xref: /linux/fs/ubifs/replay.c (revision 26b0d14106954ae46d2f4f7eec3481828a210f7d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file contains journal replay code. It runs when the file-system is being
25  * mounted and requires no locking.
26  *
27  * The larger is the journal, the longer it takes to scan it, so the longer it
28  * takes to mount UBIFS. This is why the journal has limited size which may be
29  * changed depending on the system requirements. But a larger journal gives
30  * faster I/O speed because it writes the index less frequently. So this is a
31  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
32  * larger is the journal, the more memory its index may consume.
33  */
34 
35 #include "ubifs.h"
36 #include <linux/list_sort.h>
37 
38 /**
39  * struct replay_entry - replay list entry.
40  * @lnum: logical eraseblock number of the node
41  * @offs: node offset
42  * @len: node length
43  * @deletion: non-zero if this entry corresponds to a node deletion
44  * @sqnum: node sequence number
45  * @list: links the replay list
46  * @key: node key
47  * @nm: directory entry name
48  * @old_size: truncation old size
49  * @new_size: truncation new size
50  *
51  * The replay process first scans all buds and builds the replay list, then
52  * sorts the replay list in nodes sequence number order, and then inserts all
53  * the replay entries to the TNC.
54  */
55 struct replay_entry {
56 	int lnum;
57 	int offs;
58 	int len;
59 	unsigned int deletion:1;
60 	unsigned long long sqnum;
61 	struct list_head list;
62 	union ubifs_key key;
63 	union {
64 		struct qstr nm;
65 		struct {
66 			loff_t old_size;
67 			loff_t new_size;
68 		};
69 	};
70 };
71 
72 /**
73  * struct bud_entry - entry in the list of buds to replay.
74  * @list: next bud in the list
75  * @bud: bud description object
76  * @sqnum: reference node sequence number
77  * @free: free bytes in the bud
78  * @dirty: dirty bytes in the bud
79  */
80 struct bud_entry {
81 	struct list_head list;
82 	struct ubifs_bud *bud;
83 	unsigned long long sqnum;
84 	int free;
85 	int dirty;
86 };
87 
88 /**
89  * set_bud_lprops - set free and dirty space used by a bud.
90  * @c: UBIFS file-system description object
91  * @b: bud entry which describes the bud
92  *
93  * This function makes sure the LEB properties of bud @b are set correctly
94  * after the replay. Returns zero in case of success and a negative error code
95  * in case of failure.
96  */
97 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
98 {
99 	const struct ubifs_lprops *lp;
100 	int err = 0, dirty;
101 
102 	ubifs_get_lprops(c);
103 
104 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
105 	if (IS_ERR(lp)) {
106 		err = PTR_ERR(lp);
107 		goto out;
108 	}
109 
110 	dirty = lp->dirty;
111 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
112 		/*
113 		 * The LEB was added to the journal with a starting offset of
114 		 * zero which means the LEB must have been empty. The LEB
115 		 * property values should be @lp->free == @c->leb_size and
116 		 * @lp->dirty == 0, but that is not the case. The reason is that
117 		 * the LEB had been garbage collected before it became the bud,
118 		 * and there was not commit inbetween. The garbage collector
119 		 * resets the free and dirty space without recording it
120 		 * anywhere except lprops, so if there was no commit then
121 		 * lprops does not have that information.
122 		 *
123 		 * We do not need to adjust free space because the scan has told
124 		 * us the exact value which is recorded in the replay entry as
125 		 * @b->free.
126 		 *
127 		 * However we do need to subtract from the dirty space the
128 		 * amount of space that the garbage collector reclaimed, which
129 		 * is the whole LEB minus the amount of space that was free.
130 		 */
131 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
132 			lp->free, lp->dirty);
133 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
134 			lp->free, lp->dirty);
135 		dirty -= c->leb_size - lp->free;
136 		/*
137 		 * If the replay order was perfect the dirty space would now be
138 		 * zero. The order is not perfect because the journal heads
139 		 * race with each other. This is not a problem but is does mean
140 		 * that the dirty space may temporarily exceed c->leb_size
141 		 * during the replay.
142 		 */
143 		if (dirty != 0)
144 			dbg_msg("LEB %d lp: %d free %d dirty "
145 				"replay: %d free %d dirty", b->bud->lnum,
146 				lp->free, lp->dirty, b->free, b->dirty);
147 	}
148 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
149 			     lp->flags | LPROPS_TAKEN, 0);
150 	if (IS_ERR(lp)) {
151 		err = PTR_ERR(lp);
152 		goto out;
153 	}
154 
155 	/* Make sure the journal head points to the latest bud */
156 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
157 				     b->bud->lnum, c->leb_size - b->free);
158 
159 out:
160 	ubifs_release_lprops(c);
161 	return err;
162 }
163 
164 /**
165  * set_buds_lprops - set free and dirty space for all replayed buds.
166  * @c: UBIFS file-system description object
167  *
168  * This function sets LEB properties for all replayed buds. Returns zero in
169  * case of success and a negative error code in case of failure.
170  */
171 static int set_buds_lprops(struct ubifs_info *c)
172 {
173 	struct bud_entry *b;
174 	int err;
175 
176 	list_for_each_entry(b, &c->replay_buds, list) {
177 		err = set_bud_lprops(c, b);
178 		if (err)
179 			return err;
180 	}
181 
182 	return 0;
183 }
184 
185 /**
186  * trun_remove_range - apply a replay entry for a truncation to the TNC.
187  * @c: UBIFS file-system description object
188  * @r: replay entry of truncation
189  */
190 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
191 {
192 	unsigned min_blk, max_blk;
193 	union ubifs_key min_key, max_key;
194 	ino_t ino;
195 
196 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
197 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
198 		min_blk += 1;
199 
200 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
201 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
202 		max_blk -= 1;
203 
204 	ino = key_inum(c, &r->key);
205 
206 	data_key_init(c, &min_key, ino, min_blk);
207 	data_key_init(c, &max_key, ino, max_blk);
208 
209 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
210 }
211 
212 /**
213  * apply_replay_entry - apply a replay entry to the TNC.
214  * @c: UBIFS file-system description object
215  * @r: replay entry to apply
216  *
217  * Apply a replay entry to the TNC.
218  */
219 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
220 {
221 	int err;
222 
223 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
224 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
225 
226 	/* Set c->replay_sqnum to help deal with dangling branches. */
227 	c->replay_sqnum = r->sqnum;
228 
229 	if (is_hash_key(c, &r->key)) {
230 		if (r->deletion)
231 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
232 		else
233 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
234 					       r->len, &r->nm);
235 	} else {
236 		if (r->deletion)
237 			switch (key_type(c, &r->key)) {
238 			case UBIFS_INO_KEY:
239 			{
240 				ino_t inum = key_inum(c, &r->key);
241 
242 				err = ubifs_tnc_remove_ino(c, inum);
243 				break;
244 			}
245 			case UBIFS_TRUN_KEY:
246 				err = trun_remove_range(c, r);
247 				break;
248 			default:
249 				err = ubifs_tnc_remove(c, &r->key);
250 				break;
251 			}
252 		else
253 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
254 					    r->len);
255 		if (err)
256 			return err;
257 
258 		if (c->need_recovery)
259 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
260 						       r->new_size);
261 	}
262 
263 	return err;
264 }
265 
266 /**
267  * replay_entries_cmp - compare 2 replay entries.
268  * @priv: UBIFS file-system description object
269  * @a: first replay entry
270  * @a: second replay entry
271  *
272  * This is a comparios function for 'list_sort()' which compares 2 replay
273  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
274  * greater sequence number and %-1 otherwise.
275  */
276 static int replay_entries_cmp(void *priv, struct list_head *a,
277 			      struct list_head *b)
278 {
279 	struct replay_entry *ra, *rb;
280 
281 	cond_resched();
282 	if (a == b)
283 		return 0;
284 
285 	ra = list_entry(a, struct replay_entry, list);
286 	rb = list_entry(b, struct replay_entry, list);
287 	ubifs_assert(ra->sqnum != rb->sqnum);
288 	if (ra->sqnum > rb->sqnum)
289 		return 1;
290 	return -1;
291 }
292 
293 /**
294  * apply_replay_list - apply the replay list to the TNC.
295  * @c: UBIFS file-system description object
296  *
297  * Apply all entries in the replay list to the TNC. Returns zero in case of
298  * success and a negative error code in case of failure.
299  */
300 static int apply_replay_list(struct ubifs_info *c)
301 {
302 	struct replay_entry *r;
303 	int err;
304 
305 	list_sort(c, &c->replay_list, &replay_entries_cmp);
306 
307 	list_for_each_entry(r, &c->replay_list, list) {
308 		cond_resched();
309 
310 		err = apply_replay_entry(c, r);
311 		if (err)
312 			return err;
313 	}
314 
315 	return 0;
316 }
317 
318 /**
319  * destroy_replay_list - destroy the replay.
320  * @c: UBIFS file-system description object
321  *
322  * Destroy the replay list.
323  */
324 static void destroy_replay_list(struct ubifs_info *c)
325 {
326 	struct replay_entry *r, *tmp;
327 
328 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
329 		if (is_hash_key(c, &r->key))
330 			kfree(r->nm.name);
331 		list_del(&r->list);
332 		kfree(r);
333 	}
334 }
335 
336 /**
337  * insert_node - insert a node to the replay list
338  * @c: UBIFS file-system description object
339  * @lnum: node logical eraseblock number
340  * @offs: node offset
341  * @len: node length
342  * @key: node key
343  * @sqnum: sequence number
344  * @deletion: non-zero if this is a deletion
345  * @used: number of bytes in use in a LEB
346  * @old_size: truncation old size
347  * @new_size: truncation new size
348  *
349  * This function inserts a scanned non-direntry node to the replay list. The
350  * replay list contains @struct replay_entry elements, and we sort this list in
351  * sequence number order before applying it. The replay list is applied at the
352  * very end of the replay process. Since the list is sorted in sequence number
353  * order, the older modifications are applied first. This function returns zero
354  * in case of success and a negative error code in case of failure.
355  */
356 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
357 		       union ubifs_key *key, unsigned long long sqnum,
358 		       int deletion, int *used, loff_t old_size,
359 		       loff_t new_size)
360 {
361 	struct replay_entry *r;
362 
363 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
364 
365 	if (key_inum(c, key) >= c->highest_inum)
366 		c->highest_inum = key_inum(c, key);
367 
368 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
369 	if (!r)
370 		return -ENOMEM;
371 
372 	if (!deletion)
373 		*used += ALIGN(len, 8);
374 	r->lnum = lnum;
375 	r->offs = offs;
376 	r->len = len;
377 	r->deletion = !!deletion;
378 	r->sqnum = sqnum;
379 	key_copy(c, key, &r->key);
380 	r->old_size = old_size;
381 	r->new_size = new_size;
382 
383 	list_add_tail(&r->list, &c->replay_list);
384 	return 0;
385 }
386 
387 /**
388  * insert_dent - insert a directory entry node into the replay list.
389  * @c: UBIFS file-system description object
390  * @lnum: node logical eraseblock number
391  * @offs: node offset
392  * @len: node length
393  * @key: node key
394  * @name: directory entry name
395  * @nlen: directory entry name length
396  * @sqnum: sequence number
397  * @deletion: non-zero if this is a deletion
398  * @used: number of bytes in use in a LEB
399  *
400  * This function inserts a scanned directory entry node or an extended
401  * attribute entry to the replay list. Returns zero in case of success and a
402  * negative error code in case of failure.
403  */
404 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
405 		       union ubifs_key *key, const char *name, int nlen,
406 		       unsigned long long sqnum, int deletion, int *used)
407 {
408 	struct replay_entry *r;
409 	char *nbuf;
410 
411 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
412 	if (key_inum(c, key) >= c->highest_inum)
413 		c->highest_inum = key_inum(c, key);
414 
415 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
416 	if (!r)
417 		return -ENOMEM;
418 
419 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
420 	if (!nbuf) {
421 		kfree(r);
422 		return -ENOMEM;
423 	}
424 
425 	if (!deletion)
426 		*used += ALIGN(len, 8);
427 	r->lnum = lnum;
428 	r->offs = offs;
429 	r->len = len;
430 	r->deletion = !!deletion;
431 	r->sqnum = sqnum;
432 	key_copy(c, key, &r->key);
433 	r->nm.len = nlen;
434 	memcpy(nbuf, name, nlen);
435 	nbuf[nlen] = '\0';
436 	r->nm.name = nbuf;
437 
438 	list_add_tail(&r->list, &c->replay_list);
439 	return 0;
440 }
441 
442 /**
443  * ubifs_validate_entry - validate directory or extended attribute entry node.
444  * @c: UBIFS file-system description object
445  * @dent: the node to validate
446  *
447  * This function validates directory or extended attribute entry node @dent.
448  * Returns zero if the node is all right and a %-EINVAL if not.
449  */
450 int ubifs_validate_entry(struct ubifs_info *c,
451 			 const struct ubifs_dent_node *dent)
452 {
453 	int key_type = key_type_flash(c, dent->key);
454 	int nlen = le16_to_cpu(dent->nlen);
455 
456 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
457 	    dent->type >= UBIFS_ITYPES_CNT ||
458 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
459 	    strnlen(dent->name, nlen) != nlen ||
460 	    le64_to_cpu(dent->inum) > MAX_INUM) {
461 		ubifs_err("bad %s node", key_type == UBIFS_DENT_KEY ?
462 			  "directory entry" : "extended attribute entry");
463 		return -EINVAL;
464 	}
465 
466 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
467 		ubifs_err("bad key type %d", key_type);
468 		return -EINVAL;
469 	}
470 
471 	return 0;
472 }
473 
474 /**
475  * is_last_bud - check if the bud is the last in the journal head.
476  * @c: UBIFS file-system description object
477  * @bud: bud description object
478  *
479  * This function checks if bud @bud is the last bud in its journal head. This
480  * information is then used by 'replay_bud()' to decide whether the bud can
481  * have corruptions or not. Indeed, only last buds can be corrupted by power
482  * cuts. Returns %1 if this is the last bud, and %0 if not.
483  */
484 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
485 {
486 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
487 	struct ubifs_bud *next;
488 	uint32_t data;
489 	int err;
490 
491 	if (list_is_last(&bud->list, &jh->buds_list))
492 		return 1;
493 
494 	/*
495 	 * The following is a quirk to make sure we work correctly with UBIFS
496 	 * images used with older UBIFS.
497 	 *
498 	 * Normally, the last bud will be the last in the journal head's list
499 	 * of bud. However, there is one exception if the UBIFS image belongs
500 	 * to older UBIFS. This is fairly unlikely: one would need to use old
501 	 * UBIFS, then have a power cut exactly at the right point, and then
502 	 * try to mount this image with new UBIFS.
503 	 *
504 	 * The exception is: it is possible to have 2 buds A and B, A goes
505 	 * before B, and B is the last, bud B is contains no data, and bud A is
506 	 * corrupted at the end. The reason is that in older versions when the
507 	 * journal code switched the next bud (from A to B), it first added a
508 	 * log reference node for the new bud (B), and only after this it
509 	 * synchronized the write-buffer of current bud (A). But later this was
510 	 * changed and UBIFS started to always synchronize the write-buffer of
511 	 * the bud (A) before writing the log reference for the new bud (B).
512 	 *
513 	 * But because older UBIFS always synchronized A's write-buffer before
514 	 * writing to B, we can recognize this exceptional situation but
515 	 * checking the contents of bud B - if it is empty, then A can be
516 	 * treated as the last and we can recover it.
517 	 *
518 	 * TODO: remove this piece of code in a couple of years (today it is
519 	 * 16.05.2011).
520 	 */
521 	next = list_entry(bud->list.next, struct ubifs_bud, list);
522 	if (!list_is_last(&next->list, &jh->buds_list))
523 		return 0;
524 
525 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
526 	if (err)
527 		return 0;
528 
529 	return data == 0xFFFFFFFF;
530 }
531 
532 /**
533  * replay_bud - replay a bud logical eraseblock.
534  * @c: UBIFS file-system description object
535  * @b: bud entry which describes the bud
536  *
537  * This function replays bud @bud, recovers it if needed, and adds all nodes
538  * from this bud to the replay list. Returns zero in case of success and a
539  * negative error code in case of failure.
540  */
541 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
542 {
543 	int is_last = is_last_bud(c, b->bud);
544 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
545 	struct ubifs_scan_leb *sleb;
546 	struct ubifs_scan_node *snod;
547 
548 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
549 		lnum, b->bud->jhead, offs, is_last);
550 
551 	if (c->need_recovery && is_last)
552 		/*
553 		 * Recover only last LEBs in the journal heads, because power
554 		 * cuts may cause corruptions only in these LEBs, because only
555 		 * these LEBs could possibly be written to at the power cut
556 		 * time.
557 		 */
558 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
559 	else
560 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
561 	if (IS_ERR(sleb))
562 		return PTR_ERR(sleb);
563 
564 	/*
565 	 * The bud does not have to start from offset zero - the beginning of
566 	 * the 'lnum' LEB may contain previously committed data. One of the
567 	 * things we have to do in replay is to correctly update lprops with
568 	 * newer information about this LEB.
569 	 *
570 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
571 	 * bytes of free space because it only contain information about
572 	 * committed data.
573 	 *
574 	 * But we know that real amount of free space is 'c->leb_size -
575 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
576 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
577 	 * how much of these data are dirty and update lprops with this
578 	 * information.
579 	 *
580 	 * The dirt in that LEB region is comprised of padding nodes, deletion
581 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
582 	 * nodes in this LEB. So instead of calculating clean space, we
583 	 * calculate used space ('used' variable).
584 	 */
585 
586 	list_for_each_entry(snod, &sleb->nodes, list) {
587 		int deletion = 0;
588 
589 		cond_resched();
590 
591 		if (snod->sqnum >= SQNUM_WATERMARK) {
592 			ubifs_err("file system's life ended");
593 			goto out_dump;
594 		}
595 
596 		if (snod->sqnum > c->max_sqnum)
597 			c->max_sqnum = snod->sqnum;
598 
599 		switch (snod->type) {
600 		case UBIFS_INO_NODE:
601 		{
602 			struct ubifs_ino_node *ino = snod->node;
603 			loff_t new_size = le64_to_cpu(ino->size);
604 
605 			if (le32_to_cpu(ino->nlink) == 0)
606 				deletion = 1;
607 			err = insert_node(c, lnum, snod->offs, snod->len,
608 					  &snod->key, snod->sqnum, deletion,
609 					  &used, 0, new_size);
610 			break;
611 		}
612 		case UBIFS_DATA_NODE:
613 		{
614 			struct ubifs_data_node *dn = snod->node;
615 			loff_t new_size = le32_to_cpu(dn->size) +
616 					  key_block(c, &snod->key) *
617 					  UBIFS_BLOCK_SIZE;
618 
619 			err = insert_node(c, lnum, snod->offs, snod->len,
620 					  &snod->key, snod->sqnum, deletion,
621 					  &used, 0, new_size);
622 			break;
623 		}
624 		case UBIFS_DENT_NODE:
625 		case UBIFS_XENT_NODE:
626 		{
627 			struct ubifs_dent_node *dent = snod->node;
628 
629 			err = ubifs_validate_entry(c, dent);
630 			if (err)
631 				goto out_dump;
632 
633 			err = insert_dent(c, lnum, snod->offs, snod->len,
634 					  &snod->key, dent->name,
635 					  le16_to_cpu(dent->nlen), snod->sqnum,
636 					  !le64_to_cpu(dent->inum), &used);
637 			break;
638 		}
639 		case UBIFS_TRUN_NODE:
640 		{
641 			struct ubifs_trun_node *trun = snod->node;
642 			loff_t old_size = le64_to_cpu(trun->old_size);
643 			loff_t new_size = le64_to_cpu(trun->new_size);
644 			union ubifs_key key;
645 
646 			/* Validate truncation node */
647 			if (old_size < 0 || old_size > c->max_inode_sz ||
648 			    new_size < 0 || new_size > c->max_inode_sz ||
649 			    old_size <= new_size) {
650 				ubifs_err("bad truncation node");
651 				goto out_dump;
652 			}
653 
654 			/*
655 			 * Create a fake truncation key just to use the same
656 			 * functions which expect nodes to have keys.
657 			 */
658 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
659 			err = insert_node(c, lnum, snod->offs, snod->len,
660 					  &key, snod->sqnum, 1, &used,
661 					  old_size, new_size);
662 			break;
663 		}
664 		default:
665 			ubifs_err("unexpected node type %d in bud LEB %d:%d",
666 				  snod->type, lnum, snod->offs);
667 			err = -EINVAL;
668 			goto out_dump;
669 		}
670 		if (err)
671 			goto out;
672 	}
673 
674 	ubifs_assert(ubifs_search_bud(c, lnum));
675 	ubifs_assert(sleb->endpt - offs >= used);
676 	ubifs_assert(sleb->endpt % c->min_io_size == 0);
677 
678 	b->dirty = sleb->endpt - offs - used;
679 	b->free = c->leb_size - sleb->endpt;
680 	dbg_mnt("bud LEB %d replied: dirty %d, free %d", lnum, b->dirty, b->free);
681 
682 out:
683 	ubifs_scan_destroy(sleb);
684 	return err;
685 
686 out_dump:
687 	ubifs_err("bad node is at LEB %d:%d", lnum, snod->offs);
688 	ubifs_dump_node(c, snod->node);
689 	ubifs_scan_destroy(sleb);
690 	return -EINVAL;
691 }
692 
693 /**
694  * replay_buds - replay all buds.
695  * @c: UBIFS file-system description object
696  *
697  * This function returns zero in case of success and a negative error code in
698  * case of failure.
699  */
700 static int replay_buds(struct ubifs_info *c)
701 {
702 	struct bud_entry *b;
703 	int err;
704 	unsigned long long prev_sqnum = 0;
705 
706 	list_for_each_entry(b, &c->replay_buds, list) {
707 		err = replay_bud(c, b);
708 		if (err)
709 			return err;
710 
711 		ubifs_assert(b->sqnum > prev_sqnum);
712 		prev_sqnum = b->sqnum;
713 	}
714 
715 	return 0;
716 }
717 
718 /**
719  * destroy_bud_list - destroy the list of buds to replay.
720  * @c: UBIFS file-system description object
721  */
722 static void destroy_bud_list(struct ubifs_info *c)
723 {
724 	struct bud_entry *b;
725 
726 	while (!list_empty(&c->replay_buds)) {
727 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
728 		list_del(&b->list);
729 		kfree(b);
730 	}
731 }
732 
733 /**
734  * add_replay_bud - add a bud to the list of buds to replay.
735  * @c: UBIFS file-system description object
736  * @lnum: bud logical eraseblock number to replay
737  * @offs: bud start offset
738  * @jhead: journal head to which this bud belongs
739  * @sqnum: reference node sequence number
740  *
741  * This function returns zero in case of success and a negative error code in
742  * case of failure.
743  */
744 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
745 			  unsigned long long sqnum)
746 {
747 	struct ubifs_bud *bud;
748 	struct bud_entry *b;
749 
750 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
751 
752 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
753 	if (!bud)
754 		return -ENOMEM;
755 
756 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
757 	if (!b) {
758 		kfree(bud);
759 		return -ENOMEM;
760 	}
761 
762 	bud->lnum = lnum;
763 	bud->start = offs;
764 	bud->jhead = jhead;
765 	ubifs_add_bud(c, bud);
766 
767 	b->bud = bud;
768 	b->sqnum = sqnum;
769 	list_add_tail(&b->list, &c->replay_buds);
770 
771 	return 0;
772 }
773 
774 /**
775  * validate_ref - validate a reference node.
776  * @c: UBIFS file-system description object
777  * @ref: the reference node to validate
778  * @ref_lnum: LEB number of the reference node
779  * @ref_offs: reference node offset
780  *
781  * This function returns %1 if a bud reference already exists for the LEB. %0 is
782  * returned if the reference node is new, otherwise %-EINVAL is returned if
783  * validation failed.
784  */
785 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
786 {
787 	struct ubifs_bud *bud;
788 	int lnum = le32_to_cpu(ref->lnum);
789 	unsigned int offs = le32_to_cpu(ref->offs);
790 	unsigned int jhead = le32_to_cpu(ref->jhead);
791 
792 	/*
793 	 * ref->offs may point to the end of LEB when the journal head points
794 	 * to the end of LEB and we write reference node for it during commit.
795 	 * So this is why we require 'offs > c->leb_size'.
796 	 */
797 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
798 	    lnum < c->main_first || offs > c->leb_size ||
799 	    offs & (c->min_io_size - 1))
800 		return -EINVAL;
801 
802 	/* Make sure we have not already looked at this bud */
803 	bud = ubifs_search_bud(c, lnum);
804 	if (bud) {
805 		if (bud->jhead == jhead && bud->start <= offs)
806 			return 1;
807 		ubifs_err("bud at LEB %d:%d was already referred", lnum, offs);
808 		return -EINVAL;
809 	}
810 
811 	return 0;
812 }
813 
814 /**
815  * replay_log_leb - replay a log logical eraseblock.
816  * @c: UBIFS file-system description object
817  * @lnum: log logical eraseblock to replay
818  * @offs: offset to start replaying from
819  * @sbuf: scan buffer
820  *
821  * This function replays a log LEB and returns zero in case of success, %1 if
822  * this is the last LEB in the log, and a negative error code in case of
823  * failure.
824  */
825 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
826 {
827 	int err;
828 	struct ubifs_scan_leb *sleb;
829 	struct ubifs_scan_node *snod;
830 	const struct ubifs_cs_node *node;
831 
832 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
833 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
834 	if (IS_ERR(sleb)) {
835 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
836 			return PTR_ERR(sleb);
837 		/*
838 		 * Note, the below function will recover this log LEB only if
839 		 * it is the last, because unclean reboots can possibly corrupt
840 		 * only the tail of the log.
841 		 */
842 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
843 		if (IS_ERR(sleb))
844 			return PTR_ERR(sleb);
845 	}
846 
847 	if (sleb->nodes_cnt == 0) {
848 		err = 1;
849 		goto out;
850 	}
851 
852 	node = sleb->buf;
853 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
854 	if (c->cs_sqnum == 0) {
855 		/*
856 		 * This is the first log LEB we are looking at, make sure that
857 		 * the first node is a commit start node. Also record its
858 		 * sequence number so that UBIFS can determine where the log
859 		 * ends, because all nodes which were have higher sequence
860 		 * numbers.
861 		 */
862 		if (snod->type != UBIFS_CS_NODE) {
863 			ubifs_err("first log node at LEB %d:%d is not CS node",
864 				  lnum, offs);
865 			goto out_dump;
866 		}
867 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
868 			ubifs_err("first CS node at LEB %d:%d has wrong "
869 				  "commit number %llu expected %llu",
870 				  lnum, offs,
871 				  (unsigned long long)le64_to_cpu(node->cmt_no),
872 				  c->cmt_no);
873 			goto out_dump;
874 		}
875 
876 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
877 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
878 	}
879 
880 	if (snod->sqnum < c->cs_sqnum) {
881 		/*
882 		 * This means that we reached end of log and now
883 		 * look to the older log data, which was already
884 		 * committed but the eraseblock was not erased (UBIFS
885 		 * only un-maps it). So this basically means we have to
886 		 * exit with "end of log" code.
887 		 */
888 		err = 1;
889 		goto out;
890 	}
891 
892 	/* Make sure the first node sits at offset zero of the LEB */
893 	if (snod->offs != 0) {
894 		ubifs_err("first node is not at zero offset");
895 		goto out_dump;
896 	}
897 
898 	list_for_each_entry(snod, &sleb->nodes, list) {
899 		cond_resched();
900 
901 		if (snod->sqnum >= SQNUM_WATERMARK) {
902 			ubifs_err("file system's life ended");
903 			goto out_dump;
904 		}
905 
906 		if (snod->sqnum < c->cs_sqnum) {
907 			ubifs_err("bad sqnum %llu, commit sqnum %llu",
908 				  snod->sqnum, c->cs_sqnum);
909 			goto out_dump;
910 		}
911 
912 		if (snod->sqnum > c->max_sqnum)
913 			c->max_sqnum = snod->sqnum;
914 
915 		switch (snod->type) {
916 		case UBIFS_REF_NODE: {
917 			const struct ubifs_ref_node *ref = snod->node;
918 
919 			err = validate_ref(c, ref);
920 			if (err == 1)
921 				break; /* Already have this bud */
922 			if (err)
923 				goto out_dump;
924 
925 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
926 					     le32_to_cpu(ref->offs),
927 					     le32_to_cpu(ref->jhead),
928 					     snod->sqnum);
929 			if (err)
930 				goto out;
931 
932 			break;
933 		}
934 		case UBIFS_CS_NODE:
935 			/* Make sure it sits at the beginning of LEB */
936 			if (snod->offs != 0) {
937 				ubifs_err("unexpected node in log");
938 				goto out_dump;
939 			}
940 			break;
941 		default:
942 			ubifs_err("unexpected node in log");
943 			goto out_dump;
944 		}
945 	}
946 
947 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
948 		c->lhead_lnum = lnum;
949 		c->lhead_offs = sleb->endpt;
950 	}
951 
952 	err = !sleb->endpt;
953 out:
954 	ubifs_scan_destroy(sleb);
955 	return err;
956 
957 out_dump:
958 	ubifs_err("log error detected while replaying the log at LEB %d:%d",
959 		  lnum, offs + snod->offs);
960 	ubifs_dump_node(c, snod->node);
961 	ubifs_scan_destroy(sleb);
962 	return -EINVAL;
963 }
964 
965 /**
966  * take_ihead - update the status of the index head in lprops to 'taken'.
967  * @c: UBIFS file-system description object
968  *
969  * This function returns the amount of free space in the index head LEB or a
970  * negative error code.
971  */
972 static int take_ihead(struct ubifs_info *c)
973 {
974 	const struct ubifs_lprops *lp;
975 	int err, free;
976 
977 	ubifs_get_lprops(c);
978 
979 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
980 	if (IS_ERR(lp)) {
981 		err = PTR_ERR(lp);
982 		goto out;
983 	}
984 
985 	free = lp->free;
986 
987 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
988 			     lp->flags | LPROPS_TAKEN, 0);
989 	if (IS_ERR(lp)) {
990 		err = PTR_ERR(lp);
991 		goto out;
992 	}
993 
994 	err = free;
995 out:
996 	ubifs_release_lprops(c);
997 	return err;
998 }
999 
1000 /**
1001  * ubifs_replay_journal - replay journal.
1002  * @c: UBIFS file-system description object
1003  *
1004  * This function scans the journal, replays and cleans it up. It makes sure all
1005  * memory data structures related to uncommitted journal are built (dirty TNC
1006  * tree, tree of buds, modified lprops, etc).
1007  */
1008 int ubifs_replay_journal(struct ubifs_info *c)
1009 {
1010 	int err, i, lnum, offs, free;
1011 
1012 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1013 
1014 	/* Update the status of the index head in lprops to 'taken' */
1015 	free = take_ihead(c);
1016 	if (free < 0)
1017 		return free; /* Error code */
1018 
1019 	if (c->ihead_offs != c->leb_size - free) {
1020 		ubifs_err("bad index head LEB %d:%d", c->ihead_lnum,
1021 			  c->ihead_offs);
1022 		return -EINVAL;
1023 	}
1024 
1025 	dbg_mnt("start replaying the journal");
1026 	c->replaying = 1;
1027 	lnum = c->ltail_lnum = c->lhead_lnum;
1028 	offs = c->lhead_offs;
1029 
1030 	for (i = 0; i < c->log_lebs; i++, lnum++) {
1031 		if (lnum >= UBIFS_LOG_LNUM + c->log_lebs) {
1032 			/*
1033 			 * The log is logically circular, we reached the last
1034 			 * LEB, switch to the first one.
1035 			 */
1036 			lnum = UBIFS_LOG_LNUM;
1037 			offs = 0;
1038 		}
1039 		err = replay_log_leb(c, lnum, offs, c->sbuf);
1040 		if (err == 1)
1041 			/* We hit the end of the log */
1042 			break;
1043 		if (err)
1044 			goto out;
1045 		offs = 0;
1046 	}
1047 
1048 	err = replay_buds(c);
1049 	if (err)
1050 		goto out;
1051 
1052 	err = apply_replay_list(c);
1053 	if (err)
1054 		goto out;
1055 
1056 	err = set_buds_lprops(c);
1057 	if (err)
1058 		goto out;
1059 
1060 	/*
1061 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1062 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1063 	 * depend on it. This means we have to initialize it to make sure
1064 	 * budgeting works properly.
1065 	 */
1066 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1067 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1068 
1069 	ubifs_assert(c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1070 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, "
1071 		"highest_inum %lu", c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1072 		(unsigned long)c->highest_inum);
1073 out:
1074 	destroy_replay_list(c);
1075 	destroy_bud_list(c);
1076 	c->replaying = 0;
1077 	return err;
1078 }
1079