xref: /linux/fs/ubifs/lpt_commit.c (revision d39d0ed196aa1685bb24771e92f78633c66ac9cb)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include "ubifs.h"
31 
32 /**
33  * first_dirty_cnode - find first dirty cnode.
34  * @c: UBIFS file-system description object
35  * @nnode: nnode at which to start
36  *
37  * This function returns the first dirty cnode or %NULL if there is not one.
38  */
39 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
40 {
41 	ubifs_assert(nnode);
42 	while (1) {
43 		int i, cont = 0;
44 
45 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
46 			struct ubifs_cnode *cnode;
47 
48 			cnode = nnode->nbranch[i].cnode;
49 			if (cnode &&
50 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
51 				if (cnode->level == 0)
52 					return cnode;
53 				nnode = (struct ubifs_nnode *)cnode;
54 				cont = 1;
55 				break;
56 			}
57 		}
58 		if (!cont)
59 			return (struct ubifs_cnode *)nnode;
60 	}
61 }
62 
63 /**
64  * next_dirty_cnode - find next dirty cnode.
65  * @cnode: cnode from which to begin searching
66  *
67  * This function returns the next dirty cnode or %NULL if there is not one.
68  */
69 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
70 {
71 	struct ubifs_nnode *nnode;
72 	int i;
73 
74 	ubifs_assert(cnode);
75 	nnode = cnode->parent;
76 	if (!nnode)
77 		return NULL;
78 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
79 		cnode = nnode->nbranch[i].cnode;
80 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
81 			if (cnode->level == 0)
82 				return cnode; /* cnode is a pnode */
83 			/* cnode is a nnode */
84 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
85 		}
86 	}
87 	return (struct ubifs_cnode *)nnode;
88 }
89 
90 /**
91  * get_cnodes_to_commit - create list of dirty cnodes to commit.
92  * @c: UBIFS file-system description object
93  *
94  * This function returns the number of cnodes to commit.
95  */
96 static int get_cnodes_to_commit(struct ubifs_info *c)
97 {
98 	struct ubifs_cnode *cnode, *cnext;
99 	int cnt = 0;
100 
101 	if (!c->nroot)
102 		return 0;
103 
104 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
105 		return 0;
106 
107 	c->lpt_cnext = first_dirty_cnode(c->nroot);
108 	cnode = c->lpt_cnext;
109 	if (!cnode)
110 		return 0;
111 	cnt += 1;
112 	while (1) {
113 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
114 		__set_bit(COW_ZNODE, &cnode->flags);
115 		cnext = next_dirty_cnode(cnode);
116 		if (!cnext) {
117 			cnode->cnext = c->lpt_cnext;
118 			break;
119 		}
120 		cnode->cnext = cnext;
121 		cnode = cnext;
122 		cnt += 1;
123 	}
124 	dbg_cmt("committing %d cnodes", cnt);
125 	dbg_lp("committing %d cnodes", cnt);
126 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
127 	return cnt;
128 }
129 
130 /**
131  * upd_ltab - update LPT LEB properties.
132  * @c: UBIFS file-system description object
133  * @lnum: LEB number
134  * @free: amount of free space
135  * @dirty: amount of dirty space to add
136  */
137 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
138 {
139 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
140 	       lnum, c->ltab[lnum - c->lpt_first].free,
141 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
142 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
143 	c->ltab[lnum - c->lpt_first].free = free;
144 	c->ltab[lnum - c->lpt_first].dirty += dirty;
145 }
146 
147 /**
148  * alloc_lpt_leb - allocate an LPT LEB that is empty.
149  * @c: UBIFS file-system description object
150  * @lnum: LEB number is passed and returned here
151  *
152  * This function finds the next empty LEB in the ltab starting from @lnum. If a
153  * an empty LEB is found it is returned in @lnum and the function returns %0.
154  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
155  * never to run out of space.
156  */
157 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
158 {
159 	int i, n;
160 
161 	n = *lnum - c->lpt_first + 1;
162 	for (i = n; i < c->lpt_lebs; i++) {
163 		if (c->ltab[i].tgc || c->ltab[i].cmt)
164 			continue;
165 		if (c->ltab[i].free == c->leb_size) {
166 			c->ltab[i].cmt = 1;
167 			*lnum = i + c->lpt_first;
168 			return 0;
169 		}
170 	}
171 
172 	for (i = 0; i < n; i++) {
173 		if (c->ltab[i].tgc || c->ltab[i].cmt)
174 			continue;
175 		if (c->ltab[i].free == c->leb_size) {
176 			c->ltab[i].cmt = 1;
177 			*lnum = i + c->lpt_first;
178 			return 0;
179 		}
180 	}
181 	return -ENOSPC;
182 }
183 
184 /**
185  * layout_cnodes - layout cnodes for commit.
186  * @c: UBIFS file-system description object
187  *
188  * This function returns %0 on success and a negative error code on failure.
189  */
190 static int layout_cnodes(struct ubifs_info *c)
191 {
192 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
193 	struct ubifs_cnode *cnode;
194 
195 	err = dbg_chk_lpt_sz(c, 0, 0);
196 	if (err)
197 		return err;
198 	cnode = c->lpt_cnext;
199 	if (!cnode)
200 		return 0;
201 	lnum = c->nhead_lnum;
202 	offs = c->nhead_offs;
203 	/* Try to place lsave and ltab nicely */
204 	done_lsave = !c->big_lpt;
205 	done_ltab = 0;
206 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
207 		done_lsave = 1;
208 		c->lsave_lnum = lnum;
209 		c->lsave_offs = offs;
210 		offs += c->lsave_sz;
211 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
212 	}
213 
214 	if (offs + c->ltab_sz <= c->leb_size) {
215 		done_ltab = 1;
216 		c->ltab_lnum = lnum;
217 		c->ltab_offs = offs;
218 		offs += c->ltab_sz;
219 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
220 	}
221 
222 	do {
223 		if (cnode->level) {
224 			len = c->nnode_sz;
225 			c->dirty_nn_cnt -= 1;
226 		} else {
227 			len = c->pnode_sz;
228 			c->dirty_pn_cnt -= 1;
229 		}
230 		while (offs + len > c->leb_size) {
231 			alen = ALIGN(offs, c->min_io_size);
232 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
233 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
234 			err = alloc_lpt_leb(c, &lnum);
235 			if (err)
236 				goto no_space;
237 			offs = 0;
238 			ubifs_assert(lnum >= c->lpt_first &&
239 				     lnum <= c->lpt_last);
240 			/* Try to place lsave and ltab nicely */
241 			if (!done_lsave) {
242 				done_lsave = 1;
243 				c->lsave_lnum = lnum;
244 				c->lsave_offs = offs;
245 				offs += c->lsave_sz;
246 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
247 				continue;
248 			}
249 			if (!done_ltab) {
250 				done_ltab = 1;
251 				c->ltab_lnum = lnum;
252 				c->ltab_offs = offs;
253 				offs += c->ltab_sz;
254 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
255 				continue;
256 			}
257 			break;
258 		}
259 		if (cnode->parent) {
260 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
261 			cnode->parent->nbranch[cnode->iip].offs = offs;
262 		} else {
263 			c->lpt_lnum = lnum;
264 			c->lpt_offs = offs;
265 		}
266 		offs += len;
267 		dbg_chk_lpt_sz(c, 1, len);
268 		cnode = cnode->cnext;
269 	} while (cnode && cnode != c->lpt_cnext);
270 
271 	/* Make sure to place LPT's save table */
272 	if (!done_lsave) {
273 		if (offs + c->lsave_sz > c->leb_size) {
274 			alen = ALIGN(offs, c->min_io_size);
275 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
276 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
277 			err = alloc_lpt_leb(c, &lnum);
278 			if (err)
279 				goto no_space;
280 			offs = 0;
281 			ubifs_assert(lnum >= c->lpt_first &&
282 				     lnum <= c->lpt_last);
283 		}
284 		done_lsave = 1;
285 		c->lsave_lnum = lnum;
286 		c->lsave_offs = offs;
287 		offs += c->lsave_sz;
288 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
289 	}
290 
291 	/* Make sure to place LPT's own lprops table */
292 	if (!done_ltab) {
293 		if (offs + c->ltab_sz > c->leb_size) {
294 			alen = ALIGN(offs, c->min_io_size);
295 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
296 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
297 			err = alloc_lpt_leb(c, &lnum);
298 			if (err)
299 				goto no_space;
300 			offs = 0;
301 			ubifs_assert(lnum >= c->lpt_first &&
302 				     lnum <= c->lpt_last);
303 		}
304 		done_ltab = 1;
305 		c->ltab_lnum = lnum;
306 		c->ltab_offs = offs;
307 		offs += c->ltab_sz;
308 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
309 	}
310 
311 	alen = ALIGN(offs, c->min_io_size);
312 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
313 	dbg_chk_lpt_sz(c, 4, alen - offs);
314 	err = dbg_chk_lpt_sz(c, 3, alen);
315 	if (err)
316 		return err;
317 	return 0;
318 
319 no_space:
320 	ubifs_err("LPT out of space");
321 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
322 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
323 	dbg_dump_lpt_info(c);
324 	dbg_dump_lpt_lebs(c);
325 	dump_stack();
326 	return err;
327 }
328 
329 /**
330  * realloc_lpt_leb - allocate an LPT LEB that is empty.
331  * @c: UBIFS file-system description object
332  * @lnum: LEB number is passed and returned here
333  *
334  * This function duplicates exactly the results of the function alloc_lpt_leb.
335  * It is used during end commit to reallocate the same LEB numbers that were
336  * allocated by alloc_lpt_leb during start commit.
337  *
338  * This function finds the next LEB that was allocated by the alloc_lpt_leb
339  * function starting from @lnum. If a LEB is found it is returned in @lnum and
340  * the function returns %0. Otherwise the function returns -ENOSPC.
341  * Note however, that LPT is designed never to run out of space.
342  */
343 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
344 {
345 	int i, n;
346 
347 	n = *lnum - c->lpt_first + 1;
348 	for (i = n; i < c->lpt_lebs; i++)
349 		if (c->ltab[i].cmt) {
350 			c->ltab[i].cmt = 0;
351 			*lnum = i + c->lpt_first;
352 			return 0;
353 		}
354 
355 	for (i = 0; i < n; i++)
356 		if (c->ltab[i].cmt) {
357 			c->ltab[i].cmt = 0;
358 			*lnum = i + c->lpt_first;
359 			return 0;
360 		}
361 	return -ENOSPC;
362 }
363 
364 /**
365  * write_cnodes - write cnodes for commit.
366  * @c: UBIFS file-system description object
367  *
368  * This function returns %0 on success and a negative error code on failure.
369  */
370 static int write_cnodes(struct ubifs_info *c)
371 {
372 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
373 	struct ubifs_cnode *cnode;
374 	void *buf = c->lpt_buf;
375 
376 	cnode = c->lpt_cnext;
377 	if (!cnode)
378 		return 0;
379 	lnum = c->nhead_lnum;
380 	offs = c->nhead_offs;
381 	from = offs;
382 	/* Ensure empty LEB is unmapped */
383 	if (offs == 0) {
384 		err = ubifs_leb_unmap(c, lnum);
385 		if (err)
386 			return err;
387 	}
388 	/* Try to place lsave and ltab nicely */
389 	done_lsave = !c->big_lpt;
390 	done_ltab = 0;
391 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
392 		done_lsave = 1;
393 		ubifs_pack_lsave(c, buf + offs, c->lsave);
394 		offs += c->lsave_sz;
395 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
396 	}
397 
398 	if (offs + c->ltab_sz <= c->leb_size) {
399 		done_ltab = 1;
400 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
401 		offs += c->ltab_sz;
402 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
403 	}
404 
405 	/* Loop for each cnode */
406 	do {
407 		if (cnode->level)
408 			len = c->nnode_sz;
409 		else
410 			len = c->pnode_sz;
411 		while (offs + len > c->leb_size) {
412 			wlen = offs - from;
413 			if (wlen) {
414 				alen = ALIGN(wlen, c->min_io_size);
415 				memset(buf + offs, 0xff, alen - wlen);
416 				err = ubifs_leb_write(c, lnum, buf + from, from,
417 						       alen, UBI_SHORTTERM);
418 				if (err)
419 					return err;
420 			}
421 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
422 			err = realloc_lpt_leb(c, &lnum);
423 			if (err)
424 				goto no_space;
425 			offs = from = 0;
426 			ubifs_assert(lnum >= c->lpt_first &&
427 				     lnum <= c->lpt_last);
428 			err = ubifs_leb_unmap(c, lnum);
429 			if (err)
430 				return err;
431 			/* Try to place lsave and ltab nicely */
432 			if (!done_lsave) {
433 				done_lsave = 1;
434 				ubifs_pack_lsave(c, buf + offs, c->lsave);
435 				offs += c->lsave_sz;
436 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
437 				continue;
438 			}
439 			if (!done_ltab) {
440 				done_ltab = 1;
441 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
442 				offs += c->ltab_sz;
443 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
444 				continue;
445 			}
446 			break;
447 		}
448 		if (cnode->level)
449 			ubifs_pack_nnode(c, buf + offs,
450 					 (struct ubifs_nnode *)cnode);
451 		else
452 			ubifs_pack_pnode(c, buf + offs,
453 					 (struct ubifs_pnode *)cnode);
454 		/*
455 		 * The reason for the barriers is the same as in case of TNC.
456 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
457 		 * 'dirty_cow_pnode()' are the functions for which this is
458 		 * important.
459 		 */
460 		clear_bit(DIRTY_CNODE, &cnode->flags);
461 		smp_mb__before_clear_bit();
462 		clear_bit(COW_ZNODE, &cnode->flags);
463 		smp_mb__after_clear_bit();
464 		offs += len;
465 		dbg_chk_lpt_sz(c, 1, len);
466 		cnode = cnode->cnext;
467 	} while (cnode && cnode != c->lpt_cnext);
468 
469 	/* Make sure to place LPT's save table */
470 	if (!done_lsave) {
471 		if (offs + c->lsave_sz > c->leb_size) {
472 			wlen = offs - from;
473 			alen = ALIGN(wlen, c->min_io_size);
474 			memset(buf + offs, 0xff, alen - wlen);
475 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
476 					      UBI_SHORTTERM);
477 			if (err)
478 				return err;
479 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
480 			err = realloc_lpt_leb(c, &lnum);
481 			if (err)
482 				goto no_space;
483 			offs = from = 0;
484 			ubifs_assert(lnum >= c->lpt_first &&
485 				     lnum <= c->lpt_last);
486 			err = ubifs_leb_unmap(c, lnum);
487 			if (err)
488 				return err;
489 		}
490 		done_lsave = 1;
491 		ubifs_pack_lsave(c, buf + offs, c->lsave);
492 		offs += c->lsave_sz;
493 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
494 	}
495 
496 	/* Make sure to place LPT's own lprops table */
497 	if (!done_ltab) {
498 		if (offs + c->ltab_sz > c->leb_size) {
499 			wlen = offs - from;
500 			alen = ALIGN(wlen, c->min_io_size);
501 			memset(buf + offs, 0xff, alen - wlen);
502 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
503 					      UBI_SHORTTERM);
504 			if (err)
505 				return err;
506 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 			err = realloc_lpt_leb(c, &lnum);
508 			if (err)
509 				goto no_space;
510 			offs = from = 0;
511 			ubifs_assert(lnum >= c->lpt_first &&
512 				     lnum <= c->lpt_last);
513 			err = ubifs_leb_unmap(c, lnum);
514 			if (err)
515 				return err;
516 		}
517 		done_ltab = 1;
518 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
519 		offs += c->ltab_sz;
520 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
521 	}
522 
523 	/* Write remaining data in buffer */
524 	wlen = offs - from;
525 	alen = ALIGN(wlen, c->min_io_size);
526 	memset(buf + offs, 0xff, alen - wlen);
527 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
528 	if (err)
529 		return err;
530 
531 	dbg_chk_lpt_sz(c, 4, alen - wlen);
532 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
533 	if (err)
534 		return err;
535 
536 	c->nhead_lnum = lnum;
537 	c->nhead_offs = ALIGN(offs, c->min_io_size);
538 
539 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
540 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
541 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
542 	if (c->big_lpt)
543 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
544 
545 	return 0;
546 
547 no_space:
548 	ubifs_err("LPT out of space mismatch");
549 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
550 		"%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
551 	dbg_dump_lpt_info(c);
552 	dbg_dump_lpt_lebs(c);
553 	dump_stack();
554 	return err;
555 }
556 
557 /**
558  * next_pnode_to_dirty - find next pnode to dirty.
559  * @c: UBIFS file-system description object
560  * @pnode: pnode
561  *
562  * This function returns the next pnode to dirty or %NULL if there are no more
563  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
564  * skipped.
565  */
566 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
567 					       struct ubifs_pnode *pnode)
568 {
569 	struct ubifs_nnode *nnode;
570 	int iip;
571 
572 	/* Try to go right */
573 	nnode = pnode->parent;
574 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
575 		if (nnode->nbranch[iip].lnum)
576 			return ubifs_get_pnode(c, nnode, iip);
577 	}
578 
579 	/* Go up while can't go right */
580 	do {
581 		iip = nnode->iip + 1;
582 		nnode = nnode->parent;
583 		if (!nnode)
584 			return NULL;
585 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
586 			if (nnode->nbranch[iip].lnum)
587 				break;
588 		}
589        } while (iip >= UBIFS_LPT_FANOUT);
590 
591 	/* Go right */
592 	nnode = ubifs_get_nnode(c, nnode, iip);
593 	if (IS_ERR(nnode))
594 		return (void *)nnode;
595 
596 	/* Go down to level 1 */
597 	while (nnode->level > 1) {
598 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
599 			if (nnode->nbranch[iip].lnum)
600 				break;
601 		}
602 		if (iip >= UBIFS_LPT_FANOUT) {
603 			/*
604 			 * Should not happen, but we need to keep going
605 			 * if it does.
606 			 */
607 			iip = 0;
608 		}
609 		nnode = ubifs_get_nnode(c, nnode, iip);
610 		if (IS_ERR(nnode))
611 			return (void *)nnode;
612 	}
613 
614 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
615 		if (nnode->nbranch[iip].lnum)
616 			break;
617 	if (iip >= UBIFS_LPT_FANOUT)
618 		/* Should not happen, but we need to keep going if it does */
619 		iip = 0;
620 	return ubifs_get_pnode(c, nnode, iip);
621 }
622 
623 /**
624  * pnode_lookup - lookup a pnode in the LPT.
625  * @c: UBIFS file-system description object
626  * @i: pnode number (0 to main_lebs - 1)
627  *
628  * This function returns a pointer to the pnode on success or a negative
629  * error code on failure.
630  */
631 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
632 {
633 	int err, h, iip, shft;
634 	struct ubifs_nnode *nnode;
635 
636 	if (!c->nroot) {
637 		err = ubifs_read_nnode(c, NULL, 0);
638 		if (err)
639 			return ERR_PTR(err);
640 	}
641 	i <<= UBIFS_LPT_FANOUT_SHIFT;
642 	nnode = c->nroot;
643 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
644 	for (h = 1; h < c->lpt_hght; h++) {
645 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
646 		shft -= UBIFS_LPT_FANOUT_SHIFT;
647 		nnode = ubifs_get_nnode(c, nnode, iip);
648 		if (IS_ERR(nnode))
649 			return ERR_CAST(nnode);
650 	}
651 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
652 	return ubifs_get_pnode(c, nnode, iip);
653 }
654 
655 /**
656  * add_pnode_dirt - add dirty space to LPT LEB properties.
657  * @c: UBIFS file-system description object
658  * @pnode: pnode for which to add dirt
659  */
660 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
661 {
662 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
663 			   c->pnode_sz);
664 }
665 
666 /**
667  * do_make_pnode_dirty - mark a pnode dirty.
668  * @c: UBIFS file-system description object
669  * @pnode: pnode to mark dirty
670  */
671 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
672 {
673 	/* Assumes cnext list is empty i.e. not called during commit */
674 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
675 		struct ubifs_nnode *nnode;
676 
677 		c->dirty_pn_cnt += 1;
678 		add_pnode_dirt(c, pnode);
679 		/* Mark parent and ancestors dirty too */
680 		nnode = pnode->parent;
681 		while (nnode) {
682 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
683 				c->dirty_nn_cnt += 1;
684 				ubifs_add_nnode_dirt(c, nnode);
685 				nnode = nnode->parent;
686 			} else
687 				break;
688 		}
689 	}
690 }
691 
692 /**
693  * make_tree_dirty - mark the entire LEB properties tree dirty.
694  * @c: UBIFS file-system description object
695  *
696  * This function is used by the "small" LPT model to cause the entire LEB
697  * properties tree to be written.  The "small" LPT model does not use LPT
698  * garbage collection because it is more efficient to write the entire tree
699  * (because it is small).
700  *
701  * This function returns %0 on success and a negative error code on failure.
702  */
703 static int make_tree_dirty(struct ubifs_info *c)
704 {
705 	struct ubifs_pnode *pnode;
706 
707 	pnode = pnode_lookup(c, 0);
708 	while (pnode) {
709 		do_make_pnode_dirty(c, pnode);
710 		pnode = next_pnode_to_dirty(c, pnode);
711 		if (IS_ERR(pnode))
712 			return PTR_ERR(pnode);
713 	}
714 	return 0;
715 }
716 
717 /**
718  * need_write_all - determine if the LPT area is running out of free space.
719  * @c: UBIFS file-system description object
720  *
721  * This function returns %1 if the LPT area is running out of free space and %0
722  * if it is not.
723  */
724 static int need_write_all(struct ubifs_info *c)
725 {
726 	long long free = 0;
727 	int i;
728 
729 	for (i = 0; i < c->lpt_lebs; i++) {
730 		if (i + c->lpt_first == c->nhead_lnum)
731 			free += c->leb_size - c->nhead_offs;
732 		else if (c->ltab[i].free == c->leb_size)
733 			free += c->leb_size;
734 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
735 			free += c->leb_size;
736 	}
737 	/* Less than twice the size left */
738 	if (free <= c->lpt_sz * 2)
739 		return 1;
740 	return 0;
741 }
742 
743 /**
744  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
745  * @c: UBIFS file-system description object
746  *
747  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
748  * free space and so may be reused as soon as the next commit is completed.
749  * This function is called during start commit to mark LPT LEBs for trivial GC.
750  */
751 static void lpt_tgc_start(struct ubifs_info *c)
752 {
753 	int i;
754 
755 	for (i = 0; i < c->lpt_lebs; i++) {
756 		if (i + c->lpt_first == c->nhead_lnum)
757 			continue;
758 		if (c->ltab[i].dirty > 0 &&
759 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
760 			c->ltab[i].tgc = 1;
761 			c->ltab[i].free = c->leb_size;
762 			c->ltab[i].dirty = 0;
763 			dbg_lp("LEB %d", i + c->lpt_first);
764 		}
765 	}
766 }
767 
768 /**
769  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
770  * @c: UBIFS file-system description object
771  *
772  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
773  * free space and so may be reused as soon as the next commit is completed.
774  * This function is called after the commit is completed (master node has been
775  * written) and un-maps LPT LEBs that were marked for trivial GC.
776  */
777 static int lpt_tgc_end(struct ubifs_info *c)
778 {
779 	int i, err;
780 
781 	for (i = 0; i < c->lpt_lebs; i++)
782 		if (c->ltab[i].tgc) {
783 			err = ubifs_leb_unmap(c, i + c->lpt_first);
784 			if (err)
785 				return err;
786 			c->ltab[i].tgc = 0;
787 			dbg_lp("LEB %d", i + c->lpt_first);
788 		}
789 	return 0;
790 }
791 
792 /**
793  * populate_lsave - fill the lsave array with important LEB numbers.
794  * @c: the UBIFS file-system description object
795  *
796  * This function is only called for the "big" model. It records a small number
797  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
798  * most important to least important): empty, freeable, freeable index, dirty
799  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
800  * their pnodes into memory.  That will stop us from having to scan the LPT
801  * straight away. For the "small" model we assume that scanning the LPT is no
802  * big deal.
803  */
804 static void populate_lsave(struct ubifs_info *c)
805 {
806 	struct ubifs_lprops *lprops;
807 	struct ubifs_lpt_heap *heap;
808 	int i, cnt = 0;
809 
810 	ubifs_assert(c->big_lpt);
811 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
812 		c->lpt_drty_flgs |= LSAVE_DIRTY;
813 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
814 	}
815 	list_for_each_entry(lprops, &c->empty_list, list) {
816 		c->lsave[cnt++] = lprops->lnum;
817 		if (cnt >= c->lsave_cnt)
818 			return;
819 	}
820 	list_for_each_entry(lprops, &c->freeable_list, list) {
821 		c->lsave[cnt++] = lprops->lnum;
822 		if (cnt >= c->lsave_cnt)
823 			return;
824 	}
825 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
826 		c->lsave[cnt++] = lprops->lnum;
827 		if (cnt >= c->lsave_cnt)
828 			return;
829 	}
830 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
831 	for (i = 0; i < heap->cnt; i++) {
832 		c->lsave[cnt++] = heap->arr[i]->lnum;
833 		if (cnt >= c->lsave_cnt)
834 			return;
835 	}
836 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
837 	for (i = 0; i < heap->cnt; i++) {
838 		c->lsave[cnt++] = heap->arr[i]->lnum;
839 		if (cnt >= c->lsave_cnt)
840 			return;
841 	}
842 	heap = &c->lpt_heap[LPROPS_FREE - 1];
843 	for (i = 0; i < heap->cnt; i++) {
844 		c->lsave[cnt++] = heap->arr[i]->lnum;
845 		if (cnt >= c->lsave_cnt)
846 			return;
847 	}
848 	/* Fill it up completely */
849 	while (cnt < c->lsave_cnt)
850 		c->lsave[cnt++] = c->main_first;
851 }
852 
853 /**
854  * nnode_lookup - lookup a nnode in the LPT.
855  * @c: UBIFS file-system description object
856  * @i: nnode number
857  *
858  * This function returns a pointer to the nnode on success or a negative
859  * error code on failure.
860  */
861 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
862 {
863 	int err, iip;
864 	struct ubifs_nnode *nnode;
865 
866 	if (!c->nroot) {
867 		err = ubifs_read_nnode(c, NULL, 0);
868 		if (err)
869 			return ERR_PTR(err);
870 	}
871 	nnode = c->nroot;
872 	while (1) {
873 		iip = i & (UBIFS_LPT_FANOUT - 1);
874 		i >>= UBIFS_LPT_FANOUT_SHIFT;
875 		if (!i)
876 			break;
877 		nnode = ubifs_get_nnode(c, nnode, iip);
878 		if (IS_ERR(nnode))
879 			return nnode;
880 	}
881 	return nnode;
882 }
883 
884 /**
885  * make_nnode_dirty - find a nnode and, if found, make it dirty.
886  * @c: UBIFS file-system description object
887  * @node_num: nnode number of nnode to make dirty
888  * @lnum: LEB number where nnode was written
889  * @offs: offset where nnode was written
890  *
891  * This function is used by LPT garbage collection.  LPT garbage collection is
892  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
893  * simply involves marking all the nodes in the LEB being garbage-collected as
894  * dirty.  The dirty nodes are written next commit, after which the LEB is free
895  * to be reused.
896  *
897  * This function returns %0 on success and a negative error code on failure.
898  */
899 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
900 			    int offs)
901 {
902 	struct ubifs_nnode *nnode;
903 
904 	nnode = nnode_lookup(c, node_num);
905 	if (IS_ERR(nnode))
906 		return PTR_ERR(nnode);
907 	if (nnode->parent) {
908 		struct ubifs_nbranch *branch;
909 
910 		branch = &nnode->parent->nbranch[nnode->iip];
911 		if (branch->lnum != lnum || branch->offs != offs)
912 			return 0; /* nnode is obsolete */
913 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
914 			return 0; /* nnode is obsolete */
915 	/* Assumes cnext list is empty i.e. not called during commit */
916 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
917 		c->dirty_nn_cnt += 1;
918 		ubifs_add_nnode_dirt(c, nnode);
919 		/* Mark parent and ancestors dirty too */
920 		nnode = nnode->parent;
921 		while (nnode) {
922 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
923 				c->dirty_nn_cnt += 1;
924 				ubifs_add_nnode_dirt(c, nnode);
925 				nnode = nnode->parent;
926 			} else
927 				break;
928 		}
929 	}
930 	return 0;
931 }
932 
933 /**
934  * make_pnode_dirty - find a pnode and, if found, make it dirty.
935  * @c: UBIFS file-system description object
936  * @node_num: pnode number of pnode to make dirty
937  * @lnum: LEB number where pnode was written
938  * @offs: offset where pnode was written
939  *
940  * This function is used by LPT garbage collection.  LPT garbage collection is
941  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
942  * simply involves marking all the nodes in the LEB being garbage-collected as
943  * dirty.  The dirty nodes are written next commit, after which the LEB is free
944  * to be reused.
945  *
946  * This function returns %0 on success and a negative error code on failure.
947  */
948 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
949 			    int offs)
950 {
951 	struct ubifs_pnode *pnode;
952 	struct ubifs_nbranch *branch;
953 
954 	pnode = pnode_lookup(c, node_num);
955 	if (IS_ERR(pnode))
956 		return PTR_ERR(pnode);
957 	branch = &pnode->parent->nbranch[pnode->iip];
958 	if (branch->lnum != lnum || branch->offs != offs)
959 		return 0;
960 	do_make_pnode_dirty(c, pnode);
961 	return 0;
962 }
963 
964 /**
965  * make_ltab_dirty - make ltab node dirty.
966  * @c: UBIFS file-system description object
967  * @lnum: LEB number where ltab was written
968  * @offs: offset where ltab was written
969  *
970  * This function is used by LPT garbage collection.  LPT garbage collection is
971  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
972  * simply involves marking all the nodes in the LEB being garbage-collected as
973  * dirty.  The dirty nodes are written next commit, after which the LEB is free
974  * to be reused.
975  *
976  * This function returns %0 on success and a negative error code on failure.
977  */
978 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
979 {
980 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
981 		return 0; /* This ltab node is obsolete */
982 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
983 		c->lpt_drty_flgs |= LTAB_DIRTY;
984 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
985 	}
986 	return 0;
987 }
988 
989 /**
990  * make_lsave_dirty - make lsave node dirty.
991  * @c: UBIFS file-system description object
992  * @lnum: LEB number where lsave was written
993  * @offs: offset where lsave was written
994  *
995  * This function is used by LPT garbage collection.  LPT garbage collection is
996  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
997  * simply involves marking all the nodes in the LEB being garbage-collected as
998  * dirty.  The dirty nodes are written next commit, after which the LEB is free
999  * to be reused.
1000  *
1001  * This function returns %0 on success and a negative error code on failure.
1002  */
1003 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1004 {
1005 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1006 		return 0; /* This lsave node is obsolete */
1007 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1008 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1009 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1010 	}
1011 	return 0;
1012 }
1013 
1014 /**
1015  * make_node_dirty - make node dirty.
1016  * @c: UBIFS file-system description object
1017  * @node_type: LPT node type
1018  * @node_num: node number
1019  * @lnum: LEB number where node was written
1020  * @offs: offset where node was written
1021  *
1022  * This function is used by LPT garbage collection.  LPT garbage collection is
1023  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1024  * simply involves marking all the nodes in the LEB being garbage-collected as
1025  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1026  * to be reused.
1027  *
1028  * This function returns %0 on success and a negative error code on failure.
1029  */
1030 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1031 			   int lnum, int offs)
1032 {
1033 	switch (node_type) {
1034 	case UBIFS_LPT_NNODE:
1035 		return make_nnode_dirty(c, node_num, lnum, offs);
1036 	case UBIFS_LPT_PNODE:
1037 		return make_pnode_dirty(c, node_num, lnum, offs);
1038 	case UBIFS_LPT_LTAB:
1039 		return make_ltab_dirty(c, lnum, offs);
1040 	case UBIFS_LPT_LSAVE:
1041 		return make_lsave_dirty(c, lnum, offs);
1042 	}
1043 	return -EINVAL;
1044 }
1045 
1046 /**
1047  * get_lpt_node_len - return the length of a node based on its type.
1048  * @c: UBIFS file-system description object
1049  * @node_type: LPT node type
1050  */
1051 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1052 {
1053 	switch (node_type) {
1054 	case UBIFS_LPT_NNODE:
1055 		return c->nnode_sz;
1056 	case UBIFS_LPT_PNODE:
1057 		return c->pnode_sz;
1058 	case UBIFS_LPT_LTAB:
1059 		return c->ltab_sz;
1060 	case UBIFS_LPT_LSAVE:
1061 		return c->lsave_sz;
1062 	}
1063 	return 0;
1064 }
1065 
1066 /**
1067  * get_pad_len - return the length of padding in a buffer.
1068  * @c: UBIFS file-system description object
1069  * @buf: buffer
1070  * @len: length of buffer
1071  */
1072 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1073 {
1074 	int offs, pad_len;
1075 
1076 	if (c->min_io_size == 1)
1077 		return 0;
1078 	offs = c->leb_size - len;
1079 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1080 	return pad_len;
1081 }
1082 
1083 /**
1084  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1085  * @c: UBIFS file-system description object
1086  * @buf: buffer
1087  * @node_num: node number is returned here
1088  */
1089 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1090 			     int *node_num)
1091 {
1092 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1093 	int pos = 0, node_type;
1094 
1095 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1096 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1097 	return node_type;
1098 }
1099 
1100 /**
1101  * is_a_node - determine if a buffer contains a node.
1102  * @c: UBIFS file-system description object
1103  * @buf: buffer
1104  * @len: length of buffer
1105  *
1106  * This function returns %1 if the buffer contains a node or %0 if it does not.
1107  */
1108 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1109 {
1110 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1111 	int pos = 0, node_type, node_len;
1112 	uint16_t crc, calc_crc;
1113 
1114 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1115 		return 0;
1116 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1117 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1118 		return 0;
1119 	node_len = get_lpt_node_len(c, node_type);
1120 	if (!node_len || node_len > len)
1121 		return 0;
1122 	pos = 0;
1123 	addr = buf;
1124 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1125 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1126 			 node_len - UBIFS_LPT_CRC_BYTES);
1127 	if (crc != calc_crc)
1128 		return 0;
1129 	return 1;
1130 }
1131 
1132 /**
1133  * lpt_gc_lnum - garbage collect a LPT LEB.
1134  * @c: UBIFS file-system description object
1135  * @lnum: LEB number to garbage collect
1136  *
1137  * LPT garbage collection is used only for the "big" LPT model
1138  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1139  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1140  * next commit, after which the LEB is free to be reused.
1141  *
1142  * This function returns %0 on success and a negative error code on failure.
1143  */
1144 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1145 {
1146 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1147 	void *buf = c->lpt_buf;
1148 
1149 	dbg_lp("LEB %d", lnum);
1150 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1151 	if (err) {
1152 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1153 		return err;
1154 	}
1155 	while (1) {
1156 		if (!is_a_node(c, buf, len)) {
1157 			int pad_len;
1158 
1159 			pad_len = get_pad_len(c, buf, len);
1160 			if (pad_len) {
1161 				buf += pad_len;
1162 				len -= pad_len;
1163 				continue;
1164 			}
1165 			return 0;
1166 		}
1167 		node_type = get_lpt_node_type(c, buf, &node_num);
1168 		node_len = get_lpt_node_len(c, node_type);
1169 		offs = c->leb_size - len;
1170 		ubifs_assert(node_len != 0);
1171 		mutex_lock(&c->lp_mutex);
1172 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1173 		mutex_unlock(&c->lp_mutex);
1174 		if (err)
1175 			return err;
1176 		buf += node_len;
1177 		len -= node_len;
1178 	}
1179 	return 0;
1180 }
1181 
1182 /**
1183  * lpt_gc - LPT garbage collection.
1184  * @c: UBIFS file-system description object
1185  *
1186  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1187  * Returns %0 on success and a negative error code on failure.
1188  */
1189 static int lpt_gc(struct ubifs_info *c)
1190 {
1191 	int i, lnum = -1, dirty = 0;
1192 
1193 	mutex_lock(&c->lp_mutex);
1194 	for (i = 0; i < c->lpt_lebs; i++) {
1195 		ubifs_assert(!c->ltab[i].tgc);
1196 		if (i + c->lpt_first == c->nhead_lnum ||
1197 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1198 			continue;
1199 		if (c->ltab[i].dirty > dirty) {
1200 			dirty = c->ltab[i].dirty;
1201 			lnum = i + c->lpt_first;
1202 		}
1203 	}
1204 	mutex_unlock(&c->lp_mutex);
1205 	if (lnum == -1)
1206 		return -ENOSPC;
1207 	return lpt_gc_lnum(c, lnum);
1208 }
1209 
1210 /**
1211  * ubifs_lpt_start_commit - UBIFS commit starts.
1212  * @c: the UBIFS file-system description object
1213  *
1214  * This function has to be called when UBIFS starts the commit operation.
1215  * This function "freezes" all currently dirty LEB properties and does not
1216  * change them anymore. Further changes are saved and tracked separately
1217  * because they are not part of this commit. This function returns zero in case
1218  * of success and a negative error code in case of failure.
1219  */
1220 int ubifs_lpt_start_commit(struct ubifs_info *c)
1221 {
1222 	int err, cnt;
1223 
1224 	dbg_lp("");
1225 
1226 	mutex_lock(&c->lp_mutex);
1227 	err = dbg_chk_lpt_free_spc(c);
1228 	if (err)
1229 		goto out;
1230 	err = dbg_check_ltab(c);
1231 	if (err)
1232 		goto out;
1233 
1234 	if (c->check_lpt_free) {
1235 		/*
1236 		 * We ensure there is enough free space in
1237 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1238 		 * information is lost when we unmount, so we also need
1239 		 * to check free space once after mounting also.
1240 		 */
1241 		c->check_lpt_free = 0;
1242 		while (need_write_all(c)) {
1243 			mutex_unlock(&c->lp_mutex);
1244 			err = lpt_gc(c);
1245 			if (err)
1246 				return err;
1247 			mutex_lock(&c->lp_mutex);
1248 		}
1249 	}
1250 
1251 	lpt_tgc_start(c);
1252 
1253 	if (!c->dirty_pn_cnt) {
1254 		dbg_cmt("no cnodes to commit");
1255 		err = 0;
1256 		goto out;
1257 	}
1258 
1259 	if (!c->big_lpt && need_write_all(c)) {
1260 		/* If needed, write everything */
1261 		err = make_tree_dirty(c);
1262 		if (err)
1263 			goto out;
1264 		lpt_tgc_start(c);
1265 	}
1266 
1267 	if (c->big_lpt)
1268 		populate_lsave(c);
1269 
1270 	cnt = get_cnodes_to_commit(c);
1271 	ubifs_assert(cnt != 0);
1272 
1273 	err = layout_cnodes(c);
1274 	if (err)
1275 		goto out;
1276 
1277 	/* Copy the LPT's own lprops for end commit to write */
1278 	memcpy(c->ltab_cmt, c->ltab,
1279 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1280 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1281 
1282 out:
1283 	mutex_unlock(&c->lp_mutex);
1284 	return err;
1285 }
1286 
1287 /**
1288  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1289  * @c: UBIFS file-system description object
1290  */
1291 static void free_obsolete_cnodes(struct ubifs_info *c)
1292 {
1293 	struct ubifs_cnode *cnode, *cnext;
1294 
1295 	cnext = c->lpt_cnext;
1296 	if (!cnext)
1297 		return;
1298 	do {
1299 		cnode = cnext;
1300 		cnext = cnode->cnext;
1301 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1302 			kfree(cnode);
1303 		else
1304 			cnode->cnext = NULL;
1305 	} while (cnext != c->lpt_cnext);
1306 	c->lpt_cnext = NULL;
1307 }
1308 
1309 /**
1310  * ubifs_lpt_end_commit - finish the commit operation.
1311  * @c: the UBIFS file-system description object
1312  *
1313  * This function has to be called when the commit operation finishes. It
1314  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1315  * the media. Returns zero in case of success and a negative error code in case
1316  * of failure.
1317  */
1318 int ubifs_lpt_end_commit(struct ubifs_info *c)
1319 {
1320 	int err;
1321 
1322 	dbg_lp("");
1323 
1324 	if (!c->lpt_cnext)
1325 		return 0;
1326 
1327 	err = write_cnodes(c);
1328 	if (err)
1329 		return err;
1330 
1331 	mutex_lock(&c->lp_mutex);
1332 	free_obsolete_cnodes(c);
1333 	mutex_unlock(&c->lp_mutex);
1334 
1335 	return 0;
1336 }
1337 
1338 /**
1339  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1340  * @c: UBIFS file-system description object
1341  *
1342  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1343  * commit for the "big" LPT model.
1344  */
1345 int ubifs_lpt_post_commit(struct ubifs_info *c)
1346 {
1347 	int err;
1348 
1349 	mutex_lock(&c->lp_mutex);
1350 	err = lpt_tgc_end(c);
1351 	if (err)
1352 		goto out;
1353 	if (c->big_lpt)
1354 		while (need_write_all(c)) {
1355 			mutex_unlock(&c->lp_mutex);
1356 			err = lpt_gc(c);
1357 			if (err)
1358 				return err;
1359 			mutex_lock(&c->lp_mutex);
1360 		}
1361 out:
1362 	mutex_unlock(&c->lp_mutex);
1363 	return err;
1364 }
1365 
1366 /**
1367  * first_nnode - find the first nnode in memory.
1368  * @c: UBIFS file-system description object
1369  * @hght: height of tree where nnode found is returned here
1370  *
1371  * This function returns a pointer to the nnode found or %NULL if no nnode is
1372  * found. This function is a helper to 'ubifs_lpt_free()'.
1373  */
1374 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1375 {
1376 	struct ubifs_nnode *nnode;
1377 	int h, i, found;
1378 
1379 	nnode = c->nroot;
1380 	*hght = 0;
1381 	if (!nnode)
1382 		return NULL;
1383 	for (h = 1; h < c->lpt_hght; h++) {
1384 		found = 0;
1385 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1386 			if (nnode->nbranch[i].nnode) {
1387 				found = 1;
1388 				nnode = nnode->nbranch[i].nnode;
1389 				*hght = h;
1390 				break;
1391 			}
1392 		}
1393 		if (!found)
1394 			break;
1395 	}
1396 	return nnode;
1397 }
1398 
1399 /**
1400  * next_nnode - find the next nnode in memory.
1401  * @c: UBIFS file-system description object
1402  * @nnode: nnode from which to start.
1403  * @hght: height of tree where nnode is, is passed and returned here
1404  *
1405  * This function returns a pointer to the nnode found or %NULL if no nnode is
1406  * found. This function is a helper to 'ubifs_lpt_free()'.
1407  */
1408 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1409 				      struct ubifs_nnode *nnode, int *hght)
1410 {
1411 	struct ubifs_nnode *parent;
1412 	int iip, h, i, found;
1413 
1414 	parent = nnode->parent;
1415 	if (!parent)
1416 		return NULL;
1417 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1418 		*hght -= 1;
1419 		return parent;
1420 	}
1421 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1422 		nnode = parent->nbranch[iip].nnode;
1423 		if (nnode)
1424 			break;
1425 	}
1426 	if (!nnode) {
1427 		*hght -= 1;
1428 		return parent;
1429 	}
1430 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1431 		found = 0;
1432 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1433 			if (nnode->nbranch[i].nnode) {
1434 				found = 1;
1435 				nnode = nnode->nbranch[i].nnode;
1436 				*hght = h;
1437 				break;
1438 			}
1439 		}
1440 		if (!found)
1441 			break;
1442 	}
1443 	return nnode;
1444 }
1445 
1446 /**
1447  * ubifs_lpt_free - free resources owned by the LPT.
1448  * @c: UBIFS file-system description object
1449  * @wr_only: free only resources used for writing
1450  */
1451 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1452 {
1453 	struct ubifs_nnode *nnode;
1454 	int i, hght;
1455 
1456 	/* Free write-only things first */
1457 
1458 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1459 
1460 	vfree(c->ltab_cmt);
1461 	c->ltab_cmt = NULL;
1462 	vfree(c->lpt_buf);
1463 	c->lpt_buf = NULL;
1464 	kfree(c->lsave);
1465 	c->lsave = NULL;
1466 
1467 	if (wr_only)
1468 		return;
1469 
1470 	/* Now free the rest */
1471 
1472 	nnode = first_nnode(c, &hght);
1473 	while (nnode) {
1474 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1475 			kfree(nnode->nbranch[i].nnode);
1476 		nnode = next_nnode(c, nnode, &hght);
1477 	}
1478 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1479 		kfree(c->lpt_heap[i].arr);
1480 	kfree(c->dirty_idx.arr);
1481 	kfree(c->nroot);
1482 	vfree(c->ltab);
1483 	kfree(c->lpt_nod_buf);
1484 }
1485 
1486 #ifdef CONFIG_UBIFS_FS_DEBUG
1487 
1488 /**
1489  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1490  * @buf: buffer
1491  * @len: buffer length
1492  */
1493 static int dbg_is_all_ff(uint8_t *buf, int len)
1494 {
1495 	int i;
1496 
1497 	for (i = 0; i < len; i++)
1498 		if (buf[i] != 0xff)
1499 			return 0;
1500 	return 1;
1501 }
1502 
1503 /**
1504  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1505  * @c: the UBIFS file-system description object
1506  * @lnum: LEB number where nnode was written
1507  * @offs: offset where nnode was written
1508  */
1509 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1510 {
1511 	struct ubifs_nnode *nnode;
1512 	int hght;
1513 
1514 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1515 	nnode = first_nnode(c, &hght);
1516 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1517 		struct ubifs_nbranch *branch;
1518 
1519 		cond_resched();
1520 		if (nnode->parent) {
1521 			branch = &nnode->parent->nbranch[nnode->iip];
1522 			if (branch->lnum != lnum || branch->offs != offs)
1523 				continue;
1524 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1525 				return 1;
1526 			return 0;
1527 		} else {
1528 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1529 				continue;
1530 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1531 				return 1;
1532 			return 0;
1533 		}
1534 	}
1535 	return 1;
1536 }
1537 
1538 /**
1539  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1540  * @c: the UBIFS file-system description object
1541  * @lnum: LEB number where pnode was written
1542  * @offs: offset where pnode was written
1543  */
1544 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1545 {
1546 	int i, cnt;
1547 
1548 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1549 	for (i = 0; i < cnt; i++) {
1550 		struct ubifs_pnode *pnode;
1551 		struct ubifs_nbranch *branch;
1552 
1553 		cond_resched();
1554 		pnode = pnode_lookup(c, i);
1555 		if (IS_ERR(pnode))
1556 			return PTR_ERR(pnode);
1557 		branch = &pnode->parent->nbranch[pnode->iip];
1558 		if (branch->lnum != lnum || branch->offs != offs)
1559 			continue;
1560 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1561 			return 1;
1562 		return 0;
1563 	}
1564 	return 1;
1565 }
1566 
1567 /**
1568  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1569  * @c: the UBIFS file-system description object
1570  * @lnum: LEB number where ltab node was written
1571  * @offs: offset where ltab node was written
1572  */
1573 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1574 {
1575 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1576 		return 1;
1577 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1578 }
1579 
1580 /**
1581  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1582  * @c: the UBIFS file-system description object
1583  * @lnum: LEB number where lsave node was written
1584  * @offs: offset where lsave node was written
1585  */
1586 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1587 {
1588 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1589 		return 1;
1590 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1591 }
1592 
1593 /**
1594  * dbg_is_node_dirty - determine if a node is dirty.
1595  * @c: the UBIFS file-system description object
1596  * @node_type: node type
1597  * @lnum: LEB number where node was written
1598  * @offs: offset where node was written
1599  */
1600 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1601 			     int offs)
1602 {
1603 	switch (node_type) {
1604 	case UBIFS_LPT_NNODE:
1605 		return dbg_is_nnode_dirty(c, lnum, offs);
1606 	case UBIFS_LPT_PNODE:
1607 		return dbg_is_pnode_dirty(c, lnum, offs);
1608 	case UBIFS_LPT_LTAB:
1609 		return dbg_is_ltab_dirty(c, lnum, offs);
1610 	case UBIFS_LPT_LSAVE:
1611 		return dbg_is_lsave_dirty(c, lnum, offs);
1612 	}
1613 	return 1;
1614 }
1615 
1616 /**
1617  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1618  * @c: the UBIFS file-system description object
1619  * @lnum: LEB number where node was written
1620  * @offs: offset where node was written
1621  *
1622  * This function returns %0 on success and a negative error code on failure.
1623  */
1624 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1625 {
1626 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1627 	int ret;
1628 	void *buf = c->dbg->buf;
1629 
1630 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1631 		return 0;
1632 
1633 	dbg_lp("LEB %d", lnum);
1634 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1635 	if (err) {
1636 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1637 		return err;
1638 	}
1639 	while (1) {
1640 		if (!is_a_node(c, buf, len)) {
1641 			int i, pad_len;
1642 
1643 			pad_len = get_pad_len(c, buf, len);
1644 			if (pad_len) {
1645 				buf += pad_len;
1646 				len -= pad_len;
1647 				dirty += pad_len;
1648 				continue;
1649 			}
1650 			if (!dbg_is_all_ff(buf, len)) {
1651 				dbg_msg("invalid empty space in LEB %d at %d",
1652 					lnum, c->leb_size - len);
1653 				err = -EINVAL;
1654 			}
1655 			i = lnum - c->lpt_first;
1656 			if (len != c->ltab[i].free) {
1657 				dbg_msg("invalid free space in LEB %d "
1658 					"(free %d, expected %d)",
1659 					lnum, len, c->ltab[i].free);
1660 				err = -EINVAL;
1661 			}
1662 			if (dirty != c->ltab[i].dirty) {
1663 				dbg_msg("invalid dirty space in LEB %d "
1664 					"(dirty %d, expected %d)",
1665 					lnum, dirty, c->ltab[i].dirty);
1666 				err = -EINVAL;
1667 			}
1668 			return err;
1669 		}
1670 		node_type = get_lpt_node_type(c, buf, &node_num);
1671 		node_len = get_lpt_node_len(c, node_type);
1672 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1673 		if (ret == 1)
1674 			dirty += node_len;
1675 		buf += node_len;
1676 		len -= node_len;
1677 	}
1678 }
1679 
1680 /**
1681  * dbg_check_ltab - check the free and dirty space in the ltab.
1682  * @c: the UBIFS file-system description object
1683  *
1684  * This function returns %0 on success and a negative error code on failure.
1685  */
1686 int dbg_check_ltab(struct ubifs_info *c)
1687 {
1688 	int lnum, err, i, cnt;
1689 
1690 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1691 		return 0;
1692 
1693 	/* Bring the entire tree into memory */
1694 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1695 	for (i = 0; i < cnt; i++) {
1696 		struct ubifs_pnode *pnode;
1697 
1698 		pnode = pnode_lookup(c, i);
1699 		if (IS_ERR(pnode))
1700 			return PTR_ERR(pnode);
1701 		cond_resched();
1702 	}
1703 
1704 	/* Check nodes */
1705 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1706 	if (err)
1707 		return err;
1708 
1709 	/* Check each LEB */
1710 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1711 		err = dbg_check_ltab_lnum(c, lnum);
1712 		if (err) {
1713 			dbg_err("failed at LEB %d", lnum);
1714 			return err;
1715 		}
1716 	}
1717 
1718 	dbg_lp("succeeded");
1719 	return 0;
1720 }
1721 
1722 /**
1723  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1724  * @c: the UBIFS file-system description object
1725  *
1726  * This function returns %0 on success and a negative error code on failure.
1727  */
1728 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1729 {
1730 	long long free = 0;
1731 	int i;
1732 
1733 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1734 		return 0;
1735 
1736 	for (i = 0; i < c->lpt_lebs; i++) {
1737 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1738 			continue;
1739 		if (i + c->lpt_first == c->nhead_lnum)
1740 			free += c->leb_size - c->nhead_offs;
1741 		else if (c->ltab[i].free == c->leb_size)
1742 			free += c->leb_size;
1743 	}
1744 	if (free < c->lpt_sz) {
1745 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1746 			free, c->lpt_sz);
1747 		dbg_dump_lpt_info(c);
1748 		dbg_dump_lpt_lebs(c);
1749 		dump_stack();
1750 		return -EINVAL;
1751 	}
1752 	return 0;
1753 }
1754 
1755 /**
1756  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1757  * @c: the UBIFS file-system description object
1758  * @action: what to do
1759  * @len: length written
1760  *
1761  * This function returns %0 on success and a negative error code on failure.
1762  * The @action argument may be one of:
1763  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1764  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1765  *   o %2 - switched to a different LEB and wasted @len bytes;
1766  *   o %3 - check that we've written the right number of bytes.
1767  *   o %4 - wasted @len bytes;
1768  */
1769 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1770 {
1771 	struct ubifs_debug_info *d = c->dbg;
1772 	long long chk_lpt_sz, lpt_sz;
1773 	int err = 0;
1774 
1775 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1776 		return 0;
1777 
1778 	switch (action) {
1779 	case 0:
1780 		d->chk_lpt_sz = 0;
1781 		d->chk_lpt_sz2 = 0;
1782 		d->chk_lpt_lebs = 0;
1783 		d->chk_lpt_wastage = 0;
1784 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1785 			dbg_err("dirty pnodes %d exceed max %d",
1786 				c->dirty_pn_cnt, c->pnode_cnt);
1787 			err = -EINVAL;
1788 		}
1789 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1790 			dbg_err("dirty nnodes %d exceed max %d",
1791 				c->dirty_nn_cnt, c->nnode_cnt);
1792 			err = -EINVAL;
1793 		}
1794 		return err;
1795 	case 1:
1796 		d->chk_lpt_sz += len;
1797 		return 0;
1798 	case 2:
1799 		d->chk_lpt_sz += len;
1800 		d->chk_lpt_wastage += len;
1801 		d->chk_lpt_lebs += 1;
1802 		return 0;
1803 	case 3:
1804 		chk_lpt_sz = c->leb_size;
1805 		chk_lpt_sz *= d->chk_lpt_lebs;
1806 		chk_lpt_sz += len - c->nhead_offs;
1807 		if (d->chk_lpt_sz != chk_lpt_sz) {
1808 			dbg_err("LPT wrote %lld but space used was %lld",
1809 				d->chk_lpt_sz, chk_lpt_sz);
1810 			err = -EINVAL;
1811 		}
1812 		if (d->chk_lpt_sz > c->lpt_sz) {
1813 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1814 				d->chk_lpt_sz, c->lpt_sz);
1815 			err = -EINVAL;
1816 		}
1817 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1818 			dbg_err("LPT layout size %lld but wrote %lld",
1819 				d->chk_lpt_sz, d->chk_lpt_sz2);
1820 			err = -EINVAL;
1821 		}
1822 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1823 			dbg_err("LPT new nhead offs: expected %d was %d",
1824 				d->new_nhead_offs, len);
1825 			err = -EINVAL;
1826 		}
1827 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1828 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1829 		lpt_sz += c->ltab_sz;
1830 		if (c->big_lpt)
1831 			lpt_sz += c->lsave_sz;
1832 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1833 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1834 				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1835 			err = -EINVAL;
1836 		}
1837 		if (err) {
1838 			dbg_dump_lpt_info(c);
1839 			dbg_dump_lpt_lebs(c);
1840 			dump_stack();
1841 		}
1842 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1843 		d->chk_lpt_sz = 0;
1844 		d->chk_lpt_wastage = 0;
1845 		d->chk_lpt_lebs = 0;
1846 		d->new_nhead_offs = len;
1847 		return err;
1848 	case 4:
1849 		d->chk_lpt_sz += len;
1850 		d->chk_lpt_wastage += len;
1851 		return 0;
1852 	default:
1853 		return -EINVAL;
1854 	}
1855 }
1856 
1857 /**
1858  * dbg_dump_lpt_leb - dump an LPT LEB.
1859  * @c: UBIFS file-system description object
1860  * @lnum: LEB number to dump
1861  *
1862  * This function dumps an LEB from LPT area. Nodes in this area are very
1863  * different to nodes in the main area (e.g., they do not have common headers,
1864  * they do not have 8-byte alignments, etc), so we have a separate function to
1865  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1866  */
1867 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1868 {
1869 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1870 	void *buf = c->dbg->buf;
1871 
1872 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1873 	       current->pid, lnum);
1874 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1875 	if (err) {
1876 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1877 		return;
1878 	}
1879 	while (1) {
1880 		offs = c->leb_size - len;
1881 		if (!is_a_node(c, buf, len)) {
1882 			int pad_len;
1883 
1884 			pad_len = get_pad_len(c, buf, len);
1885 			if (pad_len) {
1886 				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1887 				       lnum, offs, pad_len);
1888 				buf += pad_len;
1889 				len -= pad_len;
1890 				continue;
1891 			}
1892 			if (len)
1893 				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1894 				       lnum, offs, len);
1895 			break;
1896 		}
1897 
1898 		node_type = get_lpt_node_type(c, buf, &node_num);
1899 		switch (node_type) {
1900 		case UBIFS_LPT_PNODE:
1901 		{
1902 			node_len = c->pnode_sz;
1903 			if (c->big_lpt)
1904 				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1905 				       lnum, offs, node_num);
1906 			else
1907 				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1908 				       lnum, offs);
1909 			break;
1910 		}
1911 		case UBIFS_LPT_NNODE:
1912 		{
1913 			int i;
1914 			struct ubifs_nnode nnode;
1915 
1916 			node_len = c->nnode_sz;
1917 			if (c->big_lpt)
1918 				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1919 				       lnum, offs, node_num);
1920 			else
1921 				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1922 				       lnum, offs);
1923 			err = ubifs_unpack_nnode(c, buf, &nnode);
1924 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1925 				printk(KERN_CONT "%d:%d", nnode.nbranch[i].lnum,
1926 				       nnode.nbranch[i].offs);
1927 				if (i != UBIFS_LPT_FANOUT - 1)
1928 					printk(KERN_CONT ", ");
1929 			}
1930 			printk(KERN_CONT "\n");
1931 			break;
1932 		}
1933 		case UBIFS_LPT_LTAB:
1934 			node_len = c->ltab_sz;
1935 			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1936 			       lnum, offs);
1937 			break;
1938 		case UBIFS_LPT_LSAVE:
1939 			node_len = c->lsave_sz;
1940 			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1941 			break;
1942 		default:
1943 			ubifs_err("LPT node type %d not recognized", node_type);
1944 			return;
1945 		}
1946 
1947 		buf += node_len;
1948 		len -= node_len;
1949 	}
1950 
1951 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1952 	       current->pid, lnum);
1953 }
1954 
1955 /**
1956  * dbg_dump_lpt_lebs - dump LPT lebs.
1957  * @c: UBIFS file-system description object
1958  *
1959  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1960  * locked.
1961  */
1962 void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1963 {
1964 	int i;
1965 
1966 	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1967 	       current->pid);
1968 	for (i = 0; i < c->lpt_lebs; i++)
1969 		dump_lpt_leb(c, i + c->lpt_first);
1970 	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1971 	       current->pid);
1972 }
1973 
1974 #endif /* CONFIG_UBIFS_FS_DEBUG */
1975