xref: /linux/fs/ubifs/lpt.c (revision b85d45947951d23cb22d90caecf4c1eb81342c96)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
50 
51 /**
52  * do_calc_lpt_geom - calculate sizes for the LPT area.
53  * @c: the UBIFS file-system description object
54  *
55  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56  * properties of the flash and whether LPT is "big" (c->big_lpt).
57  */
58 static void do_calc_lpt_geom(struct ubifs_info *c)
59 {
60 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 	long long sz, tot_wastage;
62 
63 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65 
66 	c->lpt_hght = 1;
67 	n = UBIFS_LPT_FANOUT;
68 	while (n < max_pnode_cnt) {
69 		c->lpt_hght += 1;
70 		n <<= UBIFS_LPT_FANOUT_SHIFT;
71 	}
72 
73 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74 
75 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 	c->nnode_cnt = n;
77 	for (i = 1; i < c->lpt_hght; i++) {
78 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 		c->nnode_cnt += n;
80 	}
81 
82 	c->space_bits = fls(c->leb_size) - 3;
83 	c->lpt_lnum_bits = fls(c->lpt_lebs);
84 	c->lpt_offs_bits = fls(c->leb_size - 1);
85 	c->lpt_spc_bits = fls(c->leb_size);
86 
87 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 	c->pcnt_bits = fls(n - 1);
89 
90 	c->lnum_bits = fls(c->max_leb_cnt - 1);
91 
92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 	       (c->big_lpt ? c->pcnt_bits : 0) +
94 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 	c->pnode_sz = (bits + 7) / 8;
96 
97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 	       (c->big_lpt ? c->pcnt_bits : 0) +
99 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 	c->nnode_sz = (bits + 7) / 8;
101 
102 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 	       c->lpt_lebs * c->lpt_spc_bits * 2;
104 	c->ltab_sz = (bits + 7) / 8;
105 
106 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 	       c->lnum_bits * c->lsave_cnt;
108 	c->lsave_sz = (bits + 7) / 8;
109 
110 	/* Calculate the minimum LPT size */
111 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 	c->lpt_sz += c->ltab_sz;
114 	if (c->big_lpt)
115 		c->lpt_sz += c->lsave_sz;
116 
117 	/* Add wastage */
118 	sz = c->lpt_sz;
119 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 	sz += per_leb_wastage;
121 	tot_wastage = per_leb_wastage;
122 	while (sz > c->leb_size) {
123 		sz += per_leb_wastage;
124 		sz -= c->leb_size;
125 		tot_wastage += per_leb_wastage;
126 	}
127 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 	c->lpt_sz += tot_wastage;
129 }
130 
131 /**
132  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133  * @c: the UBIFS file-system description object
134  *
135  * This function returns %0 on success and a negative error code on failure.
136  */
137 int ubifs_calc_lpt_geom(struct ubifs_info *c)
138 {
139 	int lebs_needed;
140 	long long sz;
141 
142 	do_calc_lpt_geom(c);
143 
144 	/* Verify that lpt_lebs is big enough */
145 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147 	if (lebs_needed > c->lpt_lebs) {
148 		ubifs_err(c, "too few LPT LEBs");
149 		return -EINVAL;
150 	}
151 
152 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153 	if (c->ltab_sz > c->leb_size) {
154 		ubifs_err(c, "LPT ltab too big");
155 		return -EINVAL;
156 	}
157 
158 	c->check_lpt_free = c->big_lpt;
159 	return 0;
160 }
161 
162 /**
163  * calc_dflt_lpt_geom - calculate default LPT geometry.
164  * @c: the UBIFS file-system description object
165  * @main_lebs: number of main area LEBs is passed and returned here
166  * @big_lpt: whether the LPT area is "big" is returned here
167  *
168  * The size of the LPT area depends on parameters that themselves are dependent
169  * on the size of the LPT area. This function, successively recalculates the LPT
170  * area geometry until the parameters and resultant geometry are consistent.
171  *
172  * This function returns %0 on success and a negative error code on failure.
173  */
174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 			      int *big_lpt)
176 {
177 	int i, lebs_needed;
178 	long long sz;
179 
180 	/* Start by assuming the minimum number of LPT LEBs */
181 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 	c->main_lebs = *main_lebs - c->lpt_lebs;
183 	if (c->main_lebs <= 0)
184 		return -EINVAL;
185 
186 	/* And assume we will use the small LPT model */
187 	c->big_lpt = 0;
188 
189 	/*
190 	 * Calculate the geometry based on assumptions above and then see if it
191 	 * makes sense
192 	 */
193 	do_calc_lpt_geom(c);
194 
195 	/* Small LPT model must have lpt_sz < leb_size */
196 	if (c->lpt_sz > c->leb_size) {
197 		/* Nope, so try again using big LPT model */
198 		c->big_lpt = 1;
199 		do_calc_lpt_geom(c);
200 	}
201 
202 	/* Now check there are enough LPT LEBs */
203 	for (i = 0; i < 64 ; i++) {
204 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 		if (lebs_needed > c->lpt_lebs) {
207 			/* Not enough LPT LEBs so try again with more */
208 			c->lpt_lebs = lebs_needed;
209 			c->main_lebs = *main_lebs - c->lpt_lebs;
210 			if (c->main_lebs <= 0)
211 				return -EINVAL;
212 			do_calc_lpt_geom(c);
213 			continue;
214 		}
215 		if (c->ltab_sz > c->leb_size) {
216 			ubifs_err(c, "LPT ltab too big");
217 			return -EINVAL;
218 		}
219 		*main_lebs = c->main_lebs;
220 		*big_lpt = c->big_lpt;
221 		return 0;
222 	}
223 	return -EINVAL;
224 }
225 
226 /**
227  * pack_bits - pack bit fields end-to-end.
228  * @addr: address at which to pack (passed and next address returned)
229  * @pos: bit position at which to pack (passed and next position returned)
230  * @val: value to pack
231  * @nrbits: number of bits of value to pack (1-32)
232  */
233 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
234 {
235 	uint8_t *p = *addr;
236 	int b = *pos;
237 
238 	ubifs_assert(nrbits > 0);
239 	ubifs_assert(nrbits <= 32);
240 	ubifs_assert(*pos >= 0);
241 	ubifs_assert(*pos < 8);
242 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243 	if (b) {
244 		*p |= ((uint8_t)val) << b;
245 		nrbits += b;
246 		if (nrbits > 8) {
247 			*++p = (uint8_t)(val >>= (8 - b));
248 			if (nrbits > 16) {
249 				*++p = (uint8_t)(val >>= 8);
250 				if (nrbits > 24) {
251 					*++p = (uint8_t)(val >>= 8);
252 					if (nrbits > 32)
253 						*++p = (uint8_t)(val >>= 8);
254 				}
255 			}
256 		}
257 	} else {
258 		*p = (uint8_t)val;
259 		if (nrbits > 8) {
260 			*++p = (uint8_t)(val >>= 8);
261 			if (nrbits > 16) {
262 				*++p = (uint8_t)(val >>= 8);
263 				if (nrbits > 24)
264 					*++p = (uint8_t)(val >>= 8);
265 			}
266 		}
267 	}
268 	b = nrbits & 7;
269 	if (b == 0)
270 		p++;
271 	*addr = p;
272 	*pos = b;
273 }
274 
275 /**
276  * ubifs_unpack_bits - unpack bit fields.
277  * @addr: address at which to unpack (passed and next address returned)
278  * @pos: bit position at which to unpack (passed and next position returned)
279  * @nrbits: number of bits of value to unpack (1-32)
280  *
281  * This functions returns the value unpacked.
282  */
283 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
284 {
285 	const int k = 32 - nrbits;
286 	uint8_t *p = *addr;
287 	int b = *pos;
288 	uint32_t uninitialized_var(val);
289 	const int bytes = (nrbits + b + 7) >> 3;
290 
291 	ubifs_assert(nrbits > 0);
292 	ubifs_assert(nrbits <= 32);
293 	ubifs_assert(*pos >= 0);
294 	ubifs_assert(*pos < 8);
295 	if (b) {
296 		switch (bytes) {
297 		case 2:
298 			val = p[1];
299 			break;
300 		case 3:
301 			val = p[1] | ((uint32_t)p[2] << 8);
302 			break;
303 		case 4:
304 			val = p[1] | ((uint32_t)p[2] << 8) |
305 				     ((uint32_t)p[3] << 16);
306 			break;
307 		case 5:
308 			val = p[1] | ((uint32_t)p[2] << 8) |
309 				     ((uint32_t)p[3] << 16) |
310 				     ((uint32_t)p[4] << 24);
311 		}
312 		val <<= (8 - b);
313 		val |= *p >> b;
314 		nrbits += b;
315 	} else {
316 		switch (bytes) {
317 		case 1:
318 			val = p[0];
319 			break;
320 		case 2:
321 			val = p[0] | ((uint32_t)p[1] << 8);
322 			break;
323 		case 3:
324 			val = p[0] | ((uint32_t)p[1] << 8) |
325 				     ((uint32_t)p[2] << 16);
326 			break;
327 		case 4:
328 			val = p[0] | ((uint32_t)p[1] << 8) |
329 				     ((uint32_t)p[2] << 16) |
330 				     ((uint32_t)p[3] << 24);
331 			break;
332 		}
333 	}
334 	val <<= k;
335 	val >>= k;
336 	b = nrbits & 7;
337 	p += nrbits >> 3;
338 	*addr = p;
339 	*pos = b;
340 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341 	return val;
342 }
343 
344 /**
345  * ubifs_pack_pnode - pack all the bit fields of a pnode.
346  * @c: UBIFS file-system description object
347  * @buf: buffer into which to pack
348  * @pnode: pnode to pack
349  */
350 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351 		      struct ubifs_pnode *pnode)
352 {
353 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354 	int i, pos = 0;
355 	uint16_t crc;
356 
357 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358 	if (c->big_lpt)
359 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362 			  c->space_bits);
363 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364 			  c->space_bits);
365 		if (pnode->lprops[i].flags & LPROPS_INDEX)
366 			pack_bits(&addr, &pos, 1, 1);
367 		else
368 			pack_bits(&addr, &pos, 0, 1);
369 	}
370 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372 	addr = buf;
373 	pos = 0;
374 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
375 }
376 
377 /**
378  * ubifs_pack_nnode - pack all the bit fields of a nnode.
379  * @c: UBIFS file-system description object
380  * @buf: buffer into which to pack
381  * @nnode: nnode to pack
382  */
383 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384 		      struct ubifs_nnode *nnode)
385 {
386 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387 	int i, pos = 0;
388 	uint16_t crc;
389 
390 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391 	if (c->big_lpt)
392 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394 		int lnum = nnode->nbranch[i].lnum;
395 
396 		if (lnum == 0)
397 			lnum = c->lpt_last + 1;
398 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400 			  c->lpt_offs_bits);
401 	}
402 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404 	addr = buf;
405 	pos = 0;
406 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
407 }
408 
409 /**
410  * ubifs_pack_ltab - pack the LPT's own lprops table.
411  * @c: UBIFS file-system description object
412  * @buf: buffer into which to pack
413  * @ltab: LPT's own lprops table to pack
414  */
415 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416 		     struct ubifs_lpt_lprops *ltab)
417 {
418 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419 	int i, pos = 0;
420 	uint16_t crc;
421 
422 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423 	for (i = 0; i < c->lpt_lebs; i++) {
424 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
426 	}
427 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429 	addr = buf;
430 	pos = 0;
431 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
432 }
433 
434 /**
435  * ubifs_pack_lsave - pack the LPT's save table.
436  * @c: UBIFS file-system description object
437  * @buf: buffer into which to pack
438  * @lsave: LPT's save table to pack
439  */
440 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
441 {
442 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443 	int i, pos = 0;
444 	uint16_t crc;
445 
446 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447 	for (i = 0; i < c->lsave_cnt; i++)
448 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451 	addr = buf;
452 	pos = 0;
453 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
454 }
455 
456 /**
457  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458  * @c: UBIFS file-system description object
459  * @lnum: LEB number to which to add dirty space
460  * @dirty: amount of dirty space to add
461  */
462 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
463 {
464 	if (!dirty || !lnum)
465 		return;
466 	dbg_lp("LEB %d add %d to %d",
467 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469 	c->ltab[lnum - c->lpt_first].dirty += dirty;
470 }
471 
472 /**
473  * set_ltab - set LPT LEB properties.
474  * @c: UBIFS file-system description object
475  * @lnum: LEB number
476  * @free: amount of free space
477  * @dirty: amount of dirty space
478  */
479 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
480 {
481 	dbg_lp("LEB %d free %d dirty %d to %d %d",
482 	       lnum, c->ltab[lnum - c->lpt_first].free,
483 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485 	c->ltab[lnum - c->lpt_first].free = free;
486 	c->ltab[lnum - c->lpt_first].dirty = dirty;
487 }
488 
489 /**
490  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491  * @c: UBIFS file-system description object
492  * @nnode: nnode for which to add dirt
493  */
494 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
495 {
496 	struct ubifs_nnode *np = nnode->parent;
497 
498 	if (np)
499 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500 				   c->nnode_sz);
501 	else {
502 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504 			c->lpt_drty_flgs |= LTAB_DIRTY;
505 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
506 		}
507 	}
508 }
509 
510 /**
511  * add_pnode_dirt - add dirty space to LPT LEB properties.
512  * @c: UBIFS file-system description object
513  * @pnode: pnode for which to add dirt
514  */
515 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
516 {
517 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518 			   c->pnode_sz);
519 }
520 
521 /**
522  * calc_nnode_num - calculate nnode number.
523  * @row: the row in the tree (root is zero)
524  * @col: the column in the row (leftmost is zero)
525  *
526  * The nnode number is a number that uniquely identifies a nnode and can be used
527  * easily to traverse the tree from the root to that nnode.
528  *
529  * This function calculates and returns the nnode number for the nnode at @row
530  * and @col.
531  */
532 static int calc_nnode_num(int row, int col)
533 {
534 	int num, bits;
535 
536 	num = 1;
537 	while (row--) {
538 		bits = (col & (UBIFS_LPT_FANOUT - 1));
539 		col >>= UBIFS_LPT_FANOUT_SHIFT;
540 		num <<= UBIFS_LPT_FANOUT_SHIFT;
541 		num |= bits;
542 	}
543 	return num;
544 }
545 
546 /**
547  * calc_nnode_num_from_parent - calculate nnode number.
548  * @c: UBIFS file-system description object
549  * @parent: parent nnode
550  * @iip: index in parent
551  *
552  * The nnode number is a number that uniquely identifies a nnode and can be used
553  * easily to traverse the tree from the root to that nnode.
554  *
555  * This function calculates and returns the nnode number based on the parent's
556  * nnode number and the index in parent.
557  */
558 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559 				      struct ubifs_nnode *parent, int iip)
560 {
561 	int num, shft;
562 
563 	if (!parent)
564 		return 1;
565 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566 	num = parent->num ^ (1 << shft);
567 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
568 	return num;
569 }
570 
571 /**
572  * calc_pnode_num_from_parent - calculate pnode number.
573  * @c: UBIFS file-system description object
574  * @parent: parent nnode
575  * @iip: index in parent
576  *
577  * The pnode number is a number that uniquely identifies a pnode and can be used
578  * easily to traverse the tree from the root to that pnode.
579  *
580  * This function calculates and returns the pnode number based on the parent's
581  * nnode number and the index in parent.
582  */
583 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584 				      struct ubifs_nnode *parent, int iip)
585 {
586 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
587 
588 	for (i = 0; i < n; i++) {
589 		num <<= UBIFS_LPT_FANOUT_SHIFT;
590 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
591 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
592 	}
593 	num <<= UBIFS_LPT_FANOUT_SHIFT;
594 	num |= iip;
595 	return num;
596 }
597 
598 /**
599  * ubifs_create_dflt_lpt - create default LPT.
600  * @c: UBIFS file-system description object
601  * @main_lebs: number of main area LEBs is passed and returned here
602  * @lpt_first: LEB number of first LPT LEB
603  * @lpt_lebs: number of LEBs for LPT is passed and returned here
604  * @big_lpt: use big LPT model is passed and returned here
605  *
606  * This function returns %0 on success and a negative error code on failure.
607  */
608 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609 			  int *lpt_lebs, int *big_lpt)
610 {
611 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612 	int blnum, boffs, bsz, bcnt;
613 	struct ubifs_pnode *pnode = NULL;
614 	struct ubifs_nnode *nnode = NULL;
615 	void *buf = NULL, *p;
616 	struct ubifs_lpt_lprops *ltab = NULL;
617 	int *lsave = NULL;
618 
619 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620 	if (err)
621 		return err;
622 	*lpt_lebs = c->lpt_lebs;
623 
624 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625 	c->lpt_first = lpt_first;
626 	/* Needed by 'set_ltab()' */
627 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
628 	/* Needed by 'ubifs_pack_lsave()' */
629 	c->main_first = c->leb_cnt - *main_lebs;
630 
631 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
632 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634 	buf = vmalloc(c->leb_size);
635 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
636 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
637 		err = -ENOMEM;
638 		goto out;
639 	}
640 
641 	ubifs_assert(!c->ltab);
642 	c->ltab = ltab; /* Needed by set_ltab */
643 
644 	/* Initialize LPT's own lprops */
645 	for (i = 0; i < c->lpt_lebs; i++) {
646 		ltab[i].free = c->leb_size;
647 		ltab[i].dirty = 0;
648 		ltab[i].tgc = 0;
649 		ltab[i].cmt = 0;
650 	}
651 
652 	lnum = lpt_first;
653 	p = buf;
654 	/* Number of leaf nodes (pnodes) */
655 	cnt = c->pnode_cnt;
656 
657 	/*
658 	 * The first pnode contains the LEB properties for the LEBs that contain
659 	 * the root inode node and the root index node of the index tree.
660 	 */
661 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
662 	iopos = ALIGN(node_sz, c->min_io_size);
663 	pnode->lprops[0].free = c->leb_size - iopos;
664 	pnode->lprops[0].dirty = iopos - node_sz;
665 	pnode->lprops[0].flags = LPROPS_INDEX;
666 
667 	node_sz = UBIFS_INO_NODE_SZ;
668 	iopos = ALIGN(node_sz, c->min_io_size);
669 	pnode->lprops[1].free = c->leb_size - iopos;
670 	pnode->lprops[1].dirty = iopos - node_sz;
671 
672 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
673 		pnode->lprops[i].free = c->leb_size;
674 
675 	/* Add first pnode */
676 	ubifs_pack_pnode(c, p, pnode);
677 	p += c->pnode_sz;
678 	len = c->pnode_sz;
679 	pnode->num += 1;
680 
681 	/* Reset pnode values for remaining pnodes */
682 	pnode->lprops[0].free = c->leb_size;
683 	pnode->lprops[0].dirty = 0;
684 	pnode->lprops[0].flags = 0;
685 
686 	pnode->lprops[1].free = c->leb_size;
687 	pnode->lprops[1].dirty = 0;
688 
689 	/*
690 	 * To calculate the internal node branches, we keep information about
691 	 * the level below.
692 	 */
693 	blnum = lnum; /* LEB number of level below */
694 	boffs = 0; /* Offset of level below */
695 	bcnt = cnt; /* Number of nodes in level below */
696 	bsz = c->pnode_sz; /* Size of nodes in level below */
697 
698 	/* Add all remaining pnodes */
699 	for (i = 1; i < cnt; i++) {
700 		if (len + c->pnode_sz > c->leb_size) {
701 			alen = ALIGN(len, c->min_io_size);
702 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
703 			memset(p, 0xff, alen - len);
704 			err = ubifs_leb_change(c, lnum++, buf, alen);
705 			if (err)
706 				goto out;
707 			p = buf;
708 			len = 0;
709 		}
710 		ubifs_pack_pnode(c, p, pnode);
711 		p += c->pnode_sz;
712 		len += c->pnode_sz;
713 		/*
714 		 * pnodes are simply numbered left to right starting at zero,
715 		 * which means the pnode number can be used easily to traverse
716 		 * down the tree to the corresponding pnode.
717 		 */
718 		pnode->num += 1;
719 	}
720 
721 	row = 0;
722 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
723 		row += 1;
724 	/* Add all nnodes, one level at a time */
725 	while (1) {
726 		/* Number of internal nodes (nnodes) at next level */
727 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
728 		for (i = 0; i < cnt; i++) {
729 			if (len + c->nnode_sz > c->leb_size) {
730 				alen = ALIGN(len, c->min_io_size);
731 				set_ltab(c, lnum, c->leb_size - alen,
732 					    alen - len);
733 				memset(p, 0xff, alen - len);
734 				err = ubifs_leb_change(c, lnum++, buf, alen);
735 				if (err)
736 					goto out;
737 				p = buf;
738 				len = 0;
739 			}
740 			/* Only 1 nnode at this level, so it is the root */
741 			if (cnt == 1) {
742 				c->lpt_lnum = lnum;
743 				c->lpt_offs = len;
744 			}
745 			/* Set branches to the level below */
746 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
747 				if (bcnt) {
748 					if (boffs + bsz > c->leb_size) {
749 						blnum += 1;
750 						boffs = 0;
751 					}
752 					nnode->nbranch[j].lnum = blnum;
753 					nnode->nbranch[j].offs = boffs;
754 					boffs += bsz;
755 					bcnt--;
756 				} else {
757 					nnode->nbranch[j].lnum = 0;
758 					nnode->nbranch[j].offs = 0;
759 				}
760 			}
761 			nnode->num = calc_nnode_num(row, i);
762 			ubifs_pack_nnode(c, p, nnode);
763 			p += c->nnode_sz;
764 			len += c->nnode_sz;
765 		}
766 		/* Only 1 nnode at this level, so it is the root */
767 		if (cnt == 1)
768 			break;
769 		/* Update the information about the level below */
770 		bcnt = cnt;
771 		bsz = c->nnode_sz;
772 		row -= 1;
773 	}
774 
775 	if (*big_lpt) {
776 		/* Need to add LPT's save table */
777 		if (len + c->lsave_sz > c->leb_size) {
778 			alen = ALIGN(len, c->min_io_size);
779 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
780 			memset(p, 0xff, alen - len);
781 			err = ubifs_leb_change(c, lnum++, buf, alen);
782 			if (err)
783 				goto out;
784 			p = buf;
785 			len = 0;
786 		}
787 
788 		c->lsave_lnum = lnum;
789 		c->lsave_offs = len;
790 
791 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
792 			lsave[i] = c->main_first + i;
793 		for (; i < c->lsave_cnt; i++)
794 			lsave[i] = c->main_first;
795 
796 		ubifs_pack_lsave(c, p, lsave);
797 		p += c->lsave_sz;
798 		len += c->lsave_sz;
799 	}
800 
801 	/* Need to add LPT's own LEB properties table */
802 	if (len + c->ltab_sz > c->leb_size) {
803 		alen = ALIGN(len, c->min_io_size);
804 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
805 		memset(p, 0xff, alen - len);
806 		err = ubifs_leb_change(c, lnum++, buf, alen);
807 		if (err)
808 			goto out;
809 		p = buf;
810 		len = 0;
811 	}
812 
813 	c->ltab_lnum = lnum;
814 	c->ltab_offs = len;
815 
816 	/* Update ltab before packing it */
817 	len += c->ltab_sz;
818 	alen = ALIGN(len, c->min_io_size);
819 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
820 
821 	ubifs_pack_ltab(c, p, ltab);
822 	p += c->ltab_sz;
823 
824 	/* Write remaining buffer */
825 	memset(p, 0xff, alen - len);
826 	err = ubifs_leb_change(c, lnum, buf, alen);
827 	if (err)
828 		goto out;
829 
830 	c->nhead_lnum = lnum;
831 	c->nhead_offs = ALIGN(len, c->min_io_size);
832 
833 	dbg_lp("space_bits %d", c->space_bits);
834 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
835 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
836 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
837 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
838 	dbg_lp("lnum_bits %d", c->lnum_bits);
839 	dbg_lp("pnode_sz %d", c->pnode_sz);
840 	dbg_lp("nnode_sz %d", c->nnode_sz);
841 	dbg_lp("ltab_sz %d", c->ltab_sz);
842 	dbg_lp("lsave_sz %d", c->lsave_sz);
843 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
844 	dbg_lp("lpt_hght %d", c->lpt_hght);
845 	dbg_lp("big_lpt %d", c->big_lpt);
846 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
847 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
848 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
849 	if (c->big_lpt)
850 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
851 out:
852 	c->ltab = NULL;
853 	kfree(lsave);
854 	vfree(ltab);
855 	vfree(buf);
856 	kfree(nnode);
857 	kfree(pnode);
858 	return err;
859 }
860 
861 /**
862  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
863  * @c: UBIFS file-system description object
864  * @pnode: pnode
865  *
866  * When a pnode is loaded into memory, the LEB properties it contains are added,
867  * by this function, to the LEB category lists and heaps.
868  */
869 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
870 {
871 	int i;
872 
873 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
874 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
875 		int lnum = pnode->lprops[i].lnum;
876 
877 		if (!lnum)
878 			return;
879 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
880 	}
881 }
882 
883 /**
884  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
885  * @c: UBIFS file-system description object
886  * @old_pnode: pnode copied
887  * @new_pnode: pnode copy
888  *
889  * During commit it is sometimes necessary to copy a pnode
890  * (see dirty_cow_pnode).  When that happens, references in
891  * category lists and heaps must be replaced.  This function does that.
892  */
893 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
894 			 struct ubifs_pnode *new_pnode)
895 {
896 	int i;
897 
898 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
899 		if (!new_pnode->lprops[i].lnum)
900 			return;
901 		ubifs_replace_cat(c, &old_pnode->lprops[i],
902 				  &new_pnode->lprops[i]);
903 	}
904 }
905 
906 /**
907  * check_lpt_crc - check LPT node crc is correct.
908  * @c: UBIFS file-system description object
909  * @buf: buffer containing node
910  * @len: length of node
911  *
912  * This function returns %0 on success and a negative error code on failure.
913  */
914 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len)
915 {
916 	int pos = 0;
917 	uint8_t *addr = buf;
918 	uint16_t crc, calc_crc;
919 
920 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
921 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
922 			 len - UBIFS_LPT_CRC_BYTES);
923 	if (crc != calc_crc) {
924 		ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx",
925 			  crc, calc_crc);
926 		dump_stack();
927 		return -EINVAL;
928 	}
929 	return 0;
930 }
931 
932 /**
933  * check_lpt_type - check LPT node type is correct.
934  * @c: UBIFS file-system description object
935  * @addr: address of type bit field is passed and returned updated here
936  * @pos: position of type bit field is passed and returned updated here
937  * @type: expected type
938  *
939  * This function returns %0 on success and a negative error code on failure.
940  */
941 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr,
942 			  int *pos, int type)
943 {
944 	int node_type;
945 
946 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
947 	if (node_type != type) {
948 		ubifs_err(c, "invalid type (%d) in LPT node type %d",
949 			  node_type, type);
950 		dump_stack();
951 		return -EINVAL;
952 	}
953 	return 0;
954 }
955 
956 /**
957  * unpack_pnode - unpack a pnode.
958  * @c: UBIFS file-system description object
959  * @buf: buffer containing packed pnode to unpack
960  * @pnode: pnode structure to fill
961  *
962  * This function returns %0 on success and a negative error code on failure.
963  */
964 static int unpack_pnode(const struct ubifs_info *c, void *buf,
965 			struct ubifs_pnode *pnode)
966 {
967 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
968 	int i, pos = 0, err;
969 
970 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE);
971 	if (err)
972 		return err;
973 	if (c->big_lpt)
974 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
975 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
976 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
977 
978 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
979 		lprops->free <<= 3;
980 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
981 		lprops->dirty <<= 3;
982 
983 		if (ubifs_unpack_bits(&addr, &pos, 1))
984 			lprops->flags = LPROPS_INDEX;
985 		else
986 			lprops->flags = 0;
987 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
988 	}
989 	err = check_lpt_crc(c, buf, c->pnode_sz);
990 	return err;
991 }
992 
993 /**
994  * ubifs_unpack_nnode - unpack a nnode.
995  * @c: UBIFS file-system description object
996  * @buf: buffer containing packed nnode to unpack
997  * @nnode: nnode structure to fill
998  *
999  * This function returns %0 on success and a negative error code on failure.
1000  */
1001 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1002 		       struct ubifs_nnode *nnode)
1003 {
1004 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1005 	int i, pos = 0, err;
1006 
1007 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE);
1008 	if (err)
1009 		return err;
1010 	if (c->big_lpt)
1011 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1012 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1013 		int lnum;
1014 
1015 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1016 		       c->lpt_first;
1017 		if (lnum == c->lpt_last + 1)
1018 			lnum = 0;
1019 		nnode->nbranch[i].lnum = lnum;
1020 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1021 						     c->lpt_offs_bits);
1022 	}
1023 	err = check_lpt_crc(c, buf, c->nnode_sz);
1024 	return err;
1025 }
1026 
1027 /**
1028  * unpack_ltab - unpack the LPT's own lprops table.
1029  * @c: UBIFS file-system description object
1030  * @buf: buffer from which to unpack
1031  *
1032  * This function returns %0 on success and a negative error code on failure.
1033  */
1034 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1035 {
1036 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1037 	int i, pos = 0, err;
1038 
1039 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB);
1040 	if (err)
1041 		return err;
1042 	for (i = 0; i < c->lpt_lebs; i++) {
1043 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1044 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1045 
1046 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1047 		    dirty > c->leb_size || free + dirty > c->leb_size)
1048 			return -EINVAL;
1049 
1050 		c->ltab[i].free = free;
1051 		c->ltab[i].dirty = dirty;
1052 		c->ltab[i].tgc = 0;
1053 		c->ltab[i].cmt = 0;
1054 	}
1055 	err = check_lpt_crc(c, buf, c->ltab_sz);
1056 	return err;
1057 }
1058 
1059 /**
1060  * unpack_lsave - unpack the LPT's save table.
1061  * @c: UBIFS file-system description object
1062  * @buf: buffer from which to unpack
1063  *
1064  * This function returns %0 on success and a negative error code on failure.
1065  */
1066 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1067 {
1068 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1069 	int i, pos = 0, err;
1070 
1071 	err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE);
1072 	if (err)
1073 		return err;
1074 	for (i = 0; i < c->lsave_cnt; i++) {
1075 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1076 
1077 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1078 			return -EINVAL;
1079 		c->lsave[i] = lnum;
1080 	}
1081 	err = check_lpt_crc(c, buf, c->lsave_sz);
1082 	return err;
1083 }
1084 
1085 /**
1086  * validate_nnode - validate a nnode.
1087  * @c: UBIFS file-system description object
1088  * @nnode: nnode to validate
1089  * @parent: parent nnode (or NULL for the root nnode)
1090  * @iip: index in parent
1091  *
1092  * This function returns %0 on success and a negative error code on failure.
1093  */
1094 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1095 			  struct ubifs_nnode *parent, int iip)
1096 {
1097 	int i, lvl, max_offs;
1098 
1099 	if (c->big_lpt) {
1100 		int num = calc_nnode_num_from_parent(c, parent, iip);
1101 
1102 		if (nnode->num != num)
1103 			return -EINVAL;
1104 	}
1105 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1106 	if (lvl < 1)
1107 		return -EINVAL;
1108 	if (lvl == 1)
1109 		max_offs = c->leb_size - c->pnode_sz;
1110 	else
1111 		max_offs = c->leb_size - c->nnode_sz;
1112 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1113 		int lnum = nnode->nbranch[i].lnum;
1114 		int offs = nnode->nbranch[i].offs;
1115 
1116 		if (lnum == 0) {
1117 			if (offs != 0)
1118 				return -EINVAL;
1119 			continue;
1120 		}
1121 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1122 			return -EINVAL;
1123 		if (offs < 0 || offs > max_offs)
1124 			return -EINVAL;
1125 	}
1126 	return 0;
1127 }
1128 
1129 /**
1130  * validate_pnode - validate a pnode.
1131  * @c: UBIFS file-system description object
1132  * @pnode: pnode to validate
1133  * @parent: parent nnode
1134  * @iip: index in parent
1135  *
1136  * This function returns %0 on success and a negative error code on failure.
1137  */
1138 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1139 			  struct ubifs_nnode *parent, int iip)
1140 {
1141 	int i;
1142 
1143 	if (c->big_lpt) {
1144 		int num = calc_pnode_num_from_parent(c, parent, iip);
1145 
1146 		if (pnode->num != num)
1147 			return -EINVAL;
1148 	}
1149 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1150 		int free = pnode->lprops[i].free;
1151 		int dirty = pnode->lprops[i].dirty;
1152 
1153 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1154 		    (free & 7))
1155 			return -EINVAL;
1156 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1157 			return -EINVAL;
1158 		if (dirty + free > c->leb_size)
1159 			return -EINVAL;
1160 	}
1161 	return 0;
1162 }
1163 
1164 /**
1165  * set_pnode_lnum - set LEB numbers on a pnode.
1166  * @c: UBIFS file-system description object
1167  * @pnode: pnode to update
1168  *
1169  * This function calculates the LEB numbers for the LEB properties it contains
1170  * based on the pnode number.
1171  */
1172 static void set_pnode_lnum(const struct ubifs_info *c,
1173 			   struct ubifs_pnode *pnode)
1174 {
1175 	int i, lnum;
1176 
1177 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1178 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1179 		if (lnum >= c->leb_cnt)
1180 			return;
1181 		pnode->lprops[i].lnum = lnum++;
1182 	}
1183 }
1184 
1185 /**
1186  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1187  * @c: UBIFS file-system description object
1188  * @parent: parent nnode (or NULL for the root)
1189  * @iip: index in parent
1190  *
1191  * This function returns %0 on success and a negative error code on failure.
1192  */
1193 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1194 {
1195 	struct ubifs_nbranch *branch = NULL;
1196 	struct ubifs_nnode *nnode = NULL;
1197 	void *buf = c->lpt_nod_buf;
1198 	int err, lnum, offs;
1199 
1200 	if (parent) {
1201 		branch = &parent->nbranch[iip];
1202 		lnum = branch->lnum;
1203 		offs = branch->offs;
1204 	} else {
1205 		lnum = c->lpt_lnum;
1206 		offs = c->lpt_offs;
1207 	}
1208 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1209 	if (!nnode) {
1210 		err = -ENOMEM;
1211 		goto out;
1212 	}
1213 	if (lnum == 0) {
1214 		/*
1215 		 * This nnode was not written which just means that the LEB
1216 		 * properties in the subtree below it describe empty LEBs. We
1217 		 * make the nnode as though we had read it, which in fact means
1218 		 * doing almost nothing.
1219 		 */
1220 		if (c->big_lpt)
1221 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1222 	} else {
1223 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1224 		if (err)
1225 			goto out;
1226 		err = ubifs_unpack_nnode(c, buf, nnode);
1227 		if (err)
1228 			goto out;
1229 	}
1230 	err = validate_nnode(c, nnode, parent, iip);
1231 	if (err)
1232 		goto out;
1233 	if (!c->big_lpt)
1234 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1235 	if (parent) {
1236 		branch->nnode = nnode;
1237 		nnode->level = parent->level - 1;
1238 	} else {
1239 		c->nroot = nnode;
1240 		nnode->level = c->lpt_hght;
1241 	}
1242 	nnode->parent = parent;
1243 	nnode->iip = iip;
1244 	return 0;
1245 
1246 out:
1247 	ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs);
1248 	dump_stack();
1249 	kfree(nnode);
1250 	return err;
1251 }
1252 
1253 /**
1254  * read_pnode - read a pnode from flash and link it to the tree in memory.
1255  * @c: UBIFS file-system description object
1256  * @parent: parent nnode
1257  * @iip: index in parent
1258  *
1259  * This function returns %0 on success and a negative error code on failure.
1260  */
1261 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1262 {
1263 	struct ubifs_nbranch *branch;
1264 	struct ubifs_pnode *pnode = NULL;
1265 	void *buf = c->lpt_nod_buf;
1266 	int err, lnum, offs;
1267 
1268 	branch = &parent->nbranch[iip];
1269 	lnum = branch->lnum;
1270 	offs = branch->offs;
1271 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1272 	if (!pnode)
1273 		return -ENOMEM;
1274 
1275 	if (lnum == 0) {
1276 		/*
1277 		 * This pnode was not written which just means that the LEB
1278 		 * properties in it describe empty LEBs. We make the pnode as
1279 		 * though we had read it.
1280 		 */
1281 		int i;
1282 
1283 		if (c->big_lpt)
1284 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1285 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1286 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1287 
1288 			lprops->free = c->leb_size;
1289 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1290 		}
1291 	} else {
1292 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1293 		if (err)
1294 			goto out;
1295 		err = unpack_pnode(c, buf, pnode);
1296 		if (err)
1297 			goto out;
1298 	}
1299 	err = validate_pnode(c, pnode, parent, iip);
1300 	if (err)
1301 		goto out;
1302 	if (!c->big_lpt)
1303 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1304 	branch->pnode = pnode;
1305 	pnode->parent = parent;
1306 	pnode->iip = iip;
1307 	set_pnode_lnum(c, pnode);
1308 	c->pnodes_have += 1;
1309 	return 0;
1310 
1311 out:
1312 	ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs);
1313 	ubifs_dump_pnode(c, pnode, parent, iip);
1314 	dump_stack();
1315 	ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1316 	kfree(pnode);
1317 	return err;
1318 }
1319 
1320 /**
1321  * read_ltab - read LPT's own lprops table.
1322  * @c: UBIFS file-system description object
1323  *
1324  * This function returns %0 on success and a negative error code on failure.
1325  */
1326 static int read_ltab(struct ubifs_info *c)
1327 {
1328 	int err;
1329 	void *buf;
1330 
1331 	buf = vmalloc(c->ltab_sz);
1332 	if (!buf)
1333 		return -ENOMEM;
1334 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1335 	if (err)
1336 		goto out;
1337 	err = unpack_ltab(c, buf);
1338 out:
1339 	vfree(buf);
1340 	return err;
1341 }
1342 
1343 /**
1344  * read_lsave - read LPT's save table.
1345  * @c: UBIFS file-system description object
1346  *
1347  * This function returns %0 on success and a negative error code on failure.
1348  */
1349 static int read_lsave(struct ubifs_info *c)
1350 {
1351 	int err, i;
1352 	void *buf;
1353 
1354 	buf = vmalloc(c->lsave_sz);
1355 	if (!buf)
1356 		return -ENOMEM;
1357 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1358 			     c->lsave_sz, 1);
1359 	if (err)
1360 		goto out;
1361 	err = unpack_lsave(c, buf);
1362 	if (err)
1363 		goto out;
1364 	for (i = 0; i < c->lsave_cnt; i++) {
1365 		int lnum = c->lsave[i];
1366 		struct ubifs_lprops *lprops;
1367 
1368 		/*
1369 		 * Due to automatic resizing, the values in the lsave table
1370 		 * could be beyond the volume size - just ignore them.
1371 		 */
1372 		if (lnum >= c->leb_cnt)
1373 			continue;
1374 		lprops = ubifs_lpt_lookup(c, lnum);
1375 		if (IS_ERR(lprops)) {
1376 			err = PTR_ERR(lprops);
1377 			goto out;
1378 		}
1379 	}
1380 out:
1381 	vfree(buf);
1382 	return err;
1383 }
1384 
1385 /**
1386  * ubifs_get_nnode - get a nnode.
1387  * @c: UBIFS file-system description object
1388  * @parent: parent nnode (or NULL for the root)
1389  * @iip: index in parent
1390  *
1391  * This function returns a pointer to the nnode on success or a negative error
1392  * code on failure.
1393  */
1394 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1395 				    struct ubifs_nnode *parent, int iip)
1396 {
1397 	struct ubifs_nbranch *branch;
1398 	struct ubifs_nnode *nnode;
1399 	int err;
1400 
1401 	branch = &parent->nbranch[iip];
1402 	nnode = branch->nnode;
1403 	if (nnode)
1404 		return nnode;
1405 	err = ubifs_read_nnode(c, parent, iip);
1406 	if (err)
1407 		return ERR_PTR(err);
1408 	return branch->nnode;
1409 }
1410 
1411 /**
1412  * ubifs_get_pnode - get a pnode.
1413  * @c: UBIFS file-system description object
1414  * @parent: parent nnode
1415  * @iip: index in parent
1416  *
1417  * This function returns a pointer to the pnode on success or a negative error
1418  * code on failure.
1419  */
1420 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1421 				    struct ubifs_nnode *parent, int iip)
1422 {
1423 	struct ubifs_nbranch *branch;
1424 	struct ubifs_pnode *pnode;
1425 	int err;
1426 
1427 	branch = &parent->nbranch[iip];
1428 	pnode = branch->pnode;
1429 	if (pnode)
1430 		return pnode;
1431 	err = read_pnode(c, parent, iip);
1432 	if (err)
1433 		return ERR_PTR(err);
1434 	update_cats(c, branch->pnode);
1435 	return branch->pnode;
1436 }
1437 
1438 /**
1439  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1440  * @c: UBIFS file-system description object
1441  * @lnum: LEB number to lookup
1442  *
1443  * This function returns a pointer to the LEB properties on success or a
1444  * negative error code on failure.
1445  */
1446 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1447 {
1448 	int err, i, h, iip, shft;
1449 	struct ubifs_nnode *nnode;
1450 	struct ubifs_pnode *pnode;
1451 
1452 	if (!c->nroot) {
1453 		err = ubifs_read_nnode(c, NULL, 0);
1454 		if (err)
1455 			return ERR_PTR(err);
1456 	}
1457 	nnode = c->nroot;
1458 	i = lnum - c->main_first;
1459 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1460 	for (h = 1; h < c->lpt_hght; h++) {
1461 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1462 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1463 		nnode = ubifs_get_nnode(c, nnode, iip);
1464 		if (IS_ERR(nnode))
1465 			return ERR_CAST(nnode);
1466 	}
1467 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1468 	pnode = ubifs_get_pnode(c, nnode, iip);
1469 	if (IS_ERR(pnode))
1470 		return ERR_CAST(pnode);
1471 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1472 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1473 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1474 	       pnode->lprops[iip].flags);
1475 	return &pnode->lprops[iip];
1476 }
1477 
1478 /**
1479  * dirty_cow_nnode - ensure a nnode is not being committed.
1480  * @c: UBIFS file-system description object
1481  * @nnode: nnode to check
1482  *
1483  * Returns dirtied nnode on success or negative error code on failure.
1484  */
1485 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1486 					   struct ubifs_nnode *nnode)
1487 {
1488 	struct ubifs_nnode *n;
1489 	int i;
1490 
1491 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1492 		/* nnode is not being committed */
1493 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1494 			c->dirty_nn_cnt += 1;
1495 			ubifs_add_nnode_dirt(c, nnode);
1496 		}
1497 		return nnode;
1498 	}
1499 
1500 	/* nnode is being committed, so copy it */
1501 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1502 	if (unlikely(!n))
1503 		return ERR_PTR(-ENOMEM);
1504 
1505 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1506 	n->cnext = NULL;
1507 	__set_bit(DIRTY_CNODE, &n->flags);
1508 	__clear_bit(COW_CNODE, &n->flags);
1509 
1510 	/* The children now have new parent */
1511 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1512 		struct ubifs_nbranch *branch = &n->nbranch[i];
1513 
1514 		if (branch->cnode)
1515 			branch->cnode->parent = n;
1516 	}
1517 
1518 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1519 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1520 
1521 	c->dirty_nn_cnt += 1;
1522 	ubifs_add_nnode_dirt(c, nnode);
1523 	if (nnode->parent)
1524 		nnode->parent->nbranch[n->iip].nnode = n;
1525 	else
1526 		c->nroot = n;
1527 	return n;
1528 }
1529 
1530 /**
1531  * dirty_cow_pnode - ensure a pnode is not being committed.
1532  * @c: UBIFS file-system description object
1533  * @pnode: pnode to check
1534  *
1535  * Returns dirtied pnode on success or negative error code on failure.
1536  */
1537 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1538 					   struct ubifs_pnode *pnode)
1539 {
1540 	struct ubifs_pnode *p;
1541 
1542 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1543 		/* pnode is not being committed */
1544 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1545 			c->dirty_pn_cnt += 1;
1546 			add_pnode_dirt(c, pnode);
1547 		}
1548 		return pnode;
1549 	}
1550 
1551 	/* pnode is being committed, so copy it */
1552 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1553 	if (unlikely(!p))
1554 		return ERR_PTR(-ENOMEM);
1555 
1556 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1557 	p->cnext = NULL;
1558 	__set_bit(DIRTY_CNODE, &p->flags);
1559 	__clear_bit(COW_CNODE, &p->flags);
1560 	replace_cats(c, pnode, p);
1561 
1562 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1563 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1564 
1565 	c->dirty_pn_cnt += 1;
1566 	add_pnode_dirt(c, pnode);
1567 	pnode->parent->nbranch[p->iip].pnode = p;
1568 	return p;
1569 }
1570 
1571 /**
1572  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1573  * @c: UBIFS file-system description object
1574  * @lnum: LEB number to lookup
1575  *
1576  * This function returns a pointer to the LEB properties on success or a
1577  * negative error code on failure.
1578  */
1579 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1580 {
1581 	int err, i, h, iip, shft;
1582 	struct ubifs_nnode *nnode;
1583 	struct ubifs_pnode *pnode;
1584 
1585 	if (!c->nroot) {
1586 		err = ubifs_read_nnode(c, NULL, 0);
1587 		if (err)
1588 			return ERR_PTR(err);
1589 	}
1590 	nnode = c->nroot;
1591 	nnode = dirty_cow_nnode(c, nnode);
1592 	if (IS_ERR(nnode))
1593 		return ERR_CAST(nnode);
1594 	i = lnum - c->main_first;
1595 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1596 	for (h = 1; h < c->lpt_hght; h++) {
1597 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1598 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1599 		nnode = ubifs_get_nnode(c, nnode, iip);
1600 		if (IS_ERR(nnode))
1601 			return ERR_CAST(nnode);
1602 		nnode = dirty_cow_nnode(c, nnode);
1603 		if (IS_ERR(nnode))
1604 			return ERR_CAST(nnode);
1605 	}
1606 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1607 	pnode = ubifs_get_pnode(c, nnode, iip);
1608 	if (IS_ERR(pnode))
1609 		return ERR_CAST(pnode);
1610 	pnode = dirty_cow_pnode(c, pnode);
1611 	if (IS_ERR(pnode))
1612 		return ERR_CAST(pnode);
1613 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1614 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1615 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1616 	       pnode->lprops[iip].flags);
1617 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1618 	return &pnode->lprops[iip];
1619 }
1620 
1621 /**
1622  * lpt_init_rd - initialize the LPT for reading.
1623  * @c: UBIFS file-system description object
1624  *
1625  * This function returns %0 on success and a negative error code on failure.
1626  */
1627 static int lpt_init_rd(struct ubifs_info *c)
1628 {
1629 	int err, i;
1630 
1631 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1632 	if (!c->ltab)
1633 		return -ENOMEM;
1634 
1635 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1636 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1637 	if (!c->lpt_nod_buf)
1638 		return -ENOMEM;
1639 
1640 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1641 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1642 					     GFP_KERNEL);
1643 		if (!c->lpt_heap[i].arr)
1644 			return -ENOMEM;
1645 		c->lpt_heap[i].cnt = 0;
1646 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1647 	}
1648 
1649 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1650 	if (!c->dirty_idx.arr)
1651 		return -ENOMEM;
1652 	c->dirty_idx.cnt = 0;
1653 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1654 
1655 	err = read_ltab(c);
1656 	if (err)
1657 		return err;
1658 
1659 	dbg_lp("space_bits %d", c->space_bits);
1660 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1661 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1662 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1663 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1664 	dbg_lp("lnum_bits %d", c->lnum_bits);
1665 	dbg_lp("pnode_sz %d", c->pnode_sz);
1666 	dbg_lp("nnode_sz %d", c->nnode_sz);
1667 	dbg_lp("ltab_sz %d", c->ltab_sz);
1668 	dbg_lp("lsave_sz %d", c->lsave_sz);
1669 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1670 	dbg_lp("lpt_hght %d", c->lpt_hght);
1671 	dbg_lp("big_lpt %d", c->big_lpt);
1672 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1673 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1674 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1675 	if (c->big_lpt)
1676 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1677 
1678 	return 0;
1679 }
1680 
1681 /**
1682  * lpt_init_wr - initialize the LPT for writing.
1683  * @c: UBIFS file-system description object
1684  *
1685  * 'lpt_init_rd()' must have been called already.
1686  *
1687  * This function returns %0 on success and a negative error code on failure.
1688  */
1689 static int lpt_init_wr(struct ubifs_info *c)
1690 {
1691 	int err, i;
1692 
1693 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1694 	if (!c->ltab_cmt)
1695 		return -ENOMEM;
1696 
1697 	c->lpt_buf = vmalloc(c->leb_size);
1698 	if (!c->lpt_buf)
1699 		return -ENOMEM;
1700 
1701 	if (c->big_lpt) {
1702 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1703 		if (!c->lsave)
1704 			return -ENOMEM;
1705 		err = read_lsave(c);
1706 		if (err)
1707 			return err;
1708 	}
1709 
1710 	for (i = 0; i < c->lpt_lebs; i++)
1711 		if (c->ltab[i].free == c->leb_size) {
1712 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1713 			if (err)
1714 				return err;
1715 		}
1716 
1717 	return 0;
1718 }
1719 
1720 /**
1721  * ubifs_lpt_init - initialize the LPT.
1722  * @c: UBIFS file-system description object
1723  * @rd: whether to initialize lpt for reading
1724  * @wr: whether to initialize lpt for writing
1725  *
1726  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1727  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1728  * true.
1729  *
1730  * This function returns %0 on success and a negative error code on failure.
1731  */
1732 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1733 {
1734 	int err;
1735 
1736 	if (rd) {
1737 		err = lpt_init_rd(c);
1738 		if (err)
1739 			goto out_err;
1740 	}
1741 
1742 	if (wr) {
1743 		err = lpt_init_wr(c);
1744 		if (err)
1745 			goto out_err;
1746 	}
1747 
1748 	return 0;
1749 
1750 out_err:
1751 	if (wr)
1752 		ubifs_lpt_free(c, 1);
1753 	if (rd)
1754 		ubifs_lpt_free(c, 0);
1755 	return err;
1756 }
1757 
1758 /**
1759  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1760  * @nnode: where to keep a nnode
1761  * @pnode: where to keep a pnode
1762  * @cnode: where to keep a cnode
1763  * @in_tree: is the node in the tree in memory
1764  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1765  * the tree
1766  * @ptr.pnode: ditto for pnode
1767  * @ptr.cnode: ditto for cnode
1768  */
1769 struct lpt_scan_node {
1770 	union {
1771 		struct ubifs_nnode nnode;
1772 		struct ubifs_pnode pnode;
1773 		struct ubifs_cnode cnode;
1774 	};
1775 	int in_tree;
1776 	union {
1777 		struct ubifs_nnode *nnode;
1778 		struct ubifs_pnode *pnode;
1779 		struct ubifs_cnode *cnode;
1780 	} ptr;
1781 };
1782 
1783 /**
1784  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1785  * @c: the UBIFS file-system description object
1786  * @path: where to put the nnode
1787  * @parent: parent of the nnode
1788  * @iip: index in parent of the nnode
1789  *
1790  * This function returns a pointer to the nnode on success or a negative error
1791  * code on failure.
1792  */
1793 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1794 					  struct lpt_scan_node *path,
1795 					  struct ubifs_nnode *parent, int iip)
1796 {
1797 	struct ubifs_nbranch *branch;
1798 	struct ubifs_nnode *nnode;
1799 	void *buf = c->lpt_nod_buf;
1800 	int err;
1801 
1802 	branch = &parent->nbranch[iip];
1803 	nnode = branch->nnode;
1804 	if (nnode) {
1805 		path->in_tree = 1;
1806 		path->ptr.nnode = nnode;
1807 		return nnode;
1808 	}
1809 	nnode = &path->nnode;
1810 	path->in_tree = 0;
1811 	path->ptr.nnode = nnode;
1812 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1813 	if (branch->lnum == 0) {
1814 		/*
1815 		 * This nnode was not written which just means that the LEB
1816 		 * properties in the subtree below it describe empty LEBs. We
1817 		 * make the nnode as though we had read it, which in fact means
1818 		 * doing almost nothing.
1819 		 */
1820 		if (c->big_lpt)
1821 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1822 	} else {
1823 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1824 				     c->nnode_sz, 1);
1825 		if (err)
1826 			return ERR_PTR(err);
1827 		err = ubifs_unpack_nnode(c, buf, nnode);
1828 		if (err)
1829 			return ERR_PTR(err);
1830 	}
1831 	err = validate_nnode(c, nnode, parent, iip);
1832 	if (err)
1833 		return ERR_PTR(err);
1834 	if (!c->big_lpt)
1835 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1836 	nnode->level = parent->level - 1;
1837 	nnode->parent = parent;
1838 	nnode->iip = iip;
1839 	return nnode;
1840 }
1841 
1842 /**
1843  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1844  * @c: the UBIFS file-system description object
1845  * @path: where to put the pnode
1846  * @parent: parent of the pnode
1847  * @iip: index in parent of the pnode
1848  *
1849  * This function returns a pointer to the pnode on success or a negative error
1850  * code on failure.
1851  */
1852 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1853 					  struct lpt_scan_node *path,
1854 					  struct ubifs_nnode *parent, int iip)
1855 {
1856 	struct ubifs_nbranch *branch;
1857 	struct ubifs_pnode *pnode;
1858 	void *buf = c->lpt_nod_buf;
1859 	int err;
1860 
1861 	branch = &parent->nbranch[iip];
1862 	pnode = branch->pnode;
1863 	if (pnode) {
1864 		path->in_tree = 1;
1865 		path->ptr.pnode = pnode;
1866 		return pnode;
1867 	}
1868 	pnode = &path->pnode;
1869 	path->in_tree = 0;
1870 	path->ptr.pnode = pnode;
1871 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1872 	if (branch->lnum == 0) {
1873 		/*
1874 		 * This pnode was not written which just means that the LEB
1875 		 * properties in it describe empty LEBs. We make the pnode as
1876 		 * though we had read it.
1877 		 */
1878 		int i;
1879 
1880 		if (c->big_lpt)
1881 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1882 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1883 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1884 
1885 			lprops->free = c->leb_size;
1886 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1887 		}
1888 	} else {
1889 		ubifs_assert(branch->lnum >= c->lpt_first &&
1890 			     branch->lnum <= c->lpt_last);
1891 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1892 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1893 				     c->pnode_sz, 1);
1894 		if (err)
1895 			return ERR_PTR(err);
1896 		err = unpack_pnode(c, buf, pnode);
1897 		if (err)
1898 			return ERR_PTR(err);
1899 	}
1900 	err = validate_pnode(c, pnode, parent, iip);
1901 	if (err)
1902 		return ERR_PTR(err);
1903 	if (!c->big_lpt)
1904 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1905 	pnode->parent = parent;
1906 	pnode->iip = iip;
1907 	set_pnode_lnum(c, pnode);
1908 	return pnode;
1909 }
1910 
1911 /**
1912  * ubifs_lpt_scan_nolock - scan the LPT.
1913  * @c: the UBIFS file-system description object
1914  * @start_lnum: LEB number from which to start scanning
1915  * @end_lnum: LEB number at which to stop scanning
1916  * @scan_cb: callback function called for each lprops
1917  * @data: data to be passed to the callback function
1918  *
1919  * This function returns %0 on success and a negative error code on failure.
1920  */
1921 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1922 			  ubifs_lpt_scan_callback scan_cb, void *data)
1923 {
1924 	int err = 0, i, h, iip, shft;
1925 	struct ubifs_nnode *nnode;
1926 	struct ubifs_pnode *pnode;
1927 	struct lpt_scan_node *path;
1928 
1929 	if (start_lnum == -1) {
1930 		start_lnum = end_lnum + 1;
1931 		if (start_lnum >= c->leb_cnt)
1932 			start_lnum = c->main_first;
1933 	}
1934 
1935 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1936 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1937 
1938 	if (!c->nroot) {
1939 		err = ubifs_read_nnode(c, NULL, 0);
1940 		if (err)
1941 			return err;
1942 	}
1943 
1944 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1945 		       GFP_NOFS);
1946 	if (!path)
1947 		return -ENOMEM;
1948 
1949 	path[0].ptr.nnode = c->nroot;
1950 	path[0].in_tree = 1;
1951 again:
1952 	/* Descend to the pnode containing start_lnum */
1953 	nnode = c->nroot;
1954 	i = start_lnum - c->main_first;
1955 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1956 	for (h = 1; h < c->lpt_hght; h++) {
1957 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1958 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1959 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1960 		if (IS_ERR(nnode)) {
1961 			err = PTR_ERR(nnode);
1962 			goto out;
1963 		}
1964 	}
1965 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1966 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1967 	if (IS_ERR(pnode)) {
1968 		err = PTR_ERR(pnode);
1969 		goto out;
1970 	}
1971 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1972 
1973 	/* Loop for each lprops */
1974 	while (1) {
1975 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1976 		int ret, lnum = lprops->lnum;
1977 
1978 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1979 		if (ret < 0) {
1980 			err = ret;
1981 			goto out;
1982 		}
1983 		if (ret & LPT_SCAN_ADD) {
1984 			/* Add all the nodes in path to the tree in memory */
1985 			for (h = 1; h < c->lpt_hght; h++) {
1986 				const size_t sz = sizeof(struct ubifs_nnode);
1987 				struct ubifs_nnode *parent;
1988 
1989 				if (path[h].in_tree)
1990 					continue;
1991 				nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS);
1992 				if (!nnode) {
1993 					err = -ENOMEM;
1994 					goto out;
1995 				}
1996 				parent = nnode->parent;
1997 				parent->nbranch[nnode->iip].nnode = nnode;
1998 				path[h].ptr.nnode = nnode;
1999 				path[h].in_tree = 1;
2000 				path[h + 1].cnode.parent = nnode;
2001 			}
2002 			if (path[h].in_tree)
2003 				ubifs_ensure_cat(c, lprops);
2004 			else {
2005 				const size_t sz = sizeof(struct ubifs_pnode);
2006 				struct ubifs_nnode *parent;
2007 
2008 				pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS);
2009 				if (!pnode) {
2010 					err = -ENOMEM;
2011 					goto out;
2012 				}
2013 				parent = pnode->parent;
2014 				parent->nbranch[pnode->iip].pnode = pnode;
2015 				path[h].ptr.pnode = pnode;
2016 				path[h].in_tree = 1;
2017 				update_cats(c, pnode);
2018 				c->pnodes_have += 1;
2019 			}
2020 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2021 						  c->nroot, 0, 0);
2022 			if (err)
2023 				goto out;
2024 			err = dbg_check_cats(c);
2025 			if (err)
2026 				goto out;
2027 		}
2028 		if (ret & LPT_SCAN_STOP) {
2029 			err = 0;
2030 			break;
2031 		}
2032 		/* Get the next lprops */
2033 		if (lnum == end_lnum) {
2034 			/*
2035 			 * We got to the end without finding what we were
2036 			 * looking for
2037 			 */
2038 			err = -ENOSPC;
2039 			goto out;
2040 		}
2041 		if (lnum + 1 >= c->leb_cnt) {
2042 			/* Wrap-around to the beginning */
2043 			start_lnum = c->main_first;
2044 			goto again;
2045 		}
2046 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2047 			/* Next lprops is in the same pnode */
2048 			iip += 1;
2049 			continue;
2050 		}
2051 		/* We need to get the next pnode. Go up until we can go right */
2052 		iip = pnode->iip;
2053 		while (1) {
2054 			h -= 1;
2055 			ubifs_assert(h >= 0);
2056 			nnode = path[h].ptr.nnode;
2057 			if (iip + 1 < UBIFS_LPT_FANOUT)
2058 				break;
2059 			iip = nnode->iip;
2060 		}
2061 		/* Go right */
2062 		iip += 1;
2063 		/* Descend to the pnode */
2064 		h += 1;
2065 		for (; h < c->lpt_hght; h++) {
2066 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2067 			if (IS_ERR(nnode)) {
2068 				err = PTR_ERR(nnode);
2069 				goto out;
2070 			}
2071 			iip = 0;
2072 		}
2073 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2074 		if (IS_ERR(pnode)) {
2075 			err = PTR_ERR(pnode);
2076 			goto out;
2077 		}
2078 		iip = 0;
2079 	}
2080 out:
2081 	kfree(path);
2082 	return err;
2083 }
2084 
2085 /**
2086  * dbg_chk_pnode - check a pnode.
2087  * @c: the UBIFS file-system description object
2088  * @pnode: pnode to check
2089  * @col: pnode column
2090  *
2091  * This function returns %0 on success and a negative error code on failure.
2092  */
2093 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2094 			 int col)
2095 {
2096 	int i;
2097 
2098 	if (pnode->num != col) {
2099 		ubifs_err(c, "pnode num %d expected %d parent num %d iip %d",
2100 			  pnode->num, col, pnode->parent->num, pnode->iip);
2101 		return -EINVAL;
2102 	}
2103 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2104 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2105 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2106 			   c->main_first;
2107 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2108 		struct ubifs_lpt_heap *heap;
2109 		struct list_head *list = NULL;
2110 
2111 		if (lnum >= c->leb_cnt)
2112 			continue;
2113 		if (lprops->lnum != lnum) {
2114 			ubifs_err(c, "bad LEB number %d expected %d",
2115 				  lprops->lnum, lnum);
2116 			return -EINVAL;
2117 		}
2118 		if (lprops->flags & LPROPS_TAKEN) {
2119 			if (cat != LPROPS_UNCAT) {
2120 				ubifs_err(c, "LEB %d taken but not uncat %d",
2121 					  lprops->lnum, cat);
2122 				return -EINVAL;
2123 			}
2124 			continue;
2125 		}
2126 		if (lprops->flags & LPROPS_INDEX) {
2127 			switch (cat) {
2128 			case LPROPS_UNCAT:
2129 			case LPROPS_DIRTY_IDX:
2130 			case LPROPS_FRDI_IDX:
2131 				break;
2132 			default:
2133 				ubifs_err(c, "LEB %d index but cat %d",
2134 					  lprops->lnum, cat);
2135 				return -EINVAL;
2136 			}
2137 		} else {
2138 			switch (cat) {
2139 			case LPROPS_UNCAT:
2140 			case LPROPS_DIRTY:
2141 			case LPROPS_FREE:
2142 			case LPROPS_EMPTY:
2143 			case LPROPS_FREEABLE:
2144 				break;
2145 			default:
2146 				ubifs_err(c, "LEB %d not index but cat %d",
2147 					  lprops->lnum, cat);
2148 				return -EINVAL;
2149 			}
2150 		}
2151 		switch (cat) {
2152 		case LPROPS_UNCAT:
2153 			list = &c->uncat_list;
2154 			break;
2155 		case LPROPS_EMPTY:
2156 			list = &c->empty_list;
2157 			break;
2158 		case LPROPS_FREEABLE:
2159 			list = &c->freeable_list;
2160 			break;
2161 		case LPROPS_FRDI_IDX:
2162 			list = &c->frdi_idx_list;
2163 			break;
2164 		}
2165 		found = 0;
2166 		switch (cat) {
2167 		case LPROPS_DIRTY:
2168 		case LPROPS_DIRTY_IDX:
2169 		case LPROPS_FREE:
2170 			heap = &c->lpt_heap[cat - 1];
2171 			if (lprops->hpos < heap->cnt &&
2172 			    heap->arr[lprops->hpos] == lprops)
2173 				found = 1;
2174 			break;
2175 		case LPROPS_UNCAT:
2176 		case LPROPS_EMPTY:
2177 		case LPROPS_FREEABLE:
2178 		case LPROPS_FRDI_IDX:
2179 			list_for_each_entry(lp, list, list)
2180 				if (lprops == lp) {
2181 					found = 1;
2182 					break;
2183 				}
2184 			break;
2185 		}
2186 		if (!found) {
2187 			ubifs_err(c, "LEB %d cat %d not found in cat heap/list",
2188 				  lprops->lnum, cat);
2189 			return -EINVAL;
2190 		}
2191 		switch (cat) {
2192 		case LPROPS_EMPTY:
2193 			if (lprops->free != c->leb_size) {
2194 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2195 					  lprops->lnum, cat, lprops->free,
2196 					  lprops->dirty);
2197 				return -EINVAL;
2198 			}
2199 			break;
2200 		case LPROPS_FREEABLE:
2201 		case LPROPS_FRDI_IDX:
2202 			if (lprops->free + lprops->dirty != c->leb_size) {
2203 				ubifs_err(c, "LEB %d cat %d free %d dirty %d",
2204 					  lprops->lnum, cat, lprops->free,
2205 					  lprops->dirty);
2206 				return -EINVAL;
2207 			}
2208 			break;
2209 		}
2210 	}
2211 	return 0;
2212 }
2213 
2214 /**
2215  * dbg_check_lpt_nodes - check nnodes and pnodes.
2216  * @c: the UBIFS file-system description object
2217  * @cnode: next cnode (nnode or pnode) to check
2218  * @row: row of cnode (root is zero)
2219  * @col: column of cnode (leftmost is zero)
2220  *
2221  * This function returns %0 on success and a negative error code on failure.
2222  */
2223 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2224 			int row, int col)
2225 {
2226 	struct ubifs_nnode *nnode, *nn;
2227 	struct ubifs_cnode *cn;
2228 	int num, iip = 0, err;
2229 
2230 	if (!dbg_is_chk_lprops(c))
2231 		return 0;
2232 
2233 	while (cnode) {
2234 		ubifs_assert(row >= 0);
2235 		nnode = cnode->parent;
2236 		if (cnode->level) {
2237 			/* cnode is a nnode */
2238 			num = calc_nnode_num(row, col);
2239 			if (cnode->num != num) {
2240 				ubifs_err(c, "nnode num %d expected %d parent num %d iip %d",
2241 					  cnode->num, num,
2242 					  (nnode ? nnode->num : 0), cnode->iip);
2243 				return -EINVAL;
2244 			}
2245 			nn = (struct ubifs_nnode *)cnode;
2246 			while (iip < UBIFS_LPT_FANOUT) {
2247 				cn = nn->nbranch[iip].cnode;
2248 				if (cn) {
2249 					/* Go down */
2250 					row += 1;
2251 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2252 					col += iip;
2253 					iip = 0;
2254 					cnode = cn;
2255 					break;
2256 				}
2257 				/* Go right */
2258 				iip += 1;
2259 			}
2260 			if (iip < UBIFS_LPT_FANOUT)
2261 				continue;
2262 		} else {
2263 			struct ubifs_pnode *pnode;
2264 
2265 			/* cnode is a pnode */
2266 			pnode = (struct ubifs_pnode *)cnode;
2267 			err = dbg_chk_pnode(c, pnode, col);
2268 			if (err)
2269 				return err;
2270 		}
2271 		/* Go up and to the right */
2272 		row -= 1;
2273 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2274 		iip = cnode->iip + 1;
2275 		cnode = (struct ubifs_cnode *)nnode;
2276 	}
2277 	return 0;
2278 }
2279