system description object
882  * @lnum: bud logical eraseblock number to replay
883  * @offs: bud start offset
884  * @jhead: journal head to which this bud belongs
885  * @sqnum: reference node sequence number
886  *
887  * This function returns zero in case of success and a negative error code in
888  * case of failure.
889  */
890 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
891 			  unsigned long long sqnum)
892 {
893 	struct ubifs_bud *bud;
894 	struct bud_entry *b;
895 	int err;
896 
897 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
898 
899 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
900 	if (!bud)
901 		return -ENOMEM;
902 
903 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
904 	if (!b) {
905 		err = -ENOMEM;
906 		goto out;
907 	}
908 
909 	bud->lnum = lnum;
910 	bud->start = offs;
911 	bud->jhead = jhead;
912 	bud->log_hash = ubifs_hash_get_desc(c);
913 	if (IS_ERR(bud->log_hash)) {
914 		err = PTR_ERR(bud->log_hash);
915 		goto out;
916 	}
917 
918 	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
919 
920 	ubifs_add_bud(c, bud);
921 
922 	b->bud = bud;
923 	b->sqnum = sqnum;
924 	list_add_tail(&b->list, &c->replay_buds);
925 
926 	return 0;
927 out:
928 	kfree(bud);
929 	kfree(b);
930 
931 	return err;
932 }
933 
934 /**
935  * validate_ref - validate a reference node.
936  * @c: UBIFS file-system description object
937  * @ref: the reference node to validate
938  *
939  * This function returns %1 if a bud reference already exists for the LEB. %0 is
940  * returned if the reference node is new, otherwise %-EINVAL is returned if
941  * validation failed.
942  */
943 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
944 {
945 	struct ubifs_bud *bud;
946 	int lnum = le32_to_cpu(ref->lnum);
947 	unsigned int offs = le32_to_cpu(ref->offs);
948 	unsigned int jhead = le32_to_cpu(ref->jhead);
949 
950 	/*
951 	 * ref->offs may point to the end of LEB when the journal head points
952 	 * to the end of LEB and we write reference node for it during commit.
953 	 * So this is why we require 'offs > c->leb_size'.
954 	 */
955 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
956 	    lnum < c->main_first || offs > c->leb_size ||
957 	    offs & (c->min_io_size - 1))
958 		return -EINVAL;
959 
960 	/* Make sure we have not already looked at this bud */
961 	bud = ubifs_search_bud(c, lnum);
962 	if (bud) {
963 		if (bud->jhead == jhead && bud->start <= offs)
964 			return 1;
965 		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
966 		return -EINVAL;
967 	}
968 
969 	return 0;
970 }
971 
972 /**
973  * replay_log_leb - replay a log logical eraseblock.
974  * @c: UBIFS file-system description object
975  * @lnum: log logical eraseblock to replay
976  * @offs: offset to start replaying from
977  * @sbuf: scan buffer
978  *
979  * This function replays a log LEB and returns zero in case of success, %1 if
980  * this is the last LEB in the log, and a negative error code in case of
981  * failure.
982  */
983 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
984 {
985 	int err;
986 	struct ubifs_scan_leb *sleb;
987 	struct ubifs_scan_node *snod;
988 	const struct ubifs_cs_node *node;
989 
990 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
991 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
992 	if (IS_ERR(sleb)) {
993 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
994 			return PTR_ERR(sleb);
995 		/*
996 		 * Note, the below function will recover this log LEB only if
997 		 * it is the last, because unclean reboots can possibly corrupt
998 		 * only the tail of the log.
999 		 */
1000 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1001 		if (IS_ERR(sleb))
1002 			return PTR_ERR(sleb);
1003 	}
1004 
1005 	if (sleb->nodes_cnt == 0) {
1006 		err = 1;
1007 		goto out;
1008 	}
1009 
1010 	node = sleb->buf;
1011 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1012 	if (c->cs_sqnum == 0) {
1013 		/*
1014 		 * This is the first log LEB we are looking at, make sure that
1015 		 * the first node is a commit start node. Also record its
1016 		 * sequence number so that UBIFS can determine where the log
1017 		 * ends, because all nodes which were have higher sequence
1018 		 * numbers.
1019 		 */
1020 		if (snod->type != UBIFS_CS_NODE) {
1021 			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1022 				  lnum, offs);
1023 			goto out_dump;
1024 		}
1025 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1026 			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1027 				  lnum, offs,
1028 				  (unsigned long long)le64_to_cpu(node->cmt_no),
1029 				  c->cmt_no);
1030 			goto out_dump;
1031 		}
1032 
1033 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1034 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1035 
1036 		err = ubifs_shash_init(c, c->log_hash);
1037 		if (err)
1038 			goto out;
1039 
1040 		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1041 		if (err < 0)
1042 			goto out;
1043 	}
1044 
1045 	if (snod->sqnum < c->cs_sqnum) {
1046 		/*
1047 		 * This means that we reached end of log and now
1048 		 * look to the older log data, which was already
1049 		 * committed but the eraseblock was not erased (UBIFS
1050 		 * only un-maps it). So this basically means we have to
1051 		 * exit with "end of log" code.
1052 		 */
1053 		err = 1;
1054 		goto out;
1055 	}
1056 
1057 	/* Make sure the first node sits at offset zero of the LEB */
1058 	if (snod->offs != 0) {
1059 		ubifs_err(c, "first node is not at zero offset");
1060 		goto out_dump;
1061 	}
1062 
1063 	list_for_each_entry(snod, &sleb->nodes, list) {
1064 		cond_resched();
1065 
1066 		if (snod->sqnum >= SQNUM_WATERMARK) {
1067 			ubifs_err(c, "file system's life ended");
1068 			goto out_dump;
1069 		}
1070 
1071 		if (snod->sqnum < c->cs_sqnum) {
1072 			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1073 				  snod->sqnum, c->cs_sqnum);
1074 			goto out_dump;
1075 		}
1076 
1077 		if (snod->sqnum > c->max_sqnum)
1078 			c->max_sqnum = snod->sqnum;
1079 
1080 		switch (snod->type) {
1081 		case UBIFS_REF_NODE: {
1082 			const struct ubifs_ref_node *ref = snod->node;
1083 
1084 			err = validate_ref(c, ref);
1085 			if (err == 1)
1086 				break; /* Already have this bud */
1087 			if (err)
1088 				goto out_dump;
1089 
1090 			err = ubifs_shash_update(c, c->log_hash, ref,
1091 						 UBIFS_REF_NODE_SZ);
1092 			if (err)
1093 				goto out;
1094 
1095 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1096 					     le32_to_cpu(ref->offs),
1097 					     le32_to_cpu(ref->jhead),
1098 					     snod->sqnum);
1099 			if (err)
1100 				goto out;
1101 
1102 			break;
1103 		}
1104 		case UBIFS_CS_NODE:
1105 			/* Make sure it sits at the beginning of LEB */
1106 			if (snod->offs != 0) {
1107 				ubifs_err(c, "unexpected node in log");
1108 				goto out_dump;
1109 			}
1110 			break;
1111 		default:
1112 			ubifs_err(c, "unexpected node in log");
1113 			goto out_dump;
1114 		}
1115 	}
1116 
1117 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1118 		c->lhead_lnum = lnum;
1119 		c->lhead_offs = sleb->endpt;
1120 	}
1121 
1122 	err = !sleb->endpt;
1123 out:
1124 	ubifs_scan_destroy(sleb);
1125 	return err;
1126 
1127 out_dump:
1128 	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1129 		  lnum, offs + snod->offs);
1130 	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1131 	ubifs_scan_destroy(sleb);
1132 	return -EINVAL;
1133 }
1134 
1135 /**
1136  * take_ihead - update the status of the index head in lprops to 'taken'.
1137  * @c: UBIFS file-system description object
1138  *
1139  * This function returns the amount of free space in the index head LEB or a
1140  * negative error code.
1141  */
1142 static int take_ihead(struct ubifs_info *c)
1143 {
1144 	const struct ubifs_lprops *lp;
1145 	int err, free;
1146 
1147 	ubifs_get_lprops(c);
1148 
1149 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1150 	if (IS_ERR(lp)) {
1151 		err = PTR_ERR(lp);
1152 		goto out;
1153 	}
1154 
1155 	free = lp->free;
1156 
1157 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1158 			     lp->flags | LPROPS_TAKEN, 0);
1159 	if (IS_ERR(lp)) {
1160 		err = PTR_ERR(lp);
1161 		goto out;
1162 	}
1163 
1164 	err = free;
1165 out:
1166 	ubifs_release_lprops(c);
1167 	return err;
1168 }
1169 
1170 /**
1171  * ubifs_replay_journal - replay journal.
1172  * @c: UBIFS file-system description object
1173  *
1174  * This function scans the journal, replays and cleans it up. It makes sure all
1175  * memory data structures related to uncommitted journal are built (dirty TNC
1176  * tree, tree of buds, modified lprops, etc).
1177  */
1178 int ubifs_replay_journal(struct ubifs_info *c)
1179 {
1180 	int err, lnum, free;
1181 
1182 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1183 
1184 	/* Update the status of the index head in lprops to 'taken' */
1185 	free = take_ihead(c);
1186 	if (free < 0)
1187 		return free; /* Error code */
1188 
1189 	if (c->ihead_offs != c->leb_size - free) {
1190 		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1191 			  c->ihead_offs);
1192 		return -EINVAL;
1193 	}
1194 
1195 	dbg_mnt("start replaying the journal");
1196 	c->replaying = 1;
1197 	lnum = c->ltail_lnum = c->lhead_lnum;
1198 
1199 	do {
1200 		err = replay_log_leb(c, lnum, 0, c->sbuf);
1201 		if (err == 1) {
1202 			if (lnum != c->lhead_lnum)
1203 				/* We hit the end of the log */
1204 				break;
1205 
1206 			/*
1207 			 * The head of the log must always start with the
1208 			 * "commit start" node on a properly formatted UBIFS.
1209 			 * But we found no nodes at all, which means that
1210 			 * something went wrong and we cannot proceed mounting
1211 			 * the file-system.
1212 			 */
1213 			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1214 				  lnum, 0);
1215 			err = -EINVAL;
1216 		}
1217 		if (err)
1218 			goto out;
1219 		lnum = ubifs_next_log_lnum(c, lnum);
1220 	} while (lnum != c->ltail_lnum);
1221 
1222 	err = replay_buds(c);
1223 	if (err)
1224 		goto out;
1225 
1226 	err = apply_replay_list(c);
1227 	if (err)
1228 		goto out;
1229 
1230 	err = set_buds_lprops(c);
1231 	if (err)
1232 		goto out;
1233 
1234 	/*
1235 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1236 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1237 	 * depend on it. This means we have to initialize it to make sure
1238 	 * budgeting works properly.
1239 	 */
1240 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1241 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1242 
1243 	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1244 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1245 		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1246 		(unsigned long)c->highest_inum);
1247 out:
1248 	destroy_replay_list(c);
1249 	destroy_bud_list(c);
1250 	c->replaying = 0;
1251 	return err;
1252 }
1253