xref: /linux/fs/ubifs/lpt_commit.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements commit-related functionality of the LEB properties
25  * subsystem.
26  */
27 
28 #include <linux/crc16.h>
29 #include "ubifs.h"
30 
31 /**
32  * first_dirty_cnode - find first dirty cnode.
33  * @c: UBIFS file-system description object
34  * @nnode: nnode at which to start
35  *
36  * This function returns the first dirty cnode or %NULL if there is not one.
37  */
38 static struct ubifs_cnode *first_dirty_cnode(struct ubifs_nnode *nnode)
39 {
40 	ubifs_assert(nnode);
41 	while (1) {
42 		int i, cont = 0;
43 
44 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
45 			struct ubifs_cnode *cnode;
46 
47 			cnode = nnode->nbranch[i].cnode;
48 			if (cnode &&
49 			    test_bit(DIRTY_CNODE, &cnode->flags)) {
50 				if (cnode->level == 0)
51 					return cnode;
52 				nnode = (struct ubifs_nnode *)cnode;
53 				cont = 1;
54 				break;
55 			}
56 		}
57 		if (!cont)
58 			return (struct ubifs_cnode *)nnode;
59 	}
60 }
61 
62 /**
63  * next_dirty_cnode - find next dirty cnode.
64  * @cnode: cnode from which to begin searching
65  *
66  * This function returns the next dirty cnode or %NULL if there is not one.
67  */
68 static struct ubifs_cnode *next_dirty_cnode(struct ubifs_cnode *cnode)
69 {
70 	struct ubifs_nnode *nnode;
71 	int i;
72 
73 	ubifs_assert(cnode);
74 	nnode = cnode->parent;
75 	if (!nnode)
76 		return NULL;
77 	for (i = cnode->iip + 1; i < UBIFS_LPT_FANOUT; i++) {
78 		cnode = nnode->nbranch[i].cnode;
79 		if (cnode && test_bit(DIRTY_CNODE, &cnode->flags)) {
80 			if (cnode->level == 0)
81 				return cnode; /* cnode is a pnode */
82 			/* cnode is a nnode */
83 			return first_dirty_cnode((struct ubifs_nnode *)cnode);
84 		}
85 	}
86 	return (struct ubifs_cnode *)nnode;
87 }
88 
89 /**
90  * get_cnodes_to_commit - create list of dirty cnodes to commit.
91  * @c: UBIFS file-system description object
92  *
93  * This function returns the number of cnodes to commit.
94  */
95 static int get_cnodes_to_commit(struct ubifs_info *c)
96 {
97 	struct ubifs_cnode *cnode, *cnext;
98 	int cnt = 0;
99 
100 	if (!c->nroot)
101 		return 0;
102 
103 	if (!test_bit(DIRTY_CNODE, &c->nroot->flags))
104 		return 0;
105 
106 	c->lpt_cnext = first_dirty_cnode(c->nroot);
107 	cnode = c->lpt_cnext;
108 	if (!cnode)
109 		return 0;
110 	cnt += 1;
111 	while (1) {
112 		ubifs_assert(!test_bit(COW_ZNODE, &cnode->flags));
113 		__set_bit(COW_ZNODE, &cnode->flags);
114 		cnext = next_dirty_cnode(cnode);
115 		if (!cnext) {
116 			cnode->cnext = c->lpt_cnext;
117 			break;
118 		}
119 		cnode->cnext = cnext;
120 		cnode = cnext;
121 		cnt += 1;
122 	}
123 	dbg_cmt("committing %d cnodes", cnt);
124 	dbg_lp("committing %d cnodes", cnt);
125 	ubifs_assert(cnt == c->dirty_nn_cnt + c->dirty_pn_cnt);
126 	return cnt;
127 }
128 
129 /**
130  * upd_ltab - update LPT LEB properties.
131  * @c: UBIFS file-system description object
132  * @lnum: LEB number
133  * @free: amount of free space
134  * @dirty: amount of dirty space to add
135  */
136 static void upd_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
137 {
138 	dbg_lp("LEB %d free %d dirty %d to %d +%d",
139 	       lnum, c->ltab[lnum - c->lpt_first].free,
140 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
141 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
142 	c->ltab[lnum - c->lpt_first].free = free;
143 	c->ltab[lnum - c->lpt_first].dirty += dirty;
144 }
145 
146 /**
147  * alloc_lpt_leb - allocate an LPT LEB that is empty.
148  * @c: UBIFS file-system description object
149  * @lnum: LEB number is passed and returned here
150  *
151  * This function finds the next empty LEB in the ltab starting from @lnum. If a
152  * an empty LEB is found it is returned in @lnum and the function returns %0.
153  * Otherwise the function returns -ENOSPC.  Note however, that LPT is designed
154  * never to run out of space.
155  */
156 static int alloc_lpt_leb(struct ubifs_info *c, int *lnum)
157 {
158 	int i, n;
159 
160 	n = *lnum - c->lpt_first + 1;
161 	for (i = n; i < c->lpt_lebs; i++) {
162 		if (c->ltab[i].tgc || c->ltab[i].cmt)
163 			continue;
164 		if (c->ltab[i].free == c->leb_size) {
165 			c->ltab[i].cmt = 1;
166 			*lnum = i + c->lpt_first;
167 			return 0;
168 		}
169 	}
170 
171 	for (i = 0; i < n; i++) {
172 		if (c->ltab[i].tgc || c->ltab[i].cmt)
173 			continue;
174 		if (c->ltab[i].free == c->leb_size) {
175 			c->ltab[i].cmt = 1;
176 			*lnum = i + c->lpt_first;
177 			return 0;
178 		}
179 	}
180 	return -ENOSPC;
181 }
182 
183 /**
184  * layout_cnodes - layout cnodes for commit.
185  * @c: UBIFS file-system description object
186  *
187  * This function returns %0 on success and a negative error code on failure.
188  */
189 static int layout_cnodes(struct ubifs_info *c)
190 {
191 	int lnum, offs, len, alen, done_lsave, done_ltab, err;
192 	struct ubifs_cnode *cnode;
193 
194 	err = dbg_chk_lpt_sz(c, 0, 0);
195 	if (err)
196 		return err;
197 	cnode = c->lpt_cnext;
198 	if (!cnode)
199 		return 0;
200 	lnum = c->nhead_lnum;
201 	offs = c->nhead_offs;
202 	/* Try to place lsave and ltab nicely */
203 	done_lsave = !c->big_lpt;
204 	done_ltab = 0;
205 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
206 		done_lsave = 1;
207 		c->lsave_lnum = lnum;
208 		c->lsave_offs = offs;
209 		offs += c->lsave_sz;
210 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
211 	}
212 
213 	if (offs + c->ltab_sz <= c->leb_size) {
214 		done_ltab = 1;
215 		c->ltab_lnum = lnum;
216 		c->ltab_offs = offs;
217 		offs += c->ltab_sz;
218 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
219 	}
220 
221 	do {
222 		if (cnode->level) {
223 			len = c->nnode_sz;
224 			c->dirty_nn_cnt -= 1;
225 		} else {
226 			len = c->pnode_sz;
227 			c->dirty_pn_cnt -= 1;
228 		}
229 		while (offs + len > c->leb_size) {
230 			alen = ALIGN(offs, c->min_io_size);
231 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
232 			dbg_chk_lpt_sz(c, 2, alen - offs);
233 			err = alloc_lpt_leb(c, &lnum);
234 			if (err)
235 				goto no_space;
236 			offs = 0;
237 			ubifs_assert(lnum >= c->lpt_first &&
238 				     lnum <= c->lpt_last);
239 			/* Try to place lsave and ltab nicely */
240 			if (!done_lsave) {
241 				done_lsave = 1;
242 				c->lsave_lnum = lnum;
243 				c->lsave_offs = offs;
244 				offs += c->lsave_sz;
245 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
246 				continue;
247 			}
248 			if (!done_ltab) {
249 				done_ltab = 1;
250 				c->ltab_lnum = lnum;
251 				c->ltab_offs = offs;
252 				offs += c->ltab_sz;
253 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
254 				continue;
255 			}
256 			break;
257 		}
258 		if (cnode->parent) {
259 			cnode->parent->nbranch[cnode->iip].lnum = lnum;
260 			cnode->parent->nbranch[cnode->iip].offs = offs;
261 		} else {
262 			c->lpt_lnum = lnum;
263 			c->lpt_offs = offs;
264 		}
265 		offs += len;
266 		dbg_chk_lpt_sz(c, 1, len);
267 		cnode = cnode->cnext;
268 	} while (cnode && cnode != c->lpt_cnext);
269 
270 	/* Make sure to place LPT's save table */
271 	if (!done_lsave) {
272 		if (offs + c->lsave_sz > c->leb_size) {
273 			alen = ALIGN(offs, c->min_io_size);
274 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
275 			dbg_chk_lpt_sz(c, 2, alen - offs);
276 			err = alloc_lpt_leb(c, &lnum);
277 			if (err)
278 				goto no_space;
279 			offs = 0;
280 			ubifs_assert(lnum >= c->lpt_first &&
281 				     lnum <= c->lpt_last);
282 		}
283 		done_lsave = 1;
284 		c->lsave_lnum = lnum;
285 		c->lsave_offs = offs;
286 		offs += c->lsave_sz;
287 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
288 	}
289 
290 	/* Make sure to place LPT's own lprops table */
291 	if (!done_ltab) {
292 		if (offs + c->ltab_sz > c->leb_size) {
293 			alen = ALIGN(offs, c->min_io_size);
294 			upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
295 			dbg_chk_lpt_sz(c, 2, alen - offs);
296 			err = alloc_lpt_leb(c, &lnum);
297 			if (err)
298 				goto no_space;
299 			offs = 0;
300 			ubifs_assert(lnum >= c->lpt_first &&
301 				     lnum <= c->lpt_last);
302 		}
303 		done_ltab = 1;
304 		c->ltab_lnum = lnum;
305 		c->ltab_offs = offs;
306 		offs += c->ltab_sz;
307 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
308 	}
309 
310 	alen = ALIGN(offs, c->min_io_size);
311 	upd_ltab(c, lnum, c->leb_size - alen, alen - offs);
312 	dbg_chk_lpt_sz(c, 4, alen - offs);
313 	err = dbg_chk_lpt_sz(c, 3, alen);
314 	if (err)
315 		return err;
316 	return 0;
317 
318 no_space:
319 	ubifs_err("LPT out of space");
320 	dbg_err("LPT out of space at LEB %d:%d needing %d, done_ltab %d, "
321 		"done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
322 	dbg_dump_lpt_info(c);
323 	dbg_dump_lpt_lebs(c);
324 	dump_stack();
325 	return err;
326 }
327 
328 /**
329  * realloc_lpt_leb - allocate an LPT LEB that is empty.
330  * @c: UBIFS file-system description object
331  * @lnum: LEB number is passed and returned here
332  *
333  * This function duplicates exactly the results of the function alloc_lpt_leb.
334  * It is used during end commit to reallocate the same LEB numbers that were
335  * allocated by alloc_lpt_leb during start commit.
336  *
337  * This function finds the next LEB that was allocated by the alloc_lpt_leb
338  * function starting from @lnum. If a LEB is found it is returned in @lnum and
339  * the function returns %0. Otherwise the function returns -ENOSPC.
340  * Note however, that LPT is designed never to run out of space.
341  */
342 static int realloc_lpt_leb(struct ubifs_info *c, int *lnum)
343 {
344 	int i, n;
345 
346 	n = *lnum - c->lpt_first + 1;
347 	for (i = n; i < c->lpt_lebs; i++)
348 		if (c->ltab[i].cmt) {
349 			c->ltab[i].cmt = 0;
350 			*lnum = i + c->lpt_first;
351 			return 0;
352 		}
353 
354 	for (i = 0; i < n; i++)
355 		if (c->ltab[i].cmt) {
356 			c->ltab[i].cmt = 0;
357 			*lnum = i + c->lpt_first;
358 			return 0;
359 		}
360 	return -ENOSPC;
361 }
362 
363 /**
364  * write_cnodes - write cnodes for commit.
365  * @c: UBIFS file-system description object
366  *
367  * This function returns %0 on success and a negative error code on failure.
368  */
369 static int write_cnodes(struct ubifs_info *c)
370 {
371 	int lnum, offs, len, from, err, wlen, alen, done_ltab, done_lsave;
372 	struct ubifs_cnode *cnode;
373 	void *buf = c->lpt_buf;
374 
375 	cnode = c->lpt_cnext;
376 	if (!cnode)
377 		return 0;
378 	lnum = c->nhead_lnum;
379 	offs = c->nhead_offs;
380 	from = offs;
381 	/* Ensure empty LEB is unmapped */
382 	if (offs == 0) {
383 		err = ubifs_leb_unmap(c, lnum);
384 		if (err)
385 			return err;
386 	}
387 	/* Try to place lsave and ltab nicely */
388 	done_lsave = !c->big_lpt;
389 	done_ltab = 0;
390 	if (!done_lsave && offs + c->lsave_sz <= c->leb_size) {
391 		done_lsave = 1;
392 		ubifs_pack_lsave(c, buf + offs, c->lsave);
393 		offs += c->lsave_sz;
394 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
395 	}
396 
397 	if (offs + c->ltab_sz <= c->leb_size) {
398 		done_ltab = 1;
399 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
400 		offs += c->ltab_sz;
401 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
402 	}
403 
404 	/* Loop for each cnode */
405 	do {
406 		if (cnode->level)
407 			len = c->nnode_sz;
408 		else
409 			len = c->pnode_sz;
410 		while (offs + len > c->leb_size) {
411 			wlen = offs - from;
412 			if (wlen) {
413 				alen = ALIGN(wlen, c->min_io_size);
414 				memset(buf + offs, 0xff, alen - wlen);
415 				err = ubifs_leb_write(c, lnum, buf + from, from,
416 						       alen, UBI_SHORTTERM);
417 				if (err)
418 					return err;
419 				dbg_chk_lpt_sz(c, 4, alen - wlen);
420 			}
421 			dbg_chk_lpt_sz(c, 2, 0);
422 			err = realloc_lpt_leb(c, &lnum);
423 			if (err)
424 				goto no_space;
425 			offs = 0;
426 			from = 0;
427 			ubifs_assert(lnum >= c->lpt_first &&
428 				     lnum <= c->lpt_last);
429 			err = ubifs_leb_unmap(c, lnum);
430 			if (err)
431 				return err;
432 			/* Try to place lsave and ltab nicely */
433 			if (!done_lsave) {
434 				done_lsave = 1;
435 				ubifs_pack_lsave(c, buf + offs, c->lsave);
436 				offs += c->lsave_sz;
437 				dbg_chk_lpt_sz(c, 1, c->lsave_sz);
438 				continue;
439 			}
440 			if (!done_ltab) {
441 				done_ltab = 1;
442 				ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
443 				offs += c->ltab_sz;
444 				dbg_chk_lpt_sz(c, 1, c->ltab_sz);
445 				continue;
446 			}
447 			break;
448 		}
449 		if (cnode->level)
450 			ubifs_pack_nnode(c, buf + offs,
451 					 (struct ubifs_nnode *)cnode);
452 		else
453 			ubifs_pack_pnode(c, buf + offs,
454 					 (struct ubifs_pnode *)cnode);
455 		/*
456 		 * The reason for the barriers is the same as in case of TNC.
457 		 * See comment in 'write_index()'. 'dirty_cow_nnode()' and
458 		 * 'dirty_cow_pnode()' are the functions for which this is
459 		 * important.
460 		 */
461 		clear_bit(DIRTY_CNODE, &cnode->flags);
462 		smp_mb__before_clear_bit();
463 		clear_bit(COW_ZNODE, &cnode->flags);
464 		smp_mb__after_clear_bit();
465 		offs += len;
466 		dbg_chk_lpt_sz(c, 1, len);
467 		cnode = cnode->cnext;
468 	} while (cnode && cnode != c->lpt_cnext);
469 
470 	/* Make sure to place LPT's save table */
471 	if (!done_lsave) {
472 		if (offs + c->lsave_sz > c->leb_size) {
473 			wlen = offs - from;
474 			alen = ALIGN(wlen, c->min_io_size);
475 			memset(buf + offs, 0xff, alen - wlen);
476 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
477 					      UBI_SHORTTERM);
478 			if (err)
479 				return err;
480 			dbg_chk_lpt_sz(c, 2, alen - wlen);
481 			err = realloc_lpt_leb(c, &lnum);
482 			if (err)
483 				goto no_space;
484 			offs = 0;
485 			ubifs_assert(lnum >= c->lpt_first &&
486 				     lnum <= c->lpt_last);
487 			err = ubifs_leb_unmap(c, lnum);
488 			if (err)
489 				return err;
490 		}
491 		done_lsave = 1;
492 		ubifs_pack_lsave(c, buf + offs, c->lsave);
493 		offs += c->lsave_sz;
494 		dbg_chk_lpt_sz(c, 1, c->lsave_sz);
495 	}
496 
497 	/* Make sure to place LPT's own lprops table */
498 	if (!done_ltab) {
499 		if (offs + c->ltab_sz > c->leb_size) {
500 			wlen = offs - from;
501 			alen = ALIGN(wlen, c->min_io_size);
502 			memset(buf + offs, 0xff, alen - wlen);
503 			err = ubifs_leb_write(c, lnum, buf + from, from, alen,
504 					      UBI_SHORTTERM);
505 			if (err)
506 				return err;
507 			dbg_chk_lpt_sz(c, 2, alen - wlen);
508 			err = realloc_lpt_leb(c, &lnum);
509 			if (err)
510 				goto no_space;
511 			offs = 0;
512 			ubifs_assert(lnum >= c->lpt_first &&
513 				     lnum <= c->lpt_last);
514 			err = ubifs_leb_unmap(c, lnum);
515 			if (err)
516 				return err;
517 		}
518 		done_ltab = 1;
519 		ubifs_pack_ltab(c, buf + offs, c->ltab_cmt);
520 		offs += c->ltab_sz;
521 		dbg_chk_lpt_sz(c, 1, c->ltab_sz);
522 	}
523 
524 	/* Write remaining data in buffer */
525 	wlen = offs - from;
526 	alen = ALIGN(wlen, c->min_io_size);
527 	memset(buf + offs, 0xff, alen - wlen);
528 	err = ubifs_leb_write(c, lnum, buf + from, from, alen, UBI_SHORTTERM);
529 	if (err)
530 		return err;
531 
532 	dbg_chk_lpt_sz(c, 4, alen - wlen);
533 	err = dbg_chk_lpt_sz(c, 3, ALIGN(offs, c->min_io_size));
534 	if (err)
535 		return err;
536 
537 	c->nhead_lnum = lnum;
538 	c->nhead_offs = ALIGN(offs, c->min_io_size);
539 
540 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
541 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
542 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
543 	if (c->big_lpt)
544 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
545 
546 	return 0;
547 
548 no_space:
549 	ubifs_err("LPT out of space mismatch");
550 	dbg_err("LPT out of space mismatch at LEB %d:%d needing %d, done_ltab "
551 		"%d, done_lsave %d", lnum, offs, len, done_ltab, done_lsave);
552 	dbg_dump_lpt_info(c);
553 	dbg_dump_lpt_lebs(c);
554 	dump_stack();
555 	return err;
556 }
557 
558 /**
559  * next_pnode - find next pnode.
560  * @c: UBIFS file-system description object
561  * @pnode: pnode
562  *
563  * This function returns the next pnode or %NULL if there are no more pnodes.
564  */
565 static struct ubifs_pnode *next_pnode(struct ubifs_info *c,
566 				      struct ubifs_pnode *pnode)
567 {
568 	struct ubifs_nnode *nnode;
569 	int iip;
570 
571 	/* Try to go right */
572 	nnode = pnode->parent;
573 	iip = pnode->iip + 1;
574 	if (iip < UBIFS_LPT_FANOUT) {
575 		/* We assume here that LEB zero is never an LPT LEB */
576 		if (nnode->nbranch[iip].lnum)
577 			return ubifs_get_pnode(c, nnode, iip);
578 	}
579 
580 	/* Go up while can't go right */
581 	do {
582 		iip = nnode->iip + 1;
583 		nnode = nnode->parent;
584 		if (!nnode)
585 			return NULL;
586 		/* We assume here that LEB zero is never an LPT LEB */
587 	} while (iip >= UBIFS_LPT_FANOUT || !nnode->nbranch[iip].lnum);
588 
589 	/* Go right */
590 	nnode = ubifs_get_nnode(c, nnode, iip);
591 	if (IS_ERR(nnode))
592 		return (void *)nnode;
593 
594 	/* Go down to level 1 */
595 	while (nnode->level > 1) {
596 		nnode = ubifs_get_nnode(c, nnode, 0);
597 		if (IS_ERR(nnode))
598 			return (void *)nnode;
599 	}
600 
601 	return ubifs_get_pnode(c, nnode, 0);
602 }
603 
604 /**
605  * pnode_lookup - lookup a pnode in the LPT.
606  * @c: UBIFS file-system description object
607  * @i: pnode number (0 to main_lebs - 1)
608  *
609  * This function returns a pointer to the pnode on success or a negative
610  * error code on failure.
611  */
612 static struct ubifs_pnode *pnode_lookup(struct ubifs_info *c, int i)
613 {
614 	int err, h, iip, shft;
615 	struct ubifs_nnode *nnode;
616 
617 	if (!c->nroot) {
618 		err = ubifs_read_nnode(c, NULL, 0);
619 		if (err)
620 			return ERR_PTR(err);
621 	}
622 	i <<= UBIFS_LPT_FANOUT_SHIFT;
623 	nnode = c->nroot;
624 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
625 	for (h = 1; h < c->lpt_hght; h++) {
626 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
627 		shft -= UBIFS_LPT_FANOUT_SHIFT;
628 		nnode = ubifs_get_nnode(c, nnode, iip);
629 		if (IS_ERR(nnode))
630 			return ERR_PTR(PTR_ERR(nnode));
631 	}
632 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
633 	return ubifs_get_pnode(c, nnode, iip);
634 }
635 
636 /**
637  * add_pnode_dirt - add dirty space to LPT LEB properties.
638  * @c: UBIFS file-system description object
639  * @pnode: pnode for which to add dirt
640  */
641 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
642 {
643 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
644 			   c->pnode_sz);
645 }
646 
647 /**
648  * do_make_pnode_dirty - mark a pnode dirty.
649  * @c: UBIFS file-system description object
650  * @pnode: pnode to mark dirty
651  */
652 static void do_make_pnode_dirty(struct ubifs_info *c, struct ubifs_pnode *pnode)
653 {
654 	/* Assumes cnext list is empty i.e. not called during commit */
655 	if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
656 		struct ubifs_nnode *nnode;
657 
658 		c->dirty_pn_cnt += 1;
659 		add_pnode_dirt(c, pnode);
660 		/* Mark parent and ancestors dirty too */
661 		nnode = pnode->parent;
662 		while (nnode) {
663 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
664 				c->dirty_nn_cnt += 1;
665 				ubifs_add_nnode_dirt(c, nnode);
666 				nnode = nnode->parent;
667 			} else
668 				break;
669 		}
670 	}
671 }
672 
673 /**
674  * make_tree_dirty - mark the entire LEB properties tree dirty.
675  * @c: UBIFS file-system description object
676  *
677  * This function is used by the "small" LPT model to cause the entire LEB
678  * properties tree to be written.  The "small" LPT model does not use LPT
679  * garbage collection because it is more efficient to write the entire tree
680  * (because it is small).
681  *
682  * This function returns %0 on success and a negative error code on failure.
683  */
684 static int make_tree_dirty(struct ubifs_info *c)
685 {
686 	struct ubifs_pnode *pnode;
687 
688 	pnode = pnode_lookup(c, 0);
689 	while (pnode) {
690 		do_make_pnode_dirty(c, pnode);
691 		pnode = next_pnode(c, pnode);
692 		if (IS_ERR(pnode))
693 			return PTR_ERR(pnode);
694 	}
695 	return 0;
696 }
697 
698 /**
699  * need_write_all - determine if the LPT area is running out of free space.
700  * @c: UBIFS file-system description object
701  *
702  * This function returns %1 if the LPT area is running out of free space and %0
703  * if it is not.
704  */
705 static int need_write_all(struct ubifs_info *c)
706 {
707 	long long free = 0;
708 	int i;
709 
710 	for (i = 0; i < c->lpt_lebs; i++) {
711 		if (i + c->lpt_first == c->nhead_lnum)
712 			free += c->leb_size - c->nhead_offs;
713 		else if (c->ltab[i].free == c->leb_size)
714 			free += c->leb_size;
715 		else if (c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
716 			free += c->leb_size;
717 	}
718 	/* Less than twice the size left */
719 	if (free <= c->lpt_sz * 2)
720 		return 1;
721 	return 0;
722 }
723 
724 /**
725  * lpt_tgc_start - start trivial garbage collection of LPT LEBs.
726  * @c: UBIFS file-system description object
727  *
728  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
729  * free space and so may be reused as soon as the next commit is completed.
730  * This function is called during start commit to mark LPT LEBs for trivial GC.
731  */
732 static void lpt_tgc_start(struct ubifs_info *c)
733 {
734 	int i;
735 
736 	for (i = 0; i < c->lpt_lebs; i++) {
737 		if (i + c->lpt_first == c->nhead_lnum)
738 			continue;
739 		if (c->ltab[i].dirty > 0 &&
740 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size) {
741 			c->ltab[i].tgc = 1;
742 			c->ltab[i].free = c->leb_size;
743 			c->ltab[i].dirty = 0;
744 			dbg_lp("LEB %d", i + c->lpt_first);
745 		}
746 	}
747 }
748 
749 /**
750  * lpt_tgc_end - end trivial garbage collection of LPT LEBs.
751  * @c: UBIFS file-system description object
752  *
753  * LPT trivial garbage collection is where a LPT LEB contains only dirty and
754  * free space and so may be reused as soon as the next commit is completed.
755  * This function is called after the commit is completed (master node has been
756  * written) and un-maps LPT LEBs that were marked for trivial GC.
757  */
758 static int lpt_tgc_end(struct ubifs_info *c)
759 {
760 	int i, err;
761 
762 	for (i = 0; i < c->lpt_lebs; i++)
763 		if (c->ltab[i].tgc) {
764 			err = ubifs_leb_unmap(c, i + c->lpt_first);
765 			if (err)
766 				return err;
767 			c->ltab[i].tgc = 0;
768 			dbg_lp("LEB %d", i + c->lpt_first);
769 		}
770 	return 0;
771 }
772 
773 /**
774  * populate_lsave - fill the lsave array with important LEB numbers.
775  * @c: the UBIFS file-system description object
776  *
777  * This function is only called for the "big" model. It records a small number
778  * of LEB numbers of important LEBs.  Important LEBs are ones that are (from
779  * most important to least important): empty, freeable, freeable index, dirty
780  * index, dirty or free. Upon mount, we read this list of LEB numbers and bring
781  * their pnodes into memory.  That will stop us from having to scan the LPT
782  * straight away. For the "small" model we assume that scanning the LPT is no
783  * big deal.
784  */
785 static void populate_lsave(struct ubifs_info *c)
786 {
787 	struct ubifs_lprops *lprops;
788 	struct ubifs_lpt_heap *heap;
789 	int i, cnt = 0;
790 
791 	ubifs_assert(c->big_lpt);
792 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
793 		c->lpt_drty_flgs |= LSAVE_DIRTY;
794 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
795 	}
796 	list_for_each_entry(lprops, &c->empty_list, list) {
797 		c->lsave[cnt++] = lprops->lnum;
798 		if (cnt >= c->lsave_cnt)
799 			return;
800 	}
801 	list_for_each_entry(lprops, &c->freeable_list, list) {
802 		c->lsave[cnt++] = lprops->lnum;
803 		if (cnt >= c->lsave_cnt)
804 			return;
805 	}
806 	list_for_each_entry(lprops, &c->frdi_idx_list, list) {
807 		c->lsave[cnt++] = lprops->lnum;
808 		if (cnt >= c->lsave_cnt)
809 			return;
810 	}
811 	heap = &c->lpt_heap[LPROPS_DIRTY_IDX - 1];
812 	for (i = 0; i < heap->cnt; i++) {
813 		c->lsave[cnt++] = heap->arr[i]->lnum;
814 		if (cnt >= c->lsave_cnt)
815 			return;
816 	}
817 	heap = &c->lpt_heap[LPROPS_DIRTY - 1];
818 	for (i = 0; i < heap->cnt; i++) {
819 		c->lsave[cnt++] = heap->arr[i]->lnum;
820 		if (cnt >= c->lsave_cnt)
821 			return;
822 	}
823 	heap = &c->lpt_heap[LPROPS_FREE - 1];
824 	for (i = 0; i < heap->cnt; i++) {
825 		c->lsave[cnt++] = heap->arr[i]->lnum;
826 		if (cnt >= c->lsave_cnt)
827 			return;
828 	}
829 	/* Fill it up completely */
830 	while (cnt < c->lsave_cnt)
831 		c->lsave[cnt++] = c->main_first;
832 }
833 
834 /**
835  * nnode_lookup - lookup a nnode in the LPT.
836  * @c: UBIFS file-system description object
837  * @i: nnode number
838  *
839  * This function returns a pointer to the nnode on success or a negative
840  * error code on failure.
841  */
842 static struct ubifs_nnode *nnode_lookup(struct ubifs_info *c, int i)
843 {
844 	int err, iip;
845 	struct ubifs_nnode *nnode;
846 
847 	if (!c->nroot) {
848 		err = ubifs_read_nnode(c, NULL, 0);
849 		if (err)
850 			return ERR_PTR(err);
851 	}
852 	nnode = c->nroot;
853 	while (1) {
854 		iip = i & (UBIFS_LPT_FANOUT - 1);
855 		i >>= UBIFS_LPT_FANOUT_SHIFT;
856 		if (!i)
857 			break;
858 		nnode = ubifs_get_nnode(c, nnode, iip);
859 		if (IS_ERR(nnode))
860 			return nnode;
861 	}
862 	return nnode;
863 }
864 
865 /**
866  * make_nnode_dirty - find a nnode and, if found, make it dirty.
867  * @c: UBIFS file-system description object
868  * @node_num: nnode number of nnode to make dirty
869  * @lnum: LEB number where nnode was written
870  * @offs: offset where nnode was written
871  *
872  * This function is used by LPT garbage collection.  LPT garbage collection is
873  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
874  * simply involves marking all the nodes in the LEB being garbage-collected as
875  * dirty.  The dirty nodes are written next commit, after which the LEB is free
876  * to be reused.
877  *
878  * This function returns %0 on success and a negative error code on failure.
879  */
880 static int make_nnode_dirty(struct ubifs_info *c, int node_num, int lnum,
881 			    int offs)
882 {
883 	struct ubifs_nnode *nnode;
884 
885 	nnode = nnode_lookup(c, node_num);
886 	if (IS_ERR(nnode))
887 		return PTR_ERR(nnode);
888 	if (nnode->parent) {
889 		struct ubifs_nbranch *branch;
890 
891 		branch = &nnode->parent->nbranch[nnode->iip];
892 		if (branch->lnum != lnum || branch->offs != offs)
893 			return 0; /* nnode is obsolete */
894 	} else if (c->lpt_lnum != lnum || c->lpt_offs != offs)
895 			return 0; /* nnode is obsolete */
896 	/* Assumes cnext list is empty i.e. not called during commit */
897 	if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
898 		c->dirty_nn_cnt += 1;
899 		ubifs_add_nnode_dirt(c, nnode);
900 		/* Mark parent and ancestors dirty too */
901 		nnode = nnode->parent;
902 		while (nnode) {
903 			if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
904 				c->dirty_nn_cnt += 1;
905 				ubifs_add_nnode_dirt(c, nnode);
906 				nnode = nnode->parent;
907 			} else
908 				break;
909 		}
910 	}
911 	return 0;
912 }
913 
914 /**
915  * make_pnode_dirty - find a pnode and, if found, make it dirty.
916  * @c: UBIFS file-system description object
917  * @node_num: pnode number of pnode to make dirty
918  * @lnum: LEB number where pnode was written
919  * @offs: offset where pnode was written
920  *
921  * This function is used by LPT garbage collection.  LPT garbage collection is
922  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
923  * simply involves marking all the nodes in the LEB being garbage-collected as
924  * dirty.  The dirty nodes are written next commit, after which the LEB is free
925  * to be reused.
926  *
927  * This function returns %0 on success and a negative error code on failure.
928  */
929 static int make_pnode_dirty(struct ubifs_info *c, int node_num, int lnum,
930 			    int offs)
931 {
932 	struct ubifs_pnode *pnode;
933 	struct ubifs_nbranch *branch;
934 
935 	pnode = pnode_lookup(c, node_num);
936 	if (IS_ERR(pnode))
937 		return PTR_ERR(pnode);
938 	branch = &pnode->parent->nbranch[pnode->iip];
939 	if (branch->lnum != lnum || branch->offs != offs)
940 		return 0;
941 	do_make_pnode_dirty(c, pnode);
942 	return 0;
943 }
944 
945 /**
946  * make_ltab_dirty - make ltab node dirty.
947  * @c: UBIFS file-system description object
948  * @lnum: LEB number where ltab was written
949  * @offs: offset where ltab was written
950  *
951  * This function is used by LPT garbage collection.  LPT garbage collection is
952  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
953  * simply involves marking all the nodes in the LEB being garbage-collected as
954  * dirty.  The dirty nodes are written next commit, after which the LEB is free
955  * to be reused.
956  *
957  * This function returns %0 on success and a negative error code on failure.
958  */
959 static int make_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
960 {
961 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
962 		return 0; /* This ltab node is obsolete */
963 	if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
964 		c->lpt_drty_flgs |= LTAB_DIRTY;
965 		ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
966 	}
967 	return 0;
968 }
969 
970 /**
971  * make_lsave_dirty - make lsave node dirty.
972  * @c: UBIFS file-system description object
973  * @lnum: LEB number where lsave was written
974  * @offs: offset where lsave was written
975  *
976  * This function is used by LPT garbage collection.  LPT garbage collection is
977  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
978  * simply involves marking all the nodes in the LEB being garbage-collected as
979  * dirty.  The dirty nodes are written next commit, after which the LEB is free
980  * to be reused.
981  *
982  * This function returns %0 on success and a negative error code on failure.
983  */
984 static int make_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
985 {
986 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
987 		return 0; /* This lsave node is obsolete */
988 	if (!(c->lpt_drty_flgs & LSAVE_DIRTY)) {
989 		c->lpt_drty_flgs |= LSAVE_DIRTY;
990 		ubifs_add_lpt_dirt(c, c->lsave_lnum, c->lsave_sz);
991 	}
992 	return 0;
993 }
994 
995 /**
996  * make_node_dirty - make node dirty.
997  * @c: UBIFS file-system description object
998  * @node_type: LPT node type
999  * @node_num: node number
1000  * @lnum: LEB number where node was written
1001  * @offs: offset where node was written
1002  *
1003  * This function is used by LPT garbage collection.  LPT garbage collection is
1004  * used only for the "big" LPT model (c->big_lpt == 1).  Garbage collection
1005  * simply involves marking all the nodes in the LEB being garbage-collected as
1006  * dirty.  The dirty nodes are written next commit, after which the LEB is free
1007  * to be reused.
1008  *
1009  * This function returns %0 on success and a negative error code on failure.
1010  */
1011 static int make_node_dirty(struct ubifs_info *c, int node_type, int node_num,
1012 			   int lnum, int offs)
1013 {
1014 	switch (node_type) {
1015 	case UBIFS_LPT_NNODE:
1016 		return make_nnode_dirty(c, node_num, lnum, offs);
1017 	case UBIFS_LPT_PNODE:
1018 		return make_pnode_dirty(c, node_num, lnum, offs);
1019 	case UBIFS_LPT_LTAB:
1020 		return make_ltab_dirty(c, lnum, offs);
1021 	case UBIFS_LPT_LSAVE:
1022 		return make_lsave_dirty(c, lnum, offs);
1023 	}
1024 	return -EINVAL;
1025 }
1026 
1027 /**
1028  * get_lpt_node_len - return the length of a node based on its type.
1029  * @c: UBIFS file-system description object
1030  * @node_type: LPT node type
1031  */
1032 static int get_lpt_node_len(const struct ubifs_info *c, int node_type)
1033 {
1034 	switch (node_type) {
1035 	case UBIFS_LPT_NNODE:
1036 		return c->nnode_sz;
1037 	case UBIFS_LPT_PNODE:
1038 		return c->pnode_sz;
1039 	case UBIFS_LPT_LTAB:
1040 		return c->ltab_sz;
1041 	case UBIFS_LPT_LSAVE:
1042 		return c->lsave_sz;
1043 	}
1044 	return 0;
1045 }
1046 
1047 /**
1048  * get_pad_len - return the length of padding in a buffer.
1049  * @c: UBIFS file-system description object
1050  * @buf: buffer
1051  * @len: length of buffer
1052  */
1053 static int get_pad_len(const struct ubifs_info *c, uint8_t *buf, int len)
1054 {
1055 	int offs, pad_len;
1056 
1057 	if (c->min_io_size == 1)
1058 		return 0;
1059 	offs = c->leb_size - len;
1060 	pad_len = ALIGN(offs, c->min_io_size) - offs;
1061 	return pad_len;
1062 }
1063 
1064 /**
1065  * get_lpt_node_type - return type (and node number) of a node in a buffer.
1066  * @c: UBIFS file-system description object
1067  * @buf: buffer
1068  * @node_num: node number is returned here
1069  */
1070 static int get_lpt_node_type(const struct ubifs_info *c, uint8_t *buf,
1071 			     int *node_num)
1072 {
1073 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1074 	int pos = 0, node_type;
1075 
1076 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1077 	*node_num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1078 	return node_type;
1079 }
1080 
1081 /**
1082  * is_a_node - determine if a buffer contains a node.
1083  * @c: UBIFS file-system description object
1084  * @buf: buffer
1085  * @len: length of buffer
1086  *
1087  * This function returns %1 if the buffer contains a node or %0 if it does not.
1088  */
1089 static int is_a_node(const struct ubifs_info *c, uint8_t *buf, int len)
1090 {
1091 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1092 	int pos = 0, node_type, node_len;
1093 	uint16_t crc, calc_crc;
1094 
1095 	if (len < UBIFS_LPT_CRC_BYTES + (UBIFS_LPT_TYPE_BITS + 7) / 8)
1096 		return 0;
1097 	node_type = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_TYPE_BITS);
1098 	if (node_type == UBIFS_LPT_NOT_A_NODE)
1099 		return 0;
1100 	node_len = get_lpt_node_len(c, node_type);
1101 	if (!node_len || node_len > len)
1102 		return 0;
1103 	pos = 0;
1104 	addr = buf;
1105 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
1106 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
1107 			 node_len - UBIFS_LPT_CRC_BYTES);
1108 	if (crc != calc_crc)
1109 		return 0;
1110 	return 1;
1111 }
1112 
1113 /**
1114  * lpt_gc_lnum - garbage collect a LPT LEB.
1115  * @c: UBIFS file-system description object
1116  * @lnum: LEB number to garbage collect
1117  *
1118  * LPT garbage collection is used only for the "big" LPT model
1119  * (c->big_lpt == 1).  Garbage collection simply involves marking all the nodes
1120  * in the LEB being garbage-collected as dirty.  The dirty nodes are written
1121  * next commit, after which the LEB is free to be reused.
1122  *
1123  * This function returns %0 on success and a negative error code on failure.
1124  */
1125 static int lpt_gc_lnum(struct ubifs_info *c, int lnum)
1126 {
1127 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1128 	void *buf = c->lpt_buf;
1129 
1130 	dbg_lp("LEB %d", lnum);
1131 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1132 	if (err) {
1133 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1134 		return err;
1135 	}
1136 	while (1) {
1137 		if (!is_a_node(c, buf, len)) {
1138 			int pad_len;
1139 
1140 			pad_len = get_pad_len(c, buf, len);
1141 			if (pad_len) {
1142 				buf += pad_len;
1143 				len -= pad_len;
1144 				continue;
1145 			}
1146 			return 0;
1147 		}
1148 		node_type = get_lpt_node_type(c, buf, &node_num);
1149 		node_len = get_lpt_node_len(c, node_type);
1150 		offs = c->leb_size - len;
1151 		ubifs_assert(node_len != 0);
1152 		mutex_lock(&c->lp_mutex);
1153 		err = make_node_dirty(c, node_type, node_num, lnum, offs);
1154 		mutex_unlock(&c->lp_mutex);
1155 		if (err)
1156 			return err;
1157 		buf += node_len;
1158 		len -= node_len;
1159 	}
1160 	return 0;
1161 }
1162 
1163 /**
1164  * lpt_gc - LPT garbage collection.
1165  * @c: UBIFS file-system description object
1166  *
1167  * Select a LPT LEB for LPT garbage collection and call 'lpt_gc_lnum()'.
1168  * Returns %0 on success and a negative error code on failure.
1169  */
1170 static int lpt_gc(struct ubifs_info *c)
1171 {
1172 	int i, lnum = -1, dirty = 0;
1173 
1174 	mutex_lock(&c->lp_mutex);
1175 	for (i = 0; i < c->lpt_lebs; i++) {
1176 		ubifs_assert(!c->ltab[i].tgc);
1177 		if (i + c->lpt_first == c->nhead_lnum ||
1178 		    c->ltab[i].free + c->ltab[i].dirty == c->leb_size)
1179 			continue;
1180 		if (c->ltab[i].dirty > dirty) {
1181 			dirty = c->ltab[i].dirty;
1182 			lnum = i + c->lpt_first;
1183 		}
1184 	}
1185 	mutex_unlock(&c->lp_mutex);
1186 	if (lnum == -1)
1187 		return -ENOSPC;
1188 	return lpt_gc_lnum(c, lnum);
1189 }
1190 
1191 /**
1192  * ubifs_lpt_start_commit - UBIFS commit starts.
1193  * @c: the UBIFS file-system description object
1194  *
1195  * This function has to be called when UBIFS starts the commit operation.
1196  * This function "freezes" all currently dirty LEB properties and does not
1197  * change them anymore. Further changes are saved and tracked separately
1198  * because they are not part of this commit. This function returns zero in case
1199  * of success and a negative error code in case of failure.
1200  */
1201 int ubifs_lpt_start_commit(struct ubifs_info *c)
1202 {
1203 	int err, cnt;
1204 
1205 	dbg_lp("");
1206 
1207 	mutex_lock(&c->lp_mutex);
1208 	err = dbg_chk_lpt_free_spc(c);
1209 	if (err)
1210 		goto out;
1211 	err = dbg_check_ltab(c);
1212 	if (err)
1213 		goto out;
1214 
1215 	if (c->check_lpt_free) {
1216 		/*
1217 		 * We ensure there is enough free space in
1218 		 * ubifs_lpt_post_commit() by marking nodes dirty. That
1219 		 * information is lost when we unmount, so we also need
1220 		 * to check free space once after mounting also.
1221 		 */
1222 		c->check_lpt_free = 0;
1223 		while (need_write_all(c)) {
1224 			mutex_unlock(&c->lp_mutex);
1225 			err = lpt_gc(c);
1226 			if (err)
1227 				return err;
1228 			mutex_lock(&c->lp_mutex);
1229 		}
1230 	}
1231 
1232 	lpt_tgc_start(c);
1233 
1234 	if (!c->dirty_pn_cnt) {
1235 		dbg_cmt("no cnodes to commit");
1236 		err = 0;
1237 		goto out;
1238 	}
1239 
1240 	if (!c->big_lpt && need_write_all(c)) {
1241 		/* If needed, write everything */
1242 		err = make_tree_dirty(c);
1243 		if (err)
1244 			goto out;
1245 		lpt_tgc_start(c);
1246 	}
1247 
1248 	if (c->big_lpt)
1249 		populate_lsave(c);
1250 
1251 	cnt = get_cnodes_to_commit(c);
1252 	ubifs_assert(cnt != 0);
1253 
1254 	err = layout_cnodes(c);
1255 	if (err)
1256 		goto out;
1257 
1258 	/* Copy the LPT's own lprops for end commit to write */
1259 	memcpy(c->ltab_cmt, c->ltab,
1260 	       sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1261 	c->lpt_drty_flgs &= ~(LTAB_DIRTY | LSAVE_DIRTY);
1262 
1263 out:
1264 	mutex_unlock(&c->lp_mutex);
1265 	return err;
1266 }
1267 
1268 /**
1269  * free_obsolete_cnodes - free obsolete cnodes for commit end.
1270  * @c: UBIFS file-system description object
1271  */
1272 static void free_obsolete_cnodes(struct ubifs_info *c)
1273 {
1274 	struct ubifs_cnode *cnode, *cnext;
1275 
1276 	cnext = c->lpt_cnext;
1277 	if (!cnext)
1278 		return;
1279 	do {
1280 		cnode = cnext;
1281 		cnext = cnode->cnext;
1282 		if (test_bit(OBSOLETE_CNODE, &cnode->flags))
1283 			kfree(cnode);
1284 		else
1285 			cnode->cnext = NULL;
1286 	} while (cnext != c->lpt_cnext);
1287 	c->lpt_cnext = NULL;
1288 }
1289 
1290 /**
1291  * ubifs_lpt_end_commit - finish the commit operation.
1292  * @c: the UBIFS file-system description object
1293  *
1294  * This function has to be called when the commit operation finishes. It
1295  * flushes the changes which were "frozen" by 'ubifs_lprops_start_commit()' to
1296  * the media. Returns zero in case of success and a negative error code in case
1297  * of failure.
1298  */
1299 int ubifs_lpt_end_commit(struct ubifs_info *c)
1300 {
1301 	int err;
1302 
1303 	dbg_lp("");
1304 
1305 	if (!c->lpt_cnext)
1306 		return 0;
1307 
1308 	err = write_cnodes(c);
1309 	if (err)
1310 		return err;
1311 
1312 	mutex_lock(&c->lp_mutex);
1313 	free_obsolete_cnodes(c);
1314 	mutex_unlock(&c->lp_mutex);
1315 
1316 	return 0;
1317 }
1318 
1319 /**
1320  * ubifs_lpt_post_commit - post commit LPT trivial GC and LPT GC.
1321  * @c: UBIFS file-system description object
1322  *
1323  * LPT trivial GC is completed after a commit. Also LPT GC is done after a
1324  * commit for the "big" LPT model.
1325  */
1326 int ubifs_lpt_post_commit(struct ubifs_info *c)
1327 {
1328 	int err;
1329 
1330 	mutex_lock(&c->lp_mutex);
1331 	err = lpt_tgc_end(c);
1332 	if (err)
1333 		goto out;
1334 	if (c->big_lpt)
1335 		while (need_write_all(c)) {
1336 			mutex_unlock(&c->lp_mutex);
1337 			err = lpt_gc(c);
1338 			if (err)
1339 				return err;
1340 			mutex_lock(&c->lp_mutex);
1341 		}
1342 out:
1343 	mutex_unlock(&c->lp_mutex);
1344 	return err;
1345 }
1346 
1347 /**
1348  * first_nnode - find the first nnode in memory.
1349  * @c: UBIFS file-system description object
1350  * @hght: height of tree where nnode found is returned here
1351  *
1352  * This function returns a pointer to the nnode found or %NULL if no nnode is
1353  * found. This function is a helper to 'ubifs_lpt_free()'.
1354  */
1355 static struct ubifs_nnode *first_nnode(struct ubifs_info *c, int *hght)
1356 {
1357 	struct ubifs_nnode *nnode;
1358 	int h, i, found;
1359 
1360 	nnode = c->nroot;
1361 	*hght = 0;
1362 	if (!nnode)
1363 		return NULL;
1364 	for (h = 1; h < c->lpt_hght; h++) {
1365 		found = 0;
1366 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1367 			if (nnode->nbranch[i].nnode) {
1368 				found = 1;
1369 				nnode = nnode->nbranch[i].nnode;
1370 				*hght = h;
1371 				break;
1372 			}
1373 		}
1374 		if (!found)
1375 			break;
1376 	}
1377 	return nnode;
1378 }
1379 
1380 /**
1381  * next_nnode - find the next nnode in memory.
1382  * @c: UBIFS file-system description object
1383  * @nnode: nnode from which to start.
1384  * @hght: height of tree where nnode is, is passed and returned here
1385  *
1386  * This function returns a pointer to the nnode found or %NULL if no nnode is
1387  * found. This function is a helper to 'ubifs_lpt_free()'.
1388  */
1389 static struct ubifs_nnode *next_nnode(struct ubifs_info *c,
1390 				      struct ubifs_nnode *nnode, int *hght)
1391 {
1392 	struct ubifs_nnode *parent;
1393 	int iip, h, i, found;
1394 
1395 	parent = nnode->parent;
1396 	if (!parent)
1397 		return NULL;
1398 	if (nnode->iip == UBIFS_LPT_FANOUT - 1) {
1399 		*hght -= 1;
1400 		return parent;
1401 	}
1402 	for (iip = nnode->iip + 1; iip < UBIFS_LPT_FANOUT; iip++) {
1403 		nnode = parent->nbranch[iip].nnode;
1404 		if (nnode)
1405 			break;
1406 	}
1407 	if (!nnode) {
1408 		*hght -= 1;
1409 		return parent;
1410 	}
1411 	for (h = *hght + 1; h < c->lpt_hght; h++) {
1412 		found = 0;
1413 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1414 			if (nnode->nbranch[i].nnode) {
1415 				found = 1;
1416 				nnode = nnode->nbranch[i].nnode;
1417 				*hght = h;
1418 				break;
1419 			}
1420 		}
1421 		if (!found)
1422 			break;
1423 	}
1424 	return nnode;
1425 }
1426 
1427 /**
1428  * ubifs_lpt_free - free resources owned by the LPT.
1429  * @c: UBIFS file-system description object
1430  * @wr_only: free only resources used for writing
1431  */
1432 void ubifs_lpt_free(struct ubifs_info *c, int wr_only)
1433 {
1434 	struct ubifs_nnode *nnode;
1435 	int i, hght;
1436 
1437 	/* Free write-only things first */
1438 
1439 	free_obsolete_cnodes(c); /* Leftover from a failed commit */
1440 
1441 	vfree(c->ltab_cmt);
1442 	c->ltab_cmt = NULL;
1443 	vfree(c->lpt_buf);
1444 	c->lpt_buf = NULL;
1445 	kfree(c->lsave);
1446 	c->lsave = NULL;
1447 
1448 	if (wr_only)
1449 		return;
1450 
1451 	/* Now free the rest */
1452 
1453 	nnode = first_nnode(c, &hght);
1454 	while (nnode) {
1455 		for (i = 0; i < UBIFS_LPT_FANOUT; i++)
1456 			kfree(nnode->nbranch[i].nnode);
1457 		nnode = next_nnode(c, nnode, &hght);
1458 	}
1459 	for (i = 0; i < LPROPS_HEAP_CNT; i++)
1460 		kfree(c->lpt_heap[i].arr);
1461 	kfree(c->dirty_idx.arr);
1462 	kfree(c->nroot);
1463 	vfree(c->ltab);
1464 	kfree(c->lpt_nod_buf);
1465 }
1466 
1467 #ifdef CONFIG_UBIFS_FS_DEBUG
1468 
1469 /**
1470  * dbg_is_all_ff - determine if a buffer contains only 0xFF bytes.
1471  * @buf: buffer
1472  * @len: buffer length
1473  */
1474 static int dbg_is_all_ff(uint8_t *buf, int len)
1475 {
1476 	int i;
1477 
1478 	for (i = 0; i < len; i++)
1479 		if (buf[i] != 0xff)
1480 			return 0;
1481 	return 1;
1482 }
1483 
1484 /**
1485  * dbg_is_nnode_dirty - determine if a nnode is dirty.
1486  * @c: the UBIFS file-system description object
1487  * @lnum: LEB number where nnode was written
1488  * @offs: offset where nnode was written
1489  */
1490 static int dbg_is_nnode_dirty(struct ubifs_info *c, int lnum, int offs)
1491 {
1492 	struct ubifs_nnode *nnode;
1493 	int hght;
1494 
1495 	/* Entire tree is in memory so first_nnode / next_nnode are OK */
1496 	nnode = first_nnode(c, &hght);
1497 	for (; nnode; nnode = next_nnode(c, nnode, &hght)) {
1498 		struct ubifs_nbranch *branch;
1499 
1500 		cond_resched();
1501 		if (nnode->parent) {
1502 			branch = &nnode->parent->nbranch[nnode->iip];
1503 			if (branch->lnum != lnum || branch->offs != offs)
1504 				continue;
1505 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1506 				return 1;
1507 			return 0;
1508 		} else {
1509 			if (c->lpt_lnum != lnum || c->lpt_offs != offs)
1510 				continue;
1511 			if (test_bit(DIRTY_CNODE, &nnode->flags))
1512 				return 1;
1513 			return 0;
1514 		}
1515 	}
1516 	return 1;
1517 }
1518 
1519 /**
1520  * dbg_is_pnode_dirty - determine if a pnode is dirty.
1521  * @c: the UBIFS file-system description object
1522  * @lnum: LEB number where pnode was written
1523  * @offs: offset where pnode was written
1524  */
1525 static int dbg_is_pnode_dirty(struct ubifs_info *c, int lnum, int offs)
1526 {
1527 	int i, cnt;
1528 
1529 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1530 	for (i = 0; i < cnt; i++) {
1531 		struct ubifs_pnode *pnode;
1532 		struct ubifs_nbranch *branch;
1533 
1534 		cond_resched();
1535 		pnode = pnode_lookup(c, i);
1536 		if (IS_ERR(pnode))
1537 			return PTR_ERR(pnode);
1538 		branch = &pnode->parent->nbranch[pnode->iip];
1539 		if (branch->lnum != lnum || branch->offs != offs)
1540 			continue;
1541 		if (test_bit(DIRTY_CNODE, &pnode->flags))
1542 			return 1;
1543 		return 0;
1544 	}
1545 	return 1;
1546 }
1547 
1548 /**
1549  * dbg_is_ltab_dirty - determine if a ltab node is dirty.
1550  * @c: the UBIFS file-system description object
1551  * @lnum: LEB number where ltab node was written
1552  * @offs: offset where ltab node was written
1553  */
1554 static int dbg_is_ltab_dirty(struct ubifs_info *c, int lnum, int offs)
1555 {
1556 	if (lnum != c->ltab_lnum || offs != c->ltab_offs)
1557 		return 1;
1558 	return (c->lpt_drty_flgs & LTAB_DIRTY) != 0;
1559 }
1560 
1561 /**
1562  * dbg_is_lsave_dirty - determine if a lsave node is dirty.
1563  * @c: the UBIFS file-system description object
1564  * @lnum: LEB number where lsave node was written
1565  * @offs: offset where lsave node was written
1566  */
1567 static int dbg_is_lsave_dirty(struct ubifs_info *c, int lnum, int offs)
1568 {
1569 	if (lnum != c->lsave_lnum || offs != c->lsave_offs)
1570 		return 1;
1571 	return (c->lpt_drty_flgs & LSAVE_DIRTY) != 0;
1572 }
1573 
1574 /**
1575  * dbg_is_node_dirty - determine if a node is dirty.
1576  * @c: the UBIFS file-system description object
1577  * @node_type: node type
1578  * @lnum: LEB number where node was written
1579  * @offs: offset where node was written
1580  */
1581 static int dbg_is_node_dirty(struct ubifs_info *c, int node_type, int lnum,
1582 			     int offs)
1583 {
1584 	switch (node_type) {
1585 	case UBIFS_LPT_NNODE:
1586 		return dbg_is_nnode_dirty(c, lnum, offs);
1587 	case UBIFS_LPT_PNODE:
1588 		return dbg_is_pnode_dirty(c, lnum, offs);
1589 	case UBIFS_LPT_LTAB:
1590 		return dbg_is_ltab_dirty(c, lnum, offs);
1591 	case UBIFS_LPT_LSAVE:
1592 		return dbg_is_lsave_dirty(c, lnum, offs);
1593 	}
1594 	return 1;
1595 }
1596 
1597 /**
1598  * dbg_check_ltab_lnum - check the ltab for a LPT LEB number.
1599  * @c: the UBIFS file-system description object
1600  * @lnum: LEB number where node was written
1601  * @offs: offset where node was written
1602  *
1603  * This function returns %0 on success and a negative error code on failure.
1604  */
1605 static int dbg_check_ltab_lnum(struct ubifs_info *c, int lnum)
1606 {
1607 	int err, len = c->leb_size, dirty = 0, node_type, node_num, node_len;
1608 	int ret;
1609 	void *buf = c->dbg->buf;
1610 
1611 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1612 		return 0;
1613 
1614 	dbg_lp("LEB %d", lnum);
1615 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1616 	if (err) {
1617 		dbg_msg("ubi_read failed, LEB %d, error %d", lnum, err);
1618 		return err;
1619 	}
1620 	while (1) {
1621 		if (!is_a_node(c, buf, len)) {
1622 			int i, pad_len;
1623 
1624 			pad_len = get_pad_len(c, buf, len);
1625 			if (pad_len) {
1626 				buf += pad_len;
1627 				len -= pad_len;
1628 				dirty += pad_len;
1629 				continue;
1630 			}
1631 			if (!dbg_is_all_ff(buf, len)) {
1632 				dbg_msg("invalid empty space in LEB %d at %d",
1633 					lnum, c->leb_size - len);
1634 				err = -EINVAL;
1635 			}
1636 			i = lnum - c->lpt_first;
1637 			if (len != c->ltab[i].free) {
1638 				dbg_msg("invalid free space in LEB %d "
1639 					"(free %d, expected %d)",
1640 					lnum, len, c->ltab[i].free);
1641 				err = -EINVAL;
1642 			}
1643 			if (dirty != c->ltab[i].dirty) {
1644 				dbg_msg("invalid dirty space in LEB %d "
1645 					"(dirty %d, expected %d)",
1646 					lnum, dirty, c->ltab[i].dirty);
1647 				err = -EINVAL;
1648 			}
1649 			return err;
1650 		}
1651 		node_type = get_lpt_node_type(c, buf, &node_num);
1652 		node_len = get_lpt_node_len(c, node_type);
1653 		ret = dbg_is_node_dirty(c, node_type, lnum, c->leb_size - len);
1654 		if (ret == 1)
1655 			dirty += node_len;
1656 		buf += node_len;
1657 		len -= node_len;
1658 	}
1659 }
1660 
1661 /**
1662  * dbg_check_ltab - check the free and dirty space in the ltab.
1663  * @c: the UBIFS file-system description object
1664  *
1665  * This function returns %0 on success and a negative error code on failure.
1666  */
1667 int dbg_check_ltab(struct ubifs_info *c)
1668 {
1669 	int lnum, err, i, cnt;
1670 
1671 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1672 		return 0;
1673 
1674 	/* Bring the entire tree into memory */
1675 	cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
1676 	for (i = 0; i < cnt; i++) {
1677 		struct ubifs_pnode *pnode;
1678 
1679 		pnode = pnode_lookup(c, i);
1680 		if (IS_ERR(pnode))
1681 			return PTR_ERR(pnode);
1682 		cond_resched();
1683 	}
1684 
1685 	/* Check nodes */
1686 	err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)c->nroot, 0, 0);
1687 	if (err)
1688 		return err;
1689 
1690 	/* Check each LEB */
1691 	for (lnum = c->lpt_first; lnum <= c->lpt_last; lnum++) {
1692 		err = dbg_check_ltab_lnum(c, lnum);
1693 		if (err) {
1694 			dbg_err("failed at LEB %d", lnum);
1695 			return err;
1696 		}
1697 	}
1698 
1699 	dbg_lp("succeeded");
1700 	return 0;
1701 }
1702 
1703 /**
1704  * dbg_chk_lpt_free_spc - check LPT free space is enough to write entire LPT.
1705  * @c: the UBIFS file-system description object
1706  *
1707  * This function returns %0 on success and a negative error code on failure.
1708  */
1709 int dbg_chk_lpt_free_spc(struct ubifs_info *c)
1710 {
1711 	long long free = 0;
1712 	int i;
1713 
1714 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1715 		return 0;
1716 
1717 	for (i = 0; i < c->lpt_lebs; i++) {
1718 		if (c->ltab[i].tgc || c->ltab[i].cmt)
1719 			continue;
1720 		if (i + c->lpt_first == c->nhead_lnum)
1721 			free += c->leb_size - c->nhead_offs;
1722 		else if (c->ltab[i].free == c->leb_size)
1723 			free += c->leb_size;
1724 	}
1725 	if (free < c->lpt_sz) {
1726 		dbg_err("LPT space error: free %lld lpt_sz %lld",
1727 			free, c->lpt_sz);
1728 		dbg_dump_lpt_info(c);
1729 		dbg_dump_lpt_lebs(c);
1730 		dump_stack();
1731 		return -EINVAL;
1732 	}
1733 	return 0;
1734 }
1735 
1736 /**
1737  * dbg_chk_lpt_sz - check LPT does not write more than LPT size.
1738  * @c: the UBIFS file-system description object
1739  * @action: action
1740  * @len: length written
1741  *
1742  * This function returns %0 on success and a negative error code on failure.
1743  */
1744 int dbg_chk_lpt_sz(struct ubifs_info *c, int action, int len)
1745 {
1746 	struct ubifs_debug_info *d = c->dbg;
1747 	long long chk_lpt_sz, lpt_sz;
1748 	int err = 0;
1749 
1750 	if (!(ubifs_chk_flags & UBIFS_CHK_LPROPS))
1751 		return 0;
1752 
1753 	switch (action) {
1754 	case 0:
1755 		d->chk_lpt_sz = 0;
1756 		d->chk_lpt_sz2 = 0;
1757 		d->chk_lpt_lebs = 0;
1758 		d->chk_lpt_wastage = 0;
1759 		if (c->dirty_pn_cnt > c->pnode_cnt) {
1760 			dbg_err("dirty pnodes %d exceed max %d",
1761 				c->dirty_pn_cnt, c->pnode_cnt);
1762 			err = -EINVAL;
1763 		}
1764 		if (c->dirty_nn_cnt > c->nnode_cnt) {
1765 			dbg_err("dirty nnodes %d exceed max %d",
1766 				c->dirty_nn_cnt, c->nnode_cnt);
1767 			err = -EINVAL;
1768 		}
1769 		return err;
1770 	case 1:
1771 		d->chk_lpt_sz += len;
1772 		return 0;
1773 	case 2:
1774 		d->chk_lpt_sz += len;
1775 		d->chk_lpt_wastage += len;
1776 		d->chk_lpt_lebs += 1;
1777 		return 0;
1778 	case 3:
1779 		chk_lpt_sz = c->leb_size;
1780 		chk_lpt_sz *= d->chk_lpt_lebs;
1781 		chk_lpt_sz += len - c->nhead_offs;
1782 		if (d->chk_lpt_sz != chk_lpt_sz) {
1783 			dbg_err("LPT wrote %lld but space used was %lld",
1784 				d->chk_lpt_sz, chk_lpt_sz);
1785 			err = -EINVAL;
1786 		}
1787 		if (d->chk_lpt_sz > c->lpt_sz) {
1788 			dbg_err("LPT wrote %lld but lpt_sz is %lld",
1789 				d->chk_lpt_sz, c->lpt_sz);
1790 			err = -EINVAL;
1791 		}
1792 		if (d->chk_lpt_sz2 && d->chk_lpt_sz != d->chk_lpt_sz2) {
1793 			dbg_err("LPT layout size %lld but wrote %lld",
1794 				d->chk_lpt_sz, d->chk_lpt_sz2);
1795 			err = -EINVAL;
1796 		}
1797 		if (d->chk_lpt_sz2 && d->new_nhead_offs != len) {
1798 			dbg_err("LPT new nhead offs: expected %d was %d",
1799 				d->new_nhead_offs, len);
1800 			err = -EINVAL;
1801 		}
1802 		lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
1803 		lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
1804 		lpt_sz += c->ltab_sz;
1805 		if (c->big_lpt)
1806 			lpt_sz += c->lsave_sz;
1807 		if (d->chk_lpt_sz - d->chk_lpt_wastage > lpt_sz) {
1808 			dbg_err("LPT chk_lpt_sz %lld + waste %lld exceeds %lld",
1809 				d->chk_lpt_sz, d->chk_lpt_wastage, lpt_sz);
1810 			err = -EINVAL;
1811 		}
1812 		if (err) {
1813 			dbg_dump_lpt_info(c);
1814 			dbg_dump_lpt_lebs(c);
1815 			dump_stack();
1816 		}
1817 		d->chk_lpt_sz2 = d->chk_lpt_sz;
1818 		d->chk_lpt_sz = 0;
1819 		d->chk_lpt_wastage = 0;
1820 		d->chk_lpt_lebs = 0;
1821 		d->new_nhead_offs = len;
1822 		return err;
1823 	case 4:
1824 		d->chk_lpt_sz += len;
1825 		d->chk_lpt_wastage += len;
1826 		return 0;
1827 	default:
1828 		return -EINVAL;
1829 	}
1830 }
1831 
1832 /**
1833  * dbg_dump_lpt_leb - dump an LPT LEB.
1834  * @c: UBIFS file-system description object
1835  * @lnum: LEB number to dump
1836  *
1837  * This function dumps an LEB from LPT area. Nodes in this area are very
1838  * different to nodes in the main area (e.g., they do not have common headers,
1839  * they do not have 8-byte alignments, etc), so we have a separate function to
1840  * dump LPT area LEBs. Note, LPT has to be locked by the caller.
1841  */
1842 static void dump_lpt_leb(const struct ubifs_info *c, int lnum)
1843 {
1844 	int err, len = c->leb_size, node_type, node_num, node_len, offs;
1845 	void *buf = c->dbg->buf;
1846 
1847 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
1848 	       current->pid, lnum);
1849 	err = ubi_read(c->ubi, lnum, buf, 0, c->leb_size);
1850 	if (err) {
1851 		ubifs_err("cannot read LEB %d, error %d", lnum, err);
1852 		return;
1853 	}
1854 	while (1) {
1855 		offs = c->leb_size - len;
1856 		if (!is_a_node(c, buf, len)) {
1857 			int pad_len;
1858 
1859 			pad_len = get_pad_len(c, buf, len);
1860 			if (pad_len) {
1861 				printk(KERN_DEBUG "LEB %d:%d, pad %d bytes\n",
1862 				       lnum, offs, pad_len);
1863 				buf += pad_len;
1864 				len -= pad_len;
1865 				continue;
1866 			}
1867 			if (len)
1868 				printk(KERN_DEBUG "LEB %d:%d, free %d bytes\n",
1869 				       lnum, offs, len);
1870 			break;
1871 		}
1872 
1873 		node_type = get_lpt_node_type(c, buf, &node_num);
1874 		switch (node_type) {
1875 		case UBIFS_LPT_PNODE:
1876 		{
1877 			node_len = c->pnode_sz;
1878 			if (c->big_lpt)
1879 				printk(KERN_DEBUG "LEB %d:%d, pnode num %d\n",
1880 				       lnum, offs, node_num);
1881 			else
1882 				printk(KERN_DEBUG "LEB %d:%d, pnode\n",
1883 				       lnum, offs);
1884 			break;
1885 		}
1886 		case UBIFS_LPT_NNODE:
1887 		{
1888 			int i;
1889 			struct ubifs_nnode nnode;
1890 
1891 			node_len = c->nnode_sz;
1892 			if (c->big_lpt)
1893 				printk(KERN_DEBUG "LEB %d:%d, nnode num %d, ",
1894 				       lnum, offs, node_num);
1895 			else
1896 				printk(KERN_DEBUG "LEB %d:%d, nnode, ",
1897 				       lnum, offs);
1898 			err = ubifs_unpack_nnode(c, buf, &nnode);
1899 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1900 				printk("%d:%d", nnode.nbranch[i].lnum,
1901 				       nnode.nbranch[i].offs);
1902 				if (i != UBIFS_LPT_FANOUT - 1)
1903 					printk(", ");
1904 			}
1905 			printk("\n");
1906 			break;
1907 		}
1908 		case UBIFS_LPT_LTAB:
1909 			node_len = c->ltab_sz;
1910 			printk(KERN_DEBUG "LEB %d:%d, ltab\n",
1911 			       lnum, offs);
1912 			break;
1913 		case UBIFS_LPT_LSAVE:
1914 			node_len = c->lsave_sz;
1915 			printk(KERN_DEBUG "LEB %d:%d, lsave len\n", lnum, offs);
1916 			break;
1917 		default:
1918 			ubifs_err("LPT node type %d not recognized", node_type);
1919 			return;
1920 		}
1921 
1922 		buf += node_len;
1923 		len -= node_len;
1924 	}
1925 
1926 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
1927 	       current->pid, lnum);
1928 }
1929 
1930 /**
1931  * dbg_dump_lpt_lebs - dump LPT lebs.
1932  * @c: UBIFS file-system description object
1933  *
1934  * This function dumps all LPT LEBs. The caller has to make sure the LPT is
1935  * locked.
1936  */
1937 void dbg_dump_lpt_lebs(const struct ubifs_info *c)
1938 {
1939 	int i;
1940 
1941 	printk(KERN_DEBUG "(pid %d) start dumping all LPT LEBs\n",
1942 	       current->pid);
1943 	for (i = 0; i < c->lpt_lebs; i++)
1944 		dump_lpt_leb(c, i + c->lpt_first);
1945 	printk(KERN_DEBUG "(pid %d) finish dumping all LPT LEBs\n",
1946 	       current->pid);
1947 }
1948 
1949 #endif /* CONFIG_UBIFS_FS_DEBUG */
1950