xref: /linux/fs/ubifs/lpt_commit.c (revision b68fc09be48edbc47de1a0f3d42ef8adf6c0ac55)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include <linux/slab.h>
30 #include <linux/random.h>
31 #include "ubifs.h"
32 
33 static int dbg_populate_lsave(struct ubifs_info *c);
34 
35 /**
36  * first_dirty_cnode - find first dirty cnode.
37  * @c: UBIFS file-system description object
38  * @nnode: nnode at which to start
39  *
40  * This function returns the first dirty cnode or %NULL if there is not one.
41  */
42 static struct ubifs_cnode *first_dirty_cnode(const struct ubifs_info *c, struct ubifs_nnode *nnode)
43 {
44 	ubifs_assert(c, nnode);
45 	while (1) {
46 		int i, cont = 0;
47 
48 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
49 			struct ubifs_cnode *cnode;
50 
51 			cnode = nnode->nbranch[i].cnode;
52 			if (cnode &&
53 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
54 				if (cnode->level == 0)
55 					return cnode;
56 				nnode = (struct ubifs_nnode *)cnode;
57 				cont = 1;
58 				break;
59 			}
60 		}
61 		if (!cont)
62 			return (struct ubifs_cnode *)nnode;
63 	}
64 }
65 
66 /**
67  * next_dirty_cnode - find next dirty cnode.
68  * @c: UBIFS file-system description object
69  * @cnode: cnode from which to begin searching
70  *
71  * This function returns the next dirty cnode or %NULL if there is not one.
72  */
73 static struct ubifs_cnode *next_dirty_cnode(const struct ubifs_info *c, struct ubifs_cnode *cnode)
74 {
75 	struct ubifs_nnode *nnode;
76 	int i;
77 
78 	ubifs_assert(c, cnode);
79 	nnode = cnode->parent;
80 	if (!nnode)
81 		return NULL;
82 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
83 		cnode = nnode->nbranch[i].cnode;
84 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
85 			if (cnode->level == 0)
86 				return cnode; /* cnode is a pnode */
87 			/* cnode is a nnode */
88 			return first_dirty_cnode(c, (struct ubifs_nnode *)cnode);
89 		}
90 	}
91 	return (struct ubifs_cnode *)nnode;
92 }
93 
94 /**
95  * get_cnodes_to_commit - create list of dirty cnodes to commit.
96  * @c: UBIFS file-system description object
97  *
98  * This function returns the number of cnodes to commit.
99  */
100 static int get_cnodes_to_commit(struct ubifs_info *c)
101 {
102 	struct ubifs_cnode *cnode, *cnext;
103 	int cnt = 0;
104 
105 	if (!c->nroot)
106 		return 0;
107 
108 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
109 		return 0;
110 
111 	c->lpt_cnext = first_dirty_cnode(c, c->nroot);
112 	cnode = c->lpt_cnext;
113 	if (!cnode)
114 		return 0;
115 	cnt += 1;
116 	while (1) {
117 		ubifs_assert(c, !test_bit(COW_CNODE, &cnode->flags));
118 		__set_bit(COW_CNODE, &cnode->flags);
119 		cnext = next_dirty_cnode(c, cnode);
120 		if (!cnext) {
121 			cnode->cnext = c->lpt_cnext;
122 			break;
123 		}
124 		cnode->cnext = cnext;
125 		cnode = cnext;
126 		cnt += 1;
127 	}
128 	dbg_cmt("committing %d cnodes", cnt);
129 	dbg_lp("committing %d cnodes", cnt);
130 	ubifs_assert(c, cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
131 	return cnt;
132 }
133 
134 /**
135  * upd_ltab - update LPT LEB properties.
136  * @c: UBIFS file-system description object
137  * @lnum: LEB number
138  * @free: amount of free space
139  * @dirty: amount of dirty space to add
140  */
141 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
142 {
143 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
144 	       lnum, c->ltab[lnum - c->lpt_first].free,
145 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
146 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
147 	c->ltab[lnum - c->lpt_first].free = free;
148 	c->ltab[lnum - c->lpt_first].dirty += dirty;
149 }
150 
151 /**
152  * alloc_lpt_leb - allocate an LPT LEB that is empty.
153  * @c: UBIFS file-system description object
154  * @lnum: LEB number is passed and returned here
155  *
156  * This function finds the next empty LEB in the ltab starting from @lnum. If a
157  * an empty LEB is found it is returned in @lnum and the function returns %0.
158  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
159  * never to run out of space.
160  */
161 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
162 {
163 	int i, n;
164 
165 	n = *lnum - c->lpt_first + 1;
166 	for (i = n; i < c->lpt_lebs; i++) {
167 		if (c->ltab[i].tgc || c->ltab[i].cmt)
168 			continue;
169 		if (c->ltab[i].free == c->leb_size) {
170 			c->ltab[i].cmt = 1;
171 			*lnum = i + c->lpt_first;
172 			return 0;
173 		}
174 	}
175 
176 	for (i = 0; i < n; i++) {
177 		if (c->ltab[i].tgc || c->ltab[i].cmt)
178 			continue;
179 		if (c->ltab[i].free == c->leb_size) {
180 			c->ltab[i].cmt = 1;
181 			*lnum = i + c->lpt_first;
182 			return 0;
183 		}
184 	}
185 	return -ENOSPC;
186 }
187 
188 /**
189  * layout_cnodes - layout cnodes for commit.
190  * @c: UBIFS file-system description object
191  *
192  * This function returns %0 on success and a negative error code on failure.
193  */
194 static int layout_cnodes(struct ubifs_info *c)
195 {
196 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
197 	struct ubifs_cnode *cnode;
198 
199 	err = dbg_chk_lpt_sz(c, 0, 0);
200 	if (err)
201 		return err;
202 	cnode = c->lpt_cnext;
203 	if (!cnode)
204 		return 0;
205 	lnum = c->nhead_lnum;
206 	offs = c->nhead_offs;
207 	/* Try to place lsave and ltab nicely */
208 	done_lsave = !c->big_lpt;
209 	done_ltab = 0;
210 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
211 		done_lsave = 1;
212 		c->lsave_lnum = lnum;
213 		c->lsave_offs = offs;
214 		offs += c->lsave_sz;
215 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
216 	}
217 
218 	if (offs + c->ltab_sz <= c->leb_size) {
219 		done_ltab = 1;
220 		c->ltab_lnum = lnum;
221 		c->ltab_offs = offs;
222 		offs += c->ltab_sz;
223 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
224 	}
225 
226 	do {
227 		if (cnode->level) {
228 			len = c->nnode_sz;
229 			c->dirty_nn_cnt -= 1;
230 		} else {
231 			len = c->pnode_sz;
232 			c->dirty_pn_cnt -= 1;
233 		}
234 		while (offs + len > c->leb_size) {
235 			alen = ALIGN(offs, c->min_io_size);
236 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
237 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
238 			err = alloc_lpt_leb(c, &lnum);
239 			if (err)
240 				goto no_space;
241 			offs = 0;
242 			ubifs_assert(c, lnum >= c->lpt_first &&
243 				     lnum <= c->lpt_last);
244 			/* Try to place lsave and ltab nicely */
245 			if (!done_lsave) {
246 				done_lsave = 1;
247 				c->lsave_lnum = lnum;
248 				c->lsave_offs = offs;
249 				offs += c->lsave_sz;
250 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
251 				continue;
252 			}
253 			if (!done_ltab) {
254 				done_ltab = 1;
255 				c->ltab_lnum = lnum;
256 				c->ltab_offs = offs;
257 				offs += c->ltab_sz;
258 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
259 				continue;
260 			}
261 			break;
262 		}
263 		if (cnode->parent) {
264 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
265 			cnode->parent->nbranch[cnode->iip].offs = offs;
266 		} else {
267 			c->lpt_lnum = lnum;
268 			c->lpt_offs = offs;
269 		}
270 		offs += len;
271 		dbg_chk_lpt_sz(c, 1, len);
272 		cnode = cnode->cnext;
273 	} while (cnode && cnode != c->lpt_cnext);
274 
275 	/* Make sure to place LPT's save table */
276 	if (!done_lsave) {
277 		if (offs + c->lsave_sz > c->leb_size) {
278 			alen = ALIGN(offs, c->min_io_size);
279 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
280 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
281 			err = alloc_lpt_leb(c, &lnum);
282 			if (err)
283 				goto no_space;
284 			offs = 0;
285 			ubifs_assert(c, lnum >= c->lpt_first &&
286 				     lnum <= c->lpt_last);
287 		}
288 		done_lsave = 1;
289 		c->lsave_lnum = lnum;
290 		c->lsave_offs = offs;
291 		offs += c->lsave_sz;
292 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
293 	}
294 
295 	/* Make sure to place LPT's own lprops table */
296 	if (!done_ltab) {
297 		if (offs + c->ltab_sz > c->leb_size) {
298 			alen = ALIGN(offs, c->min_io_size);
299 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
300 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
301 			err = alloc_lpt_leb(c, &lnum);
302 			if (err)
303 				goto no_space;
304 			offs = 0;
305 			ubifs_assert(c, lnum >= c->lpt_first &&
306 				     lnum <= c->lpt_last);
307 		}
308 		c->ltab_lnum = lnum;
309 		c->ltab_offs = offs;
310 		offs += c->ltab_sz;
311 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
312 	}
313 
314 	alen = ALIGN(offs, c->min_io_size);
315 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
316 	dbg_chk_lpt_sz(c, 4, alen - offs);
317 	err = dbg_chk_lpt_sz(c, 3, alen);
318 	if (err)
319 		return err;
320 	return 0;
321 
322 no_space:
323 	ubifs_err(c, "LPT out of space at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
324 		  lnum, offs, len, done_ltab, done_lsave);
325 	ubifs_dump_lpt_info(c);
326 	ubifs_dump_lpt_lebs(c);
327 	dump_stack();
328 	return err;
329 }
330 
331 /**
332  * realloc_lpt_leb - allocate an LPT LEB that is empty.
333  * @c: UBIFS file-system description object
334  * @lnum: LEB number is passed and returned here
335  *
336  * This function duplicates exactly the results of the function alloc_lpt_leb.
337  * It is used during end commit to reallocate the same LEB numbers that were
338  * allocated by alloc_lpt_leb during start commit.
339  *
340  * This function finds the next LEB that was allocated by the alloc_lpt_leb
341  * function starting from @lnum. If a LEB is found it is returned in @lnum and
342  * the function returns %0. Otherwise the function returns -ENOSPC.
343  * Note however, that LPT is designed never to run out of space.
344  */
345 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
346 {
347 	int i, n;
348 
349 	n = *lnum - c->lpt_first + 1;
350 	for (i = n; i < c->lpt_lebs; i++)
351 		if (c->ltab[i].cmt) {
352 			c->ltab[i].cmt = 0;
353 			*lnum = i + c->lpt_first;
354 			return 0;
355 		}
356 
357 	for (i = 0; i < n; i++)
358 		if (c->ltab[i].cmt) {
359 			c->ltab[i].cmt = 0;
360 			*lnum = i + c->lpt_first;
361 			return 0;
362 		}
363 	return -ENOSPC;
364 }
365 
366 /**
367  * write_cnodes - write cnodes for commit.
368  * @c: UBIFS file-system description object
369  *
370  * This function returns %0 on success and a negative error code on failure.
371  */
372 static int write_cnodes(struct ubifs_info *c)
373 {
374 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
375 	struct ubifs_cnode *cnode;
376 	void *buf = c->lpt_buf;
377 
378 	cnode = c->lpt_cnext;
379 	if (!cnode)
380 		return 0;
381 	lnum = c->nhead_lnum;
382 	offs = c->nhead_offs;
383 	from = offs;
384 	/* Ensure empty LEB is unmapped */
385 	if (offs == 0) {
386 		err = ubifs_leb_unmap(c, lnum);
387 		if (err)
388 			return err;
389 	}
390 	/* Try to place lsave and ltab nicely */
391 	done_lsave = !c->big_lpt;
392 	done_ltab = 0;
393 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
394 		done_lsave = 1;
395 		ubifs_pack_lsave(c, buf + offs, c->lsave);
396 		offs += c->lsave_sz;
397 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
398 	}
399 
400 	if (offs + c->ltab_sz <= c->leb_size) {
401 		done_ltab = 1;
402 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
403 		offs += c->ltab_sz;
404 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
405 	}
406 
407 	/* Loop for each cnode */
408 	do {
409 		if (cnode->level)
410 			len = c->nnode_sz;
411 		else
412 			len = c->pnode_sz;
413 		while (offs + len > c->leb_size) {
414 			wlen = offs - from;
415 			if (wlen) {
416 				alen = ALIGN(wlen, c->min_io_size);
417 				memset(buf + offs, 0xff, alen - wlen);
418 				err = ubifs_leb_write(c, lnum, buf + from, from,
419 						       alen);
420 				if (err)
421 					return err;
422 			}
423 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
424 			err = realloc_lpt_leb(c, &lnum);
425 			if (err)
426 				goto no_space;
427 			offs = from = 0;
428 			ubifs_assert(c, lnum >= c->lpt_first &&
429 				     lnum <= c->lpt_last);
430 			err = ubifs_leb_unmap(c, lnum);
431 			if (err)
432 				return err;
433 			/* Try to place lsave and ltab nicely */
434 			if (!done_lsave) {
435 				done_lsave = 1;
436 				ubifs_pack_lsave(c, buf + offs, c->lsave);
437 				offs += c->lsave_sz;
438 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
439 				continue;
440 			}
441 			if (!done_ltab) {
442 				done_ltab = 1;
443 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
444 				offs += c->ltab_sz;
445 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
446 				continue;
447 			}
448 			break;
449 		}
450 		if (cnode->level)
451 			ubifs_pack_nnode(c, buf + offs,
452 					 (struct ubifs_nnode *)cnode);
453 		else
454 			ubifs_pack_pnode(c, buf + offs,
455 					 (struct ubifs_pnode *)cnode);
456 		/*
457 		 * The reason for the barriers is the same as in case of TNC.
458 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
459 		 * 'dirty_cow_pnode()' are the functions for which this is
460 		 * important.
461 		 */
462 		clear_bit(DIRTY_CNODE, &cnode->flags);
463 		smp_mb__before_atomic();
464 		clear_bit(COW_CNODE, &cnode->flags);
465 		smp_mb__after_atomic();
466 		offs += len;
467 		dbg_chk_lpt_sz(c, 1, len);
468 		cnode = cnode->cnext;
469 	} while (cnode && cnode != c->lpt_cnext);
470 
471 	/* Make sure to place LPT's save table */
472 	if (!done_lsave) {
473 		if (offs + c->lsave_sz > c->leb_size) {
474 			wlen = offs - from;
475 			alen = ALIGN(wlen, c->min_io_size);
476 			memset(buf + offs, 0xff, alen - wlen);
477 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
478 			if (err)
479 				return err;
480 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
481 			err = realloc_lpt_leb(c, &lnum);
482 			if (err)
483 				goto no_space;
484 			offs = from = 0;
485 			ubifs_assert(c, lnum >= c->lpt_first &&
486 				     lnum <= c->lpt_last);
487 			err = ubifs_leb_unmap(c, lnum);
488 			if (err)
489 				return err;
490 		}
491 		done_lsave = 1;
492 		ubifs_pack_lsave(c, buf + offs, c->lsave);
493 		offs += c->lsave_sz;
494 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495 	}
496 
497 	/* Make sure to place LPT's own lprops table */
498 	if (!done_ltab) {
499 		if (offs + c->ltab_sz > c->leb_size) {
500 			wlen = offs - from;
501 			alen = ALIGN(wlen, c->min_io_size);
502 			memset(buf + offs, 0xff, alen - wlen);
503 			err = ubifs_leb_write(c, lnum, buf + from, from, alen);
504 			if (err)
505 				return err;
506 			dbg_chk_lpt_sz(c, 2, c->leb_size - offs);
507 			err = realloc_lpt_leb(c, &lnum);
508 			if (err)
509 				goto no_space;
510 			offs = from = 0;
511 			ubifs_assert(c, lnum >= c->lpt_first &&
512 				     lnum <= c->lpt_last);
513 			err = ubifs_leb_unmap(c, lnum);
514 			if (err)
515 				return err;
516 		}
517 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
518 		offs += c->ltab_sz;
519 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
520 	}
521 
522 	/* Write remaining data in buffer */
523 	wlen = offs - from;
524 	alen = ALIGN(wlen, c->min_io_size);
525 	memset(buf + offs, 0xff, alen - wlen);
526 	err = ubifs_leb_write(c, lnum, buf + from, from, alen);
527 	if (err)
528 		return err;
529 
530 	dbg_chk_lpt_sz(c, 4, alen - wlen);
531 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
532 	if (err)
533 		return err;
534 
535 	c->nhead_lnum = lnum;
536 	c->nhead_offs = ALIGN(offs, c->min_io_size);
537 
538 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
539 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
540 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
541 	if (c->big_lpt)
542 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
543 
544 	return 0;
545 
546 no_space:
547 	ubifs_err(c, "LPT out of space mismatch at LEB %d:%d needing %d, done_ltab %d, done_lsave %d",
548 		  lnum, offs, len, done_ltab, done_lsave);
549 	ubifs_dump_lpt_info(c);
550 	ubifs_dump_lpt_lebs(c);
551 	dump_stack();
552 	return err;
553 }
554 
555 /**
556  * next_pnode_to_dirty - find next pnode to dirty.
557  * @c: UBIFS file-system description object
558  * @pnode: pnode
559  *
560  * This function returns the next pnode to dirty or %NULL if there are no more
561  * pnodes.  Note that pnodes that have never been written (lnum == 0) are
562  * skipped.
563  */
564 static struct ubifs_pnode *next_pnode_to_dirty(struct ubifs_info *c,
565 					       struct ubifs_pnode *pnode)
566 {
567 	struct ubifs_nnode *nnode;
568 	int iip;
569 
570 	/* Try to go right */
571 	nnode = pnode->parent;
572 	for (iip = pnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
573 		if (nnode->nbranch[iip].lnum)
574 			return ubifs_get_pnode(c, nnode, iip);
575 	}
576 
577 	/* Go up while can't go right */
578 	do {
579 		iip = nnode->iip + 1;
580 		nnode = nnode->parent;
581 		if (!nnode)
582 			return NULL;
583 		for (; iip < UBIFS_LPT_FANOUT; iip++) {
584 			if (nnode->nbranch[iip].lnum)
585 				break;
586 		}
587 	} while (iip >= UBIFS_LPT_FANOUT);
588 
589 	/* Go right */
590 	nnode = ubifs_get_nnode(c, nnode, iip);
591 	if (IS_ERR(nnode))
592 		return (void *)nnode;
593 
594 	/* Go down to level 1 */
595 	while (nnode->level > 1) {
596 		for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++) {
597 			if (nnode->nbranch[iip].lnum)
598 				break;
599 		}
600 		if (iip >= UBIFS_LPT_FANOUT) {
601 			/*
602 			 * Should not happen, but we need to keep going
603 			 * if it does.
604 			 */
605 			iip = 0;
606 		}
607 		nnode = ubifs_get_nnode(c, nnode, iip);
608 		if (IS_ERR(nnode))
609 			return (void *)nnode;
610 	}
611 
612 	for (iip = 0; iip < UBIFS_LPT_FANOUT; iip++)
613 		if (nnode->nbranch[iip].lnum)
614 			break;
615 	if (iip >= UBIFS_LPT_FANOUT)
616 		/* Should not happen, but we need to keep going if it does */
617 		iip = 0;
618 	return ubifs_get_pnode(c, nnode, iip);
619 }
620 
621 /**
622  * pnode_lookup - lookup a pnode in the LPT.
623  * @c: UBIFS file-system description object
624  * @i: pnode number (0 to (main_lebs - 1) / UBIFS_LPT_FANOUT))
625  *
626  * This function returns a pointer to the pnode on success or a negative
627  * error code on failure.
628  */
629 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
630 {
631 	int err, h, iip, shft;
632 	struct ubifs_nnode *nnode;
633 
634 	if (!c->nroot) {
635 		err = ubifs_read_nnode(c, NULL, 0);
636 		if (err)
637 			return ERR_PTR(err);
638 	}
639 	i <<= UBIFS_LPT_FANOUT_SHIFT;
640 	nnode = c->nroot;
641 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
642 	for (h = 1; h < c->lpt_hght; h++) {
643 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
644 		shft -= UBIFS_LPT_FANOUT_SHIFT;
645 		nnode = ubifs_get_nnode(c, nnode, iip);
646 		if (IS_ERR(nnode))
647 			return ERR_CAST(nnode);
648 	}
649 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
650 	return ubifs_get_pnode(c, nnode, iip);
651 }
652 
653 /**
654  * add_pnode_dirt - add dirty space to LPT LEB properties.
655  * @c: UBIFS file-system description object
656  * @pnode: pnode for which to add dirt
657  */
658 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
659 {
660 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
661 			   c->pnode_sz);
662 }
663 
664 /**
665  * do_make_pnode_dirty - mark a pnode dirty.
666  * @c: UBIFS file-system description object
667  * @pnode: pnode to mark dirty
668  */
669 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
670 {
671 	/* Assumes cnext list is empty i.e. not called during commit */
672 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
673 		struct ubifs_nnode *nnode;
674 
675 		c->dirty_pn_cnt += 1;
676 		add_pnode_dirt(c, pnode);
677 		/* Mark parent and ancestors dirty too */
678 		nnode = pnode->parent;
679 		while (nnode) {
680 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
681 				c->dirty_nn_cnt += 1;
682 				ubifs_add_nnode_dirt(c, nnode);
683 				nnode = nnode->parent;
684 			} else
685 				break;
686 		}
687 	}
688 }
689 
690 /**
691  * make_tree_dirty - mark the entire LEB properties tree dirty.
692  * @c: UBIFS file-system description object
693  *
694  * This function is used by the "small" LPT model to cause the entire LEB
695  * properties tree to be written.  The "small" LPT model does not use LPT
696  * garbage collection because it is more efficient to write the entire tree
697  * (because it is small).
698  *
699  * This function returns %0 on success and a negative error code on failure.
700  */
701 static int make_tree_dirty(struct ubifs_info *c)
702 {
703 	struct ubifs_pnode *pnode;
704 
705 	pnode = pnode_lookup(c, 0);
706 	if (IS_ERR(pnode))
707 		return PTR_ERR(pnode);
708 
709 	while (pnode) {
710 		do_make_pnode_dirty(c, pnode);
711 		pnode = next_pnode_to_dirty(c, pnode);
712 		if (IS_ERR(pnode))
713 			return PTR_ERR(pnode);
714 	}
715 	return 0;
716 }
717 
718 /**
719  * need_write_all - determine if the LPT area is running out of free space.
720  * @c: UBIFS file-system description object
721  *
722  * This function returns %1 if the LPT area is running out of free space and %0
723  * if it is not.
724  */
725 static int need_write_all(struct ubifs_info *c)
726 {
727 	long long free = 0;
728 	int i;
729 
730 	for (i = 0; i < c->lpt_lebs; i++) {
731 		if (i + c->lpt_first == c->nhead_lnum)
732 			free += c->leb_size - c->nhead_offs;
733 		else if (c->ltab[i].free == c->leb_size)
734 			free += c->leb_size;
735 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
736 			free += c->leb_size;
737 	}
738 	/* Less than twice the size left */
739 	if (free <= c->lpt_sz * 2)
740 		return 1;
741 	return 0;
742 }
743 
744 /**
745  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
746  * @c: UBIFS file-system description object
747  *
748  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
749  * free space and so may be reused as soon as the next commit is completed.
750  * This function is called during start commit to mark LPT LEBs for trivial GC.
751  */
752 static void lpt_tgc_start(struct ubifs_info *c)
753 {
754 	int i;
755 
756 	for (i = 0; i < c->lpt_lebs; i++) {
757 		if (i + c->lpt_first == c->nhead_lnum)
758 			continue;
759 		if (c->ltab[i].dirty > 0 &&
760 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
761 			c->ltab[i].tgc = 1;
762 			c->ltab[i].free = c->leb_size;
763 			c->ltab[i].dirty = 0;
764 			dbg_lp("LEB %d", i + c->lpt_first);
765 		}
766 	}
767 }
768 
769 /**
770  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
771  * @c: UBIFS file-system description object
772  *
773  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
774  * free space and so may be reused as soon as the next commit is completed.
775  * This function is called after the commit is completed (master node has been
776  * written) and un-maps LPT LEBs that were marked for trivial GC.
777  */
778 static int lpt_tgc_end(struct ubifs_info *c)
779 {
780 	int i, err;
781 
782 	for (i = 0; i < c->lpt_lebs; i++)
783 		if (c->ltab[i].tgc) {
784 			err = ubifs_leb_unmap(c, i + c->lpt_first);
785 			if (err)
786 				return err;
787 			c->ltab[i].tgc = 0;
788 			dbg_lp("LEB %d", i + c->lpt_first);
789 		}
790 	return 0;
791 }
792 
793 /**
794  * populate_lsave - fill the lsave array with important LEB numbers.
795  * @c: the UBIFS file-system description object
796  *
797  * This function is only called for the "big" model. It records a small number
798  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
799  * most important to least important): empty, freeable, freeable index, dirty
800  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
801  * their pnodes into memory.  That will stop us from having to scan the LPT
802  * straight away. For the "small" model we assume that scanning the LPT is no
803  * big deal.
804  */
805 static void populate_lsave(struct ubifs_info *c)
806 {
807 	struct ubifs_lprops *lprops;
808 	struct ubifs_lpt_heap *heap;
809 	int i, cnt = 0;
810 
811 	ubifs_assert(c, c->big_lpt);
812 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
813 		c->lpt_drty_flgs |= LSAVE_DIRTY;
814 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
815 	}
816 
817 	if (dbg_populate_lsave(c))
818 		return;
819 
820 	list_for_each_entry(lprops, &c->empty_list, list) {
821 		c->lsave[cnt++] = lprops->lnum;
822 		if (cnt >= c->lsave_cnt)
823 			return;
824 	}
825 	list_for_each_entry(lprops, &c->freeable_list, list) {
826 		c->lsave[cnt++] = lprops->lnum;
827 		if (cnt >= c->lsave_cnt)
828 			return;
829 	}
830 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
831 		c->lsave[cnt++] = lprops->lnum;
832 		if (cnt >= c->lsave_cnt)
833 			return;
834 	}
835 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
836 	for (i = 0; i < heap->cnt; i++) {
837 		c->lsave[cnt++] = heap->arr[i]->lnum;
838 		if (cnt >= c->lsave_cnt)
839 			return;
840 	}
841 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
842 	for (i = 0; i < heap->cnt; i++) {
843 		c->lsave[cnt++] = heap->arr[i]->lnum;
844 		if (cnt >= c->lsave_cnt)
845 			return;
846 	}
847 	heap = &c->lpt_heap[LPROPS_FREE - 1];
848 	for (i = 0; i < heap->cnt; i++) {
849 		c->lsave[cnt++] = heap->arr[i]->lnum;
850 		if (cnt >= c->lsave_cnt)
851 			return;
852 	}
853 	/* Fill it up completely */
854 	while (cnt < c->lsave_cnt)
855 		c->lsave[cnt++] = c->main_first;
856 }
857 
858 /**
859  * nnode_lookup - lookup a nnode in the LPT.
860  * @c: UBIFS file-system description object
861  * @i: nnode number
862  *
863  * This function returns a pointer to the nnode on success or a negative
864  * error code on failure.
865  */
866 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
867 {
868 	int err, iip;
869 	struct ubifs_nnode *nnode;
870 
871 	if (!c->nroot) {
872 		err = ubifs_read_nnode(c, NULL, 0);
873 		if (err)
874 			return ERR_PTR(err);
875 	}
876 	nnode = c->nroot;
877 	while (1) {
878 		iip = i & (UBIFS_LPT_FANOUT - 1);
879 		i >>= UBIFS_LPT_FANOUT_SHIFT;
880 		if (!i)
881 			break;
882 		nnode = ubifs_get_nnode(c, nnode, iip);
883 		if (IS_ERR(nnode))
884 			return nnode;
885 	}
886 	return nnode;
887 }
888 
889 /**
890  * make_nnode_dirty - find a nnode and, if found, make it dirty.
891  * @c: UBIFS file-system description object
892  * @node_num: nnode number of nnode to make dirty
893  * @lnum: LEB number where nnode was written
894  * @offs: offset where nnode was written
895  *
896  * This function is used by LPT garbage collection.  LPT garbage collection is
897  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
898  * simply involves marking all the nodes in the LEB being garbage-collected as
899  * dirty.  The dirty nodes are written next commit, after which the LEB is free
900  * to be reused.
901  *
902  * This function returns %0 on success and a negative error code on failure.
903  */
904 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
905 			    int offs)
906 {
907 	struct ubifs_nnode *nnode;
908 
909 	nnode = nnode_lookup(c, node_num);
910 	if (IS_ERR(nnode))
911 		return PTR_ERR(nnode);
912 	if (nnode->parent) {
913 		struct ubifs_nbranch *branch;
914 
915 		branch = &nnode->parent->nbranch[nnode->iip];
916 		if (branch->lnum != lnum || branch->offs != offs)
917 			return 0; /* nnode is obsolete */
918 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
919 			return 0; /* nnode is obsolete */
920 	/* Assumes cnext list is empty i.e. not called during commit */
921 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
922 		c->dirty_nn_cnt += 1;
923 		ubifs_add_nnode_dirt(c, nnode);
924 		/* Mark parent and ancestors dirty too */
925 		nnode = nnode->parent;
926 		while (nnode) {
927 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
928 				c->dirty_nn_cnt += 1;
929 				ubifs_add_nnode_dirt(c, nnode);
930 				nnode = nnode->parent;
931 			} else
932 				break;
933 		}
934 	}
935 	return 0;
936 }
937 
938 /**
939  * make_pnode_dirty - find a pnode and, if found, make it dirty.
940  * @c: UBIFS file-system description object
941  * @node_num: pnode number of pnode to make dirty
942  * @lnum: LEB number where pnode was written
943  * @offs: offset where pnode was written
944  *
945  * This function is used by LPT garbage collection.  LPT garbage collection is
946  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
947  * simply involves marking all the nodes in the LEB being garbage-collected as
948  * dirty.  The dirty nodes are written next commit, after which the LEB is free
949  * to be reused.
950  *
951  * This function returns %0 on success and a negative error code on failure.
952  */
953 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
954 			    int offs)
955 {
956 	struct ubifs_pnode *pnode;
957 	struct ubifs_nbranch *branch;
958 
959 	pnode = pnode_lookup(c, node_num);
960 	if (IS_ERR(pnode))
961 		return PTR_ERR(pnode);
962 	branch = &pnode->parent->nbranch[pnode->iip];
963 	if (branch->lnum != lnum || branch->offs != offs)
964 		return 0;
965 	do_make_pnode_dirty(c, pnode);
966 	return 0;
967 }
968 
969 /**
970  * make_ltab_dirty - make ltab node dirty.
971  * @c: UBIFS file-system description object
972  * @lnum: LEB number where ltab was written
973  * @offs: offset where ltab was written
974  *
975  * This function is used by LPT garbage collection.  LPT garbage collection is
976  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
977  * simply involves marking all the nodes in the LEB being garbage-collected as
978  * dirty.  The dirty nodes are written next commit, after which the LEB is free
979  * to be reused.
980  *
981  * This function returns %0 on success and a negative error code on failure.
982  */
983 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
984 {
985 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
986 		return 0; /* This ltab node is obsolete */
987 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
988 		c->lpt_drty_flgs |= LTAB_DIRTY;
989 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
990 	}
991 	return 0;
992 }
993 
994 /**
995  * make_lsave_dirty - make lsave node dirty.
996  * @c: UBIFS file-system description object
997  * @lnum: LEB number where lsave was written
998  * @offs: offset where lsave was written
999  *
1000  * This function is used by LPT garbage collection.  LPT garbage collection is
1001  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1002  * simply involves marking all the nodes in the LEB being garbage-collected as
1003  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1004  * to be reused.
1005  *
1006  * This function returns %0 on success and a negative error code on failure.
1007  */
1008 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1009 {
1010 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1011 		return 0; /* This lsave node is obsolete */
1012 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
1013 		c->lpt_drty_flgs |= LSAVE_DIRTY;
1014 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
1015 	}
1016 	return 0;
1017 }
1018 
1019 /**
1020  * make_node_dirty - make node dirty.
1021  * @c: UBIFS file-system description object
1022  * @node_type: LPT node type
1023  * @node_num: node number
1024  * @lnum: LEB number where node was written
1025  * @offs: offset where node was written
1026  *
1027  * This function is used by LPT garbage collection.  LPT garbage collection is
1028  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1029  * simply involves marking all the nodes in the LEB being garbage-collected as
1030  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1031  * to be reused.
1032  *
1033  * This function returns %0 on success and a negative error code on failure.
1034  */
1035 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1036 			   int lnum, int offs)
1037 {
1038 	switch (node_type) {
1039 	case UBIFS_LPT_NNODE:
1040 		return make_nnode_dirty(c, node_num, lnum, offs);
1041 	case UBIFS_LPT_PNODE:
1042 		return make_pnode_dirty(c, node_num, lnum, offs);
1043 	case UBIFS_LPT_LTAB:
1044 		return make_ltab_dirty(c, lnum, offs);
1045 	case UBIFS_LPT_LSAVE:
1046 		return make_lsave_dirty(c, lnum, offs);
1047 	}
1048 	return -EINVAL;
1049 }
1050 
1051 /**
1052  * get_lpt_node_len - return the length of a node based on its type.
1053  * @c: UBIFS file-system description object
1054  * @node_type: LPT node type
1055  */
1056 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1057 {
1058 	switch (node_type) {
1059 	case UBIFS_LPT_NNODE:
1060 		return c->nnode_sz;
1061 	case UBIFS_LPT_PNODE:
1062 		return c->pnode_sz;
1063 	case UBIFS_LPT_LTAB:
1064 		return c->ltab_sz;
1065 	case UBIFS_LPT_LSAVE:
1066 		return c->lsave_sz;
1067 	}
1068 	return 0;
1069 }
1070 
1071 /**
1072  * get_pad_len - return the length of padding in a buffer.
1073  * @c: UBIFS file-system description object
1074  * @buf: buffer
1075  * @len: length of buffer
1076  */
1077 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1078 {
1079 	int offs, pad_len;
1080 
1081 	if (c->min_io_size == 1)
1082 		return 0;
1083 	offs = c->leb_size - len;
1084 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1085 	return pad_len;
1086 }
1087 
1088 /**
1089  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1090  * @c: UBIFS file-system description object
1091  * @buf: buffer
1092  * @node_num: node number is returned here
1093  */
1094 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1095 			     int *node_num)
1096 {
1097 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1098 	int pos = 0, node_type;
1099 
1100 	node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1101 	*node_num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1102 	return node_type;
1103 }
1104 
1105 /**
1106  * is_a_node - determine if a buffer contains a node.
1107  * @c: UBIFS file-system description object
1108  * @buf: buffer
1109  * @len: length of buffer
1110  *
1111  * This function returns %1 if the buffer contains a node or %0 if it does not.
1112  */
1113 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1114 {
1115 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1116 	int pos = 0, node_type, node_len;
1117 	uint16_t crc, calc_crc;
1118 
1119 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1120 		return 0;
1121 	node_type = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_TYPE_BITS);
1122 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1123 		return 0;
1124 	node_len = get_lpt_node_len(c, node_type);
1125 	if (!node_len || node_len > len)
1126 		return 0;
1127 	pos = 0;
1128 	addr = buf;
1129 	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
1130 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1131 			 node_len - UBIFS_LPT_CRC_BYTES);
1132 	if (crc != calc_crc)
1133 		return 0;
1134 	return 1;
1135 }
1136 
1137 /**
1138  * lpt_gc_lnum - garbage collect a LPT LEB.
1139  * @c: UBIFS file-system description object
1140  * @lnum: LEB number to garbage collect
1141  *
1142  * LPT garbage collection is used only for the "big" LPT model
1143  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1144  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1145  * next commit, after which the LEB is free to be reused.
1146  *
1147  * This function returns %0 on success and a negative error code on failure.
1148  */
1149 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1150 {
1151 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1152 	void *buf = c->lpt_buf;
1153 
1154 	dbg_lp("LEB %d", lnum);
1155 
1156 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1157 	if (err)
1158 		return err;
1159 
1160 	while (1) {
1161 		if (!is_a_node(c, buf, len)) {
1162 			int pad_len;
1163 
1164 			pad_len = get_pad_len(c, buf, len);
1165 			if (pad_len) {
1166 				buf += pad_len;
1167 				len -= pad_len;
1168 				continue;
1169 			}
1170 			return 0;
1171 		}
1172 		node_type = get_lpt_node_type(c, buf, &node_num);
1173 		node_len = get_lpt_node_len(c, node_type);
1174 		offs = c->leb_size - len;
1175 		ubifs_assert(c, node_len != 0);
1176 		mutex_lock(&c->lp_mutex);
1177 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1178 		mutex_unlock(&c->lp_mutex);
1179 		if (err)
1180 			return err;
1181 		buf += node_len;
1182 		len -= node_len;
1183 	}
1184 	return 0;
1185 }
1186 
1187 /**
1188  * lpt_gc - LPT garbage collection.
1189  * @c: UBIFS file-system description object
1190  *
1191  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1192  * Returns %0 on success and a negative error code on failure.
1193  */
1194 static int lpt_gc(struct ubifs_info *c)
1195 {
1196 	int i, lnum = -1, dirty = 0;
1197 
1198 	mutex_lock(&c->lp_mutex);
1199 	for (i = 0; i < c->lpt_lebs; i++) {
1200 		ubifs_assert(c, !c->ltab[i].tgc);
1201 		if (i + c->lpt_first == c->nhead_lnum ||
1202 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1203 			continue;
1204 		if (c->ltab[i].dirty > dirty) {
1205 			dirty = c->ltab[i].dirty;
1206 			lnum = i + c->lpt_first;
1207 		}
1208 	}
1209 	mutex_unlock(&c->lp_mutex);
1210 	if (lnum == -1)
1211 		return -ENOSPC;
1212 	return lpt_gc_lnum(c, lnum);
1213 }
1214 
1215 /**
1216  * ubifs_lpt_start_commit - UBIFS commit starts.
1217  * @c: the UBIFS file-system description object
1218  *
1219  * This function has to be called when UBIFS starts the commit operation.
1220  * This function "freezes" all currently dirty LEB properties and does not
1221  * change them anymore. Further changes are saved and tracked separately
1222  * because they are not part of this commit. This function returns zero in case
1223  * of success and a negative error code in case of failure.
1224  */
1225 int ubifs_lpt_start_commit(struct ubifs_info *c)
1226 {
1227 	int err, cnt;
1228 
1229 	dbg_lp("");
1230 
1231 	mutex_lock(&c->lp_mutex);
1232 	err = dbg_chk_lpt_free_spc(c);
1233 	if (err)
1234 		goto out;
1235 	err = dbg_check_ltab(c);
1236 	if (err)
1237 		goto out;
1238 
1239 	if (c->check_lpt_free) {
1240 		/*
1241 		 * We ensure there is enough free space in
1242 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1243 		 * information is lost when we unmount, so we also need
1244 		 * to check free space once after mounting also.
1245 		 */
1246 		c->check_lpt_free = 0;
1247 		while (need_write_all(c)) {
1248 			mutex_unlock(&c->lp_mutex);
1249 			err = lpt_gc(c);
1250 			if (err)
1251 				return err;
1252 			mutex_lock(&c->lp_mutex);
1253 		}
1254 	}
1255 
1256 	lpt_tgc_start(c);
1257 
1258 	if (!c->dirty_pn_cnt) {
1259 		dbg_cmt("no cnodes to commit");
1260 		err = 0;
1261 		goto out;
1262 	}
1263 
1264 	if (!c->big_lpt && need_write_all(c)) {
1265 		/* If needed, write everything */
1266 		err = make_tree_dirty(c);
1267 		if (err)
1268 			goto out;
1269 		lpt_tgc_start(c);
1270 	}
1271 
1272 	if (c->big_lpt)
1273 		populate_lsave(c);
1274 
1275 	cnt = get_cnodes_to_commit(c);
1276 	ubifs_assert(c, cnt != 0);
1277 
1278 	err = layout_cnodes(c);
1279 	if (err)
1280 		goto out;
1281 
1282 	/* Copy the LPT's own lprops for end commit to write */
1283 	memcpy(c->ltab_cmt, c->ltab,
1284 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1285 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1286 
1287 out:
1288 	mutex_unlock(&c->lp_mutex);
1289 	return err;
1290 }
1291 
1292 /**
1293  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1294  * @c: UBIFS file-system description object
1295  */
1296 static void free_obsolete_cnodes(struct ubifs_info *c)
1297 {
1298 	struct ubifs_cnode *cnode, *cnext;
1299 
1300 	cnext = c->lpt_cnext;
1301 	if (!cnext)
1302 		return;
1303 	do {
1304 		cnode = cnext;
1305 		cnext = cnode->cnext;
1306 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1307 			kfree(cnode);
1308 		else
1309 			cnode->cnext = NULL;
1310 	} while (cnext != c->lpt_cnext);
1311 	c->lpt_cnext = NULL;
1312 }
1313 
1314 /**
1315  * ubifs_lpt_end_commit - finish the commit operation.
1316  * @c: the UBIFS file-system description object
1317  *
1318  * This function has to be called when the commit operation finishes. It
1319  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1320  * the media. Returns zero in case of success and a negative error code in case
1321  * of failure.
1322  */
1323 int ubifs_lpt_end_commit(struct ubifs_info *c)
1324 {
1325 	int err;
1326 
1327 	dbg_lp("");
1328 
1329 	if (!c->lpt_cnext)
1330 		return 0;
1331 
1332 	err = write_cnodes(c);
1333 	if (err)
1334 		return err;
1335 
1336 	mutex_lock(&c->lp_mutex);
1337 	free_obsolete_cnodes(c);
1338 	mutex_unlock(&c->lp_mutex);
1339 
1340 	return 0;
1341 }
1342 
1343 /**
1344  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1345  * @c: UBIFS file-system description object
1346  *
1347  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1348  * commit for the "big" LPT model.
1349  */
1350 int ubifs_lpt_post_commit(struct ubifs_info *c)
1351 {
1352 	int err;
1353 
1354 	mutex_lock(&c->lp_mutex);
1355 	err = lpt_tgc_end(c);
1356 	if (err)
1357 		goto out;
1358 	if (c->big_lpt)
1359 		while (need_write_all(c)) {
1360 			mutex_unlock(&c->lp_mutex);
1361 			err = lpt_gc(c);
1362 			if (err)
1363 				return err;
1364 			mutex_lock(&c->lp_mutex);
1365 		}
1366 out:
1367 	mutex_unlock(&c->lp_mutex);
1368 	return err;
1369 }
1370 
1371 /**
1372  * first_nnode - find the first nnode in memory.
1373  * @c: UBIFS file-system description object
1374  * @hght: height of tree where nnode found is returned here
1375  *
1376  * This function returns a pointer to the nnode found or %NULL if no nnode is
1377  * found. This function is a helper to 'ubifs_lpt_free()'.
1378  */
1379 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1380 {
1381 	struct ubifs_nnode *nnode;
1382 	int h, i, found;
1383 
1384 	nnode = c->nroot;
1385 	*hght = 0;
1386 	if (!nnode)
1387 		return NULL;
1388 	for (h = 1; h < c->lpt_hght; h++) {
1389 		found = 0;
1390 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1391 			if (nnode->nbranch[i].nnode) {
1392 				found = 1;
1393 				nnode = nnode->nbranch[i].nnode;
1394 				*hght = h;
1395 				break;
1396 			}
1397 		}
1398 		if (!found)
1399 			break;
1400 	}
1401 	return nnode;
1402 }
1403 
1404 /**
1405  * next_nnode - find the next nnode in memory.
1406  * @c: UBIFS file-system description object
1407  * @nnode: nnode from which to start.
1408  * @hght: height of tree where nnode is, is passed and returned here
1409  *
1410  * This function returns a pointer to the nnode found or %NULL if no nnode is
1411  * found. This function is a helper to 'ubifs_lpt_free()'.
1412  */
1413 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1414 				      struct ubifs_nnode *nnode, int *hght)
1415 {
1416 	struct ubifs_nnode *parent;
1417 	int iip, h, i, found;
1418 
1419 	parent = nnode->parent;
1420 	if (!parent)
1421 		return NULL;
1422 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1423 		*hght -= 1;
1424 		return parent;
1425 	}
1426 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1427 		nnode = parent->nbranch[iip].nnode;
1428 		if (nnode)
1429 			break;
1430 	}
1431 	if (!nnode) {
1432 		*hght -= 1;
1433 		return parent;
1434 	}
1435 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1436 		found = 0;
1437 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1438 			if (nnode->nbranch[i].nnode) {
1439 				found = 1;
1440 				nnode = nnode->nbranch[i].nnode;
1441 				*hght = h;
1442 				break;
1443 			}
1444 		}
1445 		if (!found)
1446 			break;
1447 	}
1448 	return nnode;
1449 }
1450 
1451 /**
1452  * ubifs_lpt_free - free resources owned by the LPT.
1453  * @c: UBIFS file-system description object
1454  * @wr_only: free only resources used for writing
1455  */
1456 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1457 {
1458 	struct ubifs_nnode *nnode;
1459 	int i, hght;
1460 
1461 	/* Free write-only things first */
1462 
1463 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1464 
1465 	vfree(c->ltab_cmt);
1466 	c->ltab_cmt = NULL;
1467 	vfree(c->lpt_buf);
1468 	c->lpt_buf = NULL;
1469 	kfree(c->lsave);
1470 	c->lsave = NULL;
1471 
1472 	if (wr_only)
1473 		return;
1474 
1475 	/* Now free the rest */
1476 
1477 	nnode = first_nnode(c, &hght);
1478 	while (nnode) {
1479 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1480 			kfree(nnode->nbranch[i].nnode);
1481 		nnode = next_nnode(c, nnode, &hght);
1482 	}
1483 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1484 		kfree(c->lpt_heap[i].arr);
1485 	kfree(c->dirty_idx.arr);
1486 	kfree(c->nroot);
1487 	vfree(c->ltab);
1488 	kfree(c->lpt_nod_buf);
1489 }
1490 
1491 /*
1492  * Everything below is related to debugging.
1493  */
1494 
1495 /**
1496  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1497  * @buf: buffer
1498  * @len: buffer length
1499  */
1500 static int dbg_is_all_ff(uint8_t *buf, int len)
1501 {
1502 	int i;
1503 
1504 	for (i = 0; i < len; i++)
1505 		if (buf[i] != 0xff)
1506 			return 0;
1507 	return 1;
1508 }
1509 
1510 /**
1511  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1512  * @c: the UBIFS file-system description object
1513  * @lnum: LEB number where nnode was written
1514  * @offs: offset where nnode was written
1515  */
1516 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1517 {
1518 	struct ubifs_nnode *nnode;
1519 	int hght;
1520 
1521 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1522 	nnode = first_nnode(c, &hght);
1523 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1524 		struct ubifs_nbranch *branch;
1525 
1526 		cond_resched();
1527 		if (nnode->parent) {
1528 			branch = &nnode->parent->nbranch[nnode->iip];
1529 			if (branch->lnum != lnum || branch->offs != offs)
1530 				continue;
1531 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1532 				return 1;
1533 			return 0;
1534 		} else {
1535 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1536 				continue;
1537 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1538 				return 1;
1539 			return 0;
1540 		}
1541 	}
1542 	return 1;
1543 }
1544 
1545 /**
1546  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1547  * @c: the UBIFS file-system description object
1548  * @lnum: LEB number where pnode was written
1549  * @offs: offset where pnode was written
1550  */
1551 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1552 {
1553 	int i, cnt;
1554 
1555 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1556 	for (i = 0; i < cnt; i++) {
1557 		struct ubifs_pnode *pnode;
1558 		struct ubifs_nbranch *branch;
1559 
1560 		cond_resched();
1561 		pnode = pnode_lookup(c, i);
1562 		if (IS_ERR(pnode))
1563 			return PTR_ERR(pnode);
1564 		branch = &pnode->parent->nbranch[pnode->iip];
1565 		if (branch->lnum != lnum || branch->offs != offs)
1566 			continue;
1567 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1568 			return 1;
1569 		return 0;
1570 	}
1571 	return 1;
1572 }
1573 
1574 /**
1575  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1576  * @c: the UBIFS file-system description object
1577  * @lnum: LEB number where ltab node was written
1578  * @offs: offset where ltab node was written
1579  */
1580 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1581 {
1582 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1583 		return 1;
1584 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1585 }
1586 
1587 /**
1588  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1589  * @c: the UBIFS file-system description object
1590  * @lnum: LEB number where lsave node was written
1591  * @offs: offset where lsave node was written
1592  */
1593 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1594 {
1595 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1596 		return 1;
1597 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1598 }
1599 
1600 /**
1601  * dbg_is_node_dirty - determine if a node is dirty.
1602  * @c: the UBIFS file-system description object
1603  * @node_type: node type
1604  * @lnum: LEB number where node was written
1605  * @offs: offset where node was written
1606  */
1607 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1608 			     int offs)
1609 {
1610 	switch (node_type) {
1611 	case UBIFS_LPT_NNODE:
1612 		return dbg_is_nnode_dirty(c, lnum, offs);
1613 	case UBIFS_LPT_PNODE:
1614 		return dbg_is_pnode_dirty(c, lnum, offs);
1615 	case UBIFS_LPT_LTAB:
1616 		return dbg_is_ltab_dirty(c, lnum, offs);
1617 	case UBIFS_LPT_LSAVE:
1618 		return dbg_is_lsave_dirty(c, lnum, offs);
1619 	}
1620 	return 1;
1621 }
1622 
1623 /**
1624  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1625  * @c: the UBIFS file-system description object
1626  * @lnum: LEB number where node was written
1627  *
1628  * This function returns %0 on success and a negative error code on failure.
1629  */
1630 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1631 {
1632 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1633 	int ret;
1634 	void *buf, *p;
1635 
1636 	if (!dbg_is_chk_lprops(c))
1637 		return 0;
1638 
1639 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1640 	if (!buf) {
1641 		ubifs_err(c, "cannot allocate memory for ltab checking");
1642 		return 0;
1643 	}
1644 
1645 	dbg_lp("LEB %d", lnum);
1646 
1647 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1648 	if (err)
1649 		goto out;
1650 
1651 	while (1) {
1652 		if (!is_a_node(c, p, len)) {
1653 			int i, pad_len;
1654 
1655 			pad_len = get_pad_len(c, p, len);
1656 			if (pad_len) {
1657 				p += pad_len;
1658 				len -= pad_len;
1659 				dirty += pad_len;
1660 				continue;
1661 			}
1662 			if (!dbg_is_all_ff(p, len)) {
1663 				ubifs_err(c, "invalid empty space in LEB %d at %d",
1664 					  lnum, c->leb_size - len);
1665 				err = -EINVAL;
1666 			}
1667 			i = lnum - c->lpt_first;
1668 			if (len != c->ltab[i].free) {
1669 				ubifs_err(c, "invalid free space in LEB %d (free %d, expected %d)",
1670 					  lnum, len, c->ltab[i].free);
1671 				err = -EINVAL;
1672 			}
1673 			if (dirty != c->ltab[i].dirty) {
1674 				ubifs_err(c, "invalid dirty space in LEB %d (dirty %d, expected %d)",
1675 					  lnum, dirty, c->ltab[i].dirty);
1676 				err = -EINVAL;
1677 			}
1678 			goto out;
1679 		}
1680 		node_type = get_lpt_node_type(c, p, &node_num);
1681 		node_len = get_lpt_node_len(c, node_type);
1682 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1683 		if (ret == 1)
1684 			dirty += node_len;
1685 		p += node_len;
1686 		len -= node_len;
1687 	}
1688 
1689 	err = 0;
1690 out:
1691 	vfree(buf);
1692 	return err;
1693 }
1694 
1695 /**
1696  * dbg_check_ltab - check the free and dirty space in the ltab.
1697  * @c: the UBIFS file-system description object
1698  *
1699  * This function returns %0 on success and a negative error code on failure.
1700  */
1701 int dbg_check_ltab(struct ubifs_info *c)
1702 {
1703 	int lnum, err, i, cnt;
1704 
1705 	if (!dbg_is_chk_lprops(c))
1706 		return 0;
1707 
1708 	/* Bring the entire tree into memory */
1709 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1710 	for (i = 0; i < cnt; i++) {
1711 		struct ubifs_pnode *pnode;
1712 
1713 		pnode = pnode_lookup(c, i);
1714 		if (IS_ERR(pnode))
1715 			return PTR_ERR(pnode);
1716 		cond_resched();
1717 	}
1718 
1719 	/* Check nodes */
1720 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1721 	if (err)
1722 		return err;
1723 
1724 	/* Check each LEB */
1725 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1726 		err = dbg_check_ltab_lnum(c, lnum);
1727 		if (err) {
1728 			ubifs_err(c, "failed at LEB %d", lnum);
1729 			return err;
1730 		}
1731 	}
1732 
1733 	dbg_lp("succeeded");
1734 	return 0;
1735 }
1736 
1737 /**
1738  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1739  * @c: the UBIFS file-system description object
1740  *
1741  * This function returns %0 on success and a negative error code on failure.
1742  */
1743 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1744 {
1745 	long long free = 0;
1746 	int i;
1747 
1748 	if (!dbg_is_chk_lprops(c))
1749 		return 0;
1750 
1751 	for (i = 0; i < c->lpt_lebs; i++) {
1752 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1753 			continue;
1754 		if (i + c->lpt_first == c->nhead_lnum)
1755 			free += c->leb_size - c->nhead_offs;
1756 		else if (c->ltab[i].free == c->leb_size)
1757 			free += c->leb_size;
1758 	}
1759 	if (free < c->lpt_sz) {
1760 		ubifs_err(c, "LPT space error: free %lld lpt_sz %lld",
1761 			  free, c->lpt_sz);
1762 		ubifs_dump_lpt_info(c);
1763 		ubifs_dump_lpt_lebs(c);
1764 		dump_stack();
1765 		return -EINVAL;
1766 	}
1767 	return 0;
1768 }
1769 
1770 /**
1771  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1772  * @c: the UBIFS file-system description object
1773  * @action: what to do
1774  * @len: length written
1775  *
1776  * This function returns %0 on success and a negative error code on failure.
1777  * The @action argument may be one of:
1778  *   o %0 - LPT debugging checking starts, initialize debugging variables;
1779  *   o %1 - wrote an LPT node, increase LPT size by @len bytes;
1780  *   o %2 - switched to a different LEB and wasted @len bytes;
1781  *   o %3 - check that we've written the right number of bytes.
1782  *   o %4 - wasted @len bytes;
1783  */
1784 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1785 {
1786 	struct ubifs_debug_info *d = c->dbg;
1787 	long long chk_lpt_sz, lpt_sz;
1788 	int err = 0;
1789 
1790 	if (!dbg_is_chk_lprops(c))
1791 		return 0;
1792 
1793 	switch (action) {
1794 	case 0:
1795 		d->chk_lpt_sz = 0;
1796 		d->chk_lpt_sz2 = 0;
1797 		d->chk_lpt_lebs = 0;
1798 		d->chk_lpt_wastage = 0;
1799 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1800 			ubifs_err(c, "dirty pnodes %d exceed max %d",
1801 				  c->dirty_pn_cnt, c->pnode_cnt);
1802 			err = -EINVAL;
1803 		}
1804 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1805 			ubifs_err(c, "dirty nnodes %d exceed max %d",
1806 				  c->dirty_nn_cnt, c->nnode_cnt);
1807 			err = -EINVAL;
1808 		}
1809 		return err;
1810 	case 1:
1811 		d->chk_lpt_sz += len;
1812 		return 0;
1813 	case 2:
1814 		d->chk_lpt_sz += len;
1815 		d->chk_lpt_wastage += len;
1816 		d->chk_lpt_lebs += 1;
1817 		return 0;
1818 	case 3:
1819 		chk_lpt_sz = c->leb_size;
1820 		chk_lpt_sz *= d->chk_lpt_lebs;
1821 		chk_lpt_sz += len - c->nhead_offs;
1822 		if (d->chk_lpt_sz != chk_lpt_sz) {
1823 			ubifs_err(c, "LPT wrote %lld but space used was %lld",
1824 				  d->chk_lpt_sz, chk_lpt_sz);
1825 			err = -EINVAL;
1826 		}
1827 		if (d->chk_lpt_sz > c->lpt_sz) {
1828 			ubifs_err(c, "LPT wrote %lld but lpt_sz is %lld",
1829 				  d->chk_lpt_sz, c->lpt_sz);
1830 			err = -EINVAL;
1831 		}
1832 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1833 			ubifs_err(c, "LPT layout size %lld but wrote %lld",
1834 				  d->chk_lpt_sz, d->chk_lpt_sz2);
1835 			err = -EINVAL;
1836 		}
1837 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1838 			ubifs_err(c, "LPT new nhead offs: expected %d was %d",
1839 				  d->new_nhead_offs, len);
1840 			err = -EINVAL;
1841 		}
1842 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1843 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1844 		lpt_sz += c->ltab_sz;
1845 		if (c->big_lpt)
1846 			lpt_sz += c->lsave_sz;
1847 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1848 			ubifs_err(c, "LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1849 				  d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1850 			err = -EINVAL;
1851 		}
1852 		if (err) {
1853 			ubifs_dump_lpt_info(c);
1854 			ubifs_dump_lpt_lebs(c);
1855 			dump_stack();
1856 		}
1857 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1858 		d->chk_lpt_sz = 0;
1859 		d->chk_lpt_wastage = 0;
1860 		d->chk_lpt_lebs = 0;
1861 		d->new_nhead_offs = len;
1862 		return err;
1863 	case 4:
1864 		d->chk_lpt_sz += len;
1865 		d->chk_lpt_wastage += len;
1866 		return 0;
1867 	default:
1868 		return -EINVAL;
1869 	}
1870 }
1871 
1872 /**
1873  * dump_lpt_leb - dump an LPT LEB.
1874  * @c: UBIFS file-system description object
1875  * @lnum: LEB number to dump
1876  *
1877  * This function dumps an LEB from LPT area. Nodes in this area are very
1878  * different to nodes in the main area (e.g., they do not have common headers,
1879  * they do not have 8-byte alignments, etc), so we have a separate function to
1880  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1881  */
1882 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1883 {
1884 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1885 	void *buf, *p;
1886 
1887 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
1888 	buf = p = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
1889 	if (!buf) {
1890 		ubifs_err(c, "cannot allocate memory to dump LPT");
1891 		return;
1892 	}
1893 
1894 	err = ubifs_leb_read(c, lnum, buf, 0, c->leb_size, 1);
1895 	if (err)
1896 		goto out;
1897 
1898 	while (1) {
1899 		offs = c->leb_size - len;
1900 		if (!is_a_node(c, p, len)) {
1901 			int pad_len;
1902 
1903 			pad_len = get_pad_len(c, p, len);
1904 			if (pad_len) {
1905 				pr_err("LEB %d:%d, pad %d bytes\n",
1906 				       lnum, offs, pad_len);
1907 				p += pad_len;
1908 				len -= pad_len;
1909 				continue;
1910 			}
1911 			if (len)
1912 				pr_err("LEB %d:%d, free %d bytes\n",
1913 				       lnum, offs, len);
1914 			break;
1915 		}
1916 
1917 		node_type = get_lpt_node_type(c, p, &node_num);
1918 		switch (node_type) {
1919 		case UBIFS_LPT_PNODE:
1920 		{
1921 			node_len = c->pnode_sz;
1922 			if (c->big_lpt)
1923 				pr_err("LEB %d:%d, pnode num %d\n",
1924 				       lnum, offs, node_num);
1925 			else
1926 				pr_err("LEB %d:%d, pnode\n", lnum, offs);
1927 			break;
1928 		}
1929 		case UBIFS_LPT_NNODE:
1930 		{
1931 			int i;
1932 			struct ubifs_nnode nnode;
1933 
1934 			node_len = c->nnode_sz;
1935 			if (c->big_lpt)
1936 				pr_err("LEB %d:%d, nnode num %d, ",
1937 				       lnum, offs, node_num);
1938 			else
1939 				pr_err("LEB %d:%d, nnode, ",
1940 				       lnum, offs);
1941 			err = ubifs_unpack_nnode(c, p, &nnode);
1942 			if (err) {
1943 				pr_err("failed to unpack_node, error %d\n",
1944 				       err);
1945 				break;
1946 			}
1947 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1948 				pr_cont("%d:%d", nnode.nbranch[i].lnum,
1949 				       nnode.nbranch[i].offs);
1950 				if (i != UBIFS_LPT_FANOUT - 1)
1951 					pr_cont(", ");
1952 			}
1953 			pr_cont("\n");
1954 			break;
1955 		}
1956 		case UBIFS_LPT_LTAB:
1957 			node_len = c->ltab_sz;
1958 			pr_err("LEB %d:%d, ltab\n", lnum, offs);
1959 			break;
1960 		case UBIFS_LPT_LSAVE:
1961 			node_len = c->lsave_sz;
1962 			pr_err("LEB %d:%d, lsave len\n", lnum, offs);
1963 			break;
1964 		default:
1965 			ubifs_err(c, "LPT node type %d not recognized", node_type);
1966 			goto out;
1967 		}
1968 
1969 		p += node_len;
1970 		len -= node_len;
1971 	}
1972 
1973 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
1974 out:
1975 	vfree(buf);
1976 	return;
1977 }
1978 
1979 /**
1980  * ubifs_dump_lpt_lebs - dump LPT lebs.
1981  * @c: UBIFS file-system description object
1982  *
1983  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1984  * locked.
1985  */
1986 void ubifs_dump_lpt_lebs(const struct ubifs_info *c)
1987 {
1988 	int i;
1989 
1990 	pr_err("(pid %d) start dumping all LPT LEBs\n", current->pid);
1991 	for (i = 0; i < c->lpt_lebs; i++)
1992 		dump_lpt_leb(c, i + c->lpt_first);
1993 	pr_err("(pid %d) finish dumping all LPT LEBs\n", current->pid);
1994 }
1995 
1996 /**
1997  * dbg_populate_lsave - debugging version of 'populate_lsave()'
1998  * @c: UBIFS file-system description object
1999  *
2000  * This is a debugging version for 'populate_lsave()' which populates lsave
2001  * with random LEBs instead of useful LEBs, which is good for test coverage.
2002  * Returns zero if lsave has not been populated (this debugging feature is
2003  * disabled) an non-zero if lsave has been populated.
2004  */
2005 static int dbg_populate_lsave(struct ubifs_info *c)
2006 {
2007 	struct ubifs_lprops *lprops;
2008 	struct ubifs_lpt_heap *heap;
2009 	int i;
2010 
2011 	if (!dbg_is_chk_gen(c))
2012 		return 0;
2013 	if (prandom_u32() & 3)
2014 		return 0;
2015 
2016 	for (i = 0; i < c->lsave_cnt; i++)
2017 		c->lsave[i] = c->main_first;
2018 
2019 	list_for_each_entry(lprops, &c->empty_list, list)
2020 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2021 	list_for_each_entry(lprops, &c->freeable_list, list)
2022 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2023 	list_for_each_entry(lprops, &c->frdi_idx_list, list)
2024 		c->lsave[prandom_u32() % c->lsave_cnt] = lprops->lnum;
2025 
2026 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
2027 	for (i = 0; i < heap->cnt; i++)
2028 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2029 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
2030 	for (i = 0; i < heap->cnt; i++)
2031 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2032 	heap = &c->lpt_heap[LPROPS_FREE - 1];
2033 	for (i = 0; i < heap->cnt; i++)
2034 		c->lsave[prandom_u32() % c->lsave_cnt] = heap->arr[i]->lnum;
2035 
2036 	return 1;
2037 }
2038