1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Author: Adrian Hunter 8 */ 9 10 #include "ubifs.h" 11 12 /* 13 * An orphan is an inode number whose inode node has been committed to the index 14 * with a link count of zero. That happens when an open file is deleted 15 * (unlinked) and then a commit is run. In the normal course of events the inode 16 * would be deleted when the file is closed. However in the case of an unclean 17 * unmount, orphans need to be accounted for. After an unclean unmount, the 18 * orphans' inodes must be deleted which means either scanning the entire index 19 * looking for them, or keeping a list on flash somewhere. This unit implements 20 * the latter approach. 21 * 22 * The orphan area is a fixed number of LEBs situated between the LPT area and 23 * the main area. The number of orphan area LEBs is specified when the file 24 * system is created. The minimum number is 1. The size of the orphan area 25 * should be so that it can hold the maximum number of orphans that are expected 26 * to ever exist at one time. 27 * 28 * The number of orphans that can fit in a LEB is: 29 * 30 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64) 31 * 32 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. 33 * 34 * Orphans are accumulated in a rb-tree. When an inode's link count drops to 35 * zero, the inode number is added to the rb-tree. It is removed from the tree 36 * when the inode is deleted. Any new orphans that are in the orphan tree when 37 * the commit is run, are written to the orphan area in 1 or more orphan nodes. 38 * If the orphan area is full, it is consolidated to make space. There is 39 * always enough space because validation prevents the user from creating more 40 * than the maximum number of orphans allowed. 41 */ 42 43 static int dbg_check_orphans(struct ubifs_info *c); 44 45 static struct ubifs_orphan *orphan_add(struct ubifs_info *c, ino_t inum, 46 struct ubifs_orphan *parent_orphan) 47 { 48 struct ubifs_orphan *orphan, *o; 49 struct rb_node **p, *parent = NULL; 50 51 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS); 52 if (!orphan) 53 return ERR_PTR(-ENOMEM); 54 orphan->inum = inum; 55 orphan->new = 1; 56 INIT_LIST_HEAD(&orphan->child_list); 57 58 spin_lock(&c->orphan_lock); 59 if (c->tot_orphans >= c->max_orphans) { 60 spin_unlock(&c->orphan_lock); 61 kfree(orphan); 62 return ERR_PTR(-ENFILE); 63 } 64 p = &c->orph_tree.rb_node; 65 while (*p) { 66 parent = *p; 67 o = rb_entry(parent, struct ubifs_orphan, rb); 68 if (inum < o->inum) 69 p = &(*p)->rb_left; 70 else if (inum > o->inum) 71 p = &(*p)->rb_right; 72 else { 73 ubifs_err(c, "orphaned twice"); 74 spin_unlock(&c->orphan_lock); 75 kfree(orphan); 76 return ERR_PTR(-EINVAL); 77 } 78 } 79 c->tot_orphans += 1; 80 c->new_orphans += 1; 81 rb_link_node(&orphan->rb, parent, p); 82 rb_insert_color(&orphan->rb, &c->orph_tree); 83 list_add_tail(&orphan->list, &c->orph_list); 84 list_add_tail(&orphan->new_list, &c->orph_new); 85 86 if (parent_orphan) { 87 list_add_tail(&orphan->child_list, 88 &parent_orphan->child_list); 89 } 90 91 spin_unlock(&c->orphan_lock); 92 dbg_gen("ino %lu", (unsigned long)inum); 93 return orphan; 94 } 95 96 static struct ubifs_orphan *lookup_orphan(struct ubifs_info *c, ino_t inum) 97 { 98 struct ubifs_orphan *o; 99 struct rb_node *p; 100 101 p = c->orph_tree.rb_node; 102 while (p) { 103 o = rb_entry(p, struct ubifs_orphan, rb); 104 if (inum < o->inum) 105 p = p->rb_left; 106 else if (inum > o->inum) 107 p = p->rb_right; 108 else { 109 return o; 110 } 111 } 112 return NULL; 113 } 114 115 static void __orphan_drop(struct ubifs_info *c, struct ubifs_orphan *o) 116 { 117 rb_erase(&o->rb, &c->orph_tree); 118 list_del(&o->list); 119 c->tot_orphans -= 1; 120 121 if (o->new) { 122 list_del(&o->new_list); 123 c->new_orphans -= 1; 124 } 125 126 kfree(o); 127 } 128 129 static void orphan_delete(struct ubifs_info *c, struct ubifs_orphan *orph) 130 { 131 if (orph->del) { 132 spin_unlock(&c->orphan_lock); 133 dbg_gen("deleted twice ino %lu", orph->inum); 134 return; 135 } 136 137 if (orph->cmt) { 138 orph->del = 1; 139 orph->dnext = c->orph_dnext; 140 c->orph_dnext = orph; 141 spin_unlock(&c->orphan_lock); 142 dbg_gen("delete later ino %lu", orph->inum); 143 return; 144 } 145 146 __orphan_drop(c, orph); 147 } 148 149 /** 150 * ubifs_add_orphan - add an orphan. 151 * @c: UBIFS file-system description object 152 * @inum: orphan inode number 153 * 154 * Add an orphan. This function is called when an inodes link count drops to 155 * zero. 156 */ 157 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum) 158 { 159 int err = 0; 160 ino_t xattr_inum; 161 union ubifs_key key; 162 struct ubifs_dent_node *xent; 163 struct fscrypt_name nm = {0}; 164 struct ubifs_orphan *xattr_orphan; 165 struct ubifs_orphan *orphan; 166 167 orphan = orphan_add(c, inum, NULL); 168 if (IS_ERR(orphan)) 169 return PTR_ERR(orphan); 170 171 lowest_xent_key(c, &key, inum); 172 while (1) { 173 xent = ubifs_tnc_next_ent(c, &key, &nm); 174 if (IS_ERR(xent)) { 175 err = PTR_ERR(xent); 176 if (err == -ENOENT) 177 break; 178 return err; 179 } 180 181 fname_name(&nm) = xent->name; 182 fname_len(&nm) = le16_to_cpu(xent->nlen); 183 xattr_inum = le64_to_cpu(xent->inum); 184 185 xattr_orphan = orphan_add(c, xattr_inum, orphan); 186 if (IS_ERR(xattr_orphan)) 187 return PTR_ERR(xattr_orphan); 188 189 key_read(c, &xent->key, &key); 190 } 191 192 return 0; 193 } 194 195 /** 196 * ubifs_delete_orphan - delete an orphan. 197 * @c: UBIFS file-system description object 198 * @inum: orphan inode number 199 * 200 * Delete an orphan. This function is called when an inode is deleted. 201 */ 202 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum) 203 { 204 struct ubifs_orphan *orph, *child_orph, *tmp_o; 205 206 spin_lock(&c->orphan_lock); 207 208 orph = lookup_orphan(c, inum); 209 if (!orph) { 210 spin_unlock(&c->orphan_lock); 211 ubifs_err(c, "missing orphan ino %lu", (unsigned long)inum); 212 dump_stack(); 213 214 return; 215 } 216 217 list_for_each_entry_safe(child_orph, tmp_o, &orph->child_list, child_list) { 218 list_del(&child_orph->child_list); 219 orphan_delete(c, child_orph); 220 } 221 222 orphan_delete(c, orph); 223 224 spin_unlock(&c->orphan_lock); 225 } 226 227 /** 228 * ubifs_orphan_start_commit - start commit of orphans. 229 * @c: UBIFS file-system description object 230 * 231 * Start commit of orphans. 232 */ 233 int ubifs_orphan_start_commit(struct ubifs_info *c) 234 { 235 struct ubifs_orphan *orphan, **last; 236 237 spin_lock(&c->orphan_lock); 238 last = &c->orph_cnext; 239 list_for_each_entry(orphan, &c->orph_new, new_list) { 240 ubifs_assert(c, orphan->new); 241 ubifs_assert(c, !orphan->cmt); 242 orphan->new = 0; 243 orphan->cmt = 1; 244 *last = orphan; 245 last = &orphan->cnext; 246 } 247 *last = NULL; 248 c->cmt_orphans = c->new_orphans; 249 c->new_orphans = 0; 250 dbg_cmt("%d orphans to commit", c->cmt_orphans); 251 INIT_LIST_HEAD(&c->orph_new); 252 if (c->tot_orphans == 0) 253 c->no_orphs = 1; 254 else 255 c->no_orphs = 0; 256 spin_unlock(&c->orphan_lock); 257 return 0; 258 } 259 260 /** 261 * avail_orphs - calculate available space. 262 * @c: UBIFS file-system description object 263 * 264 * This function returns the number of orphans that can be written in the 265 * available space. 266 */ 267 static int avail_orphs(struct ubifs_info *c) 268 { 269 int avail_lebs, avail, gap; 270 271 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1; 272 avail = avail_lebs * 273 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 274 gap = c->leb_size - c->ohead_offs; 275 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64)) 276 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 277 return avail; 278 } 279 280 /** 281 * tot_avail_orphs - calculate total space. 282 * @c: UBIFS file-system description object 283 * 284 * This function returns the number of orphans that can be written in half 285 * the total space. That leaves half the space for adding new orphans. 286 */ 287 static int tot_avail_orphs(struct ubifs_info *c) 288 { 289 int avail_lebs, avail; 290 291 avail_lebs = c->orph_lebs; 292 avail = avail_lebs * 293 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 294 return avail / 2; 295 } 296 297 /** 298 * do_write_orph_node - write a node to the orphan head. 299 * @c: UBIFS file-system description object 300 * @len: length of node 301 * @atomic: write atomically 302 * 303 * This function writes a node to the orphan head from the orphan buffer. If 304 * %atomic is not zero, then the write is done atomically. On success, %0 is 305 * returned, otherwise a negative error code is returned. 306 */ 307 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic) 308 { 309 int err = 0; 310 311 if (atomic) { 312 ubifs_assert(c, c->ohead_offs == 0); 313 ubifs_prepare_node(c, c->orph_buf, len, 1); 314 len = ALIGN(len, c->min_io_size); 315 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len); 316 } else { 317 if (c->ohead_offs == 0) { 318 /* Ensure LEB has been unmapped */ 319 err = ubifs_leb_unmap(c, c->ohead_lnum); 320 if (err) 321 return err; 322 } 323 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum, 324 c->ohead_offs); 325 } 326 return err; 327 } 328 329 /** 330 * write_orph_node - write an orphan node. 331 * @c: UBIFS file-system description object 332 * @atomic: write atomically 333 * 334 * This function builds an orphan node from the cnext list and writes it to the 335 * orphan head. On success, %0 is returned, otherwise a negative error code 336 * is returned. 337 */ 338 static int write_orph_node(struct ubifs_info *c, int atomic) 339 { 340 struct ubifs_orphan *orphan, *cnext; 341 struct ubifs_orph_node *orph; 342 int gap, err, len, cnt, i; 343 344 ubifs_assert(c, c->cmt_orphans > 0); 345 gap = c->leb_size - c->ohead_offs; 346 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) { 347 c->ohead_lnum += 1; 348 c->ohead_offs = 0; 349 gap = c->leb_size; 350 if (c->ohead_lnum > c->orph_last) { 351 /* 352 * We limit the number of orphans so that this should 353 * never happen. 354 */ 355 ubifs_err(c, "out of space in orphan area"); 356 return -EINVAL; 357 } 358 } 359 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 360 if (cnt > c->cmt_orphans) 361 cnt = c->cmt_orphans; 362 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64); 363 ubifs_assert(c, c->orph_buf); 364 orph = c->orph_buf; 365 orph->ch.node_type = UBIFS_ORPH_NODE; 366 spin_lock(&c->orphan_lock); 367 cnext = c->orph_cnext; 368 for (i = 0; i < cnt; i++) { 369 orphan = cnext; 370 ubifs_assert(c, orphan->cmt); 371 orph->inos[i] = cpu_to_le64(orphan->inum); 372 orphan->cmt = 0; 373 cnext = orphan->cnext; 374 orphan->cnext = NULL; 375 } 376 c->orph_cnext = cnext; 377 c->cmt_orphans -= cnt; 378 spin_unlock(&c->orphan_lock); 379 if (c->cmt_orphans) 380 orph->cmt_no = cpu_to_le64(c->cmt_no); 381 else 382 /* Mark the last node of the commit */ 383 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63)); 384 ubifs_assert(c, c->ohead_offs + len <= c->leb_size); 385 ubifs_assert(c, c->ohead_lnum >= c->orph_first); 386 ubifs_assert(c, c->ohead_lnum <= c->orph_last); 387 err = do_write_orph_node(c, len, atomic); 388 c->ohead_offs += ALIGN(len, c->min_io_size); 389 c->ohead_offs = ALIGN(c->ohead_offs, 8); 390 return err; 391 } 392 393 /** 394 * write_orph_nodes - write orphan nodes until there are no more to commit. 395 * @c: UBIFS file-system description object 396 * @atomic: write atomically 397 * 398 * This function writes orphan nodes for all the orphans to commit. On success, 399 * %0 is returned, otherwise a negative error code is returned. 400 */ 401 static int write_orph_nodes(struct ubifs_info *c, int atomic) 402 { 403 int err; 404 405 while (c->cmt_orphans > 0) { 406 err = write_orph_node(c, atomic); 407 if (err) 408 return err; 409 } 410 if (atomic) { 411 int lnum; 412 413 /* Unmap any unused LEBs after consolidation */ 414 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) { 415 err = ubifs_leb_unmap(c, lnum); 416 if (err) 417 return err; 418 } 419 } 420 return 0; 421 } 422 423 /** 424 * consolidate - consolidate the orphan area. 425 * @c: UBIFS file-system description object 426 * 427 * This function enables consolidation by putting all the orphans into the list 428 * to commit. The list is in the order that the orphans were added, and the 429 * LEBs are written atomically in order, so at no time can orphans be lost by 430 * an unclean unmount. 431 * 432 * This function returns %0 on success and a negative error code on failure. 433 */ 434 static int consolidate(struct ubifs_info *c) 435 { 436 int tot_avail = tot_avail_orphs(c), err = 0; 437 438 spin_lock(&c->orphan_lock); 439 dbg_cmt("there is space for %d orphans and there are %d", 440 tot_avail, c->tot_orphans); 441 if (c->tot_orphans - c->new_orphans <= tot_avail) { 442 struct ubifs_orphan *orphan, **last; 443 int cnt = 0; 444 445 /* Change the cnext list to include all non-new orphans */ 446 last = &c->orph_cnext; 447 list_for_each_entry(orphan, &c->orph_list, list) { 448 if (orphan->new) 449 continue; 450 orphan->cmt = 1; 451 *last = orphan; 452 last = &orphan->cnext; 453 cnt += 1; 454 } 455 *last = NULL; 456 ubifs_assert(c, cnt == c->tot_orphans - c->new_orphans); 457 c->cmt_orphans = cnt; 458 c->ohead_lnum = c->orph_first; 459 c->ohead_offs = 0; 460 } else { 461 /* 462 * We limit the number of orphans so that this should 463 * never happen. 464 */ 465 ubifs_err(c, "out of space in orphan area"); 466 err = -EINVAL; 467 } 468 spin_unlock(&c->orphan_lock); 469 return err; 470 } 471 472 /** 473 * commit_orphans - commit orphans. 474 * @c: UBIFS file-system description object 475 * 476 * This function commits orphans to flash. On success, %0 is returned, 477 * otherwise a negative error code is returned. 478 */ 479 static int commit_orphans(struct ubifs_info *c) 480 { 481 int avail, atomic = 0, err; 482 483 ubifs_assert(c, c->cmt_orphans > 0); 484 avail = avail_orphs(c); 485 if (avail < c->cmt_orphans) { 486 /* Not enough space to write new orphans, so consolidate */ 487 err = consolidate(c); 488 if (err) 489 return err; 490 atomic = 1; 491 } 492 err = write_orph_nodes(c, atomic); 493 return err; 494 } 495 496 /** 497 * erase_deleted - erase the orphans marked for deletion. 498 * @c: UBIFS file-system description object 499 * 500 * During commit, the orphans being committed cannot be deleted, so they are 501 * marked for deletion and deleted by this function. Also, the recovery 502 * adds killed orphans to the deletion list, and therefore they are deleted 503 * here too. 504 */ 505 static void erase_deleted(struct ubifs_info *c) 506 { 507 struct ubifs_orphan *orphan, *dnext; 508 509 spin_lock(&c->orphan_lock); 510 dnext = c->orph_dnext; 511 while (dnext) { 512 orphan = dnext; 513 dnext = orphan->dnext; 514 ubifs_assert(c, !orphan->new); 515 ubifs_assert(c, orphan->del); 516 rb_erase(&orphan->rb, &c->orph_tree); 517 list_del(&orphan->list); 518 c->tot_orphans -= 1; 519 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum); 520 kfree(orphan); 521 } 522 c->orph_dnext = NULL; 523 spin_unlock(&c->orphan_lock); 524 } 525 526 /** 527 * ubifs_orphan_end_commit - end commit of orphans. 528 * @c: UBIFS file-system description object 529 * 530 * End commit of orphans. 531 */ 532 int ubifs_orphan_end_commit(struct ubifs_info *c) 533 { 534 int err; 535 536 if (c->cmt_orphans != 0) { 537 err = commit_orphans(c); 538 if (err) 539 return err; 540 } 541 erase_deleted(c); 542 err = dbg_check_orphans(c); 543 return err; 544 } 545 546 /** 547 * ubifs_clear_orphans - erase all LEBs used for orphans. 548 * @c: UBIFS file-system description object 549 * 550 * If recovery is not required, then the orphans from the previous session 551 * are not needed. This function locates the LEBs used to record 552 * orphans, and un-maps them. 553 */ 554 int ubifs_clear_orphans(struct ubifs_info *c) 555 { 556 int lnum, err; 557 558 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 559 err = ubifs_leb_unmap(c, lnum); 560 if (err) 561 return err; 562 } 563 c->ohead_lnum = c->orph_first; 564 c->ohead_offs = 0; 565 return 0; 566 } 567 568 /** 569 * insert_dead_orphan - insert an orphan. 570 * @c: UBIFS file-system description object 571 * @inum: orphan inode number 572 * 573 * This function is a helper to the 'do_kill_orphans()' function. The orphan 574 * must be kept until the next commit, so it is added to the rb-tree and the 575 * deletion list. 576 */ 577 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) 578 { 579 struct ubifs_orphan *orphan, *o; 580 struct rb_node **p, *parent = NULL; 581 582 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL); 583 if (!orphan) 584 return -ENOMEM; 585 orphan->inum = inum; 586 587 p = &c->orph_tree.rb_node; 588 while (*p) { 589 parent = *p; 590 o = rb_entry(parent, struct ubifs_orphan, rb); 591 if (inum < o->inum) 592 p = &(*p)->rb_left; 593 else if (inum > o->inum) 594 p = &(*p)->rb_right; 595 else { 596 /* Already added - no problem */ 597 kfree(orphan); 598 return 0; 599 } 600 } 601 c->tot_orphans += 1; 602 rb_link_node(&orphan->rb, parent, p); 603 rb_insert_color(&orphan->rb, &c->orph_tree); 604 list_add_tail(&orphan->list, &c->orph_list); 605 orphan->del = 1; 606 orphan->dnext = c->orph_dnext; 607 c->orph_dnext = orphan; 608 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, 609 c->new_orphans, c->tot_orphans); 610 return 0; 611 } 612 613 /** 614 * do_kill_orphans - remove orphan inodes from the index. 615 * @c: UBIFS file-system description object 616 * @sleb: scanned LEB 617 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here 618 * @outofdate: whether the LEB is out of date is returned here 619 * @last_flagged: whether the end orphan node is encountered 620 * 621 * This function is a helper to the 'kill_orphans()' function. It goes through 622 * every orphan node in a LEB and for every inode number recorded, removes 623 * all keys for that inode from the TNC. 624 */ 625 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 626 unsigned long long *last_cmt_no, int *outofdate, 627 int *last_flagged) 628 { 629 struct ubifs_scan_node *snod; 630 struct ubifs_orph_node *orph; 631 struct ubifs_ino_node *ino = NULL; 632 unsigned long long cmt_no; 633 ino_t inum; 634 int i, n, err, first = 1; 635 636 list_for_each_entry(snod, &sleb->nodes, list) { 637 if (snod->type != UBIFS_ORPH_NODE) { 638 ubifs_err(c, "invalid node type %d in orphan area at %d:%d", 639 snod->type, sleb->lnum, snod->offs); 640 ubifs_dump_node(c, snod->node); 641 return -EINVAL; 642 } 643 644 orph = snod->node; 645 646 /* Check commit number */ 647 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX; 648 /* 649 * The commit number on the master node may be less, because 650 * of a failed commit. If there are several failed commits in a 651 * row, the commit number written on orphan nodes will continue 652 * to increase (because the commit number is adjusted here) even 653 * though the commit number on the master node stays the same 654 * because the master node has not been re-written. 655 */ 656 if (cmt_no > c->cmt_no) 657 c->cmt_no = cmt_no; 658 if (cmt_no < *last_cmt_no && *last_flagged) { 659 /* 660 * The last orphan node had a higher commit number and 661 * was flagged as the last written for that commit 662 * number. That makes this orphan node, out of date. 663 */ 664 if (!first) { 665 ubifs_err(c, "out of order commit number %llu in orphan node at %d:%d", 666 cmt_no, sleb->lnum, snod->offs); 667 ubifs_dump_node(c, snod->node); 668 return -EINVAL; 669 } 670 dbg_rcvry("out of date LEB %d", sleb->lnum); 671 *outofdate = 1; 672 return 0; 673 } 674 675 if (first) 676 first = 0; 677 678 ino = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 679 if (!ino) 680 return -ENOMEM; 681 682 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 683 for (i = 0; i < n; i++) { 684 union ubifs_key key1, key2; 685 686 inum = le64_to_cpu(orph->inos[i]); 687 688 ino_key_init(c, &key1, inum); 689 err = ubifs_tnc_lookup(c, &key1, ino); 690 if (err) 691 goto out_free; 692 693 /* 694 * Check whether an inode can really get deleted. 695 * linkat() with O_TMPFILE allows rebirth of an inode. 696 */ 697 if (ino->nlink == 0) { 698 dbg_rcvry("deleting orphaned inode %lu", 699 (unsigned long)inum); 700 701 lowest_ino_key(c, &key1, inum); 702 highest_ino_key(c, &key2, inum); 703 704 err = ubifs_tnc_remove_range(c, &key1, &key2); 705 if (err) 706 goto out_ro; 707 } 708 709 err = insert_dead_orphan(c, inum); 710 if (err) 711 goto out_free; 712 } 713 714 *last_cmt_no = cmt_no; 715 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) { 716 dbg_rcvry("last orph node for commit %llu at %d:%d", 717 cmt_no, sleb->lnum, snod->offs); 718 *last_flagged = 1; 719 } else 720 *last_flagged = 0; 721 } 722 723 err = 0; 724 out_free: 725 kfree(ino); 726 return err; 727 728 out_ro: 729 ubifs_ro_mode(c, err); 730 kfree(ino); 731 return err; 732 } 733 734 /** 735 * kill_orphans - remove all orphan inodes from the index. 736 * @c: UBIFS file-system description object 737 * 738 * If recovery is required, then orphan inodes recorded during the previous 739 * session (which ended with an unclean unmount) must be deleted from the index. 740 * This is done by updating the TNC, but since the index is not updated until 741 * the next commit, the LEBs where the orphan information is recorded are not 742 * erased until the next commit. 743 */ 744 static int kill_orphans(struct ubifs_info *c) 745 { 746 unsigned long long last_cmt_no = 0; 747 int lnum, err = 0, outofdate = 0, last_flagged = 0; 748 749 c->ohead_lnum = c->orph_first; 750 c->ohead_offs = 0; 751 /* Check no-orphans flag and skip this if no orphans */ 752 if (c->no_orphs) { 753 dbg_rcvry("no orphans"); 754 return 0; 755 } 756 /* 757 * Orph nodes always start at c->orph_first and are written to each 758 * successive LEB in turn. Generally unused LEBs will have been unmapped 759 * but may contain out of date orphan nodes if the unmap didn't go 760 * through. In addition, the last orphan node written for each commit is 761 * marked (top bit of orph->cmt_no is set to 1). It is possible that 762 * there are orphan nodes from the next commit (i.e. the commit did not 763 * complete successfully). In that case, no orphans will have been lost 764 * due to the way that orphans are written, and any orphans added will 765 * be valid orphans anyway and so can be deleted. 766 */ 767 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 768 struct ubifs_scan_leb *sleb; 769 770 dbg_rcvry("LEB %d", lnum); 771 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); 772 if (IS_ERR(sleb)) { 773 if (PTR_ERR(sleb) == -EUCLEAN) 774 sleb = ubifs_recover_leb(c, lnum, 0, 775 c->sbuf, -1); 776 if (IS_ERR(sleb)) { 777 err = PTR_ERR(sleb); 778 break; 779 } 780 } 781 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate, 782 &last_flagged); 783 if (err || outofdate) { 784 ubifs_scan_destroy(sleb); 785 break; 786 } 787 if (sleb->endpt) { 788 c->ohead_lnum = lnum; 789 c->ohead_offs = sleb->endpt; 790 } 791 ubifs_scan_destroy(sleb); 792 } 793 return err; 794 } 795 796 /** 797 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them. 798 * @c: UBIFS file-system description object 799 * @unclean: indicates recovery from unclean unmount 800 * @read_only: indicates read only mount 801 * 802 * This function is called when mounting to erase orphans from the previous 803 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as 804 * orphans are deleted. 805 */ 806 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) 807 { 808 int err = 0; 809 810 c->max_orphans = tot_avail_orphs(c); 811 812 if (!read_only) { 813 c->orph_buf = vmalloc(c->leb_size); 814 if (!c->orph_buf) 815 return -ENOMEM; 816 } 817 818 if (unclean) 819 err = kill_orphans(c); 820 else if (!read_only) 821 err = ubifs_clear_orphans(c); 822 823 return err; 824 } 825 826 /* 827 * Everything below is related to debugging. 828 */ 829 830 struct check_orphan { 831 struct rb_node rb; 832 ino_t inum; 833 }; 834 835 struct check_info { 836 unsigned long last_ino; 837 unsigned long tot_inos; 838 unsigned long missing; 839 unsigned long long leaf_cnt; 840 struct ubifs_ino_node *node; 841 struct rb_root root; 842 }; 843 844 static bool dbg_find_orphan(struct ubifs_info *c, ino_t inum) 845 { 846 bool found = false; 847 848 spin_lock(&c->orphan_lock); 849 found = !!lookup_orphan(c, inum); 850 spin_unlock(&c->orphan_lock); 851 852 return found; 853 } 854 855 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum) 856 { 857 struct check_orphan *orphan, *o; 858 struct rb_node **p, *parent = NULL; 859 860 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS); 861 if (!orphan) 862 return -ENOMEM; 863 orphan->inum = inum; 864 865 p = &root->rb_node; 866 while (*p) { 867 parent = *p; 868 o = rb_entry(parent, struct check_orphan, rb); 869 if (inum < o->inum) 870 p = &(*p)->rb_left; 871 else if (inum > o->inum) 872 p = &(*p)->rb_right; 873 else { 874 kfree(orphan); 875 return 0; 876 } 877 } 878 rb_link_node(&orphan->rb, parent, p); 879 rb_insert_color(&orphan->rb, root); 880 return 0; 881 } 882 883 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum) 884 { 885 struct check_orphan *o; 886 struct rb_node *p; 887 888 p = root->rb_node; 889 while (p) { 890 o = rb_entry(p, struct check_orphan, rb); 891 if (inum < o->inum) 892 p = p->rb_left; 893 else if (inum > o->inum) 894 p = p->rb_right; 895 else 896 return 1; 897 } 898 return 0; 899 } 900 901 static void dbg_free_check_tree(struct rb_root *root) 902 { 903 struct check_orphan *o, *n; 904 905 rbtree_postorder_for_each_entry_safe(o, n, root, rb) 906 kfree(o); 907 } 908 909 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr, 910 void *priv) 911 { 912 struct check_info *ci = priv; 913 ino_t inum; 914 int err; 915 916 inum = key_inum(c, &zbr->key); 917 if (inum != ci->last_ino) { 918 /* Lowest node type is the inode node, so it comes first */ 919 if (key_type(c, &zbr->key) != UBIFS_INO_KEY) 920 ubifs_err(c, "found orphan node ino %lu, type %d", 921 (unsigned long)inum, key_type(c, &zbr->key)); 922 ci->last_ino = inum; 923 ci->tot_inos += 1; 924 err = ubifs_tnc_read_node(c, zbr, ci->node); 925 if (err) { 926 ubifs_err(c, "node read failed, error %d", err); 927 return err; 928 } 929 if (ci->node->nlink == 0) 930 /* Must be recorded as an orphan */ 931 if (!dbg_find_check_orphan(&ci->root, inum) && 932 !dbg_find_orphan(c, inum)) { 933 ubifs_err(c, "missing orphan, ino %lu", 934 (unsigned long)inum); 935 ci->missing += 1; 936 } 937 } 938 ci->leaf_cnt += 1; 939 return 0; 940 } 941 942 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) 943 { 944 struct ubifs_scan_node *snod; 945 struct ubifs_orph_node *orph; 946 ino_t inum; 947 int i, n, err; 948 949 list_for_each_entry(snod, &sleb->nodes, list) { 950 cond_resched(); 951 if (snod->type != UBIFS_ORPH_NODE) 952 continue; 953 orph = snod->node; 954 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 955 for (i = 0; i < n; i++) { 956 inum = le64_to_cpu(orph->inos[i]); 957 err = dbg_ins_check_orphan(&ci->root, inum); 958 if (err) 959 return err; 960 } 961 } 962 return 0; 963 } 964 965 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) 966 { 967 int lnum, err = 0; 968 void *buf; 969 970 /* Check no-orphans flag and skip this if no orphans */ 971 if (c->no_orphs) 972 return 0; 973 974 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 975 if (!buf) { 976 ubifs_err(c, "cannot allocate memory to check orphans"); 977 return 0; 978 } 979 980 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 981 struct ubifs_scan_leb *sleb; 982 983 sleb = ubifs_scan(c, lnum, 0, buf, 0); 984 if (IS_ERR(sleb)) { 985 err = PTR_ERR(sleb); 986 break; 987 } 988 989 err = dbg_read_orphans(ci, sleb); 990 ubifs_scan_destroy(sleb); 991 if (err) 992 break; 993 } 994 995 vfree(buf); 996 return err; 997 } 998 999 static int dbg_check_orphans(struct ubifs_info *c) 1000 { 1001 struct check_info ci; 1002 int err; 1003 1004 if (!dbg_is_chk_orph(c)) 1005 return 0; 1006 1007 ci.last_ino = 0; 1008 ci.tot_inos = 0; 1009 ci.missing = 0; 1010 ci.leaf_cnt = 0; 1011 ci.root = RB_ROOT; 1012 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 1013 if (!ci.node) { 1014 ubifs_err(c, "out of memory"); 1015 return -ENOMEM; 1016 } 1017 1018 err = dbg_scan_orphans(c, &ci); 1019 if (err) 1020 goto out; 1021 1022 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci); 1023 if (err) { 1024 ubifs_err(c, "cannot scan TNC, error %d", err); 1025 goto out; 1026 } 1027 1028 if (ci.missing) { 1029 ubifs_err(c, "%lu missing orphan(s)", ci.missing); 1030 err = -EINVAL; 1031 goto out; 1032 } 1033 1034 dbg_cmt("last inode number is %lu", ci.last_ino); 1035 dbg_cmt("total number of inodes is %lu", ci.tot_inos); 1036 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt); 1037 1038 out: 1039 dbg_free_check_tree(&ci.root); 1040 kfree(ci.node); 1041 return err; 1042 } 1043