1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements functions needed to recover from unclean un-mounts. 25 * When UBIFS is mounted, it checks a flag on the master node to determine if 26 * an un-mount was completed successfully. If not, the process of mounting 27 * incorporates additional checking and fixing of on-flash data structures. 28 * UBIFS always cleans away all remnants of an unclean un-mount, so that 29 * errors do not accumulate. However UBIFS defers recovery if it is mounted 30 * read-only, and the flash is not modified in that case. 31 * 32 * The general UBIFS approach to the recovery is that it recovers from 33 * corruptions which could be caused by power cuts, but it refuses to recover 34 * from corruption caused by other reasons. And UBIFS tries to distinguish 35 * between these 2 reasons of corruptions and silently recover in the former 36 * case and loudly complain in the latter case. 37 * 38 * UBIFS writes only to erased LEBs, so it writes only to the flash space 39 * containing only 0xFFs. UBIFS also always writes strictly from the beginning 40 * of the LEB to the end. And UBIFS assumes that the underlying flash media 41 * writes in @c->max_write_size bytes at a time. 42 * 43 * Hence, if UBIFS finds a corrupted node at offset X, it expects only the min. 44 * I/O unit corresponding to offset X to contain corrupted data, all the 45 * following min. I/O units have to contain empty space (all 0xFFs). If this is 46 * not true, the corruption cannot be the result of a power cut, and UBIFS 47 * refuses to mount. 48 */ 49 50 #include <linux/crc32.h> 51 #include <linux/slab.h> 52 #include "ubifs.h" 53 54 /** 55 * is_empty - determine whether a buffer is empty (contains all 0xff). 56 * @buf: buffer to clean 57 * @len: length of buffer 58 * 59 * This function returns %1 if the buffer is empty (contains all 0xff) otherwise 60 * %0 is returned. 61 */ 62 static int is_empty(void *buf, int len) 63 { 64 uint8_t *p = buf; 65 int i; 66 67 for (i = 0; i < len; i++) 68 if (*p++ != 0xff) 69 return 0; 70 return 1; 71 } 72 73 /** 74 * first_non_ff - find offset of the first non-0xff byte. 75 * @buf: buffer to search in 76 * @len: length of buffer 77 * 78 * This function returns offset of the first non-0xff byte in @buf or %-1 if 79 * the buffer contains only 0xff bytes. 80 */ 81 static int first_non_ff(void *buf, int len) 82 { 83 uint8_t *p = buf; 84 int i; 85 86 for (i = 0; i < len; i++) 87 if (*p++ != 0xff) 88 return i; 89 return -1; 90 } 91 92 /** 93 * get_master_node - get the last valid master node allowing for corruption. 94 * @c: UBIFS file-system description object 95 * @lnum: LEB number 96 * @pbuf: buffer containing the LEB read, is returned here 97 * @mst: master node, if found, is returned here 98 * @cor: corruption, if found, is returned here 99 * 100 * This function allocates a buffer, reads the LEB into it, and finds and 101 * returns the last valid master node allowing for one area of corruption. 102 * The corrupt area, if there is one, must be consistent with the assumption 103 * that it is the result of an unclean unmount while the master node was being 104 * written. Under those circumstances, it is valid to use the previously written 105 * master node. 106 * 107 * This function returns %0 on success and a negative error code on failure. 108 */ 109 static int get_master_node(const struct ubifs_info *c, int lnum, void **pbuf, 110 struct ubifs_mst_node **mst, void **cor) 111 { 112 const int sz = c->mst_node_alsz; 113 int err, offs, len; 114 void *sbuf, *buf; 115 116 sbuf = vmalloc(c->leb_size); 117 if (!sbuf) 118 return -ENOMEM; 119 120 err = ubifs_leb_read(c, lnum, sbuf, 0, c->leb_size, 0); 121 if (err && err != -EBADMSG) 122 goto out_free; 123 124 /* Find the first position that is definitely not a node */ 125 offs = 0; 126 buf = sbuf; 127 len = c->leb_size; 128 while (offs + UBIFS_MST_NODE_SZ <= c->leb_size) { 129 struct ubifs_ch *ch = buf; 130 131 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) 132 break; 133 offs += sz; 134 buf += sz; 135 len -= sz; 136 } 137 /* See if there was a valid master node before that */ 138 if (offs) { 139 int ret; 140 141 offs -= sz; 142 buf -= sz; 143 len += sz; 144 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 145 if (ret != SCANNED_A_NODE && offs) { 146 /* Could have been corruption so check one place back */ 147 offs -= sz; 148 buf -= sz; 149 len += sz; 150 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 151 if (ret != SCANNED_A_NODE) 152 /* 153 * We accept only one area of corruption because 154 * we are assuming that it was caused while 155 * trying to write a master node. 156 */ 157 goto out_err; 158 } 159 if (ret == SCANNED_A_NODE) { 160 struct ubifs_ch *ch = buf; 161 162 if (ch->node_type != UBIFS_MST_NODE) 163 goto out_err; 164 dbg_rcvry("found a master node at %d:%d", lnum, offs); 165 *mst = buf; 166 offs += sz; 167 buf += sz; 168 len -= sz; 169 } 170 } 171 /* Check for corruption */ 172 if (offs < c->leb_size) { 173 if (!is_empty(buf, min_t(int, len, sz))) { 174 *cor = buf; 175 dbg_rcvry("found corruption at %d:%d", lnum, offs); 176 } 177 offs += sz; 178 buf += sz; 179 len -= sz; 180 } 181 /* Check remaining empty space */ 182 if (offs < c->leb_size) 183 if (!is_empty(buf, len)) 184 goto out_err; 185 *pbuf = sbuf; 186 return 0; 187 188 out_err: 189 err = -EINVAL; 190 out_free: 191 vfree(sbuf); 192 *mst = NULL; 193 *cor = NULL; 194 return err; 195 } 196 197 /** 198 * write_rcvrd_mst_node - write recovered master node. 199 * @c: UBIFS file-system description object 200 * @mst: master node 201 * 202 * This function returns %0 on success and a negative error code on failure. 203 */ 204 static int write_rcvrd_mst_node(struct ubifs_info *c, 205 struct ubifs_mst_node *mst) 206 { 207 int err = 0, lnum = UBIFS_MST_LNUM, sz = c->mst_node_alsz; 208 __le32 save_flags; 209 210 dbg_rcvry("recovery"); 211 212 save_flags = mst->flags; 213 mst->flags |= cpu_to_le32(UBIFS_MST_RCVRY); 214 215 ubifs_prepare_node(c, mst, UBIFS_MST_NODE_SZ, 1); 216 err = ubifs_leb_change(c, lnum, mst, sz); 217 if (err) 218 goto out; 219 err = ubifs_leb_change(c, lnum + 1, mst, sz); 220 if (err) 221 goto out; 222 out: 223 mst->flags = save_flags; 224 return err; 225 } 226 227 /** 228 * ubifs_recover_master_node - recover the master node. 229 * @c: UBIFS file-system description object 230 * 231 * This function recovers the master node from corruption that may occur due to 232 * an unclean unmount. 233 * 234 * This function returns %0 on success and a negative error code on failure. 235 */ 236 int ubifs_recover_master_node(struct ubifs_info *c) 237 { 238 void *buf1 = NULL, *buf2 = NULL, *cor1 = NULL, *cor2 = NULL; 239 struct ubifs_mst_node *mst1 = NULL, *mst2 = NULL, *mst; 240 const int sz = c->mst_node_alsz; 241 int err, offs1, offs2; 242 243 dbg_rcvry("recovery"); 244 245 err = get_master_node(c, UBIFS_MST_LNUM, &buf1, &mst1, &cor1); 246 if (err) 247 goto out_free; 248 249 err = get_master_node(c, UBIFS_MST_LNUM + 1, &buf2, &mst2, &cor2); 250 if (err) 251 goto out_free; 252 253 if (mst1) { 254 offs1 = (void *)mst1 - buf1; 255 if ((le32_to_cpu(mst1->flags) & UBIFS_MST_RCVRY) && 256 (offs1 == 0 && !cor1)) { 257 /* 258 * mst1 was written by recovery at offset 0 with no 259 * corruption. 260 */ 261 dbg_rcvry("recovery recovery"); 262 mst = mst1; 263 } else if (mst2) { 264 offs2 = (void *)mst2 - buf2; 265 if (offs1 == offs2) { 266 /* Same offset, so must be the same */ 267 if (memcmp((void *)mst1 + UBIFS_CH_SZ, 268 (void *)mst2 + UBIFS_CH_SZ, 269 UBIFS_MST_NODE_SZ - UBIFS_CH_SZ)) 270 goto out_err; 271 mst = mst1; 272 } else if (offs2 + sz == offs1) { 273 /* 1st LEB was written, 2nd was not */ 274 if (cor1) 275 goto out_err; 276 mst = mst1; 277 } else if (offs1 == 0 && 278 c->leb_size - offs2 - sz < sz) { 279 /* 1st LEB was unmapped and written, 2nd not */ 280 if (cor1) 281 goto out_err; 282 mst = mst1; 283 } else 284 goto out_err; 285 } else { 286 /* 287 * 2nd LEB was unmapped and about to be written, so 288 * there must be only one master node in the first LEB 289 * and no corruption. 290 */ 291 if (offs1 != 0 || cor1) 292 goto out_err; 293 mst = mst1; 294 } 295 } else { 296 if (!mst2) 297 goto out_err; 298 /* 299 * 1st LEB was unmapped and about to be written, so there must 300 * be no room left in 2nd LEB. 301 */ 302 offs2 = (void *)mst2 - buf2; 303 if (offs2 + sz + sz <= c->leb_size) 304 goto out_err; 305 mst = mst2; 306 } 307 308 ubifs_msg("recovered master node from LEB %d", 309 (mst == mst1 ? UBIFS_MST_LNUM : UBIFS_MST_LNUM + 1)); 310 311 memcpy(c->mst_node, mst, UBIFS_MST_NODE_SZ); 312 313 if (c->ro_mount) { 314 /* Read-only mode. Keep a copy for switching to rw mode */ 315 c->rcvrd_mst_node = kmalloc(sz, GFP_KERNEL); 316 if (!c->rcvrd_mst_node) { 317 err = -ENOMEM; 318 goto out_free; 319 } 320 memcpy(c->rcvrd_mst_node, c->mst_node, UBIFS_MST_NODE_SZ); 321 322 /* 323 * We had to recover the master node, which means there was an 324 * unclean reboot. However, it is possible that the master node 325 * is clean at this point, i.e., %UBIFS_MST_DIRTY is not set. 326 * E.g., consider the following chain of events: 327 * 328 * 1. UBIFS was cleanly unmounted, so the master node is clean 329 * 2. UBIFS is being mounted R/W and starts changing the master 330 * node in the first (%UBIFS_MST_LNUM). A power cut happens, 331 * so this LEB ends up with some amount of garbage at the 332 * end. 333 * 3. UBIFS is being mounted R/O. We reach this place and 334 * recover the master node from the second LEB 335 * (%UBIFS_MST_LNUM + 1). But we cannot update the media 336 * because we are being mounted R/O. We have to defer the 337 * operation. 338 * 4. However, this master node (@c->mst_node) is marked as 339 * clean (since the step 1). And if we just return, the 340 * mount code will be confused and won't recover the master 341 * node when it is re-mounter R/W later. 342 * 343 * Thus, to force the recovery by marking the master node as 344 * dirty. 345 */ 346 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 347 } else { 348 /* Write the recovered master node */ 349 c->max_sqnum = le64_to_cpu(mst->ch.sqnum) - 1; 350 err = write_rcvrd_mst_node(c, c->mst_node); 351 if (err) 352 goto out_free; 353 } 354 355 vfree(buf2); 356 vfree(buf1); 357 358 return 0; 359 360 out_err: 361 err = -EINVAL; 362 out_free: 363 ubifs_err("failed to recover master node"); 364 if (mst1) { 365 ubifs_err("dumping first master node"); 366 ubifs_dump_node(c, mst1); 367 } 368 if (mst2) { 369 ubifs_err("dumping second master node"); 370 ubifs_dump_node(c, mst2); 371 } 372 vfree(buf2); 373 vfree(buf1); 374 return err; 375 } 376 377 /** 378 * ubifs_write_rcvrd_mst_node - write the recovered master node. 379 * @c: UBIFS file-system description object 380 * 381 * This function writes the master node that was recovered during mounting in 382 * read-only mode and must now be written because we are remounting rw. 383 * 384 * This function returns %0 on success and a negative error code on failure. 385 */ 386 int ubifs_write_rcvrd_mst_node(struct ubifs_info *c) 387 { 388 int err; 389 390 if (!c->rcvrd_mst_node) 391 return 0; 392 c->rcvrd_mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 393 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_DIRTY); 394 err = write_rcvrd_mst_node(c, c->rcvrd_mst_node); 395 if (err) 396 return err; 397 kfree(c->rcvrd_mst_node); 398 c->rcvrd_mst_node = NULL; 399 return 0; 400 } 401 402 /** 403 * is_last_write - determine if an offset was in the last write to a LEB. 404 * @c: UBIFS file-system description object 405 * @buf: buffer to check 406 * @offs: offset to check 407 * 408 * This function returns %1 if @offs was in the last write to the LEB whose data 409 * is in @buf, otherwise %0 is returned. The determination is made by checking 410 * for subsequent empty space starting from the next @c->max_write_size 411 * boundary. 412 */ 413 static int is_last_write(const struct ubifs_info *c, void *buf, int offs) 414 { 415 int empty_offs, check_len; 416 uint8_t *p; 417 418 /* 419 * Round up to the next @c->max_write_size boundary i.e. @offs is in 420 * the last wbuf written. After that should be empty space. 421 */ 422 empty_offs = ALIGN(offs + 1, c->max_write_size); 423 check_len = c->leb_size - empty_offs; 424 p = buf + empty_offs - offs; 425 return is_empty(p, check_len); 426 } 427 428 /** 429 * clean_buf - clean the data from an LEB sitting in a buffer. 430 * @c: UBIFS file-system description object 431 * @buf: buffer to clean 432 * @lnum: LEB number to clean 433 * @offs: offset from which to clean 434 * @len: length of buffer 435 * 436 * This function pads up to the next min_io_size boundary (if there is one) and 437 * sets empty space to all 0xff. @buf, @offs and @len are updated to the next 438 * @c->min_io_size boundary. 439 */ 440 static void clean_buf(const struct ubifs_info *c, void **buf, int lnum, 441 int *offs, int *len) 442 { 443 int empty_offs, pad_len; 444 445 lnum = lnum; 446 dbg_rcvry("cleaning corruption at %d:%d", lnum, *offs); 447 448 ubifs_assert(!(*offs & 7)); 449 empty_offs = ALIGN(*offs, c->min_io_size); 450 pad_len = empty_offs - *offs; 451 ubifs_pad(c, *buf, pad_len); 452 *offs += pad_len; 453 *buf += pad_len; 454 *len -= pad_len; 455 memset(*buf, 0xff, c->leb_size - empty_offs); 456 } 457 458 /** 459 * no_more_nodes - determine if there are no more nodes in a buffer. 460 * @c: UBIFS file-system description object 461 * @buf: buffer to check 462 * @len: length of buffer 463 * @lnum: LEB number of the LEB from which @buf was read 464 * @offs: offset from which @buf was read 465 * 466 * This function ensures that the corrupted node at @offs is the last thing 467 * written to a LEB. This function returns %1 if more data is not found and 468 * %0 if more data is found. 469 */ 470 static int no_more_nodes(const struct ubifs_info *c, void *buf, int len, 471 int lnum, int offs) 472 { 473 struct ubifs_ch *ch = buf; 474 int skip, dlen = le32_to_cpu(ch->len); 475 476 /* Check for empty space after the corrupt node's common header */ 477 skip = ALIGN(offs + UBIFS_CH_SZ, c->max_write_size) - offs; 478 if (is_empty(buf + skip, len - skip)) 479 return 1; 480 /* 481 * The area after the common header size is not empty, so the common 482 * header must be intact. Check it. 483 */ 484 if (ubifs_check_node(c, buf, lnum, offs, 1, 0) != -EUCLEAN) { 485 dbg_rcvry("unexpected bad common header at %d:%d", lnum, offs); 486 return 0; 487 } 488 /* Now we know the corrupt node's length we can skip over it */ 489 skip = ALIGN(offs + dlen, c->max_write_size) - offs; 490 /* After which there should be empty space */ 491 if (is_empty(buf + skip, len - skip)) 492 return 1; 493 dbg_rcvry("unexpected data at %d:%d", lnum, offs + skip); 494 return 0; 495 } 496 497 /** 498 * fix_unclean_leb - fix an unclean LEB. 499 * @c: UBIFS file-system description object 500 * @sleb: scanned LEB information 501 * @start: offset where scan started 502 */ 503 static int fix_unclean_leb(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 504 int start) 505 { 506 int lnum = sleb->lnum, endpt = start; 507 508 /* Get the end offset of the last node we are keeping */ 509 if (!list_empty(&sleb->nodes)) { 510 struct ubifs_scan_node *snod; 511 512 snod = list_entry(sleb->nodes.prev, 513 struct ubifs_scan_node, list); 514 endpt = snod->offs + snod->len; 515 } 516 517 if (c->ro_mount && !c->remounting_rw) { 518 /* Add to recovery list */ 519 struct ubifs_unclean_leb *ucleb; 520 521 dbg_rcvry("need to fix LEB %d start %d endpt %d", 522 lnum, start, sleb->endpt); 523 ucleb = kzalloc(sizeof(struct ubifs_unclean_leb), GFP_NOFS); 524 if (!ucleb) 525 return -ENOMEM; 526 ucleb->lnum = lnum; 527 ucleb->endpt = endpt; 528 list_add_tail(&ucleb->list, &c->unclean_leb_list); 529 } else { 530 /* Write the fixed LEB back to flash */ 531 int err; 532 533 dbg_rcvry("fixing LEB %d start %d endpt %d", 534 lnum, start, sleb->endpt); 535 if (endpt == 0) { 536 err = ubifs_leb_unmap(c, lnum); 537 if (err) 538 return err; 539 } else { 540 int len = ALIGN(endpt, c->min_io_size); 541 542 if (start) { 543 err = ubifs_leb_read(c, lnum, sleb->buf, 0, 544 start, 1); 545 if (err) 546 return err; 547 } 548 /* Pad to min_io_size */ 549 if (len > endpt) { 550 int pad_len = len - ALIGN(endpt, 8); 551 552 if (pad_len > 0) { 553 void *buf = sleb->buf + len - pad_len; 554 555 ubifs_pad(c, buf, pad_len); 556 } 557 } 558 err = ubifs_leb_change(c, lnum, sleb->buf, len); 559 if (err) 560 return err; 561 } 562 } 563 return 0; 564 } 565 566 /** 567 * drop_last_group - drop the last group of nodes. 568 * @sleb: scanned LEB information 569 * @offs: offset of dropped nodes is returned here 570 * 571 * This is a helper function for 'ubifs_recover_leb()' which drops the last 572 * group of nodes of the scanned LEB. 573 */ 574 static void drop_last_group(struct ubifs_scan_leb *sleb, int *offs) 575 { 576 while (!list_empty(&sleb->nodes)) { 577 struct ubifs_scan_node *snod; 578 struct ubifs_ch *ch; 579 580 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 581 list); 582 ch = snod->node; 583 if (ch->group_type != UBIFS_IN_NODE_GROUP) 584 break; 585 586 dbg_rcvry("dropping grouped node at %d:%d", 587 sleb->lnum, snod->offs); 588 *offs = snod->offs; 589 list_del(&snod->list); 590 kfree(snod); 591 sleb->nodes_cnt -= 1; 592 } 593 } 594 595 /** 596 * drop_last_node - drop the last node. 597 * @sleb: scanned LEB information 598 * @offs: offset of dropped nodes is returned here 599 * @grouped: non-zero if whole group of nodes have to be dropped 600 * 601 * This is a helper function for 'ubifs_recover_leb()' which drops the last 602 * node of the scanned LEB. 603 */ 604 static void drop_last_node(struct ubifs_scan_leb *sleb, int *offs) 605 { 606 struct ubifs_scan_node *snod; 607 608 if (!list_empty(&sleb->nodes)) { 609 snod = list_entry(sleb->nodes.prev, struct ubifs_scan_node, 610 list); 611 612 dbg_rcvry("dropping last node at %d:%d", 613 sleb->lnum, snod->offs); 614 *offs = snod->offs; 615 list_del(&snod->list); 616 kfree(snod); 617 sleb->nodes_cnt -= 1; 618 } 619 } 620 621 /** 622 * ubifs_recover_leb - scan and recover a LEB. 623 * @c: UBIFS file-system description object 624 * @lnum: LEB number 625 * @offs: offset 626 * @sbuf: LEB-sized buffer to use 627 * @jhead: journal head number this LEB belongs to (%-1 if the LEB does not 628 * belong to any journal head) 629 * 630 * This function does a scan of a LEB, but caters for errors that might have 631 * been caused by the unclean unmount from which we are attempting to recover. 632 * Returns %0 in case of success, %-EUCLEAN if an unrecoverable corruption is 633 * found, and a negative error code in case of failure. 634 */ 635 struct ubifs_scan_leb *ubifs_recover_leb(struct ubifs_info *c, int lnum, 636 int offs, void *sbuf, int jhead) 637 { 638 int ret = 0, err, len = c->leb_size - offs, start = offs, min_io_unit; 639 int grouped = jhead == -1 ? 0 : c->jheads[jhead].grouped; 640 struct ubifs_scan_leb *sleb; 641 void *buf = sbuf + offs; 642 643 dbg_rcvry("%d:%d, jhead %d, grouped %d", lnum, offs, jhead, grouped); 644 645 sleb = ubifs_start_scan(c, lnum, offs, sbuf); 646 if (IS_ERR(sleb)) 647 return sleb; 648 649 ubifs_assert(len >= 8); 650 while (len >= 8) { 651 dbg_scan("look at LEB %d:%d (%d bytes left)", 652 lnum, offs, len); 653 654 cond_resched(); 655 656 /* 657 * Scan quietly until there is an error from which we cannot 658 * recover 659 */ 660 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 661 if (ret == SCANNED_A_NODE) { 662 /* A valid node, and not a padding node */ 663 struct ubifs_ch *ch = buf; 664 int node_len; 665 666 err = ubifs_add_snod(c, sleb, buf, offs); 667 if (err) 668 goto error; 669 node_len = ALIGN(le32_to_cpu(ch->len), 8); 670 offs += node_len; 671 buf += node_len; 672 len -= node_len; 673 } else if (ret > 0) { 674 /* Padding bytes or a valid padding node */ 675 offs += ret; 676 buf += ret; 677 len -= ret; 678 } else if (ret == SCANNED_EMPTY_SPACE || 679 ret == SCANNED_GARBAGE || 680 ret == SCANNED_A_BAD_PAD_NODE || 681 ret == SCANNED_A_CORRUPT_NODE) { 682 dbg_rcvry("found corruption (%d) at %d:%d", 683 ret, lnum, offs); 684 break; 685 } else { 686 ubifs_err("unexpected return value %d", ret); 687 err = -EINVAL; 688 goto error; 689 } 690 } 691 692 if (ret == SCANNED_GARBAGE || ret == SCANNED_A_BAD_PAD_NODE) { 693 if (!is_last_write(c, buf, offs)) 694 goto corrupted_rescan; 695 } else if (ret == SCANNED_A_CORRUPT_NODE) { 696 if (!no_more_nodes(c, buf, len, lnum, offs)) 697 goto corrupted_rescan; 698 } else if (!is_empty(buf, len)) { 699 if (!is_last_write(c, buf, offs)) { 700 int corruption = first_non_ff(buf, len); 701 702 /* 703 * See header comment for this file for more 704 * explanations about the reasons we have this check. 705 */ 706 ubifs_err("corrupt empty space LEB %d:%d, corruption starts at %d", 707 lnum, offs, corruption); 708 /* Make sure we dump interesting non-0xFF data */ 709 offs += corruption; 710 buf += corruption; 711 goto corrupted; 712 } 713 } 714 715 min_io_unit = round_down(offs, c->min_io_size); 716 if (grouped) 717 /* 718 * If nodes are grouped, always drop the incomplete group at 719 * the end. 720 */ 721 drop_last_group(sleb, &offs); 722 723 if (jhead == GCHD) { 724 /* 725 * If this LEB belongs to the GC head then while we are in the 726 * middle of the same min. I/O unit keep dropping nodes. So 727 * basically, what we want is to make sure that the last min. 728 * I/O unit where we saw the corruption is dropped completely 729 * with all the uncorrupted nodes which may possibly sit there. 730 * 731 * In other words, let's name the min. I/O unit where the 732 * corruption starts B, and the previous min. I/O unit A. The 733 * below code tries to deal with a situation when half of B 734 * contains valid nodes or the end of a valid node, and the 735 * second half of B contains corrupted data or garbage. This 736 * means that UBIFS had been writing to B just before the power 737 * cut happened. I do not know how realistic is this scenario 738 * that half of the min. I/O unit had been written successfully 739 * and the other half not, but this is possible in our 'failure 740 * mode emulation' infrastructure at least. 741 * 742 * So what is the problem, why we need to drop those nodes? Why 743 * can't we just clean-up the second half of B by putting a 744 * padding node there? We can, and this works fine with one 745 * exception which was reproduced with power cut emulation 746 * testing and happens extremely rarely. 747 * 748 * Imagine the file-system is full, we run GC which starts 749 * moving valid nodes from LEB X to LEB Y (obviously, LEB Y is 750 * the current GC head LEB). The @c->gc_lnum is -1, which means 751 * that GC will retain LEB X and will try to continue. Imagine 752 * that LEB X is currently the dirtiest LEB, and the amount of 753 * used space in LEB Y is exactly the same as amount of free 754 * space in LEB X. 755 * 756 * And a power cut happens when nodes are moved from LEB X to 757 * LEB Y. We are here trying to recover LEB Y which is the GC 758 * head LEB. We find the min. I/O unit B as described above. 759 * Then we clean-up LEB Y by padding min. I/O unit. And later 760 * 'ubifs_rcvry_gc_commit()' function fails, because it cannot 761 * find a dirty LEB which could be GC'd into LEB Y! Even LEB X 762 * does not match because the amount of valid nodes there does 763 * not fit the free space in LEB Y any more! And this is 764 * because of the padding node which we added to LEB Y. The 765 * user-visible effect of this which I once observed and 766 * analysed is that we cannot mount the file-system with 767 * -ENOSPC error. 768 * 769 * So obviously, to make sure that situation does not happen we 770 * should free min. I/O unit B in LEB Y completely and the last 771 * used min. I/O unit in LEB Y should be A. This is basically 772 * what the below code tries to do. 773 */ 774 while (offs > min_io_unit) 775 drop_last_node(sleb, &offs); 776 } 777 778 buf = sbuf + offs; 779 len = c->leb_size - offs; 780 781 clean_buf(c, &buf, lnum, &offs, &len); 782 ubifs_end_scan(c, sleb, lnum, offs); 783 784 err = fix_unclean_leb(c, sleb, start); 785 if (err) 786 goto error; 787 788 return sleb; 789 790 corrupted_rescan: 791 /* Re-scan the corrupted data with verbose messages */ 792 ubifs_err("corruption %d", ret); 793 ubifs_scan_a_node(c, buf, len, lnum, offs, 1); 794 corrupted: 795 ubifs_scanned_corruption(c, lnum, offs, buf); 796 err = -EUCLEAN; 797 error: 798 ubifs_err("LEB %d scanning failed", lnum); 799 ubifs_scan_destroy(sleb); 800 return ERR_PTR(err); 801 } 802 803 /** 804 * get_cs_sqnum - get commit start sequence number. 805 * @c: UBIFS file-system description object 806 * @lnum: LEB number of commit start node 807 * @offs: offset of commit start node 808 * @cs_sqnum: commit start sequence number is returned here 809 * 810 * This function returns %0 on success and a negative error code on failure. 811 */ 812 static int get_cs_sqnum(struct ubifs_info *c, int lnum, int offs, 813 unsigned long long *cs_sqnum) 814 { 815 struct ubifs_cs_node *cs_node = NULL; 816 int err, ret; 817 818 dbg_rcvry("at %d:%d", lnum, offs); 819 cs_node = kmalloc(UBIFS_CS_NODE_SZ, GFP_KERNEL); 820 if (!cs_node) 821 return -ENOMEM; 822 if (c->leb_size - offs < UBIFS_CS_NODE_SZ) 823 goto out_err; 824 err = ubifs_leb_read(c, lnum, (void *)cs_node, offs, 825 UBIFS_CS_NODE_SZ, 0); 826 if (err && err != -EBADMSG) 827 goto out_free; 828 ret = ubifs_scan_a_node(c, cs_node, UBIFS_CS_NODE_SZ, lnum, offs, 0); 829 if (ret != SCANNED_A_NODE) { 830 ubifs_err("Not a valid node"); 831 goto out_err; 832 } 833 if (cs_node->ch.node_type != UBIFS_CS_NODE) { 834 ubifs_err("Node a CS node, type is %d", cs_node->ch.node_type); 835 goto out_err; 836 } 837 if (le64_to_cpu(cs_node->cmt_no) != c->cmt_no) { 838 ubifs_err("CS node cmt_no %llu != current cmt_no %llu", 839 (unsigned long long)le64_to_cpu(cs_node->cmt_no), 840 c->cmt_no); 841 goto out_err; 842 } 843 *cs_sqnum = le64_to_cpu(cs_node->ch.sqnum); 844 dbg_rcvry("commit start sqnum %llu", *cs_sqnum); 845 kfree(cs_node); 846 return 0; 847 848 out_err: 849 err = -EINVAL; 850 out_free: 851 ubifs_err("failed to get CS sqnum"); 852 kfree(cs_node); 853 return err; 854 } 855 856 /** 857 * ubifs_recover_log_leb - scan and recover a log LEB. 858 * @c: UBIFS file-system description object 859 * @lnum: LEB number 860 * @offs: offset 861 * @sbuf: LEB-sized buffer to use 862 * 863 * This function does a scan of a LEB, but caters for errors that might have 864 * been caused by unclean reboots from which we are attempting to recover 865 * (assume that only the last log LEB can be corrupted by an unclean reboot). 866 * 867 * This function returns %0 on success and a negative error code on failure. 868 */ 869 struct ubifs_scan_leb *ubifs_recover_log_leb(struct ubifs_info *c, int lnum, 870 int offs, void *sbuf) 871 { 872 struct ubifs_scan_leb *sleb; 873 int next_lnum; 874 875 dbg_rcvry("LEB %d", lnum); 876 next_lnum = lnum + 1; 877 if (next_lnum >= UBIFS_LOG_LNUM + c->log_lebs) 878 next_lnum = UBIFS_LOG_LNUM; 879 if (next_lnum != c->ltail_lnum) { 880 /* 881 * We can only recover at the end of the log, so check that the 882 * next log LEB is empty or out of date. 883 */ 884 sleb = ubifs_scan(c, next_lnum, 0, sbuf, 0); 885 if (IS_ERR(sleb)) 886 return sleb; 887 if (sleb->nodes_cnt) { 888 struct ubifs_scan_node *snod; 889 unsigned long long cs_sqnum = c->cs_sqnum; 890 891 snod = list_entry(sleb->nodes.next, 892 struct ubifs_scan_node, list); 893 if (cs_sqnum == 0) { 894 int err; 895 896 err = get_cs_sqnum(c, lnum, offs, &cs_sqnum); 897 if (err) { 898 ubifs_scan_destroy(sleb); 899 return ERR_PTR(err); 900 } 901 } 902 if (snod->sqnum > cs_sqnum) { 903 ubifs_err("unrecoverable log corruption in LEB %d", 904 lnum); 905 ubifs_scan_destroy(sleb); 906 return ERR_PTR(-EUCLEAN); 907 } 908 } 909 ubifs_scan_destroy(sleb); 910 } 911 return ubifs_recover_leb(c, lnum, offs, sbuf, -1); 912 } 913 914 /** 915 * recover_head - recover a head. 916 * @c: UBIFS file-system description object 917 * @lnum: LEB number of head to recover 918 * @offs: offset of head to recover 919 * @sbuf: LEB-sized buffer to use 920 * 921 * This function ensures that there is no data on the flash at a head location. 922 * 923 * This function returns %0 on success and a negative error code on failure. 924 */ 925 static int recover_head(struct ubifs_info *c, int lnum, int offs, void *sbuf) 926 { 927 int len = c->max_write_size, err; 928 929 if (offs + len > c->leb_size) 930 len = c->leb_size - offs; 931 932 if (!len) 933 return 0; 934 935 /* Read at the head location and check it is empty flash */ 936 err = ubifs_leb_read(c, lnum, sbuf, offs, len, 1); 937 if (err || !is_empty(sbuf, len)) { 938 dbg_rcvry("cleaning head at %d:%d", lnum, offs); 939 if (offs == 0) 940 return ubifs_leb_unmap(c, lnum); 941 err = ubifs_leb_read(c, lnum, sbuf, 0, offs, 1); 942 if (err) 943 return err; 944 return ubifs_leb_change(c, lnum, sbuf, offs); 945 } 946 947 return 0; 948 } 949 950 /** 951 * ubifs_recover_inl_heads - recover index and LPT heads. 952 * @c: UBIFS file-system description object 953 * @sbuf: LEB-sized buffer to use 954 * 955 * This function ensures that there is no data on the flash at the index and 956 * LPT head locations. 957 * 958 * This deals with the recovery of a half-completed journal commit. UBIFS is 959 * careful never to overwrite the last version of the index or the LPT. Because 960 * the index and LPT are wandering trees, data from a half-completed commit will 961 * not be referenced anywhere in UBIFS. The data will be either in LEBs that are 962 * assumed to be empty and will be unmapped anyway before use, or in the index 963 * and LPT heads. 964 * 965 * This function returns %0 on success and a negative error code on failure. 966 */ 967 int ubifs_recover_inl_heads(struct ubifs_info *c, void *sbuf) 968 { 969 int err; 970 971 ubifs_assert(!c->ro_mount || c->remounting_rw); 972 973 dbg_rcvry("checking index head at %d:%d", c->ihead_lnum, c->ihead_offs); 974 err = recover_head(c, c->ihead_lnum, c->ihead_offs, sbuf); 975 if (err) 976 return err; 977 978 dbg_rcvry("checking LPT head at %d:%d", c->nhead_lnum, c->nhead_offs); 979 err = recover_head(c, c->nhead_lnum, c->nhead_offs, sbuf); 980 if (err) 981 return err; 982 983 return 0; 984 } 985 986 /** 987 * clean_an_unclean_leb - read and write a LEB to remove corruption. 988 * @c: UBIFS file-system description object 989 * @ucleb: unclean LEB information 990 * @sbuf: LEB-sized buffer to use 991 * 992 * This function reads a LEB up to a point pre-determined by the mount recovery, 993 * checks the nodes, and writes the result back to the flash, thereby cleaning 994 * off any following corruption, or non-fatal ECC errors. 995 * 996 * This function returns %0 on success and a negative error code on failure. 997 */ 998 static int clean_an_unclean_leb(struct ubifs_info *c, 999 struct ubifs_unclean_leb *ucleb, void *sbuf) 1000 { 1001 int err, lnum = ucleb->lnum, offs = 0, len = ucleb->endpt, quiet = 1; 1002 void *buf = sbuf; 1003 1004 dbg_rcvry("LEB %d len %d", lnum, len); 1005 1006 if (len == 0) { 1007 /* Nothing to read, just unmap it */ 1008 err = ubifs_leb_unmap(c, lnum); 1009 if (err) 1010 return err; 1011 return 0; 1012 } 1013 1014 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1015 if (err && err != -EBADMSG) 1016 return err; 1017 1018 while (len >= 8) { 1019 int ret; 1020 1021 cond_resched(); 1022 1023 /* Scan quietly until there is an error */ 1024 ret = ubifs_scan_a_node(c, buf, len, lnum, offs, quiet); 1025 1026 if (ret == SCANNED_A_NODE) { 1027 /* A valid node, and not a padding node */ 1028 struct ubifs_ch *ch = buf; 1029 int node_len; 1030 1031 node_len = ALIGN(le32_to_cpu(ch->len), 8); 1032 offs += node_len; 1033 buf += node_len; 1034 len -= node_len; 1035 continue; 1036 } 1037 1038 if (ret > 0) { 1039 /* Padding bytes or a valid padding node */ 1040 offs += ret; 1041 buf += ret; 1042 len -= ret; 1043 continue; 1044 } 1045 1046 if (ret == SCANNED_EMPTY_SPACE) { 1047 ubifs_err("unexpected empty space at %d:%d", 1048 lnum, offs); 1049 return -EUCLEAN; 1050 } 1051 1052 if (quiet) { 1053 /* Redo the last scan but noisily */ 1054 quiet = 0; 1055 continue; 1056 } 1057 1058 ubifs_scanned_corruption(c, lnum, offs, buf); 1059 return -EUCLEAN; 1060 } 1061 1062 /* Pad to min_io_size */ 1063 len = ALIGN(ucleb->endpt, c->min_io_size); 1064 if (len > ucleb->endpt) { 1065 int pad_len = len - ALIGN(ucleb->endpt, 8); 1066 1067 if (pad_len > 0) { 1068 buf = c->sbuf + len - pad_len; 1069 ubifs_pad(c, buf, pad_len); 1070 } 1071 } 1072 1073 /* Write back the LEB atomically */ 1074 err = ubifs_leb_change(c, lnum, sbuf, len); 1075 if (err) 1076 return err; 1077 1078 dbg_rcvry("cleaned LEB %d", lnum); 1079 1080 return 0; 1081 } 1082 1083 /** 1084 * ubifs_clean_lebs - clean LEBs recovered during read-only mount. 1085 * @c: UBIFS file-system description object 1086 * @sbuf: LEB-sized buffer to use 1087 * 1088 * This function cleans a LEB identified during recovery that needs to be 1089 * written but was not because UBIFS was mounted read-only. This happens when 1090 * remounting to read-write mode. 1091 * 1092 * This function returns %0 on success and a negative error code on failure. 1093 */ 1094 int ubifs_clean_lebs(struct ubifs_info *c, void *sbuf) 1095 { 1096 dbg_rcvry("recovery"); 1097 while (!list_empty(&c->unclean_leb_list)) { 1098 struct ubifs_unclean_leb *ucleb; 1099 int err; 1100 1101 ucleb = list_entry(c->unclean_leb_list.next, 1102 struct ubifs_unclean_leb, list); 1103 err = clean_an_unclean_leb(c, ucleb, sbuf); 1104 if (err) 1105 return err; 1106 list_del(&ucleb->list); 1107 kfree(ucleb); 1108 } 1109 return 0; 1110 } 1111 1112 /** 1113 * grab_empty_leb - grab an empty LEB to use as GC LEB and run commit. 1114 * @c: UBIFS file-system description object 1115 * 1116 * This is a helper function for 'ubifs_rcvry_gc_commit()' which grabs an empty 1117 * LEB to be used as GC LEB (@c->gc_lnum), and then runs the commit. Returns 1118 * zero in case of success and a negative error code in case of failure. 1119 */ 1120 static int grab_empty_leb(struct ubifs_info *c) 1121 { 1122 int lnum, err; 1123 1124 /* 1125 * Note, it is very important to first search for an empty LEB and then 1126 * run the commit, not vice-versa. The reason is that there might be 1127 * only one empty LEB at the moment, the one which has been the 1128 * @c->gc_lnum just before the power cut happened. During the regular 1129 * UBIFS operation (not now) @c->gc_lnum is marked as "taken", so no 1130 * one but GC can grab it. But at this moment this single empty LEB is 1131 * not marked as taken, so if we run commit - what happens? Right, the 1132 * commit will grab it and write the index there. Remember that the 1133 * index always expands as long as there is free space, and it only 1134 * starts consolidating when we run out of space. 1135 * 1136 * IOW, if we run commit now, we might not be able to find a free LEB 1137 * after this. 1138 */ 1139 lnum = ubifs_find_free_leb_for_idx(c); 1140 if (lnum < 0) { 1141 ubifs_err("could not find an empty LEB"); 1142 ubifs_dump_lprops(c); 1143 ubifs_dump_budg(c, &c->bi); 1144 return lnum; 1145 } 1146 1147 /* Reset the index flag */ 1148 err = ubifs_change_one_lp(c, lnum, LPROPS_NC, LPROPS_NC, 0, 1149 LPROPS_INDEX, 0); 1150 if (err) 1151 return err; 1152 1153 c->gc_lnum = lnum; 1154 dbg_rcvry("found empty LEB %d, run commit", lnum); 1155 1156 return ubifs_run_commit(c); 1157 } 1158 1159 /** 1160 * ubifs_rcvry_gc_commit - recover the GC LEB number and run the commit. 1161 * @c: UBIFS file-system description object 1162 * 1163 * Out-of-place garbage collection requires always one empty LEB with which to 1164 * start garbage collection. The LEB number is recorded in c->gc_lnum and is 1165 * written to the master node on unmounting. In the case of an unclean unmount 1166 * the value of gc_lnum recorded in the master node is out of date and cannot 1167 * be used. Instead, recovery must allocate an empty LEB for this purpose. 1168 * However, there may not be enough empty space, in which case it must be 1169 * possible to GC the dirtiest LEB into the GC head LEB. 1170 * 1171 * This function also runs the commit which causes the TNC updates from 1172 * size-recovery and orphans to be written to the flash. That is important to 1173 * ensure correct replay order for subsequent mounts. 1174 * 1175 * This function returns %0 on success and a negative error code on failure. 1176 */ 1177 int ubifs_rcvry_gc_commit(struct ubifs_info *c) 1178 { 1179 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 1180 struct ubifs_lprops lp; 1181 int err; 1182 1183 dbg_rcvry("GC head LEB %d, offs %d", wbuf->lnum, wbuf->offs); 1184 1185 c->gc_lnum = -1; 1186 if (wbuf->lnum == -1 || wbuf->offs == c->leb_size) 1187 return grab_empty_leb(c); 1188 1189 err = ubifs_find_dirty_leb(c, &lp, wbuf->offs, 2); 1190 if (err) { 1191 if (err != -ENOSPC) 1192 return err; 1193 1194 dbg_rcvry("could not find a dirty LEB"); 1195 return grab_empty_leb(c); 1196 } 1197 1198 ubifs_assert(!(lp.flags & LPROPS_INDEX)); 1199 ubifs_assert(lp.free + lp.dirty >= wbuf->offs); 1200 1201 /* 1202 * We run the commit before garbage collection otherwise subsequent 1203 * mounts will see the GC and orphan deletion in a different order. 1204 */ 1205 dbg_rcvry("committing"); 1206 err = ubifs_run_commit(c); 1207 if (err) 1208 return err; 1209 1210 dbg_rcvry("GC'ing LEB %d", lp.lnum); 1211 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1212 err = ubifs_garbage_collect_leb(c, &lp); 1213 if (err >= 0) { 1214 int err2 = ubifs_wbuf_sync_nolock(wbuf); 1215 1216 if (err2) 1217 err = err2; 1218 } 1219 mutex_unlock(&wbuf->io_mutex); 1220 if (err < 0) { 1221 ubifs_err("GC failed, error %d", err); 1222 if (err == -EAGAIN) 1223 err = -EINVAL; 1224 return err; 1225 } 1226 1227 ubifs_assert(err == LEB_RETAINED); 1228 if (err != LEB_RETAINED) 1229 return -EINVAL; 1230 1231 err = ubifs_leb_unmap(c, c->gc_lnum); 1232 if (err) 1233 return err; 1234 1235 dbg_rcvry("allocated LEB %d for GC", lp.lnum); 1236 return 0; 1237 } 1238 1239 /** 1240 * struct size_entry - inode size information for recovery. 1241 * @rb: link in the RB-tree of sizes 1242 * @inum: inode number 1243 * @i_size: size on inode 1244 * @d_size: maximum size based on data nodes 1245 * @exists: indicates whether the inode exists 1246 * @inode: inode if pinned in memory awaiting rw mode to fix it 1247 */ 1248 struct size_entry { 1249 struct rb_node rb; 1250 ino_t inum; 1251 loff_t i_size; 1252 loff_t d_size; 1253 int exists; 1254 struct inode *inode; 1255 }; 1256 1257 /** 1258 * add_ino - add an entry to the size tree. 1259 * @c: UBIFS file-system description object 1260 * @inum: inode number 1261 * @i_size: size on inode 1262 * @d_size: maximum size based on data nodes 1263 * @exists: indicates whether the inode exists 1264 */ 1265 static int add_ino(struct ubifs_info *c, ino_t inum, loff_t i_size, 1266 loff_t d_size, int exists) 1267 { 1268 struct rb_node **p = &c->size_tree.rb_node, *parent = NULL; 1269 struct size_entry *e; 1270 1271 while (*p) { 1272 parent = *p; 1273 e = rb_entry(parent, struct size_entry, rb); 1274 if (inum < e->inum) 1275 p = &(*p)->rb_left; 1276 else 1277 p = &(*p)->rb_right; 1278 } 1279 1280 e = kzalloc(sizeof(struct size_entry), GFP_KERNEL); 1281 if (!e) 1282 return -ENOMEM; 1283 1284 e->inum = inum; 1285 e->i_size = i_size; 1286 e->d_size = d_size; 1287 e->exists = exists; 1288 1289 rb_link_node(&e->rb, parent, p); 1290 rb_insert_color(&e->rb, &c->size_tree); 1291 1292 return 0; 1293 } 1294 1295 /** 1296 * find_ino - find an entry on the size tree. 1297 * @c: UBIFS file-system description object 1298 * @inum: inode number 1299 */ 1300 static struct size_entry *find_ino(struct ubifs_info *c, ino_t inum) 1301 { 1302 struct rb_node *p = c->size_tree.rb_node; 1303 struct size_entry *e; 1304 1305 while (p) { 1306 e = rb_entry(p, struct size_entry, rb); 1307 if (inum < e->inum) 1308 p = p->rb_left; 1309 else if (inum > e->inum) 1310 p = p->rb_right; 1311 else 1312 return e; 1313 } 1314 return NULL; 1315 } 1316 1317 /** 1318 * remove_ino - remove an entry from the size tree. 1319 * @c: UBIFS file-system description object 1320 * @inum: inode number 1321 */ 1322 static void remove_ino(struct ubifs_info *c, ino_t inum) 1323 { 1324 struct size_entry *e = find_ino(c, inum); 1325 1326 if (!e) 1327 return; 1328 rb_erase(&e->rb, &c->size_tree); 1329 kfree(e); 1330 } 1331 1332 /** 1333 * ubifs_destroy_size_tree - free resources related to the size tree. 1334 * @c: UBIFS file-system description object 1335 */ 1336 void ubifs_destroy_size_tree(struct ubifs_info *c) 1337 { 1338 struct rb_node *this = c->size_tree.rb_node; 1339 struct size_entry *e; 1340 1341 while (this) { 1342 if (this->rb_left) { 1343 this = this->rb_left; 1344 continue; 1345 } else if (this->rb_right) { 1346 this = this->rb_right; 1347 continue; 1348 } 1349 e = rb_entry(this, struct size_entry, rb); 1350 if (e->inode) 1351 iput(e->inode); 1352 this = rb_parent(this); 1353 if (this) { 1354 if (this->rb_left == &e->rb) 1355 this->rb_left = NULL; 1356 else 1357 this->rb_right = NULL; 1358 } 1359 kfree(e); 1360 } 1361 c->size_tree = RB_ROOT; 1362 } 1363 1364 /** 1365 * ubifs_recover_size_accum - accumulate inode sizes for recovery. 1366 * @c: UBIFS file-system description object 1367 * @key: node key 1368 * @deletion: node is for a deletion 1369 * @new_size: inode size 1370 * 1371 * This function has two purposes: 1372 * 1) to ensure there are no data nodes that fall outside the inode size 1373 * 2) to ensure there are no data nodes for inodes that do not exist 1374 * To accomplish those purposes, a rb-tree is constructed containing an entry 1375 * for each inode number in the journal that has not been deleted, and recording 1376 * the size from the inode node, the maximum size of any data node (also altered 1377 * by truncations) and a flag indicating a inode number for which no inode node 1378 * was present in the journal. 1379 * 1380 * Note that there is still the possibility that there are data nodes that have 1381 * been committed that are beyond the inode size, however the only way to find 1382 * them would be to scan the entire index. Alternatively, some provision could 1383 * be made to record the size of inodes at the start of commit, which would seem 1384 * very cumbersome for a scenario that is quite unlikely and the only negative 1385 * consequence of which is wasted space. 1386 * 1387 * This functions returns %0 on success and a negative error code on failure. 1388 */ 1389 int ubifs_recover_size_accum(struct ubifs_info *c, union ubifs_key *key, 1390 int deletion, loff_t new_size) 1391 { 1392 ino_t inum = key_inum(c, key); 1393 struct size_entry *e; 1394 int err; 1395 1396 switch (key_type(c, key)) { 1397 case UBIFS_INO_KEY: 1398 if (deletion) 1399 remove_ino(c, inum); 1400 else { 1401 e = find_ino(c, inum); 1402 if (e) { 1403 e->i_size = new_size; 1404 e->exists = 1; 1405 } else { 1406 err = add_ino(c, inum, new_size, 0, 1); 1407 if (err) 1408 return err; 1409 } 1410 } 1411 break; 1412 case UBIFS_DATA_KEY: 1413 e = find_ino(c, inum); 1414 if (e) { 1415 if (new_size > e->d_size) 1416 e->d_size = new_size; 1417 } else { 1418 err = add_ino(c, inum, 0, new_size, 0); 1419 if (err) 1420 return err; 1421 } 1422 break; 1423 case UBIFS_TRUN_KEY: 1424 e = find_ino(c, inum); 1425 if (e) 1426 e->d_size = new_size; 1427 break; 1428 } 1429 return 0; 1430 } 1431 1432 /** 1433 * fix_size_in_place - fix inode size in place on flash. 1434 * @c: UBIFS file-system description object 1435 * @e: inode size information for recovery 1436 */ 1437 static int fix_size_in_place(struct ubifs_info *c, struct size_entry *e) 1438 { 1439 struct ubifs_ino_node *ino = c->sbuf; 1440 unsigned char *p; 1441 union ubifs_key key; 1442 int err, lnum, offs, len; 1443 loff_t i_size; 1444 uint32_t crc; 1445 1446 /* Locate the inode node LEB number and offset */ 1447 ino_key_init(c, &key, e->inum); 1448 err = ubifs_tnc_locate(c, &key, ino, &lnum, &offs); 1449 if (err) 1450 goto out; 1451 /* 1452 * If the size recorded on the inode node is greater than the size that 1453 * was calculated from nodes in the journal then don't change the inode. 1454 */ 1455 i_size = le64_to_cpu(ino->size); 1456 if (i_size >= e->d_size) 1457 return 0; 1458 /* Read the LEB */ 1459 err = ubifs_leb_read(c, lnum, c->sbuf, 0, c->leb_size, 1); 1460 if (err) 1461 goto out; 1462 /* Change the size field and recalculate the CRC */ 1463 ino = c->sbuf + offs; 1464 ino->size = cpu_to_le64(e->d_size); 1465 len = le32_to_cpu(ino->ch.len); 1466 crc = crc32(UBIFS_CRC32_INIT, (void *)ino + 8, len - 8); 1467 ino->ch.crc = cpu_to_le32(crc); 1468 /* Work out where data in the LEB ends and free space begins */ 1469 p = c->sbuf; 1470 len = c->leb_size - 1; 1471 while (p[len] == 0xff) 1472 len -= 1; 1473 len = ALIGN(len + 1, c->min_io_size); 1474 /* Atomically write the fixed LEB back again */ 1475 err = ubifs_leb_change(c, lnum, c->sbuf, len); 1476 if (err) 1477 goto out; 1478 dbg_rcvry("inode %lu at %d:%d size %lld -> %lld", 1479 (unsigned long)e->inum, lnum, offs, i_size, e->d_size); 1480 return 0; 1481 1482 out: 1483 ubifs_warn("inode %lu failed to fix size %lld -> %lld error %d", 1484 (unsigned long)e->inum, e->i_size, e->d_size, err); 1485 return err; 1486 } 1487 1488 /** 1489 * ubifs_recover_size - recover inode size. 1490 * @c: UBIFS file-system description object 1491 * 1492 * This function attempts to fix inode size discrepancies identified by the 1493 * 'ubifs_recover_size_accum()' function. 1494 * 1495 * This functions returns %0 on success and a negative error code on failure. 1496 */ 1497 int ubifs_recover_size(struct ubifs_info *c) 1498 { 1499 struct rb_node *this = rb_first(&c->size_tree); 1500 1501 while (this) { 1502 struct size_entry *e; 1503 int err; 1504 1505 e = rb_entry(this, struct size_entry, rb); 1506 if (!e->exists) { 1507 union ubifs_key key; 1508 1509 ino_key_init(c, &key, e->inum); 1510 err = ubifs_tnc_lookup(c, &key, c->sbuf); 1511 if (err && err != -ENOENT) 1512 return err; 1513 if (err == -ENOENT) { 1514 /* Remove data nodes that have no inode */ 1515 dbg_rcvry("removing ino %lu", 1516 (unsigned long)e->inum); 1517 err = ubifs_tnc_remove_ino(c, e->inum); 1518 if (err) 1519 return err; 1520 } else { 1521 struct ubifs_ino_node *ino = c->sbuf; 1522 1523 e->exists = 1; 1524 e->i_size = le64_to_cpu(ino->size); 1525 } 1526 } 1527 1528 if (e->exists && e->i_size < e->d_size) { 1529 if (c->ro_mount) { 1530 /* Fix the inode size and pin it in memory */ 1531 struct inode *inode; 1532 struct ubifs_inode *ui; 1533 1534 ubifs_assert(!e->inode); 1535 1536 inode = ubifs_iget(c->vfs_sb, e->inum); 1537 if (IS_ERR(inode)) 1538 return PTR_ERR(inode); 1539 1540 ui = ubifs_inode(inode); 1541 if (inode->i_size < e->d_size) { 1542 dbg_rcvry("ino %lu size %lld -> %lld", 1543 (unsigned long)e->inum, 1544 inode->i_size, e->d_size); 1545 inode->i_size = e->d_size; 1546 ui->ui_size = e->d_size; 1547 ui->synced_i_size = e->d_size; 1548 e->inode = inode; 1549 this = rb_next(this); 1550 continue; 1551 } 1552 iput(inode); 1553 } else { 1554 /* Fix the size in place */ 1555 err = fix_size_in_place(c, e); 1556 if (err) 1557 return err; 1558 if (e->inode) 1559 iput(e->inode); 1560 } 1561 } 1562 1563 this = rb_next(this); 1564 rb_erase(&e->rb, &c->size_tree); 1565 kfree(e); 1566 } 1567 1568 return 0; 1569 } 1570