xref: /linux/fs/ubifs/replay.c (revision 02680c23d7b3febe45ea3d4f9818c2b2dc89020a)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file contains journal replay code. It runs when the file-system is being
13  * mounted and requires no locking.
14  *
15  * The larger is the journal, the longer it takes to scan it, so the longer it
16  * takes to mount UBIFS. This is why the journal has limited size which may be
17  * changed depending on the system requirements. But a larger journal gives
18  * faster I/O speed because it writes the index less frequently. So this is a
19  * trade-off. Also, the journal is indexed by the in-memory index (TNC), so the
20  * larger is the journal, the more memory its index may consume.
21  */
22 
23 #include "ubifs.h"
24 #include <linux/list_sort.h>
25 #include <crypto/hash.h>
26 #include <crypto/algapi.h>
27 
28 /**
29  * struct replay_entry - replay list entry.
30  * @lnum: logical eraseblock number of the node
31  * @offs: node offset
32  * @len: node length
33  * @deletion: non-zero if this entry corresponds to a node deletion
34  * @sqnum: node sequence number
35  * @list: links the replay list
36  * @key: node key
37  * @nm: directory entry name
38  * @old_size: truncation old size
39  * @new_size: truncation new size
40  *
41  * The replay process first scans all buds and builds the replay list, then
42  * sorts the replay list in nodes sequence number order, and then inserts all
43  * the replay entries to the TNC.
44  */
45 struct replay_entry {
46 	int lnum;
47 	int offs;
48 	int len;
49 	u8 hash[UBIFS_HASH_ARR_SZ];
50 	unsigned int deletion:1;
51 	unsigned long long sqnum;
52 	struct list_head list;
53 	union ubifs_key key;
54 	union {
55 		struct fscrypt_name nm;
56 		struct {
57 			loff_t old_size;
58 			loff_t new_size;
59 		};
60 	};
61 };
62 
63 /**
64  * struct bud_entry - entry in the list of buds to replay.
65  * @list: next bud in the list
66  * @bud: bud description object
67  * @sqnum: reference node sequence number
68  * @free: free bytes in the bud
69  * @dirty: dirty bytes in the bud
70  */
71 struct bud_entry {
72 	struct list_head list;
73 	struct ubifs_bud *bud;
74 	unsigned long long sqnum;
75 	int free;
76 	int dirty;
77 };
78 
79 /**
80  * set_bud_lprops - set free and dirty space used by a bud.
81  * @c: UBIFS file-system description object
82  * @b: bud entry which describes the bud
83  *
84  * This function makes sure the LEB properties of bud @b are set correctly
85  * after the replay. Returns zero in case of success and a negative error code
86  * in case of failure.
87  */
88 static int set_bud_lprops(struct ubifs_info *c, struct bud_entry *b)
89 {
90 	const struct ubifs_lprops *lp;
91 	int err = 0, dirty;
92 
93 	ubifs_get_lprops(c);
94 
95 	lp = ubifs_lpt_lookup_dirty(c, b->bud->lnum);
96 	if (IS_ERR(lp)) {
97 		err = PTR_ERR(lp);
98 		goto out;
99 	}
100 
101 	dirty = lp->dirty;
102 	if (b->bud->start == 0 && (lp->free != c->leb_size || lp->dirty != 0)) {
103 		/*
104 		 * The LEB was added to the journal with a starting offset of
105 		 * zero which means the LEB must have been empty. The LEB
106 		 * property values should be @lp->free == @c->leb_size and
107 		 * @lp->dirty == 0, but that is not the case. The reason is that
108 		 * the LEB had been garbage collected before it became the bud,
109 		 * and there was not commit inbetween. The garbage collector
110 		 * resets the free and dirty space without recording it
111 		 * anywhere except lprops, so if there was no commit then
112 		 * lprops does not have that information.
113 		 *
114 		 * We do not need to adjust free space because the scan has told
115 		 * us the exact value which is recorded in the replay entry as
116 		 * @b->free.
117 		 *
118 		 * However we do need to subtract from the dirty space the
119 		 * amount of space that the garbage collector reclaimed, which
120 		 * is the whole LEB minus the amount of space that was free.
121 		 */
122 		dbg_mnt("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
123 			lp->free, lp->dirty);
124 		dbg_gc("bud LEB %d was GC'd (%d free, %d dirty)", b->bud->lnum,
125 			lp->free, lp->dirty);
126 		dirty -= c->leb_size - lp->free;
127 		/*
128 		 * If the replay order was perfect the dirty space would now be
129 		 * zero. The order is not perfect because the journal heads
130 		 * race with each other. This is not a problem but is does mean
131 		 * that the dirty space may temporarily exceed c->leb_size
132 		 * during the replay.
133 		 */
134 		if (dirty != 0)
135 			dbg_mnt("LEB %d lp: %d free %d dirty replay: %d free %d dirty",
136 				b->bud->lnum, lp->free, lp->dirty, b->free,
137 				b->dirty);
138 	}
139 	lp = ubifs_change_lp(c, lp, b->free, dirty + b->dirty,
140 			     lp->flags | LPROPS_TAKEN, 0);
141 	if (IS_ERR(lp)) {
142 		err = PTR_ERR(lp);
143 		goto out;
144 	}
145 
146 	/* Make sure the journal head points to the latest bud */
147 	err = ubifs_wbuf_seek_nolock(&c->jheads[b->bud->jhead].wbuf,
148 				     b->bud->lnum, c->leb_size - b->free);
149 
150 out:
151 	ubifs_release_lprops(c);
152 	return err;
153 }
154 
155 /**
156  * set_buds_lprops - set free and dirty space for all replayed buds.
157  * @c: UBIFS file-system description object
158  *
159  * This function sets LEB properties for all replayed buds. Returns zero in
160  * case of success and a negative error code in case of failure.
161  */
162 static int set_buds_lprops(struct ubifs_info *c)
163 {
164 	struct bud_entry *b;
165 	int err;
166 
167 	list_for_each_entry(b, &c->replay_buds, list) {
168 		err = set_bud_lprops(c, b);
169 		if (err)
170 			return err;
171 	}
172 
173 	return 0;
174 }
175 
176 /**
177  * trun_remove_range - apply a replay entry for a truncation to the TNC.
178  * @c: UBIFS file-system description object
179  * @r: replay entry of truncation
180  */
181 static int trun_remove_range(struct ubifs_info *c, struct replay_entry *r)
182 {
183 	unsigned min_blk, max_blk;
184 	union ubifs_key min_key, max_key;
185 	ino_t ino;
186 
187 	min_blk = r->new_size / UBIFS_BLOCK_SIZE;
188 	if (r->new_size & (UBIFS_BLOCK_SIZE - 1))
189 		min_blk += 1;
190 
191 	max_blk = r->old_size / UBIFS_BLOCK_SIZE;
192 	if ((r->old_size & (UBIFS_BLOCK_SIZE - 1)) == 0)
193 		max_blk -= 1;
194 
195 	ino = key_inum(c, &r->key);
196 
197 	data_key_init(c, &min_key, ino, min_blk);
198 	data_key_init(c, &max_key, ino, max_blk);
199 
200 	return ubifs_tnc_remove_range(c, &min_key, &max_key);
201 }
202 
203 /**
204  * inode_still_linked - check whether inode in question will be re-linked.
205  * @c: UBIFS file-system description object
206  * @rino: replay entry to test
207  *
208  * O_TMPFILE files can be re-linked, this means link count goes from 0 to 1.
209  * This case needs special care, otherwise all references to the inode will
210  * be removed upon the first replay entry of an inode with link count 0
211  * is found.
212  */
213 static bool inode_still_linked(struct ubifs_info *c, struct replay_entry *rino)
214 {
215 	struct replay_entry *r;
216 
217 	ubifs_assert(c, rino->deletion);
218 	ubifs_assert(c, key_type(c, &rino->key) == UBIFS_INO_KEY);
219 
220 	/*
221 	 * Find the most recent entry for the inode behind @rino and check
222 	 * whether it is a deletion.
223 	 */
224 	list_for_each_entry_reverse(r, &c->replay_list, list) {
225 		ubifs_assert(c, r->sqnum >= rino->sqnum);
226 		if (key_inum(c, &r->key) == key_inum(c, &rino->key) &&
227 		    key_type(c, &r->key) == UBIFS_INO_KEY)
228 			return r->deletion == 0;
229 
230 	}
231 
232 	ubifs_assert(c, 0);
233 	return false;
234 }
235 
236 /**
237  * apply_replay_entry - apply a replay entry to the TNC.
238  * @c: UBIFS file-system description object
239  * @r: replay entry to apply
240  *
241  * Apply a replay entry to the TNC.
242  */
243 static int apply_replay_entry(struct ubifs_info *c, struct replay_entry *r)
244 {
245 	int err;
246 
247 	dbg_mntk(&r->key, "LEB %d:%d len %d deletion %d sqnum %llu key ",
248 		 r->lnum, r->offs, r->len, r->deletion, r->sqnum);
249 
250 	if (is_hash_key(c, &r->key)) {
251 		if (r->deletion)
252 			err = ubifs_tnc_remove_nm(c, &r->key, &r->nm);
253 		else
254 			err = ubifs_tnc_add_nm(c, &r->key, r->lnum, r->offs,
255 					       r->len, r->hash, &r->nm);
256 	} else {
257 		if (r->deletion)
258 			switch (key_type(c, &r->key)) {
259 			case UBIFS_INO_KEY:
260 			{
261 				ino_t inum = key_inum(c, &r->key);
262 
263 				if (inode_still_linked(c, r)) {
264 					err = 0;
265 					break;
266 				}
267 
268 				err = ubifs_tnc_remove_ino(c, inum);
269 				break;
270 			}
271 			case UBIFS_TRUN_KEY:
272 				err = trun_remove_range(c, r);
273 				break;
274 			default:
275 				err = ubifs_tnc_remove(c, &r->key);
276 				break;
277 			}
278 		else
279 			err = ubifs_tnc_add(c, &r->key, r->lnum, r->offs,
280 					    r->len, r->hash);
281 		if (err)
282 			return err;
283 
284 		if (c->need_recovery)
285 			err = ubifs_recover_size_accum(c, &r->key, r->deletion,
286 						       r->new_size);
287 	}
288 
289 	return err;
290 }
291 
292 /**
293  * replay_entries_cmp - compare 2 replay entries.
294  * @priv: UBIFS file-system description object
295  * @a: first replay entry
296  * @b: second replay entry
297  *
298  * This is a comparios function for 'list_sort()' which compares 2 replay
299  * entries @a and @b by comparing their sequence numer.  Returns %1 if @a has
300  * greater sequence number and %-1 otherwise.
301  */
302 static int replay_entries_cmp(void *priv, const struct list_head *a,
303 			      const struct list_head *b)
304 {
305 	struct ubifs_info *c = priv;
306 	struct replay_entry *ra, *rb;
307 
308 	cond_resched();
309 	if (a == b)
310 		return 0;
311 
312 	ra = list_entry(a, struct replay_entry, list);
313 	rb = list_entry(b, struct replay_entry, list);
314 	ubifs_assert(c, ra->sqnum != rb->sqnum);
315 	if (ra->sqnum > rb->sqnum)
316 		return 1;
317 	return -1;
318 }
319 
320 /**
321  * apply_replay_list - apply the replay list to the TNC.
322  * @c: UBIFS file-system description object
323  *
324  * Apply all entries in the replay list to the TNC. Returns zero in case of
325  * success and a negative error code in case of failure.
326  */
327 static int apply_replay_list(struct ubifs_info *c)
328 {
329 	struct replay_entry *r;
330 	int err;
331 
332 	list_sort(c, &c->replay_list, &replay_entries_cmp);
333 
334 	list_for_each_entry(r, &c->replay_list, list) {
335 		cond_resched();
336 
337 		err = apply_replay_entry(c, r);
338 		if (err)
339 			return err;
340 	}
341 
342 	return 0;
343 }
344 
345 /**
346  * destroy_replay_list - destroy the replay.
347  * @c: UBIFS file-system description object
348  *
349  * Destroy the replay list.
350  */
351 static void destroy_replay_list(struct ubifs_info *c)
352 {
353 	struct replay_entry *r, *tmp;
354 
355 	list_for_each_entry_safe(r, tmp, &c->replay_list, list) {
356 		if (is_hash_key(c, &r->key))
357 			kfree(fname_name(&r->nm));
358 		list_del(&r->list);
359 		kfree(r);
360 	}
361 }
362 
363 /**
364  * insert_node - insert a node to the replay list
365  * @c: UBIFS file-system description object
366  * @lnum: node logical eraseblock number
367  * @offs: node offset
368  * @len: node length
369  * @key: node key
370  * @sqnum: sequence number
371  * @deletion: non-zero if this is a deletion
372  * @used: number of bytes in use in a LEB
373  * @old_size: truncation old size
374  * @new_size: truncation new size
375  *
376  * This function inserts a scanned non-direntry node to the replay list. The
377  * replay list contains @struct replay_entry elements, and we sort this list in
378  * sequence number order before applying it. The replay list is applied at the
379  * very end of the replay process. Since the list is sorted in sequence number
380  * order, the older modifications are applied first. This function returns zero
381  * in case of success and a negative error code in case of failure.
382  */
383 static int insert_node(struct ubifs_info *c, int lnum, int offs, int len,
384 		       const u8 *hash, union ubifs_key *key,
385 		       unsigned long long sqnum, int deletion, int *used,
386 		       loff_t old_size, loff_t new_size)
387 {
388 	struct replay_entry *r;
389 
390 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
391 
392 	if (key_inum(c, key) >= c->highest_inum)
393 		c->highest_inum = key_inum(c, key);
394 
395 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
396 	if (!r)
397 		return -ENOMEM;
398 
399 	if (!deletion)
400 		*used += ALIGN(len, 8);
401 	r->lnum = lnum;
402 	r->offs = offs;
403 	r->len = len;
404 	ubifs_copy_hash(c, hash, r->hash);
405 	r->deletion = !!deletion;
406 	r->sqnum = sqnum;
407 	key_copy(c, key, &r->key);
408 	r->old_size = old_size;
409 	r->new_size = new_size;
410 
411 	list_add_tail(&r->list, &c->replay_list);
412 	return 0;
413 }
414 
415 /**
416  * insert_dent - insert a directory entry node into the replay list.
417  * @c: UBIFS file-system description object
418  * @lnum: node logical eraseblock number
419  * @offs: node offset
420  * @len: node length
421  * @key: node key
422  * @name: directory entry name
423  * @nlen: directory entry name length
424  * @sqnum: sequence number
425  * @deletion: non-zero if this is a deletion
426  * @used: number of bytes in use in a LEB
427  *
428  * This function inserts a scanned directory entry node or an extended
429  * attribute entry to the replay list. Returns zero in case of success and a
430  * negative error code in case of failure.
431  */
432 static int insert_dent(struct ubifs_info *c, int lnum, int offs, int len,
433 		       const u8 *hash, union ubifs_key *key,
434 		       const char *name, int nlen, unsigned long long sqnum,
435 		       int deletion, int *used)
436 {
437 	struct replay_entry *r;
438 	char *nbuf;
439 
440 	dbg_mntk(key, "add LEB %d:%d, key ", lnum, offs);
441 	if (key_inum(c, key) >= c->highest_inum)
442 		c->highest_inum = key_inum(c, key);
443 
444 	r = kzalloc(sizeof(struct replay_entry), GFP_KERNEL);
445 	if (!r)
446 		return -ENOMEM;
447 
448 	nbuf = kmalloc(nlen + 1, GFP_KERNEL);
449 	if (!nbuf) {
450 		kfree(r);
451 		return -ENOMEM;
452 	}
453 
454 	if (!deletion)
455 		*used += ALIGN(len, 8);
456 	r->lnum = lnum;
457 	r->offs = offs;
458 	r->len = len;
459 	ubifs_copy_hash(c, hash, r->hash);
460 	r->deletion = !!deletion;
461 	r->sqnum = sqnum;
462 	key_copy(c, key, &r->key);
463 	fname_len(&r->nm) = nlen;
464 	memcpy(nbuf, name, nlen);
465 	nbuf[nlen] = '\0';
466 	fname_name(&r->nm) = nbuf;
467 
468 	list_add_tail(&r->list, &c->replay_list);
469 	return 0;
470 }
471 
472 /**
473  * ubifs_validate_entry - validate directory or extended attribute entry node.
474  * @c: UBIFS file-system description object
475  * @dent: the node to validate
476  *
477  * This function validates directory or extended attribute entry node @dent.
478  * Returns zero if the node is all right and a %-EINVAL if not.
479  */
480 int ubifs_validate_entry(struct ubifs_info *c,
481 			 const struct ubifs_dent_node *dent)
482 {
483 	int key_type = key_type_flash(c, dent->key);
484 	int nlen = le16_to_cpu(dent->nlen);
485 
486 	if (le32_to_cpu(dent->ch.len) != nlen + UBIFS_DENT_NODE_SZ + 1 ||
487 	    dent->type >= UBIFS_ITYPES_CNT ||
488 	    nlen > UBIFS_MAX_NLEN || dent->name[nlen] != 0 ||
489 	    (key_type == UBIFS_XENT_KEY && strnlen(dent->name, nlen) != nlen) ||
490 	    le64_to_cpu(dent->inum) > MAX_INUM) {
491 		ubifs_err(c, "bad %s node", key_type == UBIFS_DENT_KEY ?
492 			  "directory entry" : "extended attribute entry");
493 		return -EINVAL;
494 	}
495 
496 	if (key_type != UBIFS_DENT_KEY && key_type != UBIFS_XENT_KEY) {
497 		ubifs_err(c, "bad key type %d", key_type);
498 		return -EINVAL;
499 	}
500 
501 	return 0;
502 }
503 
504 /**
505  * is_last_bud - check if the bud is the last in the journal head.
506  * @c: UBIFS file-system description object
507  * @bud: bud description object
508  *
509  * This function checks if bud @bud is the last bud in its journal head. This
510  * information is then used by 'replay_bud()' to decide whether the bud can
511  * have corruptions or not. Indeed, only last buds can be corrupted by power
512  * cuts. Returns %1 if this is the last bud, and %0 if not.
513  */
514 static int is_last_bud(struct ubifs_info *c, struct ubifs_bud *bud)
515 {
516 	struct ubifs_jhead *jh = &c->jheads[bud->jhead];
517 	struct ubifs_bud *next;
518 	uint32_t data;
519 	int err;
520 
521 	if (list_is_last(&bud->list, &jh->buds_list))
522 		return 1;
523 
524 	/*
525 	 * The following is a quirk to make sure we work correctly with UBIFS
526 	 * images used with older UBIFS.
527 	 *
528 	 * Normally, the last bud will be the last in the journal head's list
529 	 * of bud. However, there is one exception if the UBIFS image belongs
530 	 * to older UBIFS. This is fairly unlikely: one would need to use old
531 	 * UBIFS, then have a power cut exactly at the right point, and then
532 	 * try to mount this image with new UBIFS.
533 	 *
534 	 * The exception is: it is possible to have 2 buds A and B, A goes
535 	 * before B, and B is the last, bud B is contains no data, and bud A is
536 	 * corrupted at the end. The reason is that in older versions when the
537 	 * journal code switched the next bud (from A to B), it first added a
538 	 * log reference node for the new bud (B), and only after this it
539 	 * synchronized the write-buffer of current bud (A). But later this was
540 	 * changed and UBIFS started to always synchronize the write-buffer of
541 	 * the bud (A) before writing the log reference for the new bud (B).
542 	 *
543 	 * But because older UBIFS always synchronized A's write-buffer before
544 	 * writing to B, we can recognize this exceptional situation but
545 	 * checking the contents of bud B - if it is empty, then A can be
546 	 * treated as the last and we can recover it.
547 	 *
548 	 * TODO: remove this piece of code in a couple of years (today it is
549 	 * 16.05.2011).
550 	 */
551 	next = list_entry(bud->list.next, struct ubifs_bud, list);
552 	if (!list_is_last(&next->list, &jh->buds_list))
553 		return 0;
554 
555 	err = ubifs_leb_read(c, next->lnum, (char *)&data, next->start, 4, 1);
556 	if (err)
557 		return 0;
558 
559 	return data == 0xFFFFFFFF;
560 }
561 
562 /* authenticate_sleb_hash is split out for stack usage */
563 static int noinline_for_stack
564 authenticate_sleb_hash(struct ubifs_info *c,
565 		       struct shash_desc *log_hash, u8 *hash)
566 {
567 	SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
568 
569 	hash_desc->tfm = c->hash_tfm;
570 
571 	ubifs_shash_copy_state(c, log_hash, hash_desc);
572 	return crypto_shash_final(hash_desc, hash);
573 }
574 
575 /**
576  * authenticate_sleb - authenticate one scan LEB
577  * @c: UBIFS file-system description object
578  * @sleb: the scan LEB to authenticate
579  * @log_hash:
580  * @is_last: if true, this is the last LEB
581  *
582  * This function iterates over the buds of a single LEB authenticating all buds
583  * with the authentication nodes on this LEB. Authentication nodes are written
584  * after some buds and contain a HMAC covering the authentication node itself
585  * and the buds between the last authentication node and the current
586  * authentication node. It can happen that the last buds cannot be authenticated
587  * because a powercut happened when some nodes were written but not the
588  * corresponding authentication node. This function returns the number of nodes
589  * that could be authenticated or a negative error code.
590  */
591 static int authenticate_sleb(struct ubifs_info *c, struct ubifs_scan_leb *sleb,
592 			     struct shash_desc *log_hash, int is_last)
593 {
594 	int n_not_auth = 0;
595 	struct ubifs_scan_node *snod;
596 	int n_nodes = 0;
597 	int err;
598 	u8 hash[UBIFS_HASH_ARR_SZ];
599 	u8 hmac[UBIFS_HMAC_ARR_SZ];
600 
601 	if (!ubifs_authenticated(c))
602 		return sleb->nodes_cnt;
603 
604 	list_for_each_entry(snod, &sleb->nodes, list) {
605 
606 		n_nodes++;
607 
608 		if (snod->type == UBIFS_AUTH_NODE) {
609 			struct ubifs_auth_node *auth = snod->node;
610 
611 			err = authenticate_sleb_hash(c, log_hash, hash);
612 			if (err)
613 				goto out;
614 
615 			err = crypto_shash_tfm_digest(c->hmac_tfm, hash,
616 						      c->hash_len, hmac);
617 			if (err)
618 				goto out;
619 
620 			err = ubifs_check_hmac(c, auth->hmac, hmac);
621 			if (err) {
622 				err = -EPERM;
623 				goto out;
624 			}
625 			n_not_auth = 0;
626 		} else {
627 			err = crypto_shash_update(log_hash, snod->node,
628 						  snod->len);
629 			if (err)
630 				goto out;
631 			n_not_auth++;
632 		}
633 	}
634 
635 	/*
636 	 * A powercut can happen when some nodes were written, but not yet
637 	 * the corresponding authentication node. This may only happen on
638 	 * the last bud though.
639 	 */
640 	if (n_not_auth) {
641 		if (is_last) {
642 			dbg_mnt("%d unauthenticated nodes found on LEB %d, Ignoring them",
643 				n_not_auth, sleb->lnum);
644 			err = 0;
645 		} else {
646 			dbg_mnt("%d unauthenticated nodes found on non-last LEB %d",
647 				n_not_auth, sleb->lnum);
648 			err = -EPERM;
649 		}
650 	} else {
651 		err = 0;
652 	}
653 out:
654 	return err ? err : n_nodes - n_not_auth;
655 }
656 
657 /**
658  * replay_bud - replay a bud logical eraseblock.
659  * @c: UBIFS file-system description object
660  * @b: bud entry which describes the bud
661  *
662  * This function replays bud @bud, recovers it if needed, and adds all nodes
663  * from this bud to the replay list. Returns zero in case of success and a
664  * negative error code in case of failure.
665  */
666 static int replay_bud(struct ubifs_info *c, struct bud_entry *b)
667 {
668 	int is_last = is_last_bud(c, b->bud);
669 	int err = 0, used = 0, lnum = b->bud->lnum, offs = b->bud->start;
670 	int n_nodes, n = 0;
671 	struct ubifs_scan_leb *sleb;
672 	struct ubifs_scan_node *snod;
673 
674 	dbg_mnt("replay bud LEB %d, head %d, offs %d, is_last %d",
675 		lnum, b->bud->jhead, offs, is_last);
676 
677 	if (c->need_recovery && is_last)
678 		/*
679 		 * Recover only last LEBs in the journal heads, because power
680 		 * cuts may cause corruptions only in these LEBs, because only
681 		 * these LEBs could possibly be written to at the power cut
682 		 * time.
683 		 */
684 		sleb = ubifs_recover_leb(c, lnum, offs, c->sbuf, b->bud->jhead);
685 	else
686 		sleb = ubifs_scan(c, lnum, offs, c->sbuf, 0);
687 	if (IS_ERR(sleb))
688 		return PTR_ERR(sleb);
689 
690 	n_nodes = authenticate_sleb(c, sleb, b->bud->log_hash, is_last);
691 	if (n_nodes < 0) {
692 		err = n_nodes;
693 		goto out;
694 	}
695 
696 	ubifs_shash_copy_state(c, b->bud->log_hash,
697 			       c->jheads[b->bud->jhead].log_hash);
698 
699 	/*
700 	 * The bud does not have to start from offset zero - the beginning of
701 	 * the 'lnum' LEB may contain previously committed data. One of the
702 	 * things we have to do in replay is to correctly update lprops with
703 	 * newer information about this LEB.
704 	 *
705 	 * At this point lprops thinks that this LEB has 'c->leb_size - offs'
706 	 * bytes of free space because it only contain information about
707 	 * committed data.
708 	 *
709 	 * But we know that real amount of free space is 'c->leb_size -
710 	 * sleb->endpt', and the space in the 'lnum' LEB between 'offs' and
711 	 * 'sleb->endpt' is used by bud data. We have to correctly calculate
712 	 * how much of these data are dirty and update lprops with this
713 	 * information.
714 	 *
715 	 * The dirt in that LEB region is comprised of padding nodes, deletion
716 	 * nodes, truncation nodes and nodes which are obsoleted by subsequent
717 	 * nodes in this LEB. So instead of calculating clean space, we
718 	 * calculate used space ('used' variable).
719 	 */
720 
721 	list_for_each_entry(snod, &sleb->nodes, list) {
722 		u8 hash[UBIFS_HASH_ARR_SZ];
723 		int deletion = 0;
724 
725 		cond_resched();
726 
727 		if (snod->sqnum >= SQNUM_WATERMARK) {
728 			ubifs_err(c, "file system's life ended");
729 			goto out_dump;
730 		}
731 
732 		ubifs_node_calc_hash(c, snod->node, hash);
733 
734 		if (snod->sqnum > c->max_sqnum)
735 			c->max_sqnum = snod->sqnum;
736 
737 		switch (snod->type) {
738 		case UBIFS_INO_NODE:
739 		{
740 			struct ubifs_ino_node *ino = snod->node;
741 			loff_t new_size = le64_to_cpu(ino->size);
742 
743 			if (le32_to_cpu(ino->nlink) == 0)
744 				deletion = 1;
745 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
746 					  &snod->key, snod->sqnum, deletion,
747 					  &used, 0, new_size);
748 			break;
749 		}
750 		case UBIFS_DATA_NODE:
751 		{
752 			struct ubifs_data_node *dn = snod->node;
753 			loff_t new_size = le32_to_cpu(dn->size) +
754 					  key_block(c, &snod->key) *
755 					  UBIFS_BLOCK_SIZE;
756 
757 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
758 					  &snod->key, snod->sqnum, deletion,
759 					  &used, 0, new_size);
760 			break;
761 		}
762 		case UBIFS_DENT_NODE:
763 		case UBIFS_XENT_NODE:
764 		{
765 			struct ubifs_dent_node *dent = snod->node;
766 
767 			err = ubifs_validate_entry(c, dent);
768 			if (err)
769 				goto out_dump;
770 
771 			err = insert_dent(c, lnum, snod->offs, snod->len, hash,
772 					  &snod->key, dent->name,
773 					  le16_to_cpu(dent->nlen), snod->sqnum,
774 					  !le64_to_cpu(dent->inum), &used);
775 			break;
776 		}
777 		case UBIFS_TRUN_NODE:
778 		{
779 			struct ubifs_trun_node *trun = snod->node;
780 			loff_t old_size = le64_to_cpu(trun->old_size);
781 			loff_t new_size = le64_to_cpu(trun->new_size);
782 			union ubifs_key key;
783 
784 			/* Validate truncation node */
785 			if (old_size < 0 || old_size > c->max_inode_sz ||
786 			    new_size < 0 || new_size > c->max_inode_sz ||
787 			    old_size <= new_size) {
788 				ubifs_err(c, "bad truncation node");
789 				goto out_dump;
790 			}
791 
792 			/*
793 			 * Create a fake truncation key just to use the same
794 			 * functions which expect nodes to have keys.
795 			 */
796 			trun_key_init(c, &key, le32_to_cpu(trun->inum));
797 			err = insert_node(c, lnum, snod->offs, snod->len, hash,
798 					  &key, snod->sqnum, 1, &used,
799 					  old_size, new_size);
800 			break;
801 		}
802 		case UBIFS_AUTH_NODE:
803 			break;
804 		default:
805 			ubifs_err(c, "unexpected node type %d in bud LEB %d:%d",
806 				  snod->type, lnum, snod->offs);
807 			err = -EINVAL;
808 			goto out_dump;
809 		}
810 		if (err)
811 			goto out;
812 
813 		n++;
814 		if (n == n_nodes)
815 			break;
816 	}
817 
818 	ubifs_assert(c, ubifs_search_bud(c, lnum));
819 	ubifs_assert(c, sleb->endpt - offs >= used);
820 	ubifs_assert(c, sleb->endpt % c->min_io_size == 0);
821 
822 	b->dirty = sleb->endpt - offs - used;
823 	b->free = c->leb_size - sleb->endpt;
824 	dbg_mnt("bud LEB %d replied: dirty %d, free %d",
825 		lnum, b->dirty, b->free);
826 
827 out:
828 	ubifs_scan_destroy(sleb);
829 	return err;
830 
831 out_dump:
832 	ubifs_err(c, "bad node is at LEB %d:%d", lnum, snod->offs);
833 	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
834 	ubifs_scan_destroy(sleb);
835 	return -EINVAL;
836 }
837 
838 /**
839  * replay_buds - replay all buds.
840  * @c: UBIFS file-system description object
841  *
842  * This function returns zero in case of success and a negative error code in
843  * case of failure.
844  */
845 static int replay_buds(struct ubifs_info *c)
846 {
847 	struct bud_entry *b;
848 	int err;
849 	unsigned long long prev_sqnum = 0;
850 
851 	list_for_each_entry(b, &c->replay_buds, list) {
852 		err = replay_bud(c, b);
853 		if (err)
854 			return err;
855 
856 		ubifs_assert(c, b->sqnum > prev_sqnum);
857 		prev_sqnum = b->sqnum;
858 	}
859 
860 	return 0;
861 }
862 
863 /**
864  * destroy_bud_list - destroy the list of buds to replay.
865  * @c: UBIFS file-system description object
866  */
867 static void destroy_bud_list(struct ubifs_info *c)
868 {
869 	struct bud_entry *b;
870 
871 	while (!list_empty(&c->replay_buds)) {
872 		b = list_entry(c->replay_buds.next, struct bud_entry, list);
873 		list_del(&b->list);
874 		kfree(b);
875 	}
876 }
877 
878 /**
879  * add_replay_bud - add a bud to the list of buds to replay.
880  * @c: UBIFS file-system description object
881  * @lnum: bud logical eraseblock number to replay
882  * @offs: bud start offset
883  * @jhead: journal head to which this bud belongs
884  * @sqnum: reference node sequence number
885  *
886  * This function returns zero in case of success and a negative error code in
887  * case of failure.
888  */
889 static int add_replay_bud(struct ubifs_info *c, int lnum, int offs, int jhead,
890 			  unsigned long long sqnum)
891 {
892 	struct ubifs_bud *bud;
893 	struct bud_entry *b;
894 	int err;
895 
896 	dbg_mnt("add replay bud LEB %d:%d, head %d", lnum, offs, jhead);
897 
898 	bud = kmalloc(sizeof(struct ubifs_bud), GFP_KERNEL);
899 	if (!bud)
900 		return -ENOMEM;
901 
902 	b = kmalloc(sizeof(struct bud_entry), GFP_KERNEL);
903 	if (!b) {
904 		err = -ENOMEM;
905 		goto out;
906 	}
907 
908 	bud->lnum = lnum;
909 	bud->start = offs;
910 	bud->jhead = jhead;
911 	bud->log_hash = ubifs_hash_get_desc(c);
912 	if (IS_ERR(bud->log_hash)) {
913 		err = PTR_ERR(bud->log_hash);
914 		goto out;
915 	}
916 
917 	ubifs_shash_copy_state(c, c->log_hash, bud->log_hash);
918 
919 	ubifs_add_bud(c, bud);
920 
921 	b->bud = bud;
922 	b->sqnum = sqnum;
923 	list_add_tail(&b->list, &c->replay_buds);
924 
925 	return 0;
926 out:
927 	kfree(bud);
928 	kfree(b);
929 
930 	return err;
931 }
932 
933 /**
934  * validate_ref - validate a reference node.
935  * @c: UBIFS file-system description object
936  * @ref: the reference node to validate
937  *
938  * This function returns %1 if a bud reference already exists for the LEB. %0 is
939  * returned if the reference node is new, otherwise %-EINVAL is returned if
940  * validation failed.
941  */
942 static int validate_ref(struct ubifs_info *c, const struct ubifs_ref_node *ref)
943 {
944 	struct ubifs_bud *bud;
945 	int lnum = le32_to_cpu(ref->lnum);
946 	unsigned int offs = le32_to_cpu(ref->offs);
947 	unsigned int jhead = le32_to_cpu(ref->jhead);
948 
949 	/*
950 	 * ref->offs may point to the end of LEB when the journal head points
951 	 * to the end of LEB and we write reference node for it during commit.
952 	 * So this is why we require 'offs > c->leb_size'.
953 	 */
954 	if (jhead >= c->jhead_cnt || lnum >= c->leb_cnt ||
955 	    lnum < c->main_first || offs > c->leb_size ||
956 	    offs & (c->min_io_size - 1))
957 		return -EINVAL;
958 
959 	/* Make sure we have not already looked at this bud */
960 	bud = ubifs_search_bud(c, lnum);
961 	if (bud) {
962 		if (bud->jhead == jhead && bud->start <= offs)
963 			return 1;
964 		ubifs_err(c, "bud at LEB %d:%d was already referred", lnum, offs);
965 		return -EINVAL;
966 	}
967 
968 	return 0;
969 }
970 
971 /**
972  * replay_log_leb - replay a log logical eraseblock.
973  * @c: UBIFS file-system description object
974  * @lnum: log logical eraseblock to replay
975  * @offs: offset to start replaying from
976  * @sbuf: scan buffer
977  *
978  * This function replays a log LEB and returns zero in case of success, %1 if
979  * this is the last LEB in the log, and a negative error code in case of
980  * failure.
981  */
982 static int replay_log_leb(struct ubifs_info *c, int lnum, int offs, void *sbuf)
983 {
984 	int err;
985 	struct ubifs_scan_leb *sleb;
986 	struct ubifs_scan_node *snod;
987 	const struct ubifs_cs_node *node;
988 
989 	dbg_mnt("replay log LEB %d:%d", lnum, offs);
990 	sleb = ubifs_scan(c, lnum, offs, sbuf, c->need_recovery);
991 	if (IS_ERR(sleb)) {
992 		if (PTR_ERR(sleb) != -EUCLEAN || !c->need_recovery)
993 			return PTR_ERR(sleb);
994 		/*
995 		 * Note, the below function will recover this log LEB only if
996 		 * it is the last, because unclean reboots can possibly corrupt
997 		 * only the tail of the log.
998 		 */
999 		sleb = ubifs_recover_log_leb(c, lnum, offs, sbuf);
1000 		if (IS_ERR(sleb))
1001 			return PTR_ERR(sleb);
1002 	}
1003 
1004 	if (sleb->nodes_cnt == 0) {
1005 		err = 1;
1006 		goto out;
1007 	}
1008 
1009 	node = sleb->buf;
1010 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
1011 	if (c->cs_sqnum == 0) {
1012 		/*
1013 		 * This is the first log LEB we are looking at, make sure that
1014 		 * the first node is a commit start node. Also record its
1015 		 * sequence number so that UBIFS can determine where the log
1016 		 * ends, because all nodes which were have higher sequence
1017 		 * numbers.
1018 		 */
1019 		if (snod->type != UBIFS_CS_NODE) {
1020 			ubifs_err(c, "first log node at LEB %d:%d is not CS node",
1021 				  lnum, offs);
1022 			goto out_dump;
1023 		}
1024 		if (le64_to_cpu(node->cmt_no) != c->cmt_no) {
1025 			ubifs_err(c, "first CS node at LEB %d:%d has wrong commit number %llu expected %llu",
1026 				  lnum, offs,
1027 				  (unsigned long long)le64_to_cpu(node->cmt_no),
1028 				  c->cmt_no);
1029 			goto out_dump;
1030 		}
1031 
1032 		c->cs_sqnum = le64_to_cpu(node->ch.sqnum);
1033 		dbg_mnt("commit start sqnum %llu", c->cs_sqnum);
1034 
1035 		err = ubifs_shash_init(c, c->log_hash);
1036 		if (err)
1037 			goto out;
1038 
1039 		err = ubifs_shash_update(c, c->log_hash, node, UBIFS_CS_NODE_SZ);
1040 		if (err < 0)
1041 			goto out;
1042 	}
1043 
1044 	if (snod->sqnum < c->cs_sqnum) {
1045 		/*
1046 		 * This means that we reached end of log and now
1047 		 * look to the older log data, which was already
1048 		 * committed but the eraseblock was not erased (UBIFS
1049 		 * only un-maps it). So this basically means we have to
1050 		 * exit with "end of log" code.
1051 		 */
1052 		err = 1;
1053 		goto out;
1054 	}
1055 
1056 	/* Make sure the first node sits at offset zero of the LEB */
1057 	if (snod->offs != 0) {
1058 		ubifs_err(c, "first node is not at zero offset");
1059 		goto out_dump;
1060 	}
1061 
1062 	list_for_each_entry(snod, &sleb->nodes, list) {
1063 		cond_resched();
1064 
1065 		if (snod->sqnum >= SQNUM_WATERMARK) {
1066 			ubifs_err(c, "file system's life ended");
1067 			goto out_dump;
1068 		}
1069 
1070 		if (snod->sqnum < c->cs_sqnum) {
1071 			ubifs_err(c, "bad sqnum %llu, commit sqnum %llu",
1072 				  snod->sqnum, c->cs_sqnum);
1073 			goto out_dump;
1074 		}
1075 
1076 		if (snod->sqnum > c->max_sqnum)
1077 			c->max_sqnum = snod->sqnum;
1078 
1079 		switch (snod->type) {
1080 		case UBIFS_REF_NODE: {
1081 			const struct ubifs_ref_node *ref = snod->node;
1082 
1083 			err = validate_ref(c, ref);
1084 			if (err == 1)
1085 				break; /* Already have this bud */
1086 			if (err)
1087 				goto out_dump;
1088 
1089 			err = ubifs_shash_update(c, c->log_hash, ref,
1090 						 UBIFS_REF_NODE_SZ);
1091 			if (err)
1092 				goto out;
1093 
1094 			err = add_replay_bud(c, le32_to_cpu(ref->lnum),
1095 					     le32_to_cpu(ref->offs),
1096 					     le32_to_cpu(ref->jhead),
1097 					     snod->sqnum);
1098 			if (err)
1099 				goto out;
1100 
1101 			break;
1102 		}
1103 		case UBIFS_CS_NODE:
1104 			/* Make sure it sits at the beginning of LEB */
1105 			if (snod->offs != 0) {
1106 				ubifs_err(c, "unexpected node in log");
1107 				goto out_dump;
1108 			}
1109 			break;
1110 		default:
1111 			ubifs_err(c, "unexpected node in log");
1112 			goto out_dump;
1113 		}
1114 	}
1115 
1116 	if (sleb->endpt || c->lhead_offs >= c->leb_size) {
1117 		c->lhead_lnum = lnum;
1118 		c->lhead_offs = sleb->endpt;
1119 	}
1120 
1121 	err = !sleb->endpt;
1122 out:
1123 	ubifs_scan_destroy(sleb);
1124 	return err;
1125 
1126 out_dump:
1127 	ubifs_err(c, "log error detected while replaying the log at LEB %d:%d",
1128 		  lnum, offs + snod->offs);
1129 	ubifs_dump_node(c, snod->node, c->leb_size - snod->offs);
1130 	ubifs_scan_destroy(sleb);
1131 	return -EINVAL;
1132 }
1133 
1134 /**
1135  * take_ihead - update the status of the index head in lprops to 'taken'.
1136  * @c: UBIFS file-system description object
1137  *
1138  * This function returns the amount of free space in the index head LEB or a
1139  * negative error code.
1140  */
1141 static int take_ihead(struct ubifs_info *c)
1142 {
1143 	const struct ubifs_lprops *lp;
1144 	int err, free;
1145 
1146 	ubifs_get_lprops(c);
1147 
1148 	lp = ubifs_lpt_lookup_dirty(c, c->ihead_lnum);
1149 	if (IS_ERR(lp)) {
1150 		err = PTR_ERR(lp);
1151 		goto out;
1152 	}
1153 
1154 	free = lp->free;
1155 
1156 	lp = ubifs_change_lp(c, lp, LPROPS_NC, LPROPS_NC,
1157 			     lp->flags | LPROPS_TAKEN, 0);
1158 	if (IS_ERR(lp)) {
1159 		err = PTR_ERR(lp);
1160 		goto out;
1161 	}
1162 
1163 	err = free;
1164 out:
1165 	ubifs_release_lprops(c);
1166 	return err;
1167 }
1168 
1169 /**
1170  * ubifs_replay_journal - replay journal.
1171  * @c: UBIFS file-system description object
1172  *
1173  * This function scans the journal, replays and cleans it up. It makes sure all
1174  * memory data structures related to uncommitted journal are built (dirty TNC
1175  * tree, tree of buds, modified lprops, etc).
1176  */
1177 int ubifs_replay_journal(struct ubifs_info *c)
1178 {
1179 	int err, lnum, free;
1180 
1181 	BUILD_BUG_ON(UBIFS_TRUN_KEY > 5);
1182 
1183 	/* Update the status of the index head in lprops to 'taken' */
1184 	free = take_ihead(c);
1185 	if (free < 0)
1186 		return free; /* Error code */
1187 
1188 	if (c->ihead_offs != c->leb_size - free) {
1189 		ubifs_err(c, "bad index head LEB %d:%d", c->ihead_lnum,
1190 			  c->ihead_offs);
1191 		return -EINVAL;
1192 	}
1193 
1194 	dbg_mnt("start replaying the journal");
1195 	c->replaying = 1;
1196 	lnum = c->ltail_lnum = c->lhead_lnum;
1197 
1198 	do {
1199 		err = replay_log_leb(c, lnum, 0, c->sbuf);
1200 		if (err == 1) {
1201 			if (lnum != c->lhead_lnum)
1202 				/* We hit the end of the log */
1203 				break;
1204 
1205 			/*
1206 			 * The head of the log must always start with the
1207 			 * "commit start" node on a properly formatted UBIFS.
1208 			 * But we found no nodes at all, which means that
1209 			 * something went wrong and we cannot proceed mounting
1210 			 * the file-system.
1211 			 */
1212 			ubifs_err(c, "no UBIFS nodes found at the log head LEB %d:%d, possibly corrupted",
1213 				  lnum, 0);
1214 			err = -EINVAL;
1215 		}
1216 		if (err)
1217 			goto out;
1218 		lnum = ubifs_next_log_lnum(c, lnum);
1219 	} while (lnum != c->ltail_lnum);
1220 
1221 	err = replay_buds(c);
1222 	if (err)
1223 		goto out;
1224 
1225 	err = apply_replay_list(c);
1226 	if (err)
1227 		goto out;
1228 
1229 	err = set_buds_lprops(c);
1230 	if (err)
1231 		goto out;
1232 
1233 	/*
1234 	 * UBIFS budgeting calculations use @c->bi.uncommitted_idx variable
1235 	 * to roughly estimate index growth. Things like @c->bi.min_idx_lebs
1236 	 * depend on it. This means we have to initialize it to make sure
1237 	 * budgeting works properly.
1238 	 */
1239 	c->bi.uncommitted_idx = atomic_long_read(&c->dirty_zn_cnt);
1240 	c->bi.uncommitted_idx *= c->max_idx_node_sz;
1241 
1242 	ubifs_assert(c, c->bud_bytes <= c->max_bud_bytes || c->need_recovery);
1243 	dbg_mnt("finished, log head LEB %d:%d, max_sqnum %llu, highest_inum %lu",
1244 		c->lhead_lnum, c->lhead_offs, c->max_sqnum,
1245 		(unsigned long)c->highest_inum);
1246 out:
1247 	destroy_replay_list(c);
1248 	destroy_bud_list(c);
1249 	c->replaying = 0;
1250 	return err;
1251 }
1252