1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Author: Adrian Hunter 20 */ 21 22 #include "ubifs.h" 23 24 /* 25 * An orphan is an inode number whose inode node has been committed to the index 26 * with a link count of zero. That happens when an open file is deleted 27 * (unlinked) and then a commit is run. In the normal course of events the inode 28 * would be deleted when the file is closed. However in the case of an unclean 29 * unmount, orphans need to be accounted for. After an unclean unmount, the 30 * orphans' inodes must be deleted which means either scanning the entire index 31 * looking for them, or keeping a list on flash somewhere. This unit implements 32 * the latter approach. 33 * 34 * The orphan area is a fixed number of LEBs situated between the LPT area and 35 * the main area. The number of orphan area LEBs is specified when the file 36 * system is created. The minimum number is 1. The size of the orphan area 37 * should be so that it can hold the maximum number of orphans that are expected 38 * to ever exist at one time. 39 * 40 * The number of orphans that can fit in a LEB is: 41 * 42 * (c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64) 43 * 44 * For example: a 15872 byte LEB can fit 1980 orphans so 1 LEB may be enough. 45 * 46 * Orphans are accumulated in a rb-tree. When an inode's link count drops to 47 * zero, the inode number is added to the rb-tree. It is removed from the tree 48 * when the inode is deleted. Any new orphans that are in the orphan tree when 49 * the commit is run, are written to the orphan area in 1 or more orphan nodes. 50 * If the orphan area is full, it is consolidated to make space. There is 51 * always enough space because validation prevents the user from creating more 52 * than the maximum number of orphans allowed. 53 */ 54 55 static int dbg_check_orphans(struct ubifs_info *c); 56 57 /** 58 * ubifs_add_orphan - add an orphan. 59 * @c: UBIFS file-system description object 60 * @inum: orphan inode number 61 * 62 * Add an orphan. This function is called when an inodes link count drops to 63 * zero. 64 */ 65 int ubifs_add_orphan(struct ubifs_info *c, ino_t inum) 66 { 67 struct ubifs_orphan *orphan, *o; 68 struct rb_node **p, *parent = NULL; 69 70 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_NOFS); 71 if (!orphan) 72 return -ENOMEM; 73 orphan->inum = inum; 74 orphan->new = 1; 75 76 spin_lock(&c->orphan_lock); 77 if (c->tot_orphans >= c->max_orphans) { 78 spin_unlock(&c->orphan_lock); 79 kfree(orphan); 80 return -ENFILE; 81 } 82 p = &c->orph_tree.rb_node; 83 while (*p) { 84 parent = *p; 85 o = rb_entry(parent, struct ubifs_orphan, rb); 86 if (inum < o->inum) 87 p = &(*p)->rb_left; 88 else if (inum > o->inum) 89 p = &(*p)->rb_right; 90 else { 91 ubifs_err("orphaned twice"); 92 spin_unlock(&c->orphan_lock); 93 kfree(orphan); 94 return 0; 95 } 96 } 97 c->tot_orphans += 1; 98 c->new_orphans += 1; 99 rb_link_node(&orphan->rb, parent, p); 100 rb_insert_color(&orphan->rb, &c->orph_tree); 101 list_add_tail(&orphan->list, &c->orph_list); 102 list_add_tail(&orphan->new_list, &c->orph_new); 103 spin_unlock(&c->orphan_lock); 104 dbg_gen("ino %lu", (unsigned long)inum); 105 return 0; 106 } 107 108 /** 109 * ubifs_delete_orphan - delete an orphan. 110 * @c: UBIFS file-system description object 111 * @inum: orphan inode number 112 * 113 * Delete an orphan. This function is called when an inode is deleted. 114 */ 115 void ubifs_delete_orphan(struct ubifs_info *c, ino_t inum) 116 { 117 struct ubifs_orphan *o; 118 struct rb_node *p; 119 120 spin_lock(&c->orphan_lock); 121 p = c->orph_tree.rb_node; 122 while (p) { 123 o = rb_entry(p, struct ubifs_orphan, rb); 124 if (inum < o->inum) 125 p = p->rb_left; 126 else if (inum > o->inum) 127 p = p->rb_right; 128 else { 129 if (o->del) { 130 spin_unlock(&c->orphan_lock); 131 dbg_gen("deleted twice ino %lu", 132 (unsigned long)inum); 133 return; 134 } 135 if (o->cmt) { 136 o->del = 1; 137 o->dnext = c->orph_dnext; 138 c->orph_dnext = o; 139 spin_unlock(&c->orphan_lock); 140 dbg_gen("delete later ino %lu", 141 (unsigned long)inum); 142 return; 143 } 144 rb_erase(p, &c->orph_tree); 145 list_del(&o->list); 146 c->tot_orphans -= 1; 147 if (o->new) { 148 list_del(&o->new_list); 149 c->new_orphans -= 1; 150 } 151 spin_unlock(&c->orphan_lock); 152 kfree(o); 153 dbg_gen("inum %lu", (unsigned long)inum); 154 return; 155 } 156 } 157 spin_unlock(&c->orphan_lock); 158 ubifs_err("missing orphan ino %lu", (unsigned long)inum); 159 dump_stack(); 160 } 161 162 /** 163 * ubifs_orphan_start_commit - start commit of orphans. 164 * @c: UBIFS file-system description object 165 * 166 * Start commit of orphans. 167 */ 168 int ubifs_orphan_start_commit(struct ubifs_info *c) 169 { 170 struct ubifs_orphan *orphan, **last; 171 172 spin_lock(&c->orphan_lock); 173 last = &c->orph_cnext; 174 list_for_each_entry(orphan, &c->orph_new, new_list) { 175 ubifs_assert(orphan->new); 176 ubifs_assert(!orphan->cmt); 177 orphan->new = 0; 178 orphan->cmt = 1; 179 *last = orphan; 180 last = &orphan->cnext; 181 } 182 *last = NULL; 183 c->cmt_orphans = c->new_orphans; 184 c->new_orphans = 0; 185 dbg_cmt("%d orphans to commit", c->cmt_orphans); 186 INIT_LIST_HEAD(&c->orph_new); 187 if (c->tot_orphans == 0) 188 c->no_orphs = 1; 189 else 190 c->no_orphs = 0; 191 spin_unlock(&c->orphan_lock); 192 return 0; 193 } 194 195 /** 196 * avail_orphs - calculate available space. 197 * @c: UBIFS file-system description object 198 * 199 * This function returns the number of orphans that can be written in the 200 * available space. 201 */ 202 static int avail_orphs(struct ubifs_info *c) 203 { 204 int avail_lebs, avail, gap; 205 206 avail_lebs = c->orph_lebs - (c->ohead_lnum - c->orph_first) - 1; 207 avail = avail_lebs * 208 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 209 gap = c->leb_size - c->ohead_offs; 210 if (gap >= UBIFS_ORPH_NODE_SZ + sizeof(__le64)) 211 avail += (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 212 return avail; 213 } 214 215 /** 216 * tot_avail_orphs - calculate total space. 217 * @c: UBIFS file-system description object 218 * 219 * This function returns the number of orphans that can be written in half 220 * the total space. That leaves half the space for adding new orphans. 221 */ 222 static int tot_avail_orphs(struct ubifs_info *c) 223 { 224 int avail_lebs, avail; 225 226 avail_lebs = c->orph_lebs; 227 avail = avail_lebs * 228 ((c->leb_size - UBIFS_ORPH_NODE_SZ) / sizeof(__le64)); 229 return avail / 2; 230 } 231 232 /** 233 * do_write_orph_node - write a node to the orphan head. 234 * @c: UBIFS file-system description object 235 * @len: length of node 236 * @atomic: write atomically 237 * 238 * This function writes a node to the orphan head from the orphan buffer. If 239 * %atomic is not zero, then the write is done atomically. On success, %0 is 240 * returned, otherwise a negative error code is returned. 241 */ 242 static int do_write_orph_node(struct ubifs_info *c, int len, int atomic) 243 { 244 int err = 0; 245 246 if (atomic) { 247 ubifs_assert(c->ohead_offs == 0); 248 ubifs_prepare_node(c, c->orph_buf, len, 1); 249 len = ALIGN(len, c->min_io_size); 250 err = ubifs_leb_change(c, c->ohead_lnum, c->orph_buf, len); 251 } else { 252 if (c->ohead_offs == 0) { 253 /* Ensure LEB has been unmapped */ 254 err = ubifs_leb_unmap(c, c->ohead_lnum); 255 if (err) 256 return err; 257 } 258 err = ubifs_write_node(c, c->orph_buf, len, c->ohead_lnum, 259 c->ohead_offs); 260 } 261 return err; 262 } 263 264 /** 265 * write_orph_node - write an orphan node. 266 * @c: UBIFS file-system description object 267 * @atomic: write atomically 268 * 269 * This function builds an orphan node from the cnext list and writes it to the 270 * orphan head. On success, %0 is returned, otherwise a negative error code 271 * is returned. 272 */ 273 static int write_orph_node(struct ubifs_info *c, int atomic) 274 { 275 struct ubifs_orphan *orphan, *cnext; 276 struct ubifs_orph_node *orph; 277 int gap, err, len, cnt, i; 278 279 ubifs_assert(c->cmt_orphans > 0); 280 gap = c->leb_size - c->ohead_offs; 281 if (gap < UBIFS_ORPH_NODE_SZ + sizeof(__le64)) { 282 c->ohead_lnum += 1; 283 c->ohead_offs = 0; 284 gap = c->leb_size; 285 if (c->ohead_lnum > c->orph_last) { 286 /* 287 * We limit the number of orphans so that this should 288 * never happen. 289 */ 290 ubifs_err("out of space in orphan area"); 291 return -EINVAL; 292 } 293 } 294 cnt = (gap - UBIFS_ORPH_NODE_SZ) / sizeof(__le64); 295 if (cnt > c->cmt_orphans) 296 cnt = c->cmt_orphans; 297 len = UBIFS_ORPH_NODE_SZ + cnt * sizeof(__le64); 298 ubifs_assert(c->orph_buf); 299 orph = c->orph_buf; 300 orph->ch.node_type = UBIFS_ORPH_NODE; 301 spin_lock(&c->orphan_lock); 302 cnext = c->orph_cnext; 303 for (i = 0; i < cnt; i++) { 304 orphan = cnext; 305 ubifs_assert(orphan->cmt); 306 orph->inos[i] = cpu_to_le64(orphan->inum); 307 orphan->cmt = 0; 308 cnext = orphan->cnext; 309 orphan->cnext = NULL; 310 } 311 c->orph_cnext = cnext; 312 c->cmt_orphans -= cnt; 313 spin_unlock(&c->orphan_lock); 314 if (c->cmt_orphans) 315 orph->cmt_no = cpu_to_le64(c->cmt_no); 316 else 317 /* Mark the last node of the commit */ 318 orph->cmt_no = cpu_to_le64((c->cmt_no) | (1ULL << 63)); 319 ubifs_assert(c->ohead_offs + len <= c->leb_size); 320 ubifs_assert(c->ohead_lnum >= c->orph_first); 321 ubifs_assert(c->ohead_lnum <= c->orph_last); 322 err = do_write_orph_node(c, len, atomic); 323 c->ohead_offs += ALIGN(len, c->min_io_size); 324 c->ohead_offs = ALIGN(c->ohead_offs, 8); 325 return err; 326 } 327 328 /** 329 * write_orph_nodes - write orphan nodes until there are no more to commit. 330 * @c: UBIFS file-system description object 331 * @atomic: write atomically 332 * 333 * This function writes orphan nodes for all the orphans to commit. On success, 334 * %0 is returned, otherwise a negative error code is returned. 335 */ 336 static int write_orph_nodes(struct ubifs_info *c, int atomic) 337 { 338 int err; 339 340 while (c->cmt_orphans > 0) { 341 err = write_orph_node(c, atomic); 342 if (err) 343 return err; 344 } 345 if (atomic) { 346 int lnum; 347 348 /* Unmap any unused LEBs after consolidation */ 349 lnum = c->ohead_lnum + 1; 350 for (lnum = c->ohead_lnum + 1; lnum <= c->orph_last; lnum++) { 351 err = ubifs_leb_unmap(c, lnum); 352 if (err) 353 return err; 354 } 355 } 356 return 0; 357 } 358 359 /** 360 * consolidate - consolidate the orphan area. 361 * @c: UBIFS file-system description object 362 * 363 * This function enables consolidation by putting all the orphans into the list 364 * to commit. The list is in the order that the orphans were added, and the 365 * LEBs are written atomically in order, so at no time can orphans be lost by 366 * an unclean unmount. 367 * 368 * This function returns %0 on success and a negative error code on failure. 369 */ 370 static int consolidate(struct ubifs_info *c) 371 { 372 int tot_avail = tot_avail_orphs(c), err = 0; 373 374 spin_lock(&c->orphan_lock); 375 dbg_cmt("there is space for %d orphans and there are %d", 376 tot_avail, c->tot_orphans); 377 if (c->tot_orphans - c->new_orphans <= tot_avail) { 378 struct ubifs_orphan *orphan, **last; 379 int cnt = 0; 380 381 /* Change the cnext list to include all non-new orphans */ 382 last = &c->orph_cnext; 383 list_for_each_entry(orphan, &c->orph_list, list) { 384 if (orphan->new) 385 continue; 386 orphan->cmt = 1; 387 *last = orphan; 388 last = &orphan->cnext; 389 cnt += 1; 390 } 391 *last = NULL; 392 ubifs_assert(cnt == c->tot_orphans - c->new_orphans); 393 c->cmt_orphans = cnt; 394 c->ohead_lnum = c->orph_first; 395 c->ohead_offs = 0; 396 } else { 397 /* 398 * We limit the number of orphans so that this should 399 * never happen. 400 */ 401 ubifs_err("out of space in orphan area"); 402 err = -EINVAL; 403 } 404 spin_unlock(&c->orphan_lock); 405 return err; 406 } 407 408 /** 409 * commit_orphans - commit orphans. 410 * @c: UBIFS file-system description object 411 * 412 * This function commits orphans to flash. On success, %0 is returned, 413 * otherwise a negative error code is returned. 414 */ 415 static int commit_orphans(struct ubifs_info *c) 416 { 417 int avail, atomic = 0, err; 418 419 ubifs_assert(c->cmt_orphans > 0); 420 avail = avail_orphs(c); 421 if (avail < c->cmt_orphans) { 422 /* Not enough space to write new orphans, so consolidate */ 423 err = consolidate(c); 424 if (err) 425 return err; 426 atomic = 1; 427 } 428 err = write_orph_nodes(c, atomic); 429 return err; 430 } 431 432 /** 433 * erase_deleted - erase the orphans marked for deletion. 434 * @c: UBIFS file-system description object 435 * 436 * During commit, the orphans being committed cannot be deleted, so they are 437 * marked for deletion and deleted by this function. Also, the recovery 438 * adds killed orphans to the deletion list, and therefore they are deleted 439 * here too. 440 */ 441 static void erase_deleted(struct ubifs_info *c) 442 { 443 struct ubifs_orphan *orphan, *dnext; 444 445 spin_lock(&c->orphan_lock); 446 dnext = c->orph_dnext; 447 while (dnext) { 448 orphan = dnext; 449 dnext = orphan->dnext; 450 ubifs_assert(!orphan->new); 451 ubifs_assert(orphan->del); 452 rb_erase(&orphan->rb, &c->orph_tree); 453 list_del(&orphan->list); 454 c->tot_orphans -= 1; 455 dbg_gen("deleting orphan ino %lu", (unsigned long)orphan->inum); 456 kfree(orphan); 457 } 458 c->orph_dnext = NULL; 459 spin_unlock(&c->orphan_lock); 460 } 461 462 /** 463 * ubifs_orphan_end_commit - end commit of orphans. 464 * @c: UBIFS file-system description object 465 * 466 * End commit of orphans. 467 */ 468 int ubifs_orphan_end_commit(struct ubifs_info *c) 469 { 470 int err; 471 472 if (c->cmt_orphans != 0) { 473 err = commit_orphans(c); 474 if (err) 475 return err; 476 } 477 erase_deleted(c); 478 err = dbg_check_orphans(c); 479 return err; 480 } 481 482 /** 483 * ubifs_clear_orphans - erase all LEBs used for orphans. 484 * @c: UBIFS file-system description object 485 * 486 * If recovery is not required, then the orphans from the previous session 487 * are not needed. This function locates the LEBs used to record 488 * orphans, and un-maps them. 489 */ 490 int ubifs_clear_orphans(struct ubifs_info *c) 491 { 492 int lnum, err; 493 494 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 495 err = ubifs_leb_unmap(c, lnum); 496 if (err) 497 return err; 498 } 499 c->ohead_lnum = c->orph_first; 500 c->ohead_offs = 0; 501 return 0; 502 } 503 504 /** 505 * insert_dead_orphan - insert an orphan. 506 * @c: UBIFS file-system description object 507 * @inum: orphan inode number 508 * 509 * This function is a helper to the 'do_kill_orphans()' function. The orphan 510 * must be kept until the next commit, so it is added to the rb-tree and the 511 * deletion list. 512 */ 513 static int insert_dead_orphan(struct ubifs_info *c, ino_t inum) 514 { 515 struct ubifs_orphan *orphan, *o; 516 struct rb_node **p, *parent = NULL; 517 518 orphan = kzalloc(sizeof(struct ubifs_orphan), GFP_KERNEL); 519 if (!orphan) 520 return -ENOMEM; 521 orphan->inum = inum; 522 523 p = &c->orph_tree.rb_node; 524 while (*p) { 525 parent = *p; 526 o = rb_entry(parent, struct ubifs_orphan, rb); 527 if (inum < o->inum) 528 p = &(*p)->rb_left; 529 else if (inum > o->inum) 530 p = &(*p)->rb_right; 531 else { 532 /* Already added - no problem */ 533 kfree(orphan); 534 return 0; 535 } 536 } 537 c->tot_orphans += 1; 538 rb_link_node(&orphan->rb, parent, p); 539 rb_insert_color(&orphan->rb, &c->orph_tree); 540 list_add_tail(&orphan->list, &c->orph_list); 541 orphan->del = 1; 542 orphan->dnext = c->orph_dnext; 543 c->orph_dnext = orphan; 544 dbg_mnt("ino %lu, new %d, tot %d", (unsigned long)inum, 545 c->new_orphans, c->tot_orphans); 546 return 0; 547 } 548 549 /** 550 * do_kill_orphans - remove orphan inodes from the index. 551 * @c: UBIFS file-system description object 552 * @sleb: scanned LEB 553 * @last_cmt_no: cmt_no of last orphan node read is passed and returned here 554 * @outofdate: whether the LEB is out of date is returned here 555 * @last_flagged: whether the end orphan node is encountered 556 * 557 * This function is a helper to the 'kill_orphans()' function. It goes through 558 * every orphan node in a LEB and for every inode number recorded, removes 559 * all keys for that inode from the TNC. 560 */ 561 static int do_kill_orphans(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 562 unsigned long long *last_cmt_no, int *outofdate, 563 int *last_flagged) 564 { 565 struct ubifs_scan_node *snod; 566 struct ubifs_orph_node *orph; 567 unsigned long long cmt_no; 568 ino_t inum; 569 int i, n, err, first = 1; 570 571 list_for_each_entry(snod, &sleb->nodes, list) { 572 if (snod->type != UBIFS_ORPH_NODE) { 573 ubifs_err("invalid node type %d in orphan area at %d:%d", 574 snod->type, sleb->lnum, snod->offs); 575 ubifs_dump_node(c, snod->node); 576 return -EINVAL; 577 } 578 579 orph = snod->node; 580 581 /* Check commit number */ 582 cmt_no = le64_to_cpu(orph->cmt_no) & LLONG_MAX; 583 /* 584 * The commit number on the master node may be less, because 585 * of a failed commit. If there are several failed commits in a 586 * row, the commit number written on orphan nodes will continue 587 * to increase (because the commit number is adjusted here) even 588 * though the commit number on the master node stays the same 589 * because the master node has not been re-written. 590 */ 591 if (cmt_no > c->cmt_no) 592 c->cmt_no = cmt_no; 593 if (cmt_no < *last_cmt_no && *last_flagged) { 594 /* 595 * The last orphan node had a higher commit number and 596 * was flagged as the last written for that commit 597 * number. That makes this orphan node, out of date. 598 */ 599 if (!first) { 600 ubifs_err("out of order commit number %llu in orphan node at %d:%d", 601 cmt_no, sleb->lnum, snod->offs); 602 ubifs_dump_node(c, snod->node); 603 return -EINVAL; 604 } 605 dbg_rcvry("out of date LEB %d", sleb->lnum); 606 *outofdate = 1; 607 return 0; 608 } 609 610 if (first) 611 first = 0; 612 613 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 614 for (i = 0; i < n; i++) { 615 inum = le64_to_cpu(orph->inos[i]); 616 dbg_rcvry("deleting orphaned inode %lu", 617 (unsigned long)inum); 618 err = ubifs_tnc_remove_ino(c, inum); 619 if (err) 620 return err; 621 err = insert_dead_orphan(c, inum); 622 if (err) 623 return err; 624 } 625 626 *last_cmt_no = cmt_no; 627 if (le64_to_cpu(orph->cmt_no) & (1ULL << 63)) { 628 dbg_rcvry("last orph node for commit %llu at %d:%d", 629 cmt_no, sleb->lnum, snod->offs); 630 *last_flagged = 1; 631 } else 632 *last_flagged = 0; 633 } 634 635 return 0; 636 } 637 638 /** 639 * kill_orphans - remove all orphan inodes from the index. 640 * @c: UBIFS file-system description object 641 * 642 * If recovery is required, then orphan inodes recorded during the previous 643 * session (which ended with an unclean unmount) must be deleted from the index. 644 * This is done by updating the TNC, but since the index is not updated until 645 * the next commit, the LEBs where the orphan information is recorded are not 646 * erased until the next commit. 647 */ 648 static int kill_orphans(struct ubifs_info *c) 649 { 650 unsigned long long last_cmt_no = 0; 651 int lnum, err = 0, outofdate = 0, last_flagged = 0; 652 653 c->ohead_lnum = c->orph_first; 654 c->ohead_offs = 0; 655 /* Check no-orphans flag and skip this if no orphans */ 656 if (c->no_orphs) { 657 dbg_rcvry("no orphans"); 658 return 0; 659 } 660 /* 661 * Orph nodes always start at c->orph_first and are written to each 662 * successive LEB in turn. Generally unused LEBs will have been unmapped 663 * but may contain out of date orphan nodes if the unmap didn't go 664 * through. In addition, the last orphan node written for each commit is 665 * marked (top bit of orph->cmt_no is set to 1). It is possible that 666 * there are orphan nodes from the next commit (i.e. the commit did not 667 * complete successfully). In that case, no orphans will have been lost 668 * due to the way that orphans are written, and any orphans added will 669 * be valid orphans anyway and so can be deleted. 670 */ 671 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 672 struct ubifs_scan_leb *sleb; 673 674 dbg_rcvry("LEB %d", lnum); 675 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 1); 676 if (IS_ERR(sleb)) { 677 if (PTR_ERR(sleb) == -EUCLEAN) 678 sleb = ubifs_recover_leb(c, lnum, 0, 679 c->sbuf, -1); 680 if (IS_ERR(sleb)) { 681 err = PTR_ERR(sleb); 682 break; 683 } 684 } 685 err = do_kill_orphans(c, sleb, &last_cmt_no, &outofdate, 686 &last_flagged); 687 if (err || outofdate) { 688 ubifs_scan_destroy(sleb); 689 break; 690 } 691 if (sleb->endpt) { 692 c->ohead_lnum = lnum; 693 c->ohead_offs = sleb->endpt; 694 } 695 ubifs_scan_destroy(sleb); 696 } 697 return err; 698 } 699 700 /** 701 * ubifs_mount_orphans - delete orphan inodes and erase LEBs that recorded them. 702 * @c: UBIFS file-system description object 703 * @unclean: indicates recovery from unclean unmount 704 * @read_only: indicates read only mount 705 * 706 * This function is called when mounting to erase orphans from the previous 707 * session. If UBIFS was not unmounted cleanly, then the inodes recorded as 708 * orphans are deleted. 709 */ 710 int ubifs_mount_orphans(struct ubifs_info *c, int unclean, int read_only) 711 { 712 int err = 0; 713 714 c->max_orphans = tot_avail_orphs(c); 715 716 if (!read_only) { 717 c->orph_buf = vmalloc(c->leb_size); 718 if (!c->orph_buf) 719 return -ENOMEM; 720 } 721 722 if (unclean) 723 err = kill_orphans(c); 724 else if (!read_only) 725 err = ubifs_clear_orphans(c); 726 727 return err; 728 } 729 730 /* 731 * Everything below is related to debugging. 732 */ 733 734 struct check_orphan { 735 struct rb_node rb; 736 ino_t inum; 737 }; 738 739 struct check_info { 740 unsigned long last_ino; 741 unsigned long tot_inos; 742 unsigned long missing; 743 unsigned long long leaf_cnt; 744 struct ubifs_ino_node *node; 745 struct rb_root root; 746 }; 747 748 static int dbg_find_orphan(struct ubifs_info *c, ino_t inum) 749 { 750 struct ubifs_orphan *o; 751 struct rb_node *p; 752 753 spin_lock(&c->orphan_lock); 754 p = c->orph_tree.rb_node; 755 while (p) { 756 o = rb_entry(p, struct ubifs_orphan, rb); 757 if (inum < o->inum) 758 p = p->rb_left; 759 else if (inum > o->inum) 760 p = p->rb_right; 761 else { 762 spin_unlock(&c->orphan_lock); 763 return 1; 764 } 765 } 766 spin_unlock(&c->orphan_lock); 767 return 0; 768 } 769 770 static int dbg_ins_check_orphan(struct rb_root *root, ino_t inum) 771 { 772 struct check_orphan *orphan, *o; 773 struct rb_node **p, *parent = NULL; 774 775 orphan = kzalloc(sizeof(struct check_orphan), GFP_NOFS); 776 if (!orphan) 777 return -ENOMEM; 778 orphan->inum = inum; 779 780 p = &root->rb_node; 781 while (*p) { 782 parent = *p; 783 o = rb_entry(parent, struct check_orphan, rb); 784 if (inum < o->inum) 785 p = &(*p)->rb_left; 786 else if (inum > o->inum) 787 p = &(*p)->rb_right; 788 else { 789 kfree(orphan); 790 return 0; 791 } 792 } 793 rb_link_node(&orphan->rb, parent, p); 794 rb_insert_color(&orphan->rb, root); 795 return 0; 796 } 797 798 static int dbg_find_check_orphan(struct rb_root *root, ino_t inum) 799 { 800 struct check_orphan *o; 801 struct rb_node *p; 802 803 p = root->rb_node; 804 while (p) { 805 o = rb_entry(p, struct check_orphan, rb); 806 if (inum < o->inum) 807 p = p->rb_left; 808 else if (inum > o->inum) 809 p = p->rb_right; 810 else 811 return 1; 812 } 813 return 0; 814 } 815 816 static void dbg_free_check_tree(struct rb_root *root) 817 { 818 struct rb_node *this = root->rb_node; 819 struct check_orphan *o; 820 821 while (this) { 822 if (this->rb_left) { 823 this = this->rb_left; 824 continue; 825 } else if (this->rb_right) { 826 this = this->rb_right; 827 continue; 828 } 829 o = rb_entry(this, struct check_orphan, rb); 830 this = rb_parent(this); 831 if (this) { 832 if (this->rb_left == &o->rb) 833 this->rb_left = NULL; 834 else 835 this->rb_right = NULL; 836 } 837 kfree(o); 838 } 839 } 840 841 static int dbg_orphan_check(struct ubifs_info *c, struct ubifs_zbranch *zbr, 842 void *priv) 843 { 844 struct check_info *ci = priv; 845 ino_t inum; 846 int err; 847 848 inum = key_inum(c, &zbr->key); 849 if (inum != ci->last_ino) { 850 /* Lowest node type is the inode node, so it comes first */ 851 if (key_type(c, &zbr->key) != UBIFS_INO_KEY) 852 ubifs_err("found orphan node ino %lu, type %d", 853 (unsigned long)inum, key_type(c, &zbr->key)); 854 ci->last_ino = inum; 855 ci->tot_inos += 1; 856 err = ubifs_tnc_read_node(c, zbr, ci->node); 857 if (err) { 858 ubifs_err("node read failed, error %d", err); 859 return err; 860 } 861 if (ci->node->nlink == 0) 862 /* Must be recorded as an orphan */ 863 if (!dbg_find_check_orphan(&ci->root, inum) && 864 !dbg_find_orphan(c, inum)) { 865 ubifs_err("missing orphan, ino %lu", 866 (unsigned long)inum); 867 ci->missing += 1; 868 } 869 } 870 ci->leaf_cnt += 1; 871 return 0; 872 } 873 874 static int dbg_read_orphans(struct check_info *ci, struct ubifs_scan_leb *sleb) 875 { 876 struct ubifs_scan_node *snod; 877 struct ubifs_orph_node *orph; 878 ino_t inum; 879 int i, n, err; 880 881 list_for_each_entry(snod, &sleb->nodes, list) { 882 cond_resched(); 883 if (snod->type != UBIFS_ORPH_NODE) 884 continue; 885 orph = snod->node; 886 n = (le32_to_cpu(orph->ch.len) - UBIFS_ORPH_NODE_SZ) >> 3; 887 for (i = 0; i < n; i++) { 888 inum = le64_to_cpu(orph->inos[i]); 889 err = dbg_ins_check_orphan(&ci->root, inum); 890 if (err) 891 return err; 892 } 893 } 894 return 0; 895 } 896 897 static int dbg_scan_orphans(struct ubifs_info *c, struct check_info *ci) 898 { 899 int lnum, err = 0; 900 void *buf; 901 902 /* Check no-orphans flag and skip this if no orphans */ 903 if (c->no_orphs) 904 return 0; 905 906 buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL); 907 if (!buf) { 908 ubifs_err("cannot allocate memory to check orphans"); 909 return 0; 910 } 911 912 for (lnum = c->orph_first; lnum <= c->orph_last; lnum++) { 913 struct ubifs_scan_leb *sleb; 914 915 sleb = ubifs_scan(c, lnum, 0, buf, 0); 916 if (IS_ERR(sleb)) { 917 err = PTR_ERR(sleb); 918 break; 919 } 920 921 err = dbg_read_orphans(ci, sleb); 922 ubifs_scan_destroy(sleb); 923 if (err) 924 break; 925 } 926 927 vfree(buf); 928 return err; 929 } 930 931 static int dbg_check_orphans(struct ubifs_info *c) 932 { 933 struct check_info ci; 934 int err; 935 936 if (!dbg_is_chk_orph(c)) 937 return 0; 938 939 ci.last_ino = 0; 940 ci.tot_inos = 0; 941 ci.missing = 0; 942 ci.leaf_cnt = 0; 943 ci.root = RB_ROOT; 944 ci.node = kmalloc(UBIFS_MAX_INO_NODE_SZ, GFP_NOFS); 945 if (!ci.node) { 946 ubifs_err("out of memory"); 947 return -ENOMEM; 948 } 949 950 err = dbg_scan_orphans(c, &ci); 951 if (err) 952 goto out; 953 954 err = dbg_walk_index(c, &dbg_orphan_check, NULL, &ci); 955 if (err) { 956 ubifs_err("cannot scan TNC, error %d", err); 957 goto out; 958 } 959 960 if (ci.missing) { 961 ubifs_err("%lu missing orphan(s)", ci.missing); 962 err = -EINVAL; 963 goto out; 964 } 965 966 dbg_cmt("last inode number is %lu", ci.last_ino); 967 dbg_cmt("total number of inodes is %lu", ci.tot_inos); 968 dbg_cmt("total number of leaf nodes is %llu", ci.leaf_cnt); 969 970 out: 971 dbg_free_check_tree(&ci.root); 972 kfree(ci.node); 973 return err; 974 } 975