xref: /linux/fs/ubifs/lpt.c (revision bf80eef2212a1e8451df13b52533f4bc31bb4f8e)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Adrian Hunter
8  *          Artem Bityutskiy (Битюцкий Артём)
9  */
10 
11 /*
12  * This file implements the LEB properties tree (LPT) area. The LPT area
13  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
14  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
15  * between the log and the orphan area.
16  *
17  * The LPT area is like a miniature self-contained file system. It is required
18  * that it never runs out of space, is fast to access and update, and scales
19  * logarithmically. The LEB properties tree is implemented as a wandering tree
20  * much like the TNC, and the LPT area has its own garbage collection.
21  *
22  * The LPT has two slightly different forms called the "small model" and the
23  * "big model". The small model is used when the entire LEB properties table
24  * can be written into a single eraseblock. In that case, garbage collection
25  * consists of just writing the whole table, which therefore makes all other
26  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
27  * selected for garbage collection, which consists of marking the clean nodes in
28  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
29  * the case of the big model, a table of LEB numbers is saved so that the entire
30  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
31  * mounted.
32  */
33 
34 #include "ubifs.h"
35 #include <linux/crc16.h>
36 #include <linux/math64.h>
37 #include <linux/slab.h>
38 
39 /**
40  * do_calc_lpt_geom - calculate sizes for the LPT area.
41  * @c: the UBIFS file-system description object
42  *
43  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
44  * properties of the flash and whether LPT is "big" (c->big_lpt).
45  */
46 static void do_calc_lpt_geom(struct ubifs_info *c)
47 {
48 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
49 	long long sz, tot_wastage;
50 
51 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
52 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
53 
54 	c->lpt_hght = 1;
55 	n = UBIFS_LPT_FANOUT;
56 	while (n < max_pnode_cnt) {
57 		c->lpt_hght += 1;
58 		n <<= UBIFS_LPT_FANOUT_SHIFT;
59 	}
60 
61 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
62 
63 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
64 	c->nnode_cnt = n;
65 	for (i = 1; i < c->lpt_hght; i++) {
66 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
67 		c->nnode_cnt += n;
68 	}
69 
70 	c->space_bits = fls(c->leb_size) - 3;
71 	c->lpt_lnum_bits = fls(c->lpt_lebs);
72 	c->lpt_offs_bits = fls(c->leb_size - 1);
73 	c->lpt_spc_bits = fls(c->leb_size);
74 
75 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
76 	c->pcnt_bits = fls(n - 1);
77 
78 	c->lnum_bits = fls(c->max_leb_cnt - 1);
79 
80 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
81 	       (c->big_lpt ? c->pcnt_bits : 0) +
82 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
83 	c->pnode_sz = (bits + 7) / 8;
84 
85 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
86 	       (c->big_lpt ? c->pcnt_bits : 0) +
87 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
88 	c->nnode_sz = (bits + 7) / 8;
89 
90 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
91 	       c->lpt_lebs * c->lpt_spc_bits * 2;
92 	c->ltab_sz = (bits + 7) / 8;
93 
94 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
95 	       c->lnum_bits * c->lsave_cnt;
96 	c->lsave_sz = (bits + 7) / 8;
97 
98 	/* Calculate the minimum LPT size */
99 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
100 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
101 	c->lpt_sz += c->ltab_sz;
102 	if (c->big_lpt)
103 		c->lpt_sz += c->lsave_sz;
104 
105 	/* Add wastage */
106 	sz = c->lpt_sz;
107 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
108 	sz += per_leb_wastage;
109 	tot_wastage = per_leb_wastage;
110 	while (sz > c->leb_size) {
111 		sz += per_leb_wastage;
112 		sz -= c->leb_size;
113 		tot_wastage += per_leb_wastage;
114 	}
115 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
116 	c->lpt_sz += tot_wastage;
117 }
118 
119 /**
120  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
121  * @c: the UBIFS file-system description object
122  *
123  * This function returns %0 on success and a negative error code on failure.
124  */
125 int ubifs_calc_lpt_geom(struct ubifs_info *c)
126 {
127 	int lebs_needed;
128 	long long sz;
129 
130 	do_calc_lpt_geom(c);
131 
132 	/* Verify that lpt_lebs is big enough */
133 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
134 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
135 	if (lebs_needed > c->lpt_lebs) {
136 		ubifs_err(c, "too few LPT LEBs");
137 		return -EINVAL;
138 	}
139 
140 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
141 	if (c->ltab_sz > c->leb_size) {
142 		ubifs_err(c, "LPT ltab too big");
143 		return -EINVAL;
144 	}
145 
146 	c->check_lpt_free = c->big_lpt;
147 	return 0;
148 }
149 
150 /**
151  * calc_dflt_lpt_geom - calculate default LPT geometry.
152  * @c: the UBIFS file-system description object
153  * @main_lebs: number of main area LEBs is passed and returned here
154  * @big_lpt: whether the LPT area is "big" is returned here
155  *
156  * The size of the LPT area depends on parameters that themselves are dependent
157  * on the size of the LPT area. This function, successively recalculates the LPT
158  * area geometry until the parameters and resultant geometry are consistent.
159  *
160  * This function returns %0 on success and a negative error code on failure.
161  */
162 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
163 			      int *big_lpt)
164 {
165 	int i, lebs_needed;
166 	long long sz;
167 
168 	/* Start by assuming the minimum number of LPT LEBs */
169 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
170 	c->main_lebs = *main_lebs - c->lpt_lebs;
171 	if (c->main_lebs <= 0)
172 		return -EINVAL;
173 
174 	/* And assume we will use the small LPT model */
175 	c->big_lpt = 0;
176 
177 	/*
178 	 * Calculate the geometry based on assumptions above and then see if it
179 	 * makes sense
180 	 */
181 	do_calc_lpt_geom(c);
182 
183 	/* Small LPT model must have lpt_sz < leb_size */
184 	if (c->lpt_sz > c->leb_size) {
185 		/* Nope, so try again using big LPT model */
186 		c->big_lpt = 1;
187 		do_calc_lpt_geom(c);
188 	}
189 
190 	/* Now check there are enough LPT LEBs */
191 	for (i = 0; i < 64 ; i++) {
192 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
193 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
194 		if (lebs_needed > c->lpt_lebs) {
195 			/* Not enough LPT LEBs so try again with more */
196 			c->lpt_lebs = lebs_needed;
197 			c->main_lebs = *main_lebs - c->lpt_lebs;
198 			if (c->main_lebs <= 0)
199 				return -EINVAL;
200 			do_calc_lpt_geom(c);
201 			continue;
202 		}
203 		if (c->ltab_sz > c->leb_size) {
204 			ubifs_err(c, "LPT ltab too big");
205 			return -EINVAL;
206 		}
207 		*main_lebs = c->main_lebs;
208 		*big_lpt = c->big_lpt;
209 		return 0;
210 	}
211 	return -EINVAL;
212 }
213 
214 /**
215  * pack_bits - pack bit fields end-to-end.
216  * @c: UBIFS file-system description object
217  * @addr: address at which to pack (passed and next address returned)
218  * @pos: bit position at which to pack (passed and next position returned)
219  * @val: value to pack
220  * @nrbits: number of bits of value to pack (1-32)
221  */
222 static void pack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, uint32_t val, int nrbits)
223 {
224 	uint8_t *p = *addr;
225 	int b = *pos;
226 
227 	ubifs_assert(c, nrbits > 0);
228 	ubifs_assert(c, nrbits <= 32);
229 	ubifs_assert(c, *pos >= 0);
230 	ubifs_assert(c, *pos < 8);
231 	ubifs_assert(c, (val >> nrbits) == 0 || nrbits == 32);
232 	if (b) {
233 		*p |= ((uint8_t)val) << b;
234 		nrbits += b;
235 		if (nrbits > 8) {
236 			*++p = (uint8_t)(val >>= (8 - b));
237 			if (nrbits > 16) {
238 				*++p = (uint8_t)(val >>= 8);
239 				if (nrbits > 24) {
240 					*++p = (uint8_t)(val >>= 8);
241 					if (nrbits > 32)
242 						*++p = (uint8_t)(val >>= 8);
243 				}
244 			}
245 		}
246 	} else {
247 		*p = (uint8_t)val;
248 		if (nrbits > 8) {
249 			*++p = (uint8_t)(val >>= 8);
250 			if (nrbits > 16) {
251 				*++p = (uint8_t)(val >>= 8);
252 				if (nrbits > 24)
253 					*++p = (uint8_t)(val >>= 8);
254 			}
255 		}
256 	}
257 	b = nrbits & 7;
258 	if (b == 0)
259 		p++;
260 	*addr = p;
261 	*pos = b;
262 }
263 
264 /**
265  * ubifs_unpack_bits - unpack bit fields.
266  * @c: UBIFS file-system description object
267  * @addr: address at which to unpack (passed and next address returned)
268  * @pos: bit position at which to unpack (passed and next position returned)
269  * @nrbits: number of bits of value to unpack (1-32)
270  *
271  * This functions returns the value unpacked.
272  */
273 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits)
274 {
275 	const int k = 32 - nrbits;
276 	uint8_t *p = *addr;
277 	int b = *pos;
278 	uint32_t val;
279 	const int bytes = (nrbits + b + 7) >> 3;
280 
281 	ubifs_assert(c, nrbits > 0);
282 	ubifs_assert(c, nrbits <= 32);
283 	ubifs_assert(c, *pos >= 0);
284 	ubifs_assert(c, *pos < 8);
285 	if (b) {
286 		switch (bytes) {
287 		case 2:
288 			val = p[1];
289 			break;
290 		case 3:
291 			val = p[1] | ((uint32_t)p[2] << 8);
292 			break;
293 		case 4:
294 			val = p[1] | ((uint32_t)p[2] << 8) |
295 				     ((uint32_t)p[3] << 16);
296 			break;
297 		case 5:
298 			val = p[1] | ((uint32_t)p[2] << 8) |
299 				     ((uint32_t)p[3] << 16) |
300 				     ((uint32_t)p[4] << 24);
301 		}
302 		val <<= (8 - b);
303 		val |= *p >> b;
304 		nrbits += b;
305 	} else {
306 		switch (bytes) {
307 		case 1:
308 			val = p[0];
309 			break;
310 		case 2:
311 			val = p[0] | ((uint32_t)p[1] << 8);
312 			break;
313 		case 3:
314 			val = p[0] | ((uint32_t)p[1] << 8) |
315 				     ((uint32_t)p[2] << 16);
316 			break;
317 		case 4:
318 			val = p[0] | ((uint32_t)p[1] << 8) |
319 				     ((uint32_t)p[2] << 16) |
320 				     ((uint32_t)p[3] << 24);
321 			break;
322 		}
323 	}
324 	val <<= k;
325 	val >>= k;
326 	b = nrbits & 7;
327 	p += nrbits >> 3;
328 	*addr = p;
329 	*pos = b;
330 	ubifs_assert(c, (val >> nrbits) == 0 || nrbits - b == 32);
331 	return val;
332 }
333 
334 /**
335  * ubifs_pack_pnode - pack all the bit fields of a pnode.
336  * @c: UBIFS file-system description object
337  * @buf: buffer into which to pack
338  * @pnode: pnode to pack
339  */
340 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
341 		      struct ubifs_pnode *pnode)
342 {
343 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
344 	int i, pos = 0;
345 	uint16_t crc;
346 
347 	pack_bits(c, &addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
348 	if (c->big_lpt)
349 		pack_bits(c, &addr, &pos, pnode->num, c->pcnt_bits);
350 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
351 		pack_bits(c, &addr, &pos, pnode->lprops[i].free >> 3,
352 			  c->space_bits);
353 		pack_bits(c, &addr, &pos, pnode->lprops[i].dirty >> 3,
354 			  c->space_bits);
355 		if (pnode->lprops[i].flags & LPROPS_INDEX)
356 			pack_bits(c, &addr, &pos, 1, 1);
357 		else
358 			pack_bits(c, &addr, &pos, 0, 1);
359 	}
360 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
361 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
362 	addr = buf;
363 	pos = 0;
364 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
365 }
366 
367 /**
368  * ubifs_pack_nnode - pack all the bit fields of a nnode.
369  * @c: UBIFS file-system description object
370  * @buf: buffer into which to pack
371  * @nnode: nnode to pack
372  */
373 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
374 		      struct ubifs_nnode *nnode)
375 {
376 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
377 	int i, pos = 0;
378 	uint16_t crc;
379 
380 	pack_bits(c, &addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
381 	if (c->big_lpt)
382 		pack_bits(c, &addr, &pos, nnode->num, c->pcnt_bits);
383 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
384 		int lnum = nnode->nbranch[i].lnum;
385 
386 		if (lnum == 0)
387 			lnum = c->lpt_last + 1;
388 		pack_bits(c, &addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
389 		pack_bits(c, &addr, &pos, nnode->nbranch[i].offs,
390 			  c->lpt_offs_bits);
391 	}
392 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
393 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
394 	addr = buf;
395 	pos = 0;
396 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
397 }
398 
399 /**
400  * ubifs_pack_ltab - pack the LPT's own lprops table.
401  * @c: UBIFS file-system description object
402  * @buf: buffer into which to pack
403  * @ltab: LPT's own lprops table to pack
404  */
405 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
406 		     struct ubifs_lpt_lprops *ltab)
407 {
408 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
409 	int i, pos = 0;
410 	uint16_t crc;
411 
412 	pack_bits(c, &addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
413 	for (i = 0; i < c->lpt_lebs; i++) {
414 		pack_bits(c, &addr, &pos, ltab[i].free, c->lpt_spc_bits);
415 		pack_bits(c, &addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
416 	}
417 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
418 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
419 	addr = buf;
420 	pos = 0;
421 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
422 }
423 
424 /**
425  * ubifs_pack_lsave - pack the LPT's save table.
426  * @c: UBIFS file-system description object
427  * @buf: buffer into which to pack
428  * @lsave: LPT's save table to pack
429  */
430 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
431 {
432 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
433 	int i, pos = 0;
434 	uint16_t crc;
435 
436 	pack_bits(c, &addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
437 	for (i = 0; i < c->lsave_cnt; i++)
438 		pack_bits(c, &addr, &pos, lsave[i], c->lnum_bits);
439 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
440 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
441 	addr = buf;
442 	pos = 0;
443 	pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS);
444 }
445 
446 /**
447  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
448  * @c: UBIFS file-system description object
449  * @lnum: LEB number to which to add dirty space
450  * @dirty: amount of dirty space to add
451  */
452 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
453 {
454 	if (!dirty || !lnum)
455 		return;
456 	dbg_lp("LEB %d add %d to %d",
457 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
458 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
459 	c->ltab[lnum - c->lpt_first].dirty += dirty;
460 }
461 
462 /**
463  * set_ltab - set LPT LEB properties.
464  * @c: UBIFS file-system description object
465  * @lnum: LEB number
466  * @free: amount of free space
467  * @dirty: amount of dirty space
468  */
469 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
470 {
471 	dbg_lp("LEB %d free %d dirty %d to %d %d",
472 	       lnum, c->ltab[lnum - c->lpt_first].free,
473 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
474 	ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last);
475 	c->ltab[lnum - c->lpt_first].free = free;
476 	c->ltab[lnum - c->lpt_first].dirty = dirty;
477 }
478 
479 /**
480  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
481  * @c: UBIFS file-system description object
482  * @nnode: nnode for which to add dirt
483  */
484 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
485 {
486 	struct ubifs_nnode *np = nnode->parent;
487 
488 	if (np)
489 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
490 				   c->nnode_sz);
491 	else {
492 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
493 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
494 			c->lpt_drty_flgs |= LTAB_DIRTY;
495 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
496 		}
497 	}
498 }
499 
500 /**
501  * add_pnode_dirt - add dirty space to LPT LEB properties.
502  * @c: UBIFS file-system description object
503  * @pnode: pnode for which to add dirt
504  */
505 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
506 {
507 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
508 			   c->pnode_sz);
509 }
510 
511 /**
512  * calc_nnode_num - calculate nnode number.
513  * @row: the row in the tree (root is zero)
514  * @col: the column in the row (leftmost is zero)
515  *
516  * The nnode number is a number that uniquely identifies a nnode and can be used
517  * easily to traverse the tree from the root to that nnode.
518  *
519  * This function calculates and returns the nnode number for the nnode at @row
520  * and @col.
521  */
522 static int calc_nnode_num(int row, int col)
523 {
524 	int num, bits;
525 
526 	num = 1;
527 	while (row--) {
528 		bits = (col & (UBIFS_LPT_FANOUT - 1));
529 		col >>= UBIFS_LPT_FANOUT_SHIFT;
530 		num <<= UBIFS_LPT_FANOUT_SHIFT;
531 		num |= bits;
532 	}
533 	return num;
534 }
535 
536 /**
537  * calc_nnode_num_from_parent - calculate nnode number.
538  * @c: UBIFS file-system description object
539  * @parent: parent nnode
540  * @iip: index in parent
541  *
542  * The nnode number is a number that uniquely identifies a nnode and can be used
543  * easily to traverse the tree from the root to that nnode.
544  *
545  * This function calculates and returns the nnode number based on the parent's
546  * nnode number and the index in parent.
547  */
548 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
549 				      struct ubifs_nnode *parent, int iip)
550 {
551 	int num, shft;
552 
553 	if (!parent)
554 		return 1;
555 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
556 	num = parent->num ^ (1 << shft);
557 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
558 	return num;
559 }
560 
561 /**
562  * calc_pnode_num_from_parent - calculate pnode number.
563  * @c: UBIFS file-system description object
564  * @parent: parent nnode
565  * @iip: index in parent
566  *
567  * The pnode number is a number that uniquely identifies a pnode and can be used
568  * easily to traverse the tree from the root to that pnode.
569  *
570  * This function calculates and returns the pnode number based on the parent's
571  * nnode number and the index in parent.
572  */
573 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
574 				      struct ubifs_nnode *parent, int iip)
575 {
576 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
577 
578 	for (i = 0; i < n; i++) {
579 		num <<= UBIFS_LPT_FANOUT_SHIFT;
580 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
581 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
582 	}
583 	num <<= UBIFS_LPT_FANOUT_SHIFT;
584 	num |= iip;
585 	return num;
586 }
587 
588 /**
589  * ubifs_create_dflt_lpt - create default LPT.
590  * @c: UBIFS file-system description object
591  * @main_lebs: number of main area LEBs is passed and returned here
592  * @lpt_first: LEB number of first LPT LEB
593  * @lpt_lebs: number of LEBs for LPT is passed and returned here
594  * @big_lpt: use big LPT model is passed and returned here
595  * @hash: hash of the LPT is returned here
596  *
597  * This function returns %0 on success and a negative error code on failure.
598  */
599 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
600 			  int *lpt_lebs, int *big_lpt, u8 *hash)
601 {
602 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
603 	int blnum, boffs, bsz, bcnt;
604 	struct ubifs_pnode *pnode = NULL;
605 	struct ubifs_nnode *nnode = NULL;
606 	void *buf = NULL, *p;
607 	struct ubifs_lpt_lprops *ltab = NULL;
608 	int *lsave = NULL;
609 	struct shash_desc *desc;
610 
611 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
612 	if (err)
613 		return err;
614 	*lpt_lebs = c->lpt_lebs;
615 
616 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
617 	c->lpt_first = lpt_first;
618 	/* Needed by 'set_ltab()' */
619 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
620 	/* Needed by 'ubifs_pack_lsave()' */
621 	c->main_first = c->leb_cnt - *main_lebs;
622 
623 	desc = ubifs_hash_get_desc(c);
624 	if (IS_ERR(desc))
625 		return PTR_ERR(desc);
626 
627 	lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL);
628 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
629 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
630 	buf = vmalloc(c->leb_size);
631 	ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
632 				  c->lpt_lebs));
633 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
634 		err = -ENOMEM;
635 		goto out;
636 	}
637 
638 	ubifs_assert(c, !c->ltab);
639 	c->ltab = ltab; /* Needed by set_ltab */
640 
641 	/* Initialize LPT's own lprops */
642 	for (i = 0; i < c->lpt_lebs; i++) {
643 		ltab[i].free = c->leb_size;
644 		ltab[i].dirty = 0;
645 		ltab[i].tgc = 0;
646 		ltab[i].cmt = 0;
647 	}
648 
649 	lnum = lpt_first;
650 	p = buf;
651 	/* Number of leaf nodes (pnodes) */
652 	cnt = c->pnode_cnt;
653 
654 	/*
655 	 * The first pnode contains the LEB properties for the LEBs that contain
656 	 * the root inode node and the root index node of the index tree.
657 	 */
658 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
659 	iopos = ALIGN(node_sz, c->min_io_size);
660 	pnode->lprops[0].free = c->leb_size - iopos;
661 	pnode->lprops[0].dirty = iopos - node_sz;
662 	pnode->lprops[0].flags = LPROPS_INDEX;
663 
664 	node_sz = UBIFS_INO_NODE_SZ;
665 	iopos = ALIGN(node_sz, c->min_io_size);
666 	pnode->lprops[1].free = c->leb_size - iopos;
667 	pnode->lprops[1].dirty = iopos - node_sz;
668 
669 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
670 		pnode->lprops[i].free = c->leb_size;
671 
672 	/* Add first pnode */
673 	ubifs_pack_pnode(c, p, pnode);
674 	err = ubifs_shash_update(c, desc, p, c->pnode_sz);
675 	if (err)
676 		goto out;
677 
678 	p += c->pnode_sz;
679 	len = c->pnode_sz;
680 	pnode->num += 1;
681 
682 	/* Reset pnode values for remaining pnodes */
683 	pnode->lprops[0].free = c->leb_size;
684 	pnode->lprops[0].dirty = 0;
685 	pnode->lprops[0].flags = 0;
686 
687 	pnode->lprops[1].free = c->leb_size;
688 	pnode->lprops[1].dirty = 0;
689 
690 	/*
691 	 * To calculate the internal node branches, we keep information about
692 	 * the level below.
693 	 */
694 	blnum = lnum; /* LEB number of level below */
695 	boffs = 0; /* Offset of level below */
696 	bcnt = cnt; /* Number of nodes in level below */
697 	bsz = c->pnode_sz; /* Size of nodes in level below */
698 
699 	/* Add all remaining pnodes */
700 	for (i = 1; i < cnt; i++) {
701 		if (len + c->pnode_sz > c->leb_size) {
702 			alen = ALIGN(len, c->min_io_size);
703 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
704 			memset(p, 0xff, alen - len);
705 			err = ubifs_leb_change(c, lnum++, buf, alen);
706 			if (err)
707 				goto out;
708 			p = buf;
709 			len = 0;
710 		}
711 		ubifs_pack_pnode(c, p, pnode);
712 		err = ubifs_shash_update(c, desc, p, c->pnode_sz);
713 		if (err)
714 			goto out;
715 
716 		p += c->pnode_sz;
717 		len += c->pnode_sz;
718 		/*
719 		 * pnodes are simply numbered left to right starting at zero,
720 		 * which means the pnode number can be used easily to traverse
721 		 * down the tree to the corresponding pnode.
722 		 */
723 		pnode->num += 1;
724 	}
725 
726 	row = 0;
727 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
728 		row += 1;
729 	/* Add all nnodes, one level at a time */
730 	while (1) {
731 		/* Number of internal nodes (nnodes) at next level */
732 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
733 		for (i = 0; i < cnt; i++) {
734 			if (len + c->nnode_sz > c->leb_size) {
735 				alen = ALIGN(len, c->min_io_size);
736 				set_ltab(c, lnum, c->leb_size - alen,
737 					    alen - len);
738 				memset(p, 0xff, alen - len);
739 				err = ubifs_leb_change(c, lnum++, buf, alen);
740 				if (err)
741 					goto out;
742 				p = buf;
743 				len = 0;
744 			}
745 			/* Only 1 nnode at this level, so it is the root */
746 			if (cnt == 1) {
747 				c->lpt_lnum = lnum;
748 				c->lpt_offs = len;
749 			}
750 			/* Set branches to the level below */
751 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
752 				if (bcnt) {
753 					if (boffs + bsz > c->leb_size) {
754 						blnum += 1;
755 						boffs = 0;
756 					}
757 					nnode->nbranch[j].lnum = blnum;
758 					nnode->nbranch[j].offs = boffs;
759 					boffs += bsz;
760 					bcnt--;
761 				} else {
762 					nnode->nbranch[j].lnum = 0;
763 					nnode->nbranch[j].offs = 0;
764 				}
765 			}
766 			nnode->num = calc_nnode_num(row, i);
767 			ubifs_pack_nnode(c, p, nnode);
768 			p += c->nnode_sz;
769 			len += c->nnode_sz;
770 		}
771 		/* Only 1 nnode at this level, so it is the root */
772 		if (cnt == 1)
773 			break;
774 		/* Update the information about the level below */
775 		bcnt = cnt;
776 		bsz = c->nnode_sz;
777 		row -= 1;
778 	}
779 
780 	if (*big_lpt) {
781 		/* Need to add LPT's save table */
782 		if (len + c->lsave_sz > c->leb_size) {
783 			alen = ALIGN(len, c->min_io_size);
784 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
785 			memset(p, 0xff, alen - len);
786 			err = ubifs_leb_change(c, lnum++, buf, alen);
787 			if (err)
788 				goto out;
789 			p = buf;
790 			len = 0;
791 		}
792 
793 		c->lsave_lnum = lnum;
794 		c->lsave_offs = len;
795 
796 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
797 			lsave[i] = c->main_first + i;
798 		for (; i < c->lsave_cnt; i++)
799 			lsave[i] = c->main_first;
800 
801 		ubifs_pack_lsave(c, p, lsave);
802 		p += c->lsave_sz;
803 		len += c->lsave_sz;
804 	}
805 
806 	/* Need to add LPT's own LEB properties table */
807 	if (len + c->ltab_sz > c->leb_size) {
808 		alen = ALIGN(len, c->min_io_size);
809 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
810 		memset(p, 0xff, alen - len);
811 		err = ubifs_leb_change(c, lnum++, buf, alen);
812 		if (err)
813 			goto out;
814 		p = buf;
815 		len = 0;
816 	}
817 
818 	c->ltab_lnum = lnum;
819 	c->ltab_offs = len;
820 
821 	/* Update ltab before packing it */
822 	len += c->ltab_sz;
823 	alen = ALIGN(len, c->min_io_size);
824 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
825 
826 	ubifs_pack_ltab(c, p, ltab);
827 	p += c->ltab_sz;
828 
829 	/* Write remaining buffer */
830 	memset(p, 0xff, alen - len);
831 	err = ubifs_leb_change(c, lnum, buf, alen);
832 	if (err)
833 		goto out;
834 
835 	err = ubifs_shash_final(c, desc, hash);
836 	if (err)
837 		goto out;
838 
839 	c->nhead_lnum = lnum;
840 	c->nhead_offs = ALIGN(len, c->min_io_size);
841 
842 	dbg_lp("space_bits %d", c->space_bits);
843 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
844 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
845 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
846 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
847 	dbg_lp("lnum_bits %d", c->lnum_bits);
848 	dbg_lp("pnode_sz %d", c->pnode_sz);
849 	dbg_lp("nnode_sz %d", c->nnode_sz);
850 	dbg_lp("ltab_sz %d", c->ltab_sz);
851 	dbg_lp("lsave_sz %d", c->lsave_sz);
852 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
853 	dbg_lp("lpt_hght %d", c->lpt_hght);
854 	dbg_lp("big_lpt %u", c->big_lpt);
855 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
856 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
857 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
858 	if (c->big_lpt)
859 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
860 out:
861 	c->ltab = NULL;
862 	kfree(desc);
863 	kfree(lsave);
864 	vfree(ltab);
865 	vfree(buf);
866 	kfree(nnode);
867 	kfree(pnode);
868 	return err;
869 }
870 
871 /**
872  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
873  * @c: UBIFS file-system description object
874  * @pnode: pnode
875  *
876  * When a pnode is loaded into memory, the LEB properties it contains are added,
877  * by this function, to the LEB category lists and heaps.
878  */
879 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
880 {
881 	int i;
882 
883 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
884 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
885 		int lnum = pnode->lprops[i].lnum;
886 
887 		if (!lnum)
888 			return;
889 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
890 	}
891 }
892 
893 /**
894  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
895  * @c: UBIFS file-system description object
896  * @old_pnode: pnode copied
897  * @new_pnode: pnode copy
898  *
899  * During commit it is sometimes necessary to copy a pnode
900  * (see dirty_cow_pnode).  When that happens, references in
901  * category lists and heaps must be replaced.  This function does that.
902  */
903 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
904 			 struct ubifs_pnode *new_pnode)
905 {
906 	int i;
907 
908 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
909 		if (!new_pnode->lprops[i].lnum)
910 			return;
911 		ubifs_replace_cat(c, &old_pnode->lprops[i],
912 				  &new_pnode->lprops[i]);
913 	}
914 }
915 
916 /**
917  * check_lpt_crc - check LPT node crc is correct.
918  * @c: UBIFS file-system description object
919  * @buf: buffer containing node
920  * @len: length of node
921  *
922  * This function returns %0 on success and a negative error code on failure.
923  */
924 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
925 {
926 	int pos = 0;
927 	uint8_t *addr = buf;
928 	uint16_t crc, calc_crc;
929 
930 	crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS);
931 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
932 			 len - UBIFS_LPT_CRC_BYTES);
933 	if (crc != calc_crc) {
934 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
935 			  crc, calc_crc);
936 		dump_stack();
937 		return -EINVAL;
938 	}
939 	return 0;
940 }
941 
942 /**
943  * check_lpt_type - check LPT node type is correct.
944  * @c: UBIFS file-system description object
945  * @addr: address of type bit field is passed and returned updated here
946  * @pos: position of type bit field is passed and returned updated here
947  * @type: expected type
948  *
949  * This function returns %0 on success and a negative error code on failure.
950  */
951 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
952 			  int *pos, int type)
953 {
954 	int node_type;
955 
956 	node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS);
957 	if (node_type != type) {
958 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
959 			  node_type, type);
960 		dump_stack();
961 		return -EINVAL;
962 	}
963 	return 0;
964 }
965 
966 /**
967  * unpack_pnode - unpack a pnode.
968  * @c: UBIFS file-system description object
969  * @buf: buffer containing packed pnode to unpack
970  * @pnode: pnode structure to fill
971  *
972  * This function returns %0 on success and a negative error code on failure.
973  */
974 static int unpack_pnode(const struct ubifs_info *c, void *buf,
975 			struct ubifs_pnode *pnode)
976 {
977 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
978 	int i, pos = 0, err;
979 
980 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
981 	if (err)
982 		return err;
983 	if (c->big_lpt)
984 		pnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
985 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
986 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
987 
988 		lprops->free = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
989 		lprops->free <<= 3;
990 		lprops->dirty = ubifs_unpack_bits(c, &addr, &pos, c->space_bits);
991 		lprops->dirty <<= 3;
992 
993 		if (ubifs_unpack_bits(c, &addr, &pos, 1))
994 			lprops->flags = LPROPS_INDEX;
995 		else
996 			lprops->flags = 0;
997 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
998 	}
999 	err = check_lpt_crc(c, buf, c->pnode_sz);
1000 	return err;
1001 }
1002 
1003 /**
1004  * ubifs_unpack_nnode - unpack a nnode.
1005  * @c: UBIFS file-system description object
1006  * @buf: buffer containing packed nnode to unpack
1007  * @nnode: nnode structure to fill
1008  *
1009  * This function returns %0 on success and a negative error code on failure.
1010  */
1011 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1012 		       struct ubifs_nnode *nnode)
1013 {
1014 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1015 	int i, pos = 0, err;
1016 
1017 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1018 	if (err)
1019 		return err;
1020 	if (c->big_lpt)
1021 		nnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits);
1022 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1023 		int lnum;
1024 
1025 		lnum = ubifs_unpack_bits(c, &addr, &pos, c->lpt_lnum_bits) +
1026 		       c->lpt_first;
1027 		if (lnum == c->lpt_last + 1)
1028 			lnum = 0;
1029 		nnode->nbranch[i].lnum = lnum;
1030 		nnode->nbranch[i].offs = ubifs_unpack_bits(c, &addr, &pos,
1031 						     c->lpt_offs_bits);
1032 	}
1033 	err = check_lpt_crc(c, buf, c->nnode_sz);
1034 	return err;
1035 }
1036 
1037 /**
1038  * unpack_ltab - unpack the LPT's own lprops table.
1039  * @c: UBIFS file-system description object
1040  * @buf: buffer from which to unpack
1041  *
1042  * This function returns %0 on success and a negative error code on failure.
1043  */
1044 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1045 {
1046 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1047 	int i, pos = 0, err;
1048 
1049 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1050 	if (err)
1051 		return err;
1052 	for (i = 0; i < c->lpt_lebs; i++) {
1053 		int free = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1054 		int dirty = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits);
1055 
1056 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1057 		    dirty > c->leb_size || free + dirty > c->leb_size)
1058 			return -EINVAL;
1059 
1060 		c->ltab[i].free = free;
1061 		c->ltab[i].dirty = dirty;
1062 		c->ltab[i].tgc = 0;
1063 		c->ltab[i].cmt = 0;
1064 	}
1065 	err = check_lpt_crc(c, buf, c->ltab_sz);
1066 	return err;
1067 }
1068 
1069 /**
1070  * unpack_lsave - unpack the LPT's save table.
1071  * @c: UBIFS file-system description object
1072  * @buf: buffer from which to unpack
1073  *
1074  * This function returns %0 on success and a negative error code on failure.
1075  */
1076 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1077 {
1078 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1079 	int i, pos = 0, err;
1080 
1081 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1082 	if (err)
1083 		return err;
1084 	for (i = 0; i < c->lsave_cnt; i++) {
1085 		int lnum = ubifs_unpack_bits(c, &addr, &pos, c->lnum_bits);
1086 
1087 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1088 			return -EINVAL;
1089 		c->lsave[i] = lnum;
1090 	}
1091 	err = check_lpt_crc(c, buf, c->lsave_sz);
1092 	return err;
1093 }
1094 
1095 /**
1096  * validate_nnode - validate a nnode.
1097  * @c: UBIFS file-system description object
1098  * @nnode: nnode to validate
1099  * @parent: parent nnode (or NULL for the root nnode)
1100  * @iip: index in parent
1101  *
1102  * This function returns %0 on success and a negative error code on failure.
1103  */
1104 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1105 			  struct ubifs_nnode *parent, int iip)
1106 {
1107 	int i, lvl, max_offs;
1108 
1109 	if (c->big_lpt) {
1110 		int num = calc_nnode_num_from_parent(c, parent, iip);
1111 
1112 		if (nnode->num != num)
1113 			return -EINVAL;
1114 	}
1115 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1116 	if (lvl < 1)
1117 		return -EINVAL;
1118 	if (lvl == 1)
1119 		max_offs = c->leb_size - c->pnode_sz;
1120 	else
1121 		max_offs = c->leb_size - c->nnode_sz;
1122 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1123 		int lnum = nnode->nbranch[i].lnum;
1124 		int offs = nnode->nbranch[i].offs;
1125 
1126 		if (lnum == 0) {
1127 			if (offs != 0)
1128 				return -EINVAL;
1129 			continue;
1130 		}
1131 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1132 			return -EINVAL;
1133 		if (offs < 0 || offs > max_offs)
1134 			return -EINVAL;
1135 	}
1136 	return 0;
1137 }
1138 
1139 /**
1140  * validate_pnode - validate a pnode.
1141  * @c: UBIFS file-system description object
1142  * @pnode: pnode to validate
1143  * @parent: parent nnode
1144  * @iip: index in parent
1145  *
1146  * This function returns %0 on success and a negative error code on failure.
1147  */
1148 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1149 			  struct ubifs_nnode *parent, int iip)
1150 {
1151 	int i;
1152 
1153 	if (c->big_lpt) {
1154 		int num = calc_pnode_num_from_parent(c, parent, iip);
1155 
1156 		if (pnode->num != num)
1157 			return -EINVAL;
1158 	}
1159 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1160 		int free = pnode->lprops[i].free;
1161 		int dirty = pnode->lprops[i].dirty;
1162 
1163 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1164 		    (free & 7))
1165 			return -EINVAL;
1166 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1167 			return -EINVAL;
1168 		if (dirty + free > c->leb_size)
1169 			return -EINVAL;
1170 	}
1171 	return 0;
1172 }
1173 
1174 /**
1175  * set_pnode_lnum - set LEB numbers on a pnode.
1176  * @c: UBIFS file-system description object
1177  * @pnode: pnode to update
1178  *
1179  * This function calculates the LEB numbers for the LEB properties it contains
1180  * based on the pnode number.
1181  */
1182 static void set_pnode_lnum(const struct ubifs_info *c,
1183 			   struct ubifs_pnode *pnode)
1184 {
1185 	int i, lnum;
1186 
1187 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1188 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1189 		if (lnum >= c->leb_cnt)
1190 			return;
1191 		pnode->lprops[i].lnum = lnum++;
1192 	}
1193 }
1194 
1195 /**
1196  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1197  * @c: UBIFS file-system description object
1198  * @parent: parent nnode (or NULL for the root)
1199  * @iip: index in parent
1200  *
1201  * This function returns %0 on success and a negative error code on failure.
1202  */
1203 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1204 {
1205 	struct ubifs_nbranch *branch = NULL;
1206 	struct ubifs_nnode *nnode = NULL;
1207 	void *buf = c->lpt_nod_buf;
1208 	int err, lnum, offs;
1209 
1210 	if (parent) {
1211 		branch = &parent->nbranch[iip];
1212 		lnum = branch->lnum;
1213 		offs = branch->offs;
1214 	} else {
1215 		lnum = c->lpt_lnum;
1216 		offs = c->lpt_offs;
1217 	}
1218 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1219 	if (!nnode) {
1220 		err = -ENOMEM;
1221 		goto out;
1222 	}
1223 	if (lnum == 0) {
1224 		/*
1225 		 * This nnode was not written which just means that the LEB
1226 		 * properties in the subtree below it describe empty LEBs. We
1227 		 * make the nnode as though we had read it, which in fact means
1228 		 * doing almost nothing.
1229 		 */
1230 		if (c->big_lpt)
1231 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1232 	} else {
1233 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1234 		if (err)
1235 			goto out;
1236 		err = ubifs_unpack_nnode(c, buf, nnode);
1237 		if (err)
1238 			goto out;
1239 	}
1240 	err = validate_nnode(c, nnode, parent, iip);
1241 	if (err)
1242 		goto out;
1243 	if (!c->big_lpt)
1244 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1245 	if (parent) {
1246 		branch->nnode = nnode;
1247 		nnode->level = parent->level - 1;
1248 	} else {
1249 		c->nroot = nnode;
1250 		nnode->level = c->lpt_hght;
1251 	}
1252 	nnode->parent = parent;
1253 	nnode->iip = iip;
1254 	return 0;
1255 
1256 out:
1257 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1258 	dump_stack();
1259 	kfree(nnode);
1260 	return err;
1261 }
1262 
1263 /**
1264  * read_pnode - read a pnode from flash and link it to the tree in memory.
1265  * @c: UBIFS file-system description object
1266  * @parent: parent nnode
1267  * @iip: index in parent
1268  *
1269  * This function returns %0 on success and a negative error code on failure.
1270  */
1271 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1272 {
1273 	struct ubifs_nbranch *branch;
1274 	struct ubifs_pnode *pnode = NULL;
1275 	void *buf = c->lpt_nod_buf;
1276 	int err, lnum, offs;
1277 
1278 	branch = &parent->nbranch[iip];
1279 	lnum = branch->lnum;
1280 	offs = branch->offs;
1281 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1282 	if (!pnode)
1283 		return -ENOMEM;
1284 
1285 	if (lnum == 0) {
1286 		/*
1287 		 * This pnode was not written which just means that the LEB
1288 		 * properties in it describe empty LEBs. We make the pnode as
1289 		 * though we had read it.
1290 		 */
1291 		int i;
1292 
1293 		if (c->big_lpt)
1294 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1295 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1296 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1297 
1298 			lprops->free = c->leb_size;
1299 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1300 		}
1301 	} else {
1302 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1303 		if (err)
1304 			goto out;
1305 		err = unpack_pnode(c, buf, pnode);
1306 		if (err)
1307 			goto out;
1308 	}
1309 	err = validate_pnode(c, pnode, parent, iip);
1310 	if (err)
1311 		goto out;
1312 	if (!c->big_lpt)
1313 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1314 	branch->pnode = pnode;
1315 	pnode->parent = parent;
1316 	pnode->iip = iip;
1317 	set_pnode_lnum(c, pnode);
1318 	c->pnodes_have += 1;
1319 	return 0;
1320 
1321 out:
1322 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1323 	ubifs_dump_pnode(c, pnode, parent, iip);
1324 	dump_stack();
1325 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1326 	kfree(pnode);
1327 	return err;
1328 }
1329 
1330 /**
1331  * read_ltab - read LPT's own lprops table.
1332  * @c: UBIFS file-system description object
1333  *
1334  * This function returns %0 on success and a negative error code on failure.
1335  */
1336 static int read_ltab(struct ubifs_info *c)
1337 {
1338 	int err;
1339 	void *buf;
1340 
1341 	buf = vmalloc(c->ltab_sz);
1342 	if (!buf)
1343 		return -ENOMEM;
1344 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1345 	if (err)
1346 		goto out;
1347 	err = unpack_ltab(c, buf);
1348 out:
1349 	vfree(buf);
1350 	return err;
1351 }
1352 
1353 /**
1354  * read_lsave - read LPT's save table.
1355  * @c: UBIFS file-system description object
1356  *
1357  * This function returns %0 on success and a negative error code on failure.
1358  */
1359 static int read_lsave(struct ubifs_info *c)
1360 {
1361 	int err, i;
1362 	void *buf;
1363 
1364 	buf = vmalloc(c->lsave_sz);
1365 	if (!buf)
1366 		return -ENOMEM;
1367 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1368 			     c->lsave_sz, 1);
1369 	if (err)
1370 		goto out;
1371 	err = unpack_lsave(c, buf);
1372 	if (err)
1373 		goto out;
1374 	for (i = 0; i < c->lsave_cnt; i++) {
1375 		int lnum = c->lsave[i];
1376 		struct ubifs_lprops *lprops;
1377 
1378 		/*
1379 		 * Due to automatic resizing, the values in the lsave table
1380 		 * could be beyond the volume size - just ignore them.
1381 		 */
1382 		if (lnum >= c->leb_cnt)
1383 			continue;
1384 		lprops = ubifs_lpt_lookup(c, lnum);
1385 		if (IS_ERR(lprops)) {
1386 			err = PTR_ERR(lprops);
1387 			goto out;
1388 		}
1389 	}
1390 out:
1391 	vfree(buf);
1392 	return err;
1393 }
1394 
1395 /**
1396  * ubifs_get_nnode - get a nnode.
1397  * @c: UBIFS file-system description object
1398  * @parent: parent nnode (or NULL for the root)
1399  * @iip: index in parent
1400  *
1401  * This function returns a pointer to the nnode on success or a negative error
1402  * code on failure.
1403  */
1404 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1405 				    struct ubifs_nnode *parent, int iip)
1406 {
1407 	struct ubifs_nbranch *branch;
1408 	struct ubifs_nnode *nnode;
1409 	int err;
1410 
1411 	branch = &parent->nbranch[iip];
1412 	nnode = branch->nnode;
1413 	if (nnode)
1414 		return nnode;
1415 	err = ubifs_read_nnode(c, parent, iip);
1416 	if (err)
1417 		return ERR_PTR(err);
1418 	return branch->nnode;
1419 }
1420 
1421 /**
1422  * ubifs_get_pnode - get a pnode.
1423  * @c: UBIFS file-system description object
1424  * @parent: parent nnode
1425  * @iip: index in parent
1426  *
1427  * This function returns a pointer to the pnode on success or a negative error
1428  * code on failure.
1429  */
1430 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1431 				    struct ubifs_nnode *parent, int iip)
1432 {
1433 	struct ubifs_nbranch *branch;
1434 	struct ubifs_pnode *pnode;
1435 	int err;
1436 
1437 	branch = &parent->nbranch[iip];
1438 	pnode = branch->pnode;
1439 	if (pnode)
1440 		return pnode;
1441 	err = read_pnode(c, parent, iip);
1442 	if (err)
1443 		return ERR_PTR(err);
1444 	update_cats(c, branch->pnode);
1445 	return branch->pnode;
1446 }
1447 
1448 /**
1449  * ubifs_pnode_lookup - lookup a pnode in the LPT.
1450  * @c: UBIFS file-system description object
1451  * @i: pnode number (0 to (main_lebs - 1) / UBIFS_LPT_FANOUT)
1452  *
1453  * This function returns a pointer to the pnode on success or a negative
1454  * error code on failure.
1455  */
1456 struct ubifs_pnode *ubifs_pnode_lookup(struct ubifs_info *c, int i)
1457 {
1458 	int err, h, iip, shft;
1459 	struct ubifs_nnode *nnode;
1460 
1461 	if (!c->nroot) {
1462 		err = ubifs_read_nnode(c, NULL, 0);
1463 		if (err)
1464 			return ERR_PTR(err);
1465 	}
1466 	i <<= UBIFS_LPT_FANOUT_SHIFT;
1467 	nnode = c->nroot;
1468 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1469 	for (h = 1; h < c->lpt_hght; h++) {
1470 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1471 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1472 		nnode = ubifs_get_nnode(c, nnode, iip);
1473 		if (IS_ERR(nnode))
1474 			return ERR_CAST(nnode);
1475 	}
1476 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1477 	return ubifs_get_pnode(c, nnode, iip);
1478 }
1479 
1480 /**
1481  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1482  * @c: UBIFS file-system description object
1483  * @lnum: LEB number to lookup
1484  *
1485  * This function returns a pointer to the LEB properties on success or a
1486  * negative error code on failure.
1487  */
1488 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1489 {
1490 	int i, iip;
1491 	struct ubifs_pnode *pnode;
1492 
1493 	i = lnum - c->main_first;
1494 	pnode = ubifs_pnode_lookup(c, i >> UBIFS_LPT_FANOUT_SHIFT);
1495 	if (IS_ERR(pnode))
1496 		return ERR_CAST(pnode);
1497 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1498 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1499 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1500 	       pnode->lprops[iip].flags);
1501 	return &pnode->lprops[iip];
1502 }
1503 
1504 /**
1505  * dirty_cow_nnode - ensure a nnode is not being committed.
1506  * @c: UBIFS file-system description object
1507  * @nnode: nnode to check
1508  *
1509  * Returns dirtied nnode on success or negative error code on failure.
1510  */
1511 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1512 					   struct ubifs_nnode *nnode)
1513 {
1514 	struct ubifs_nnode *n;
1515 	int i;
1516 
1517 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1518 		/* nnode is not being committed */
1519 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1520 			c->dirty_nn_cnt += 1;
1521 			ubifs_add_nnode_dirt(c, nnode);
1522 		}
1523 		return nnode;
1524 	}
1525 
1526 	/* nnode is being committed, so copy it */
1527 	n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS);
1528 	if (unlikely(!n))
1529 		return ERR_PTR(-ENOMEM);
1530 
1531 	n->cnext = NULL;
1532 	__set_bit(DIRTY_CNODE, &n->flags);
1533 	__clear_bit(COW_CNODE, &n->flags);
1534 
1535 	/* The children now have new parent */
1536 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1537 		struct ubifs_nbranch *branch = &n->nbranch[i];
1538 
1539 		if (branch->cnode)
1540 			branch->cnode->parent = n;
1541 	}
1542 
1543 	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &nnode->flags));
1544 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1545 
1546 	c->dirty_nn_cnt += 1;
1547 	ubifs_add_nnode_dirt(c, nnode);
1548 	if (nnode->parent)
1549 		nnode->parent->nbranch[n->iip].nnode = n;
1550 	else
1551 		c->nroot = n;
1552 	return n;
1553 }
1554 
1555 /**
1556  * dirty_cow_pnode - ensure a pnode is not being committed.
1557  * @c: UBIFS file-system description object
1558  * @pnode: pnode to check
1559  *
1560  * Returns dirtied pnode on success or negative error code on failure.
1561  */
1562 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1563 					   struct ubifs_pnode *pnode)
1564 {
1565 	struct ubifs_pnode *p;
1566 
1567 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1568 		/* pnode is not being committed */
1569 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1570 			c->dirty_pn_cnt += 1;
1571 			add_pnode_dirt(c, pnode);
1572 		}
1573 		return pnode;
1574 	}
1575 
1576 	/* pnode is being committed, so copy it */
1577 	p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS);
1578 	if (unlikely(!p))
1579 		return ERR_PTR(-ENOMEM);
1580 
1581 	p->cnext = NULL;
1582 	__set_bit(DIRTY_CNODE, &p->flags);
1583 	__clear_bit(COW_CNODE, &p->flags);
1584 	replace_cats(c, pnode, p);
1585 
1586 	ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags));
1587 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1588 
1589 	c->dirty_pn_cnt += 1;
1590 	add_pnode_dirt(c, pnode);
1591 	pnode->parent->nbranch[p->iip].pnode = p;
1592 	return p;
1593 }
1594 
1595 /**
1596  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1597  * @c: UBIFS file-system description object
1598  * @lnum: LEB number to lookup
1599  *
1600  * This function returns a pointer to the LEB properties on success or a
1601  * negative error code on failure.
1602  */
1603 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1604 {
1605 	int err, i, h, iip, shft;
1606 	struct ubifs_nnode *nnode;
1607 	struct ubifs_pnode *pnode;
1608 
1609 	if (!c->nroot) {
1610 		err = ubifs_read_nnode(c, NULL, 0);
1611 		if (err)
1612 			return ERR_PTR(err);
1613 	}
1614 	nnode = c->nroot;
1615 	nnode = dirty_cow_nnode(c, nnode);
1616 	if (IS_ERR(nnode))
1617 		return ERR_CAST(nnode);
1618 	i = lnum - c->main_first;
1619 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1620 	for (h = 1; h < c->lpt_hght; h++) {
1621 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1622 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1623 		nnode = ubifs_get_nnode(c, nnode, iip);
1624 		if (IS_ERR(nnode))
1625 			return ERR_CAST(nnode);
1626 		nnode = dirty_cow_nnode(c, nnode);
1627 		if (IS_ERR(nnode))
1628 			return ERR_CAST(nnode);
1629 	}
1630 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1631 	pnode = ubifs_get_pnode(c, nnode, iip);
1632 	if (IS_ERR(pnode))
1633 		return ERR_CAST(pnode);
1634 	pnode = dirty_cow_pnode(c, pnode);
1635 	if (IS_ERR(pnode))
1636 		return ERR_CAST(pnode);
1637 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1638 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1639 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1640 	       pnode->lprops[iip].flags);
1641 	ubifs_assert(c, test_bit(DIRTY_CNODE, &pnode->flags));
1642 	return &pnode->lprops[iip];
1643 }
1644 
1645 /**
1646  * ubifs_lpt_calc_hash - Calculate hash of the LPT pnodes
1647  * @c: UBIFS file-system description object
1648  * @hash: the returned hash of the LPT pnodes
1649  *
1650  * This function iterates over the LPT pnodes and creates a hash over them.
1651  * Returns 0 for success or a negative error code otherwise.
1652  */
1653 int ubifs_lpt_calc_hash(struct ubifs_info *c, u8 *hash)
1654 {
1655 	struct ubifs_nnode *nnode, *nn;
1656 	struct ubifs_cnode *cnode;
1657 	struct shash_desc *desc;
1658 	int iip = 0, i;
1659 	int bufsiz = max_t(int, c->nnode_sz, c->pnode_sz);
1660 	void *buf;
1661 	int err;
1662 
1663 	if (!ubifs_authenticated(c))
1664 		return 0;
1665 
1666 	if (!c->nroot) {
1667 		err = ubifs_read_nnode(c, NULL, 0);
1668 		if (err)
1669 			return err;
1670 	}
1671 
1672 	desc = ubifs_hash_get_desc(c);
1673 	if (IS_ERR(desc))
1674 		return PTR_ERR(desc);
1675 
1676 	buf = kmalloc(bufsiz, GFP_NOFS);
1677 	if (!buf) {
1678 		err = -ENOMEM;
1679 		goto out;
1680 	}
1681 
1682 	cnode = (struct ubifs_cnode *)c->nroot;
1683 
1684 	while (cnode) {
1685 		nnode = cnode->parent;
1686 		nn = (struct ubifs_nnode *)cnode;
1687 		if (cnode->level > 1) {
1688 			while (iip < UBIFS_LPT_FANOUT) {
1689 				if (nn->nbranch[iip].lnum == 0) {
1690 					/* Go right */
1691 					iip++;
1692 					continue;
1693 				}
1694 
1695 				nnode = ubifs_get_nnode(c, nn, iip);
1696 				if (IS_ERR(nnode)) {
1697 					err = PTR_ERR(nnode);
1698 					goto out;
1699 				}
1700 
1701 				/* Go down */
1702 				iip = 0;
1703 				cnode = (struct ubifs_cnode *)nnode;
1704 				break;
1705 			}
1706 			if (iip < UBIFS_LPT_FANOUT)
1707 				continue;
1708 		} else {
1709 			struct ubifs_pnode *pnode;
1710 
1711 			for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1712 				if (nn->nbranch[i].lnum == 0)
1713 					continue;
1714 				pnode = ubifs_get_pnode(c, nn, i);
1715 				if (IS_ERR(pnode)) {
1716 					err = PTR_ERR(pnode);
1717 					goto out;
1718 				}
1719 
1720 				ubifs_pack_pnode(c, buf, pnode);
1721 				err = ubifs_shash_update(c, desc, buf,
1722 							 c->pnode_sz);
1723 				if (err)
1724 					goto out;
1725 			}
1726 		}
1727 		/* Go up and to the right */
1728 		iip = cnode->iip + 1;
1729 		cnode = (struct ubifs_cnode *)nnode;
1730 	}
1731 
1732 	err = ubifs_shash_final(c, desc, hash);
1733 out:
1734 	kfree(desc);
1735 	kfree(buf);
1736 
1737 	return err;
1738 }
1739 
1740 /**
1741  * lpt_check_hash - check the hash of the LPT.
1742  * @c: UBIFS file-system description object
1743  *
1744  * This function calculates a hash over all pnodes in the LPT and compares it with
1745  * the hash stored in the master node. Returns %0 on success and a negative error
1746  * code on failure.
1747  */
1748 static int lpt_check_hash(struct ubifs_info *c)
1749 {
1750 	int err;
1751 	u8 hash[UBIFS_HASH_ARR_SZ];
1752 
1753 	if (!ubifs_authenticated(c))
1754 		return 0;
1755 
1756 	err = ubifs_lpt_calc_hash(c, hash);
1757 	if (err)
1758 		return err;
1759 
1760 	if (ubifs_check_hash(c, c->mst_node->hash_lpt, hash)) {
1761 		err = -EPERM;
1762 		ubifs_err(c, "Failed to authenticate LPT");
1763 	} else {
1764 		err = 0;
1765 	}
1766 
1767 	return err;
1768 }
1769 
1770 /**
1771  * lpt_init_rd - initialize the LPT for reading.
1772  * @c: UBIFS file-system description object
1773  *
1774  * This function returns %0 on success and a negative error code on failure.
1775  */
1776 static int lpt_init_rd(struct ubifs_info *c)
1777 {
1778 	int err, i;
1779 
1780 	c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1781 				     c->lpt_lebs));
1782 	if (!c->ltab)
1783 		return -ENOMEM;
1784 
1785 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1786 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1787 	if (!c->lpt_nod_buf)
1788 		return -ENOMEM;
1789 
1790 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1791 		c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ,
1792 						   sizeof(void *),
1793 						   GFP_KERNEL);
1794 		if (!c->lpt_heap[i].arr)
1795 			return -ENOMEM;
1796 		c->lpt_heap[i].cnt = 0;
1797 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1798 	}
1799 
1800 	c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *),
1801 					 GFP_KERNEL);
1802 	if (!c->dirty_idx.arr)
1803 		return -ENOMEM;
1804 	c->dirty_idx.cnt = 0;
1805 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1806 
1807 	err = read_ltab(c);
1808 	if (err)
1809 		return err;
1810 
1811 	err = lpt_check_hash(c);
1812 	if (err)
1813 		return err;
1814 
1815 	dbg_lp("space_bits %d", c->space_bits);
1816 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1817 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1818 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1819 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1820 	dbg_lp("lnum_bits %d", c->lnum_bits);
1821 	dbg_lp("pnode_sz %d", c->pnode_sz);
1822 	dbg_lp("nnode_sz %d", c->nnode_sz);
1823 	dbg_lp("ltab_sz %d", c->ltab_sz);
1824 	dbg_lp("lsave_sz %d", c->lsave_sz);
1825 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1826 	dbg_lp("lpt_hght %d", c->lpt_hght);
1827 	dbg_lp("big_lpt %u", c->big_lpt);
1828 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1829 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1830 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1831 	if (c->big_lpt)
1832 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1833 
1834 	return 0;
1835 }
1836 
1837 /**
1838  * lpt_init_wr - initialize the LPT for writing.
1839  * @c: UBIFS file-system description object
1840  *
1841  * 'lpt_init_rd()' must have been called already.
1842  *
1843  * This function returns %0 on success and a negative error code on failure.
1844  */
1845 static int lpt_init_wr(struct ubifs_info *c)
1846 {
1847 	int err, i;
1848 
1849 	c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops),
1850 					 c->lpt_lebs));
1851 	if (!c->ltab_cmt)
1852 		return -ENOMEM;
1853 
1854 	c->lpt_buf = vmalloc(c->leb_size);
1855 	if (!c->lpt_buf)
1856 		return -ENOMEM;
1857 
1858 	if (c->big_lpt) {
1859 		c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS);
1860 		if (!c->lsave)
1861 			return -ENOMEM;
1862 		err = read_lsave(c);
1863 		if (err)
1864 			return err;
1865 	}
1866 
1867 	for (i = 0; i < c->lpt_lebs; i++)
1868 		if (c->ltab[i].free == c->leb_size) {
1869 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1870 			if (err)
1871 				return err;
1872 		}
1873 
1874 	return 0;
1875 }
1876 
1877 /**
1878  * ubifs_lpt_init - initialize the LPT.
1879  * @c: UBIFS file-system description object
1880  * @rd: whether to initialize lpt for reading
1881  * @wr: whether to initialize lpt for writing
1882  *
1883  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1884  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1885  * true.
1886  *
1887  * This function returns %0 on success and a negative error code on failure.
1888  */
1889 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1890 {
1891 	int err;
1892 
1893 	if (rd) {
1894 		err = lpt_init_rd(c);
1895 		if (err)
1896 			goto out_err;
1897 	}
1898 
1899 	if (wr) {
1900 		err = lpt_init_wr(c);
1901 		if (err)
1902 			goto out_err;
1903 	}
1904 
1905 	return 0;
1906 
1907 out_err:
1908 	if (wr)
1909 		ubifs_lpt_free(c, 1);
1910 	if (rd)
1911 		ubifs_lpt_free(c, 0);
1912 	return err;
1913 }
1914 
1915 /**
1916  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1917  * @nnode: where to keep a nnode
1918  * @pnode: where to keep a pnode
1919  * @cnode: where to keep a cnode
1920  * @in_tree: is the node in the tree in memory
1921  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1922  * the tree
1923  * @ptr.pnode: ditto for pnode
1924  * @ptr.cnode: ditto for cnode
1925  */
1926 struct lpt_scan_node {
1927 	union {
1928 		struct ubifs_nnode nnode;
1929 		struct ubifs_pnode pnode;
1930 		struct ubifs_cnode cnode;
1931 	};
1932 	int in_tree;
1933 	union {
1934 		struct ubifs_nnode *nnode;
1935 		struct ubifs_pnode *pnode;
1936 		struct ubifs_cnode *cnode;
1937 	} ptr;
1938 };
1939 
1940 /**
1941  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1942  * @c: the UBIFS file-system description object
1943  * @path: where to put the nnode
1944  * @parent: parent of the nnode
1945  * @iip: index in parent of the nnode
1946  *
1947  * This function returns a pointer to the nnode on success or a negative error
1948  * code on failure.
1949  */
1950 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1951 					  struct lpt_scan_node *path,
1952 					  struct ubifs_nnode *parent, int iip)
1953 {
1954 	struct ubifs_nbranch *branch;
1955 	struct ubifs_nnode *nnode;
1956 	void *buf = c->lpt_nod_buf;
1957 	int err;
1958 
1959 	branch = &parent->nbranch[iip];
1960 	nnode = branch->nnode;
1961 	if (nnode) {
1962 		path->in_tree = 1;
1963 		path->ptr.nnode = nnode;
1964 		return nnode;
1965 	}
1966 	nnode = &path->nnode;
1967 	path->in_tree = 0;
1968 	path->ptr.nnode = nnode;
1969 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1970 	if (branch->lnum == 0) {
1971 		/*
1972 		 * This nnode was not written which just means that the LEB
1973 		 * properties in the subtree below it describe empty LEBs. We
1974 		 * make the nnode as though we had read it, which in fact means
1975 		 * doing almost nothing.
1976 		 */
1977 		if (c->big_lpt)
1978 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1979 	} else {
1980 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1981 				     c->nnode_sz, 1);
1982 		if (err)
1983 			return ERR_PTR(err);
1984 		err = ubifs_unpack_nnode(c, buf, nnode);
1985 		if (err)
1986 			return ERR_PTR(err);
1987 	}
1988 	err = validate_nnode(c, nnode, parent, iip);
1989 	if (err)
1990 		return ERR_PTR(err);
1991 	if (!c->big_lpt)
1992 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1993 	nnode->level = parent->level - 1;
1994 	nnode->parent = parent;
1995 	nnode->iip = iip;
1996 	return nnode;
1997 }
1998 
1999 /**
2000  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
2001  * @c: the UBIFS file-system description object
2002  * @path: where to put the pnode
2003  * @parent: parent of the pnode
2004  * @iip: index in parent of the pnode
2005  *
2006  * This function returns a pointer to the pnode on success or a negative error
2007  * code on failure.
2008  */
2009 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
2010 					  struct lpt_scan_node *path,
2011 					  struct ubifs_nnode *parent, int iip)
2012 {
2013 	struct ubifs_nbranch *branch;
2014 	struct ubifs_pnode *pnode;
2015 	void *buf = c->lpt_nod_buf;
2016 	int err;
2017 
2018 	branch = &parent->nbranch[iip];
2019 	pnode = branch->pnode;
2020 	if (pnode) {
2021 		path->in_tree = 1;
2022 		path->ptr.pnode = pnode;
2023 		return pnode;
2024 	}
2025 	pnode = &path->pnode;
2026 	path->in_tree = 0;
2027 	path->ptr.pnode = pnode;
2028 	memset(pnode, 0, sizeof(struct ubifs_pnode));
2029 	if (branch->lnum == 0) {
2030 		/*
2031 		 * This pnode was not written which just means that the LEB
2032 		 * properties in it describe empty LEBs. We make the pnode as
2033 		 * though we had read it.
2034 		 */
2035 		int i;
2036 
2037 		if (c->big_lpt)
2038 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
2039 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2040 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
2041 
2042 			lprops->free = c->leb_size;
2043 			lprops->flags = ubifs_categorize_lprops(c, lprops);
2044 		}
2045 	} else {
2046 		ubifs_assert(c, branch->lnum >= c->lpt_first &&
2047 			     branch->lnum <= c->lpt_last);
2048 		ubifs_assert(c, branch->offs >= 0 && branch->offs < c->leb_size);
2049 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
2050 				     c->pnode_sz, 1);
2051 		if (err)
2052 			return ERR_PTR(err);
2053 		err = unpack_pnode(c, buf, pnode);
2054 		if (err)
2055 			return ERR_PTR(err);
2056 	}
2057 	err = validate_pnode(c, pnode, parent, iip);
2058 	if (err)
2059 		return ERR_PTR(err);
2060 	if (!c->big_lpt)
2061 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
2062 	pnode->parent = parent;
2063 	pnode->iip = iip;
2064 	set_pnode_lnum(c, pnode);
2065 	return pnode;
2066 }
2067 
2068 /**
2069  * ubifs_lpt_scan_nolock - scan the LPT.
2070  * @c: the UBIFS file-system description object
2071  * @start_lnum: LEB number from which to start scanning
2072  * @end_lnum: LEB number at which to stop scanning
2073  * @scan_cb: callback function called for each lprops
2074  * @data: data to be passed to the callback function
2075  *
2076  * This function returns %0 on success and a negative error code on failure.
2077  */
2078 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
2079 			  ubifs_lpt_scan_callback scan_cb, void *data)
2080 {
2081 	int err = 0, i, h, iip, shft;
2082 	struct ubifs_nnode *nnode;
2083 	struct ubifs_pnode *pnode;
2084 	struct lpt_scan_node *path;
2085 
2086 	if (start_lnum == -1) {
2087 		start_lnum = end_lnum + 1;
2088 		if (start_lnum >= c->leb_cnt)
2089 			start_lnum = c->main_first;
2090 	}
2091 
2092 	ubifs_assert(c, start_lnum >= c->main_first && start_lnum < c->leb_cnt);
2093 	ubifs_assert(c, end_lnum >= c->main_first && end_lnum < c->leb_cnt);
2094 
2095 	if (!c->nroot) {
2096 		err = ubifs_read_nnode(c, NULL, 0);
2097 		if (err)
2098 			return err;
2099 	}
2100 
2101 	path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node),
2102 			     GFP_NOFS);
2103 	if (!path)
2104 		return -ENOMEM;
2105 
2106 	path[0].ptr.nnode = c->nroot;
2107 	path[0].in_tree = 1;
2108 again:
2109 	/* Descend to the pnode containing start_lnum */
2110 	nnode = c->nroot;
2111 	i = start_lnum - c->main_first;
2112 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
2113 	for (h = 1; h < c->lpt_hght; h++) {
2114 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
2115 		shft -= UBIFS_LPT_FANOUT_SHIFT;
2116 		nnode = scan_get_nnode(c, path + h, nnode, iip);
2117 		if (IS_ERR(nnode)) {
2118 			err = PTR_ERR(nnode);
2119 			goto out;
2120 		}
2121 	}
2122 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
2123 	pnode = scan_get_pnode(c, path + h, nnode, iip);
2124 	if (IS_ERR(pnode)) {
2125 		err = PTR_ERR(pnode);
2126 		goto out;
2127 	}
2128 	iip = (i & (UBIFS_LPT_FANOUT - 1));
2129 
2130 	/* Loop for each lprops */
2131 	while (1) {
2132 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
2133 		int ret, lnum = lprops->lnum;
2134 
2135 		ret = scan_cb(c, lprops, path[h].in_tree, data);
2136 		if (ret < 0) {
2137 			err = ret;
2138 			goto out;
2139 		}
2140 		if (ret & LPT_SCAN_ADD) {
2141 			/* Add all the nodes in path to the tree in memory */
2142 			for (h = 1; h < c->lpt_hght; h++) {
2143 				const size_t sz = sizeof(struct ubifs_nnode);
2144 				struct ubifs_nnode *parent;
2145 
2146 				if (path[h].in_tree)
2147 					continue;
2148 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
2149 				if (!nnode) {
2150 					err = -ENOMEM;
2151 					goto out;
2152 				}
2153 				parent = nnode->parent;
2154 				parent->nbranch[nnode->iip].nnode = nnode;
2155 				path[h].ptr.nnode = nnode;
2156 				path[h].in_tree = 1;
2157 				path[h + 1].cnode.parent = nnode;
2158 			}
2159 			if (path[h].in_tree)
2160 				ubifs_ensure_cat(c, lprops);
2161 			else {
2162 				const size_t sz = sizeof(struct ubifs_pnode);
2163 				struct ubifs_nnode *parent;
2164 
2165 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2166 				if (!pnode) {
2167 					err = -ENOMEM;
2168 					goto out;
2169 				}
2170 				parent = pnode->parent;
2171 				parent->nbranch[pnode->iip].pnode = pnode;
2172 				path[h].ptr.pnode = pnode;
2173 				path[h].in_tree = 1;
2174 				update_cats(c, pnode);
2175 				c->pnodes_have += 1;
2176 			}
2177 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2178 						  c->nroot, 0, 0);
2179 			if (err)
2180 				goto out;
2181 			err = dbg_check_cats(c);
2182 			if (err)
2183 				goto out;
2184 		}
2185 		if (ret & LPT_SCAN_STOP) {
2186 			err = 0;
2187 			break;
2188 		}
2189 		/* Get the next lprops */
2190 		if (lnum == end_lnum) {
2191 			/*
2192 			 * We got to the end without finding what we were
2193 			 * looking for
2194 			 */
2195 			err = -ENOSPC;
2196 			goto out;
2197 		}
2198 		if (lnum + 1 >= c->leb_cnt) {
2199 			/* Wrap-around to the beginning */
2200 			start_lnum = c->main_first;
2201 			goto again;
2202 		}
2203 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2204 			/* Next lprops is in the same pnode */
2205 			iip += 1;
2206 			continue;
2207 		}
2208 		/* We need to get the next pnode. Go up until we can go right */
2209 		iip = pnode->iip;
2210 		while (1) {
2211 			h -= 1;
2212 			ubifs_assert(c, h >= 0);
2213 			nnode = path[h].ptr.nnode;
2214 			if (iip + 1 < UBIFS_LPT_FANOUT)
2215 				break;
2216 			iip = nnode->iip;
2217 		}
2218 		/* Go right */
2219 		iip += 1;
2220 		/* Descend to the pnode */
2221 		h += 1;
2222 		for (; h < c->lpt_hght; h++) {
2223 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2224 			if (IS_ERR(nnode)) {
2225 				err = PTR_ERR(nnode);
2226 				goto out;
2227 			}
2228 			iip = 0;
2229 		}
2230 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2231 		if (IS_ERR(pnode)) {
2232 			err = PTR_ERR(pnode);
2233 			goto out;
2234 		}
2235 		iip = 0;
2236 	}
2237 out:
2238 	kfree(path);
2239 	return err;
2240 }
2241 
2242 /**
2243  * dbg_chk_pnode - check a pnode.
2244  * @c: the UBIFS file-system description object
2245  * @pnode: pnode to check
2246  * @col: pnode column
2247  *
2248  * This function returns %0 on success and a negative error code on failure.
2249  */
2250 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2251 			 int col)
2252 {
2253 	int i;
2254 
2255 	if (pnode->num != col) {
2256 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2257 			  pnode->num, col, pnode->parent->num, pnode->iip);
2258 		return -EINVAL;
2259 	}
2260 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2261 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2262 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2263 			   c->main_first;
2264 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2265 		struct ubifs_lpt_heap *heap;
2266 		struct list_head *list = NULL;
2267 
2268 		if (lnum >= c->leb_cnt)
2269 			continue;
2270 		if (lprops->lnum != lnum) {
2271 			ubifs_err(c, "bad LEB number %d expected %d",
2272 				  lprops->lnum, lnum);
2273 			return -EINVAL;
2274 		}
2275 		if (lprops->flags & LPROPS_TAKEN) {
2276 			if (cat != LPROPS_UNCAT) {
2277 				ubifs_err(c, "LEB %d taken but not uncat %d",
2278 					  lprops->lnum, cat);
2279 				return -EINVAL;
2280 			}
2281 			continue;
2282 		}
2283 		if (lprops->flags & LPROPS_INDEX) {
2284 			switch (cat) {
2285 			case LPROPS_UNCAT:
2286 			case LPROPS_DIRTY_IDX:
2287 			case LPROPS_FRDI_IDX:
2288 				break;
2289 			default:
2290 				ubifs_err(c, "LEB %d index but cat %d",
2291 					  lprops->lnum, cat);
2292 				return -EINVAL;
2293 			}
2294 		} else {
2295 			switch (cat) {
2296 			case LPROPS_UNCAT:
2297 			case LPROPS_DIRTY:
2298 			case LPROPS_FREE:
2299 			case LPROPS_EMPTY:
2300 			case LPROPS_FREEABLE:
2301 				break;
2302 			default:
2303 				ubifs_err(c, "LEB %d not index but cat %d",
2304 					  lprops->lnum, cat);
2305 				return -EINVAL;
2306 			}
2307 		}
2308 		switch (cat) {
2309 		case LPROPS_UNCAT:
2310 			list = &c->uncat_list;
2311 			break;
2312 		case LPROPS_EMPTY:
2313 			list = &c->empty_list;
2314 			break;
2315 		case LPROPS_FREEABLE:
2316 			list = &c->freeable_list;
2317 			break;
2318 		case LPROPS_FRDI_IDX:
2319 			list = &c->frdi_idx_list;
2320 			break;
2321 		}
2322 		found = 0;
2323 		switch (cat) {
2324 		case LPROPS_DIRTY:
2325 		case LPROPS_DIRTY_IDX:
2326 		case LPROPS_FREE:
2327 			heap = &c->lpt_heap[cat - 1];
2328 			if (lprops->hpos < heap->cnt &&
2329 			    heap->arr[lprops->hpos] == lprops)
2330 				found = 1;
2331 			break;
2332 		case LPROPS_UNCAT:
2333 		case LPROPS_EMPTY:
2334 		case LPROPS_FREEABLE:
2335 		case LPROPS_FRDI_IDX:
2336 			list_for_each_entry(lp, list, list)
2337 				if (lprops == lp) {
2338 					found = 1;
2339 					break;
2340 				}
2341 			break;
2342 		}
2343 		if (!found) {
2344 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2345 				  lprops->lnum, cat);
2346 			return -EINVAL;
2347 		}
2348 		switch (cat) {
2349 		case LPROPS_EMPTY:
2350 			if (lprops->free != c->leb_size) {
2351 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2352 					  lprops->lnum, cat, lprops->free,
2353 					  lprops->dirty);
2354 				return -EINVAL;
2355 			}
2356 			break;
2357 		case LPROPS_FREEABLE:
2358 		case LPROPS_FRDI_IDX:
2359 			if (lprops->free + lprops->dirty != c->leb_size) {
2360 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2361 					  lprops->lnum, cat, lprops->free,
2362 					  lprops->dirty);
2363 				return -EINVAL;
2364 			}
2365 			break;
2366 		}
2367 	}
2368 	return 0;
2369 }
2370 
2371 /**
2372  * dbg_check_lpt_nodes - check nnodes and pnodes.
2373  * @c: the UBIFS file-system description object
2374  * @cnode: next cnode (nnode or pnode) to check
2375  * @row: row of cnode (root is zero)
2376  * @col: column of cnode (leftmost is zero)
2377  *
2378  * This function returns %0 on success and a negative error code on failure.
2379  */
2380 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2381 			int row, int col)
2382 {
2383 	struct ubifs_nnode *nnode, *nn;
2384 	struct ubifs_cnode *cn;
2385 	int num, iip = 0, err;
2386 
2387 	if (!dbg_is_chk_lprops(c))
2388 		return 0;
2389 
2390 	while (cnode) {
2391 		ubifs_assert(c, row >= 0);
2392 		nnode = cnode->parent;
2393 		if (cnode->level) {
2394 			/* cnode is a nnode */
2395 			num = calc_nnode_num(row, col);
2396 			if (cnode->num != num) {
2397 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2398 					  cnode->num, num,
2399 					  (nnode ? nnode->num : 0), cnode->iip);
2400 				return -EINVAL;
2401 			}
2402 			nn = (struct ubifs_nnode *)cnode;
2403 			while (iip < UBIFS_LPT_FANOUT) {
2404 				cn = nn->nbranch[iip].cnode;
2405 				if (cn) {
2406 					/* Go down */
2407 					row += 1;
2408 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2409 					col += iip;
2410 					iip = 0;
2411 					cnode = cn;
2412 					break;
2413 				}
2414 				/* Go right */
2415 				iip += 1;
2416 			}
2417 			if (iip < UBIFS_LPT_FANOUT)
2418 				continue;
2419 		} else {
2420 			struct ubifs_pnode *pnode;
2421 
2422 			/* cnode is a pnode */
2423 			pnode = (struct ubifs_pnode *)cnode;
2424 			err = dbg_chk_pnode(c, pnode, col);
2425 			if (err)
2426 				return err;
2427 		}
2428 		/* Go up and to the right */
2429 		row -= 1;
2430 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2431 		iip = cnode->iip + 1;
2432 		cnode = (struct ubifs_cnode *)nnode;
2433 	}
2434 	return 0;
2435 }
2436