1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements the LEB properties tree (LPT) area. The LPT area 25 * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and 26 * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits 27 * between the log and the orphan area. 28 * 29 * The LPT area is like a miniature self-contained file system. It is required 30 * that it never runs out of space, is fast to access and update, and scales 31 * logarithmically. The LEB properties tree is implemented as a wandering tree 32 * much like the TNC, and the LPT area has its own garbage collection. 33 * 34 * The LPT has two slightly different forms called the "small model" and the 35 * "big model". The small model is used when the entire LEB properties table 36 * can be written into a single eraseblock. In that case, garbage collection 37 * consists of just writing the whole table, which therefore makes all other 38 * eraseblocks reusable. In the case of the big model, dirty eraseblocks are 39 * selected for garbage collection, which consists of marking the clean nodes in 40 * that LEB as dirty, and then only the dirty nodes are written out. Also, in 41 * the case of the big model, a table of LEB numbers is saved so that the entire 42 * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first 43 * mounted. 44 */ 45 46 #include "ubifs.h" 47 #include <linux/crc16.h> 48 #include <linux/math64.h> 49 #include <linux/slab.h> 50 51 /** 52 * do_calc_lpt_geom - calculate sizes for the LPT area. 53 * @c: the UBIFS file-system description object 54 * 55 * Calculate the sizes of LPT bit fields, nodes, and tree, based on the 56 * properties of the flash and whether LPT is "big" (c->big_lpt). 57 */ 58 static void do_calc_lpt_geom(struct ubifs_info *c) 59 { 60 int i, n, bits, per_leb_wastage, max_pnode_cnt; 61 long long sz, tot_wastage; 62 63 n = c->main_lebs + c->max_leb_cnt - c->leb_cnt; 64 max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); 65 66 c->lpt_hght = 1; 67 n = UBIFS_LPT_FANOUT; 68 while (n < max_pnode_cnt) { 69 c->lpt_hght += 1; 70 n <<= UBIFS_LPT_FANOUT_SHIFT; 71 } 72 73 c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT); 74 75 n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT); 76 c->nnode_cnt = n; 77 for (i = 1; i < c->lpt_hght; i++) { 78 n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT); 79 c->nnode_cnt += n; 80 } 81 82 c->space_bits = fls(c->leb_size) - 3; 83 c->lpt_lnum_bits = fls(c->lpt_lebs); 84 c->lpt_offs_bits = fls(c->leb_size - 1); 85 c->lpt_spc_bits = fls(c->leb_size); 86 87 n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT); 88 c->pcnt_bits = fls(n - 1); 89 90 c->lnum_bits = fls(c->max_leb_cnt - 1); 91 92 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 93 (c->big_lpt ? c->pcnt_bits : 0) + 94 (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT; 95 c->pnode_sz = (bits + 7) / 8; 96 97 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 98 (c->big_lpt ? c->pcnt_bits : 0) + 99 (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT; 100 c->nnode_sz = (bits + 7) / 8; 101 102 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 103 c->lpt_lebs * c->lpt_spc_bits * 2; 104 c->ltab_sz = (bits + 7) / 8; 105 106 bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS + 107 c->lnum_bits * c->lsave_cnt; 108 c->lsave_sz = (bits + 7) / 8; 109 110 /* Calculate the minimum LPT size */ 111 c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz; 112 c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz; 113 c->lpt_sz += c->ltab_sz; 114 if (c->big_lpt) 115 c->lpt_sz += c->lsave_sz; 116 117 /* Add wastage */ 118 sz = c->lpt_sz; 119 per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz); 120 sz += per_leb_wastage; 121 tot_wastage = per_leb_wastage; 122 while (sz > c->leb_size) { 123 sz += per_leb_wastage; 124 sz -= c->leb_size; 125 tot_wastage += per_leb_wastage; 126 } 127 tot_wastage += ALIGN(sz, c->min_io_size) - sz; 128 c->lpt_sz += tot_wastage; 129 } 130 131 /** 132 * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area. 133 * @c: the UBIFS file-system description object 134 * 135 * This function returns %0 on success and a negative error code on failure. 136 */ 137 int ubifs_calc_lpt_geom(struct ubifs_info *c) 138 { 139 int lebs_needed; 140 long long sz; 141 142 do_calc_lpt_geom(c); 143 144 /* Verify that lpt_lebs is big enough */ 145 sz = c->lpt_sz * 2; /* Must have at least 2 times the size */ 146 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); 147 if (lebs_needed > c->lpt_lebs) { 148 ubifs_err(c, "too few LPT LEBs"); 149 return -EINVAL; 150 } 151 152 /* Verify that ltab fits in a single LEB (since ltab is a single node */ 153 if (c->ltab_sz > c->leb_size) { 154 ubifs_err(c, "LPT ltab too big"); 155 return -EINVAL; 156 } 157 158 c->check_lpt_free = c->big_lpt; 159 return 0; 160 } 161 162 /** 163 * calc_dflt_lpt_geom - calculate default LPT geometry. 164 * @c: the UBIFS file-system description object 165 * @main_lebs: number of main area LEBs is passed and returned here 166 * @big_lpt: whether the LPT area is "big" is returned here 167 * 168 * The size of the LPT area depends on parameters that themselves are dependent 169 * on the size of the LPT area. This function, successively recalculates the LPT 170 * area geometry until the parameters and resultant geometry are consistent. 171 * 172 * This function returns %0 on success and a negative error code on failure. 173 */ 174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs, 175 int *big_lpt) 176 { 177 int i, lebs_needed; 178 long long sz; 179 180 /* Start by assuming the minimum number of LPT LEBs */ 181 c->lpt_lebs = UBIFS_MIN_LPT_LEBS; 182 c->main_lebs = *main_lebs - c->lpt_lebs; 183 if (c->main_lebs <= 0) 184 return -EINVAL; 185 186 /* And assume we will use the small LPT model */ 187 c->big_lpt = 0; 188 189 /* 190 * Calculate the geometry based on assumptions above and then see if it 191 * makes sense 192 */ 193 do_calc_lpt_geom(c); 194 195 /* Small LPT model must have lpt_sz < leb_size */ 196 if (c->lpt_sz > c->leb_size) { 197 /* Nope, so try again using big LPT model */ 198 c->big_lpt = 1; 199 do_calc_lpt_geom(c); 200 } 201 202 /* Now check there are enough LPT LEBs */ 203 for (i = 0; i < 64 ; i++) { 204 sz = c->lpt_sz * 4; /* Allow 4 times the size */ 205 lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size); 206 if (lebs_needed > c->lpt_lebs) { 207 /* Not enough LPT LEBs so try again with more */ 208 c->lpt_lebs = lebs_needed; 209 c->main_lebs = *main_lebs - c->lpt_lebs; 210 if (c->main_lebs <= 0) 211 return -EINVAL; 212 do_calc_lpt_geom(c); 213 continue; 214 } 215 if (c->ltab_sz > c->leb_size) { 216 ubifs_err(c, "LPT ltab too big"); 217 return -EINVAL; 218 } 219 *main_lebs = c->main_lebs; 220 *big_lpt = c->big_lpt; 221 return 0; 222 } 223 return -EINVAL; 224 } 225 226 /** 227 * pack_bits - pack bit fields end-to-end. 228 * @c: UBIFS file-system description object 229 * @addr: address at which to pack (passed and next address returned) 230 * @pos: bit position at which to pack (passed and next position returned) 231 * @val: value to pack 232 * @nrbits: number of bits of value to pack (1-32) 233 */ 234 static void pack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, uint32_t val, int nrbits) 235 { 236 uint8_t *p = *addr; 237 int b = *pos; 238 239 ubifs_assert(c, nrbits > 0); 240 ubifs_assert(c, nrbits <= 32); 241 ubifs_assert(c, *pos >= 0); 242 ubifs_assert(c, *pos < 8); 243 ubifs_assert(c, (val >> nrbits) == 0 || nrbits == 32); 244 if (b) { 245 *p |= ((uint8_t)val) << b; 246 nrbits += b; 247 if (nrbits > 8) { 248 *++p = (uint8_t)(val >>= (8 - b)); 249 if (nrbits > 16) { 250 *++p = (uint8_t)(val >>= 8); 251 if (nrbits > 24) { 252 *++p = (uint8_t)(val >>= 8); 253 if (nrbits > 32) 254 *++p = (uint8_t)(val >>= 8); 255 } 256 } 257 } 258 } else { 259 *p = (uint8_t)val; 260 if (nrbits > 8) { 261 *++p = (uint8_t)(val >>= 8); 262 if (nrbits > 16) { 263 *++p = (uint8_t)(val >>= 8); 264 if (nrbits > 24) 265 *++p = (uint8_t)(val >>= 8); 266 } 267 } 268 } 269 b = nrbits & 7; 270 if (b == 0) 271 p++; 272 *addr = p; 273 *pos = b; 274 } 275 276 /** 277 * ubifs_unpack_bits - unpack bit fields. 278 * @c: UBIFS file-system description object 279 * @addr: address at which to unpack (passed and next address returned) 280 * @pos: bit position at which to unpack (passed and next position returned) 281 * @nrbits: number of bits of value to unpack (1-32) 282 * 283 * This functions returns the value unpacked. 284 */ 285 uint32_t ubifs_unpack_bits(const struct ubifs_info *c, uint8_t **addr, int *pos, int nrbits) 286 { 287 const int k = 32 - nrbits; 288 uint8_t *p = *addr; 289 int b = *pos; 290 uint32_t uninitialized_var(val); 291 const int bytes = (nrbits + b + 7) >> 3; 292 293 ubifs_assert(c, nrbits > 0); 294 ubifs_assert(c, nrbits <= 32); 295 ubifs_assert(c, *pos >= 0); 296 ubifs_assert(c, *pos < 8); 297 if (b) { 298 switch (bytes) { 299 case 2: 300 val = p[1]; 301 break; 302 case 3: 303 val = p[1] | ((uint32_t)p[2] << 8); 304 break; 305 case 4: 306 val = p[1] | ((uint32_t)p[2] << 8) | 307 ((uint32_t)p[3] << 16); 308 break; 309 case 5: 310 val = p[1] | ((uint32_t)p[2] << 8) | 311 ((uint32_t)p[3] << 16) | 312 ((uint32_t)p[4] << 24); 313 } 314 val <<= (8 - b); 315 val |= *p >> b; 316 nrbits += b; 317 } else { 318 switch (bytes) { 319 case 1: 320 val = p[0]; 321 break; 322 case 2: 323 val = p[0] | ((uint32_t)p[1] << 8); 324 break; 325 case 3: 326 val = p[0] | ((uint32_t)p[1] << 8) | 327 ((uint32_t)p[2] << 16); 328 break; 329 case 4: 330 val = p[0] | ((uint32_t)p[1] << 8) | 331 ((uint32_t)p[2] << 16) | 332 ((uint32_t)p[3] << 24); 333 break; 334 } 335 } 336 val <<= k; 337 val >>= k; 338 b = nrbits & 7; 339 p += nrbits >> 3; 340 *addr = p; 341 *pos = b; 342 ubifs_assert(c, (val >> nrbits) == 0 || nrbits - b == 32); 343 return val; 344 } 345 346 /** 347 * ubifs_pack_pnode - pack all the bit fields of a pnode. 348 * @c: UBIFS file-system description object 349 * @buf: buffer into which to pack 350 * @pnode: pnode to pack 351 */ 352 void ubifs_pack_pnode(struct ubifs_info *c, void *buf, 353 struct ubifs_pnode *pnode) 354 { 355 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 356 int i, pos = 0; 357 uint16_t crc; 358 359 pack_bits(c, &addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS); 360 if (c->big_lpt) 361 pack_bits(c, &addr, &pos, pnode->num, c->pcnt_bits); 362 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 363 pack_bits(c, &addr, &pos, pnode->lprops[i].free >> 3, 364 c->space_bits); 365 pack_bits(c, &addr, &pos, pnode->lprops[i].dirty >> 3, 366 c->space_bits); 367 if (pnode->lprops[i].flags & LPROPS_INDEX) 368 pack_bits(c, &addr, &pos, 1, 1); 369 else 370 pack_bits(c, &addr, &pos, 0, 1); 371 } 372 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 373 c->pnode_sz - UBIFS_LPT_CRC_BYTES); 374 addr = buf; 375 pos = 0; 376 pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS); 377 } 378 379 /** 380 * ubifs_pack_nnode - pack all the bit fields of a nnode. 381 * @c: UBIFS file-system description object 382 * @buf: buffer into which to pack 383 * @nnode: nnode to pack 384 */ 385 void ubifs_pack_nnode(struct ubifs_info *c, void *buf, 386 struct ubifs_nnode *nnode) 387 { 388 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 389 int i, pos = 0; 390 uint16_t crc; 391 392 pack_bits(c, &addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS); 393 if (c->big_lpt) 394 pack_bits(c, &addr, &pos, nnode->num, c->pcnt_bits); 395 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 396 int lnum = nnode->nbranch[i].lnum; 397 398 if (lnum == 0) 399 lnum = c->lpt_last + 1; 400 pack_bits(c, &addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits); 401 pack_bits(c, &addr, &pos, nnode->nbranch[i].offs, 402 c->lpt_offs_bits); 403 } 404 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 405 c->nnode_sz - UBIFS_LPT_CRC_BYTES); 406 addr = buf; 407 pos = 0; 408 pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS); 409 } 410 411 /** 412 * ubifs_pack_ltab - pack the LPT's own lprops table. 413 * @c: UBIFS file-system description object 414 * @buf: buffer into which to pack 415 * @ltab: LPT's own lprops table to pack 416 */ 417 void ubifs_pack_ltab(struct ubifs_info *c, void *buf, 418 struct ubifs_lpt_lprops *ltab) 419 { 420 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 421 int i, pos = 0; 422 uint16_t crc; 423 424 pack_bits(c, &addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS); 425 for (i = 0; i < c->lpt_lebs; i++) { 426 pack_bits(c, &addr, &pos, ltab[i].free, c->lpt_spc_bits); 427 pack_bits(c, &addr, &pos, ltab[i].dirty, c->lpt_spc_bits); 428 } 429 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 430 c->ltab_sz - UBIFS_LPT_CRC_BYTES); 431 addr = buf; 432 pos = 0; 433 pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS); 434 } 435 436 /** 437 * ubifs_pack_lsave - pack the LPT's save table. 438 * @c: UBIFS file-system description object 439 * @buf: buffer into which to pack 440 * @lsave: LPT's save table to pack 441 */ 442 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave) 443 { 444 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 445 int i, pos = 0; 446 uint16_t crc; 447 448 pack_bits(c, &addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS); 449 for (i = 0; i < c->lsave_cnt; i++) 450 pack_bits(c, &addr, &pos, lsave[i], c->lnum_bits); 451 crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 452 c->lsave_sz - UBIFS_LPT_CRC_BYTES); 453 addr = buf; 454 pos = 0; 455 pack_bits(c, &addr, &pos, crc, UBIFS_LPT_CRC_BITS); 456 } 457 458 /** 459 * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties. 460 * @c: UBIFS file-system description object 461 * @lnum: LEB number to which to add dirty space 462 * @dirty: amount of dirty space to add 463 */ 464 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty) 465 { 466 if (!dirty || !lnum) 467 return; 468 dbg_lp("LEB %d add %d to %d", 469 lnum, dirty, c->ltab[lnum - c->lpt_first].dirty); 470 ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last); 471 c->ltab[lnum - c->lpt_first].dirty += dirty; 472 } 473 474 /** 475 * set_ltab - set LPT LEB properties. 476 * @c: UBIFS file-system description object 477 * @lnum: LEB number 478 * @free: amount of free space 479 * @dirty: amount of dirty space 480 */ 481 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty) 482 { 483 dbg_lp("LEB %d free %d dirty %d to %d %d", 484 lnum, c->ltab[lnum - c->lpt_first].free, 485 c->ltab[lnum - c->lpt_first].dirty, free, dirty); 486 ubifs_assert(c, lnum >= c->lpt_first && lnum <= c->lpt_last); 487 c->ltab[lnum - c->lpt_first].free = free; 488 c->ltab[lnum - c->lpt_first].dirty = dirty; 489 } 490 491 /** 492 * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties. 493 * @c: UBIFS file-system description object 494 * @nnode: nnode for which to add dirt 495 */ 496 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode) 497 { 498 struct ubifs_nnode *np = nnode->parent; 499 500 if (np) 501 ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum, 502 c->nnode_sz); 503 else { 504 ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz); 505 if (!(c->lpt_drty_flgs & LTAB_DIRTY)) { 506 c->lpt_drty_flgs |= LTAB_DIRTY; 507 ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz); 508 } 509 } 510 } 511 512 /** 513 * add_pnode_dirt - add dirty space to LPT LEB properties. 514 * @c: UBIFS file-system description object 515 * @pnode: pnode for which to add dirt 516 */ 517 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode) 518 { 519 ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum, 520 c->pnode_sz); 521 } 522 523 /** 524 * calc_nnode_num - calculate nnode number. 525 * @row: the row in the tree (root is zero) 526 * @col: the column in the row (leftmost is zero) 527 * 528 * The nnode number is a number that uniquely identifies a nnode and can be used 529 * easily to traverse the tree from the root to that nnode. 530 * 531 * This function calculates and returns the nnode number for the nnode at @row 532 * and @col. 533 */ 534 static int calc_nnode_num(int row, int col) 535 { 536 int num, bits; 537 538 num = 1; 539 while (row--) { 540 bits = (col & (UBIFS_LPT_FANOUT - 1)); 541 col >>= UBIFS_LPT_FANOUT_SHIFT; 542 num <<= UBIFS_LPT_FANOUT_SHIFT; 543 num |= bits; 544 } 545 return num; 546 } 547 548 /** 549 * calc_nnode_num_from_parent - calculate nnode number. 550 * @c: UBIFS file-system description object 551 * @parent: parent nnode 552 * @iip: index in parent 553 * 554 * The nnode number is a number that uniquely identifies a nnode and can be used 555 * easily to traverse the tree from the root to that nnode. 556 * 557 * This function calculates and returns the nnode number based on the parent's 558 * nnode number and the index in parent. 559 */ 560 static int calc_nnode_num_from_parent(const struct ubifs_info *c, 561 struct ubifs_nnode *parent, int iip) 562 { 563 int num, shft; 564 565 if (!parent) 566 return 1; 567 shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT; 568 num = parent->num ^ (1 << shft); 569 num |= (UBIFS_LPT_FANOUT + iip) << shft; 570 return num; 571 } 572 573 /** 574 * calc_pnode_num_from_parent - calculate pnode number. 575 * @c: UBIFS file-system description object 576 * @parent: parent nnode 577 * @iip: index in parent 578 * 579 * The pnode number is a number that uniquely identifies a pnode and can be used 580 * easily to traverse the tree from the root to that pnode. 581 * 582 * This function calculates and returns the pnode number based on the parent's 583 * nnode number and the index in parent. 584 */ 585 static int calc_pnode_num_from_parent(const struct ubifs_info *c, 586 struct ubifs_nnode *parent, int iip) 587 { 588 int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0; 589 590 for (i = 0; i < n; i++) { 591 num <<= UBIFS_LPT_FANOUT_SHIFT; 592 num |= pnum & (UBIFS_LPT_FANOUT - 1); 593 pnum >>= UBIFS_LPT_FANOUT_SHIFT; 594 } 595 num <<= UBIFS_LPT_FANOUT_SHIFT; 596 num |= iip; 597 return num; 598 } 599 600 /** 601 * ubifs_create_dflt_lpt - create default LPT. 602 * @c: UBIFS file-system description object 603 * @main_lebs: number of main area LEBs is passed and returned here 604 * @lpt_first: LEB number of first LPT LEB 605 * @lpt_lebs: number of LEBs for LPT is passed and returned here 606 * @big_lpt: use big LPT model is passed and returned here 607 * 608 * This function returns %0 on success and a negative error code on failure. 609 */ 610 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first, 611 int *lpt_lebs, int *big_lpt) 612 { 613 int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row; 614 int blnum, boffs, bsz, bcnt; 615 struct ubifs_pnode *pnode = NULL; 616 struct ubifs_nnode *nnode = NULL; 617 void *buf = NULL, *p; 618 struct ubifs_lpt_lprops *ltab = NULL; 619 int *lsave = NULL; 620 621 err = calc_dflt_lpt_geom(c, main_lebs, big_lpt); 622 if (err) 623 return err; 624 *lpt_lebs = c->lpt_lebs; 625 626 /* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */ 627 c->lpt_first = lpt_first; 628 /* Needed by 'set_ltab()' */ 629 c->lpt_last = lpt_first + c->lpt_lebs - 1; 630 /* Needed by 'ubifs_pack_lsave()' */ 631 c->main_first = c->leb_cnt - *main_lebs; 632 633 lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_KERNEL); 634 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL); 635 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL); 636 buf = vmalloc(c->leb_size); 637 ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops), 638 c->lpt_lebs)); 639 if (!pnode || !nnode || !buf || !ltab || !lsave) { 640 err = -ENOMEM; 641 goto out; 642 } 643 644 ubifs_assert(c, !c->ltab); 645 c->ltab = ltab; /* Needed by set_ltab */ 646 647 /* Initialize LPT's own lprops */ 648 for (i = 0; i < c->lpt_lebs; i++) { 649 ltab[i].free = c->leb_size; 650 ltab[i].dirty = 0; 651 ltab[i].tgc = 0; 652 ltab[i].cmt = 0; 653 } 654 655 lnum = lpt_first; 656 p = buf; 657 /* Number of leaf nodes (pnodes) */ 658 cnt = c->pnode_cnt; 659 660 /* 661 * The first pnode contains the LEB properties for the LEBs that contain 662 * the root inode node and the root index node of the index tree. 663 */ 664 node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8); 665 iopos = ALIGN(node_sz, c->min_io_size); 666 pnode->lprops[0].free = c->leb_size - iopos; 667 pnode->lprops[0].dirty = iopos - node_sz; 668 pnode->lprops[0].flags = LPROPS_INDEX; 669 670 node_sz = UBIFS_INO_NODE_SZ; 671 iopos = ALIGN(node_sz, c->min_io_size); 672 pnode->lprops[1].free = c->leb_size - iopos; 673 pnode->lprops[1].dirty = iopos - node_sz; 674 675 for (i = 2; i < UBIFS_LPT_FANOUT; i++) 676 pnode->lprops[i].free = c->leb_size; 677 678 /* Add first pnode */ 679 ubifs_pack_pnode(c, p, pnode); 680 p += c->pnode_sz; 681 len = c->pnode_sz; 682 pnode->num += 1; 683 684 /* Reset pnode values for remaining pnodes */ 685 pnode->lprops[0].free = c->leb_size; 686 pnode->lprops[0].dirty = 0; 687 pnode->lprops[0].flags = 0; 688 689 pnode->lprops[1].free = c->leb_size; 690 pnode->lprops[1].dirty = 0; 691 692 /* 693 * To calculate the internal node branches, we keep information about 694 * the level below. 695 */ 696 blnum = lnum; /* LEB number of level below */ 697 boffs = 0; /* Offset of level below */ 698 bcnt = cnt; /* Number of nodes in level below */ 699 bsz = c->pnode_sz; /* Size of nodes in level below */ 700 701 /* Add all remaining pnodes */ 702 for (i = 1; i < cnt; i++) { 703 if (len + c->pnode_sz > c->leb_size) { 704 alen = ALIGN(len, c->min_io_size); 705 set_ltab(c, lnum, c->leb_size - alen, alen - len); 706 memset(p, 0xff, alen - len); 707 err = ubifs_leb_change(c, lnum++, buf, alen); 708 if (err) 709 goto out; 710 p = buf; 711 len = 0; 712 } 713 ubifs_pack_pnode(c, p, pnode); 714 p += c->pnode_sz; 715 len += c->pnode_sz; 716 /* 717 * pnodes are simply numbered left to right starting at zero, 718 * which means the pnode number can be used easily to traverse 719 * down the tree to the corresponding pnode. 720 */ 721 pnode->num += 1; 722 } 723 724 row = 0; 725 for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT) 726 row += 1; 727 /* Add all nnodes, one level at a time */ 728 while (1) { 729 /* Number of internal nodes (nnodes) at next level */ 730 cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT); 731 for (i = 0; i < cnt; i++) { 732 if (len + c->nnode_sz > c->leb_size) { 733 alen = ALIGN(len, c->min_io_size); 734 set_ltab(c, lnum, c->leb_size - alen, 735 alen - len); 736 memset(p, 0xff, alen - len); 737 err = ubifs_leb_change(c, lnum++, buf, alen); 738 if (err) 739 goto out; 740 p = buf; 741 len = 0; 742 } 743 /* Only 1 nnode at this level, so it is the root */ 744 if (cnt == 1) { 745 c->lpt_lnum = lnum; 746 c->lpt_offs = len; 747 } 748 /* Set branches to the level below */ 749 for (j = 0; j < UBIFS_LPT_FANOUT; j++) { 750 if (bcnt) { 751 if (boffs + bsz > c->leb_size) { 752 blnum += 1; 753 boffs = 0; 754 } 755 nnode->nbranch[j].lnum = blnum; 756 nnode->nbranch[j].offs = boffs; 757 boffs += bsz; 758 bcnt--; 759 } else { 760 nnode->nbranch[j].lnum = 0; 761 nnode->nbranch[j].offs = 0; 762 } 763 } 764 nnode->num = calc_nnode_num(row, i); 765 ubifs_pack_nnode(c, p, nnode); 766 p += c->nnode_sz; 767 len += c->nnode_sz; 768 } 769 /* Only 1 nnode at this level, so it is the root */ 770 if (cnt == 1) 771 break; 772 /* Update the information about the level below */ 773 bcnt = cnt; 774 bsz = c->nnode_sz; 775 row -= 1; 776 } 777 778 if (*big_lpt) { 779 /* Need to add LPT's save table */ 780 if (len + c->lsave_sz > c->leb_size) { 781 alen = ALIGN(len, c->min_io_size); 782 set_ltab(c, lnum, c->leb_size - alen, alen - len); 783 memset(p, 0xff, alen - len); 784 err = ubifs_leb_change(c, lnum++, buf, alen); 785 if (err) 786 goto out; 787 p = buf; 788 len = 0; 789 } 790 791 c->lsave_lnum = lnum; 792 c->lsave_offs = len; 793 794 for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++) 795 lsave[i] = c->main_first + i; 796 for (; i < c->lsave_cnt; i++) 797 lsave[i] = c->main_first; 798 799 ubifs_pack_lsave(c, p, lsave); 800 p += c->lsave_sz; 801 len += c->lsave_sz; 802 } 803 804 /* Need to add LPT's own LEB properties table */ 805 if (len + c->ltab_sz > c->leb_size) { 806 alen = ALIGN(len, c->min_io_size); 807 set_ltab(c, lnum, c->leb_size - alen, alen - len); 808 memset(p, 0xff, alen - len); 809 err = ubifs_leb_change(c, lnum++, buf, alen); 810 if (err) 811 goto out; 812 p = buf; 813 len = 0; 814 } 815 816 c->ltab_lnum = lnum; 817 c->ltab_offs = len; 818 819 /* Update ltab before packing it */ 820 len += c->ltab_sz; 821 alen = ALIGN(len, c->min_io_size); 822 set_ltab(c, lnum, c->leb_size - alen, alen - len); 823 824 ubifs_pack_ltab(c, p, ltab); 825 p += c->ltab_sz; 826 827 /* Write remaining buffer */ 828 memset(p, 0xff, alen - len); 829 err = ubifs_leb_change(c, lnum, buf, alen); 830 if (err) 831 goto out; 832 833 c->nhead_lnum = lnum; 834 c->nhead_offs = ALIGN(len, c->min_io_size); 835 836 dbg_lp("space_bits %d", c->space_bits); 837 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); 838 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); 839 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); 840 dbg_lp("pcnt_bits %d", c->pcnt_bits); 841 dbg_lp("lnum_bits %d", c->lnum_bits); 842 dbg_lp("pnode_sz %d", c->pnode_sz); 843 dbg_lp("nnode_sz %d", c->nnode_sz); 844 dbg_lp("ltab_sz %d", c->ltab_sz); 845 dbg_lp("lsave_sz %d", c->lsave_sz); 846 dbg_lp("lsave_cnt %d", c->lsave_cnt); 847 dbg_lp("lpt_hght %d", c->lpt_hght); 848 dbg_lp("big_lpt %d", c->big_lpt); 849 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 850 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 851 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 852 if (c->big_lpt) 853 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 854 out: 855 c->ltab = NULL; 856 kfree(lsave); 857 vfree(ltab); 858 vfree(buf); 859 kfree(nnode); 860 kfree(pnode); 861 return err; 862 } 863 864 /** 865 * update_cats - add LEB properties of a pnode to LEB category lists and heaps. 866 * @c: UBIFS file-system description object 867 * @pnode: pnode 868 * 869 * When a pnode is loaded into memory, the LEB properties it contains are added, 870 * by this function, to the LEB category lists and heaps. 871 */ 872 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode) 873 { 874 int i; 875 876 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 877 int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK; 878 int lnum = pnode->lprops[i].lnum; 879 880 if (!lnum) 881 return; 882 ubifs_add_to_cat(c, &pnode->lprops[i], cat); 883 } 884 } 885 886 /** 887 * replace_cats - add LEB properties of a pnode to LEB category lists and heaps. 888 * @c: UBIFS file-system description object 889 * @old_pnode: pnode copied 890 * @new_pnode: pnode copy 891 * 892 * During commit it is sometimes necessary to copy a pnode 893 * (see dirty_cow_pnode). When that happens, references in 894 * category lists and heaps must be replaced. This function does that. 895 */ 896 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode, 897 struct ubifs_pnode *new_pnode) 898 { 899 int i; 900 901 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 902 if (!new_pnode->lprops[i].lnum) 903 return; 904 ubifs_replace_cat(c, &old_pnode->lprops[i], 905 &new_pnode->lprops[i]); 906 } 907 } 908 909 /** 910 * check_lpt_crc - check LPT node crc is correct. 911 * @c: UBIFS file-system description object 912 * @buf: buffer containing node 913 * @len: length of node 914 * 915 * This function returns %0 on success and a negative error code on failure. 916 */ 917 static int check_lpt_crc(const struct ubifs_info *c, void *buf, int len) 918 { 919 int pos = 0; 920 uint8_t *addr = buf; 921 uint16_t crc, calc_crc; 922 923 crc = ubifs_unpack_bits(c, &addr, &pos, UBIFS_LPT_CRC_BITS); 924 calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES, 925 len - UBIFS_LPT_CRC_BYTES); 926 if (crc != calc_crc) { 927 ubifs_err(c, "invalid crc in LPT node: crc %hx calc %hx", 928 crc, calc_crc); 929 dump_stack(); 930 return -EINVAL; 931 } 932 return 0; 933 } 934 935 /** 936 * check_lpt_type - check LPT node type is correct. 937 * @c: UBIFS file-system description object 938 * @addr: address of type bit field is passed and returned updated here 939 * @pos: position of type bit field is passed and returned updated here 940 * @type: expected type 941 * 942 * This function returns %0 on success and a negative error code on failure. 943 */ 944 static int check_lpt_type(const struct ubifs_info *c, uint8_t **addr, 945 int *pos, int type) 946 { 947 int node_type; 948 949 node_type = ubifs_unpack_bits(c, addr, pos, UBIFS_LPT_TYPE_BITS); 950 if (node_type != type) { 951 ubifs_err(c, "invalid type (%d) in LPT node type %d", 952 node_type, type); 953 dump_stack(); 954 return -EINVAL; 955 } 956 return 0; 957 } 958 959 /** 960 * unpack_pnode - unpack a pnode. 961 * @c: UBIFS file-system description object 962 * @buf: buffer containing packed pnode to unpack 963 * @pnode: pnode structure to fill 964 * 965 * This function returns %0 on success and a negative error code on failure. 966 */ 967 static int unpack_pnode(const struct ubifs_info *c, void *buf, 968 struct ubifs_pnode *pnode) 969 { 970 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 971 int i, pos = 0, err; 972 973 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_PNODE); 974 if (err) 975 return err; 976 if (c->big_lpt) 977 pnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits); 978 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 979 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 980 981 lprops->free = ubifs_unpack_bits(c, &addr, &pos, c->space_bits); 982 lprops->free <<= 3; 983 lprops->dirty = ubifs_unpack_bits(c, &addr, &pos, c->space_bits); 984 lprops->dirty <<= 3; 985 986 if (ubifs_unpack_bits(c, &addr, &pos, 1)) 987 lprops->flags = LPROPS_INDEX; 988 else 989 lprops->flags = 0; 990 lprops->flags |= ubifs_categorize_lprops(c, lprops); 991 } 992 err = check_lpt_crc(c, buf, c->pnode_sz); 993 return err; 994 } 995 996 /** 997 * ubifs_unpack_nnode - unpack a nnode. 998 * @c: UBIFS file-system description object 999 * @buf: buffer containing packed nnode to unpack 1000 * @nnode: nnode structure to fill 1001 * 1002 * This function returns %0 on success and a negative error code on failure. 1003 */ 1004 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf, 1005 struct ubifs_nnode *nnode) 1006 { 1007 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1008 int i, pos = 0, err; 1009 1010 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_NNODE); 1011 if (err) 1012 return err; 1013 if (c->big_lpt) 1014 nnode->num = ubifs_unpack_bits(c, &addr, &pos, c->pcnt_bits); 1015 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1016 int lnum; 1017 1018 lnum = ubifs_unpack_bits(c, &addr, &pos, c->lpt_lnum_bits) + 1019 c->lpt_first; 1020 if (lnum == c->lpt_last + 1) 1021 lnum = 0; 1022 nnode->nbranch[i].lnum = lnum; 1023 nnode->nbranch[i].offs = ubifs_unpack_bits(c, &addr, &pos, 1024 c->lpt_offs_bits); 1025 } 1026 err = check_lpt_crc(c, buf, c->nnode_sz); 1027 return err; 1028 } 1029 1030 /** 1031 * unpack_ltab - unpack the LPT's own lprops table. 1032 * @c: UBIFS file-system description object 1033 * @buf: buffer from which to unpack 1034 * 1035 * This function returns %0 on success and a negative error code on failure. 1036 */ 1037 static int unpack_ltab(const struct ubifs_info *c, void *buf) 1038 { 1039 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1040 int i, pos = 0, err; 1041 1042 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LTAB); 1043 if (err) 1044 return err; 1045 for (i = 0; i < c->lpt_lebs; i++) { 1046 int free = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits); 1047 int dirty = ubifs_unpack_bits(c, &addr, &pos, c->lpt_spc_bits); 1048 1049 if (free < 0 || free > c->leb_size || dirty < 0 || 1050 dirty > c->leb_size || free + dirty > c->leb_size) 1051 return -EINVAL; 1052 1053 c->ltab[i].free = free; 1054 c->ltab[i].dirty = dirty; 1055 c->ltab[i].tgc = 0; 1056 c->ltab[i].cmt = 0; 1057 } 1058 err = check_lpt_crc(c, buf, c->ltab_sz); 1059 return err; 1060 } 1061 1062 /** 1063 * unpack_lsave - unpack the LPT's save table. 1064 * @c: UBIFS file-system description object 1065 * @buf: buffer from which to unpack 1066 * 1067 * This function returns %0 on success and a negative error code on failure. 1068 */ 1069 static int unpack_lsave(const struct ubifs_info *c, void *buf) 1070 { 1071 uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES; 1072 int i, pos = 0, err; 1073 1074 err = check_lpt_type(c, &addr, &pos, UBIFS_LPT_LSAVE); 1075 if (err) 1076 return err; 1077 for (i = 0; i < c->lsave_cnt; i++) { 1078 int lnum = ubifs_unpack_bits(c, &addr, &pos, c->lnum_bits); 1079 1080 if (lnum < c->main_first || lnum >= c->leb_cnt) 1081 return -EINVAL; 1082 c->lsave[i] = lnum; 1083 } 1084 err = check_lpt_crc(c, buf, c->lsave_sz); 1085 return err; 1086 } 1087 1088 /** 1089 * validate_nnode - validate a nnode. 1090 * @c: UBIFS file-system description object 1091 * @nnode: nnode to validate 1092 * @parent: parent nnode (or NULL for the root nnode) 1093 * @iip: index in parent 1094 * 1095 * This function returns %0 on success and a negative error code on failure. 1096 */ 1097 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode, 1098 struct ubifs_nnode *parent, int iip) 1099 { 1100 int i, lvl, max_offs; 1101 1102 if (c->big_lpt) { 1103 int num = calc_nnode_num_from_parent(c, parent, iip); 1104 1105 if (nnode->num != num) 1106 return -EINVAL; 1107 } 1108 lvl = parent ? parent->level - 1 : c->lpt_hght; 1109 if (lvl < 1) 1110 return -EINVAL; 1111 if (lvl == 1) 1112 max_offs = c->leb_size - c->pnode_sz; 1113 else 1114 max_offs = c->leb_size - c->nnode_sz; 1115 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1116 int lnum = nnode->nbranch[i].lnum; 1117 int offs = nnode->nbranch[i].offs; 1118 1119 if (lnum == 0) { 1120 if (offs != 0) 1121 return -EINVAL; 1122 continue; 1123 } 1124 if (lnum < c->lpt_first || lnum > c->lpt_last) 1125 return -EINVAL; 1126 if (offs < 0 || offs > max_offs) 1127 return -EINVAL; 1128 } 1129 return 0; 1130 } 1131 1132 /** 1133 * validate_pnode - validate a pnode. 1134 * @c: UBIFS file-system description object 1135 * @pnode: pnode to validate 1136 * @parent: parent nnode 1137 * @iip: index in parent 1138 * 1139 * This function returns %0 on success and a negative error code on failure. 1140 */ 1141 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode, 1142 struct ubifs_nnode *parent, int iip) 1143 { 1144 int i; 1145 1146 if (c->big_lpt) { 1147 int num = calc_pnode_num_from_parent(c, parent, iip); 1148 1149 if (pnode->num != num) 1150 return -EINVAL; 1151 } 1152 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1153 int free = pnode->lprops[i].free; 1154 int dirty = pnode->lprops[i].dirty; 1155 1156 if (free < 0 || free > c->leb_size || free % c->min_io_size || 1157 (free & 7)) 1158 return -EINVAL; 1159 if (dirty < 0 || dirty > c->leb_size || (dirty & 7)) 1160 return -EINVAL; 1161 if (dirty + free > c->leb_size) 1162 return -EINVAL; 1163 } 1164 return 0; 1165 } 1166 1167 /** 1168 * set_pnode_lnum - set LEB numbers on a pnode. 1169 * @c: UBIFS file-system description object 1170 * @pnode: pnode to update 1171 * 1172 * This function calculates the LEB numbers for the LEB properties it contains 1173 * based on the pnode number. 1174 */ 1175 static void set_pnode_lnum(const struct ubifs_info *c, 1176 struct ubifs_pnode *pnode) 1177 { 1178 int i, lnum; 1179 1180 lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first; 1181 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1182 if (lnum >= c->leb_cnt) 1183 return; 1184 pnode->lprops[i].lnum = lnum++; 1185 } 1186 } 1187 1188 /** 1189 * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory. 1190 * @c: UBIFS file-system description object 1191 * @parent: parent nnode (or NULL for the root) 1192 * @iip: index in parent 1193 * 1194 * This function returns %0 on success and a negative error code on failure. 1195 */ 1196 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) 1197 { 1198 struct ubifs_nbranch *branch = NULL; 1199 struct ubifs_nnode *nnode = NULL; 1200 void *buf = c->lpt_nod_buf; 1201 int err, lnum, offs; 1202 1203 if (parent) { 1204 branch = &parent->nbranch[iip]; 1205 lnum = branch->lnum; 1206 offs = branch->offs; 1207 } else { 1208 lnum = c->lpt_lnum; 1209 offs = c->lpt_offs; 1210 } 1211 nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS); 1212 if (!nnode) { 1213 err = -ENOMEM; 1214 goto out; 1215 } 1216 if (lnum == 0) { 1217 /* 1218 * This nnode was not written which just means that the LEB 1219 * properties in the subtree below it describe empty LEBs. We 1220 * make the nnode as though we had read it, which in fact means 1221 * doing almost nothing. 1222 */ 1223 if (c->big_lpt) 1224 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1225 } else { 1226 err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1); 1227 if (err) 1228 goto out; 1229 err = ubifs_unpack_nnode(c, buf, nnode); 1230 if (err) 1231 goto out; 1232 } 1233 err = validate_nnode(c, nnode, parent, iip); 1234 if (err) 1235 goto out; 1236 if (!c->big_lpt) 1237 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1238 if (parent) { 1239 branch->nnode = nnode; 1240 nnode->level = parent->level - 1; 1241 } else { 1242 c->nroot = nnode; 1243 nnode->level = c->lpt_hght; 1244 } 1245 nnode->parent = parent; 1246 nnode->iip = iip; 1247 return 0; 1248 1249 out: 1250 ubifs_err(c, "error %d reading nnode at %d:%d", err, lnum, offs); 1251 dump_stack(); 1252 kfree(nnode); 1253 return err; 1254 } 1255 1256 /** 1257 * read_pnode - read a pnode from flash and link it to the tree in memory. 1258 * @c: UBIFS file-system description object 1259 * @parent: parent nnode 1260 * @iip: index in parent 1261 * 1262 * This function returns %0 on success and a negative error code on failure. 1263 */ 1264 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip) 1265 { 1266 struct ubifs_nbranch *branch; 1267 struct ubifs_pnode *pnode = NULL; 1268 void *buf = c->lpt_nod_buf; 1269 int err, lnum, offs; 1270 1271 branch = &parent->nbranch[iip]; 1272 lnum = branch->lnum; 1273 offs = branch->offs; 1274 pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS); 1275 if (!pnode) 1276 return -ENOMEM; 1277 1278 if (lnum == 0) { 1279 /* 1280 * This pnode was not written which just means that the LEB 1281 * properties in it describe empty LEBs. We make the pnode as 1282 * though we had read it. 1283 */ 1284 int i; 1285 1286 if (c->big_lpt) 1287 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1288 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1289 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 1290 1291 lprops->free = c->leb_size; 1292 lprops->flags = ubifs_categorize_lprops(c, lprops); 1293 } 1294 } else { 1295 err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1); 1296 if (err) 1297 goto out; 1298 err = unpack_pnode(c, buf, pnode); 1299 if (err) 1300 goto out; 1301 } 1302 err = validate_pnode(c, pnode, parent, iip); 1303 if (err) 1304 goto out; 1305 if (!c->big_lpt) 1306 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1307 branch->pnode = pnode; 1308 pnode->parent = parent; 1309 pnode->iip = iip; 1310 set_pnode_lnum(c, pnode); 1311 c->pnodes_have += 1; 1312 return 0; 1313 1314 out: 1315 ubifs_err(c, "error %d reading pnode at %d:%d", err, lnum, offs); 1316 ubifs_dump_pnode(c, pnode, parent, iip); 1317 dump_stack(); 1318 ubifs_err(c, "calc num: %d", calc_pnode_num_from_parent(c, parent, iip)); 1319 kfree(pnode); 1320 return err; 1321 } 1322 1323 /** 1324 * read_ltab - read LPT's own lprops table. 1325 * @c: UBIFS file-system description object 1326 * 1327 * This function returns %0 on success and a negative error code on failure. 1328 */ 1329 static int read_ltab(struct ubifs_info *c) 1330 { 1331 int err; 1332 void *buf; 1333 1334 buf = vmalloc(c->ltab_sz); 1335 if (!buf) 1336 return -ENOMEM; 1337 err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1); 1338 if (err) 1339 goto out; 1340 err = unpack_ltab(c, buf); 1341 out: 1342 vfree(buf); 1343 return err; 1344 } 1345 1346 /** 1347 * read_lsave - read LPT's save table. 1348 * @c: UBIFS file-system description object 1349 * 1350 * This function returns %0 on success and a negative error code on failure. 1351 */ 1352 static int read_lsave(struct ubifs_info *c) 1353 { 1354 int err, i; 1355 void *buf; 1356 1357 buf = vmalloc(c->lsave_sz); 1358 if (!buf) 1359 return -ENOMEM; 1360 err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs, 1361 c->lsave_sz, 1); 1362 if (err) 1363 goto out; 1364 err = unpack_lsave(c, buf); 1365 if (err) 1366 goto out; 1367 for (i = 0; i < c->lsave_cnt; i++) { 1368 int lnum = c->lsave[i]; 1369 struct ubifs_lprops *lprops; 1370 1371 /* 1372 * Due to automatic resizing, the values in the lsave table 1373 * could be beyond the volume size - just ignore them. 1374 */ 1375 if (lnum >= c->leb_cnt) 1376 continue; 1377 lprops = ubifs_lpt_lookup(c, lnum); 1378 if (IS_ERR(lprops)) { 1379 err = PTR_ERR(lprops); 1380 goto out; 1381 } 1382 } 1383 out: 1384 vfree(buf); 1385 return err; 1386 } 1387 1388 /** 1389 * ubifs_get_nnode - get a nnode. 1390 * @c: UBIFS file-system description object 1391 * @parent: parent nnode (or NULL for the root) 1392 * @iip: index in parent 1393 * 1394 * This function returns a pointer to the nnode on success or a negative error 1395 * code on failure. 1396 */ 1397 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c, 1398 struct ubifs_nnode *parent, int iip) 1399 { 1400 struct ubifs_nbranch *branch; 1401 struct ubifs_nnode *nnode; 1402 int err; 1403 1404 branch = &parent->nbranch[iip]; 1405 nnode = branch->nnode; 1406 if (nnode) 1407 return nnode; 1408 err = ubifs_read_nnode(c, parent, iip); 1409 if (err) 1410 return ERR_PTR(err); 1411 return branch->nnode; 1412 } 1413 1414 /** 1415 * ubifs_get_pnode - get a pnode. 1416 * @c: UBIFS file-system description object 1417 * @parent: parent nnode 1418 * @iip: index in parent 1419 * 1420 * This function returns a pointer to the pnode on success or a negative error 1421 * code on failure. 1422 */ 1423 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c, 1424 struct ubifs_nnode *parent, int iip) 1425 { 1426 struct ubifs_nbranch *branch; 1427 struct ubifs_pnode *pnode; 1428 int err; 1429 1430 branch = &parent->nbranch[iip]; 1431 pnode = branch->pnode; 1432 if (pnode) 1433 return pnode; 1434 err = read_pnode(c, parent, iip); 1435 if (err) 1436 return ERR_PTR(err); 1437 update_cats(c, branch->pnode); 1438 return branch->pnode; 1439 } 1440 1441 /** 1442 * ubifs_lpt_lookup - lookup LEB properties in the LPT. 1443 * @c: UBIFS file-system description object 1444 * @lnum: LEB number to lookup 1445 * 1446 * This function returns a pointer to the LEB properties on success or a 1447 * negative error code on failure. 1448 */ 1449 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum) 1450 { 1451 int err, i, h, iip, shft; 1452 struct ubifs_nnode *nnode; 1453 struct ubifs_pnode *pnode; 1454 1455 if (!c->nroot) { 1456 err = ubifs_read_nnode(c, NULL, 0); 1457 if (err) 1458 return ERR_PTR(err); 1459 } 1460 nnode = c->nroot; 1461 i = lnum - c->main_first; 1462 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1463 for (h = 1; h < c->lpt_hght; h++) { 1464 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1465 shft -= UBIFS_LPT_FANOUT_SHIFT; 1466 nnode = ubifs_get_nnode(c, nnode, iip); 1467 if (IS_ERR(nnode)) 1468 return ERR_CAST(nnode); 1469 } 1470 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1471 pnode = ubifs_get_pnode(c, nnode, iip); 1472 if (IS_ERR(pnode)) 1473 return ERR_CAST(pnode); 1474 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1475 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, 1476 pnode->lprops[iip].free, pnode->lprops[iip].dirty, 1477 pnode->lprops[iip].flags); 1478 return &pnode->lprops[iip]; 1479 } 1480 1481 /** 1482 * dirty_cow_nnode - ensure a nnode is not being committed. 1483 * @c: UBIFS file-system description object 1484 * @nnode: nnode to check 1485 * 1486 * Returns dirtied nnode on success or negative error code on failure. 1487 */ 1488 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c, 1489 struct ubifs_nnode *nnode) 1490 { 1491 struct ubifs_nnode *n; 1492 int i; 1493 1494 if (!test_bit(COW_CNODE, &nnode->flags)) { 1495 /* nnode is not being committed */ 1496 if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) { 1497 c->dirty_nn_cnt += 1; 1498 ubifs_add_nnode_dirt(c, nnode); 1499 } 1500 return nnode; 1501 } 1502 1503 /* nnode is being committed, so copy it */ 1504 n = kmemdup(nnode, sizeof(struct ubifs_nnode), GFP_NOFS); 1505 if (unlikely(!n)) 1506 return ERR_PTR(-ENOMEM); 1507 1508 n->cnext = NULL; 1509 __set_bit(DIRTY_CNODE, &n->flags); 1510 __clear_bit(COW_CNODE, &n->flags); 1511 1512 /* The children now have new parent */ 1513 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1514 struct ubifs_nbranch *branch = &n->nbranch[i]; 1515 1516 if (branch->cnode) 1517 branch->cnode->parent = n; 1518 } 1519 1520 ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &nnode->flags)); 1521 __set_bit(OBSOLETE_CNODE, &nnode->flags); 1522 1523 c->dirty_nn_cnt += 1; 1524 ubifs_add_nnode_dirt(c, nnode); 1525 if (nnode->parent) 1526 nnode->parent->nbranch[n->iip].nnode = n; 1527 else 1528 c->nroot = n; 1529 return n; 1530 } 1531 1532 /** 1533 * dirty_cow_pnode - ensure a pnode is not being committed. 1534 * @c: UBIFS file-system description object 1535 * @pnode: pnode to check 1536 * 1537 * Returns dirtied pnode on success or negative error code on failure. 1538 */ 1539 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c, 1540 struct ubifs_pnode *pnode) 1541 { 1542 struct ubifs_pnode *p; 1543 1544 if (!test_bit(COW_CNODE, &pnode->flags)) { 1545 /* pnode is not being committed */ 1546 if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) { 1547 c->dirty_pn_cnt += 1; 1548 add_pnode_dirt(c, pnode); 1549 } 1550 return pnode; 1551 } 1552 1553 /* pnode is being committed, so copy it */ 1554 p = kmemdup(pnode, sizeof(struct ubifs_pnode), GFP_NOFS); 1555 if (unlikely(!p)) 1556 return ERR_PTR(-ENOMEM); 1557 1558 p->cnext = NULL; 1559 __set_bit(DIRTY_CNODE, &p->flags); 1560 __clear_bit(COW_CNODE, &p->flags); 1561 replace_cats(c, pnode, p); 1562 1563 ubifs_assert(c, !test_bit(OBSOLETE_CNODE, &pnode->flags)); 1564 __set_bit(OBSOLETE_CNODE, &pnode->flags); 1565 1566 c->dirty_pn_cnt += 1; 1567 add_pnode_dirt(c, pnode); 1568 pnode->parent->nbranch[p->iip].pnode = p; 1569 return p; 1570 } 1571 1572 /** 1573 * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT. 1574 * @c: UBIFS file-system description object 1575 * @lnum: LEB number to lookup 1576 * 1577 * This function returns a pointer to the LEB properties on success or a 1578 * negative error code on failure. 1579 */ 1580 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum) 1581 { 1582 int err, i, h, iip, shft; 1583 struct ubifs_nnode *nnode; 1584 struct ubifs_pnode *pnode; 1585 1586 if (!c->nroot) { 1587 err = ubifs_read_nnode(c, NULL, 0); 1588 if (err) 1589 return ERR_PTR(err); 1590 } 1591 nnode = c->nroot; 1592 nnode = dirty_cow_nnode(c, nnode); 1593 if (IS_ERR(nnode)) 1594 return ERR_CAST(nnode); 1595 i = lnum - c->main_first; 1596 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1597 for (h = 1; h < c->lpt_hght; h++) { 1598 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1599 shft -= UBIFS_LPT_FANOUT_SHIFT; 1600 nnode = ubifs_get_nnode(c, nnode, iip); 1601 if (IS_ERR(nnode)) 1602 return ERR_CAST(nnode); 1603 nnode = dirty_cow_nnode(c, nnode); 1604 if (IS_ERR(nnode)) 1605 return ERR_CAST(nnode); 1606 } 1607 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1608 pnode = ubifs_get_pnode(c, nnode, iip); 1609 if (IS_ERR(pnode)) 1610 return ERR_CAST(pnode); 1611 pnode = dirty_cow_pnode(c, pnode); 1612 if (IS_ERR(pnode)) 1613 return ERR_CAST(pnode); 1614 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1615 dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum, 1616 pnode->lprops[iip].free, pnode->lprops[iip].dirty, 1617 pnode->lprops[iip].flags); 1618 ubifs_assert(c, test_bit(DIRTY_CNODE, &pnode->flags)); 1619 return &pnode->lprops[iip]; 1620 } 1621 1622 /** 1623 * lpt_init_rd - initialize the LPT for reading. 1624 * @c: UBIFS file-system description object 1625 * 1626 * This function returns %0 on success and a negative error code on failure. 1627 */ 1628 static int lpt_init_rd(struct ubifs_info *c) 1629 { 1630 int err, i; 1631 1632 c->ltab = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops), 1633 c->lpt_lebs)); 1634 if (!c->ltab) 1635 return -ENOMEM; 1636 1637 i = max_t(int, c->nnode_sz, c->pnode_sz); 1638 c->lpt_nod_buf = kmalloc(i, GFP_KERNEL); 1639 if (!c->lpt_nod_buf) 1640 return -ENOMEM; 1641 1642 for (i = 0; i < LPROPS_HEAP_CNT; i++) { 1643 c->lpt_heap[i].arr = kmalloc_array(LPT_HEAP_SZ, 1644 sizeof(void *), 1645 GFP_KERNEL); 1646 if (!c->lpt_heap[i].arr) 1647 return -ENOMEM; 1648 c->lpt_heap[i].cnt = 0; 1649 c->lpt_heap[i].max_cnt = LPT_HEAP_SZ; 1650 } 1651 1652 c->dirty_idx.arr = kmalloc_array(LPT_HEAP_SZ, sizeof(void *), 1653 GFP_KERNEL); 1654 if (!c->dirty_idx.arr) 1655 return -ENOMEM; 1656 c->dirty_idx.cnt = 0; 1657 c->dirty_idx.max_cnt = LPT_HEAP_SZ; 1658 1659 err = read_ltab(c); 1660 if (err) 1661 return err; 1662 1663 dbg_lp("space_bits %d", c->space_bits); 1664 dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits); 1665 dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits); 1666 dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits); 1667 dbg_lp("pcnt_bits %d", c->pcnt_bits); 1668 dbg_lp("lnum_bits %d", c->lnum_bits); 1669 dbg_lp("pnode_sz %d", c->pnode_sz); 1670 dbg_lp("nnode_sz %d", c->nnode_sz); 1671 dbg_lp("ltab_sz %d", c->ltab_sz); 1672 dbg_lp("lsave_sz %d", c->lsave_sz); 1673 dbg_lp("lsave_cnt %d", c->lsave_cnt); 1674 dbg_lp("lpt_hght %d", c->lpt_hght); 1675 dbg_lp("big_lpt %d", c->big_lpt); 1676 dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs); 1677 dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs); 1678 dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs); 1679 if (c->big_lpt) 1680 dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs); 1681 1682 return 0; 1683 } 1684 1685 /** 1686 * lpt_init_wr - initialize the LPT for writing. 1687 * @c: UBIFS file-system description object 1688 * 1689 * 'lpt_init_rd()' must have been called already. 1690 * 1691 * This function returns %0 on success and a negative error code on failure. 1692 */ 1693 static int lpt_init_wr(struct ubifs_info *c) 1694 { 1695 int err, i; 1696 1697 c->ltab_cmt = vmalloc(array_size(sizeof(struct ubifs_lpt_lprops), 1698 c->lpt_lebs)); 1699 if (!c->ltab_cmt) 1700 return -ENOMEM; 1701 1702 c->lpt_buf = vmalloc(c->leb_size); 1703 if (!c->lpt_buf) 1704 return -ENOMEM; 1705 1706 if (c->big_lpt) { 1707 c->lsave = kmalloc_array(c->lsave_cnt, sizeof(int), GFP_NOFS); 1708 if (!c->lsave) 1709 return -ENOMEM; 1710 err = read_lsave(c); 1711 if (err) 1712 return err; 1713 } 1714 1715 for (i = 0; i < c->lpt_lebs; i++) 1716 if (c->ltab[i].free == c->leb_size) { 1717 err = ubifs_leb_unmap(c, i + c->lpt_first); 1718 if (err) 1719 return err; 1720 } 1721 1722 return 0; 1723 } 1724 1725 /** 1726 * ubifs_lpt_init - initialize the LPT. 1727 * @c: UBIFS file-system description object 1728 * @rd: whether to initialize lpt for reading 1729 * @wr: whether to initialize lpt for writing 1730 * 1731 * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true 1732 * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is 1733 * true. 1734 * 1735 * This function returns %0 on success and a negative error code on failure. 1736 */ 1737 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr) 1738 { 1739 int err; 1740 1741 if (rd) { 1742 err = lpt_init_rd(c); 1743 if (err) 1744 goto out_err; 1745 } 1746 1747 if (wr) { 1748 err = lpt_init_wr(c); 1749 if (err) 1750 goto out_err; 1751 } 1752 1753 return 0; 1754 1755 out_err: 1756 if (wr) 1757 ubifs_lpt_free(c, 1); 1758 if (rd) 1759 ubifs_lpt_free(c, 0); 1760 return err; 1761 } 1762 1763 /** 1764 * struct lpt_scan_node - somewhere to put nodes while we scan LPT. 1765 * @nnode: where to keep a nnode 1766 * @pnode: where to keep a pnode 1767 * @cnode: where to keep a cnode 1768 * @in_tree: is the node in the tree in memory 1769 * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in 1770 * the tree 1771 * @ptr.pnode: ditto for pnode 1772 * @ptr.cnode: ditto for cnode 1773 */ 1774 struct lpt_scan_node { 1775 union { 1776 struct ubifs_nnode nnode; 1777 struct ubifs_pnode pnode; 1778 struct ubifs_cnode cnode; 1779 }; 1780 int in_tree; 1781 union { 1782 struct ubifs_nnode *nnode; 1783 struct ubifs_pnode *pnode; 1784 struct ubifs_cnode *cnode; 1785 } ptr; 1786 }; 1787 1788 /** 1789 * scan_get_nnode - for the scan, get a nnode from either the tree or flash. 1790 * @c: the UBIFS file-system description object 1791 * @path: where to put the nnode 1792 * @parent: parent of the nnode 1793 * @iip: index in parent of the nnode 1794 * 1795 * This function returns a pointer to the nnode on success or a negative error 1796 * code on failure. 1797 */ 1798 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c, 1799 struct lpt_scan_node *path, 1800 struct ubifs_nnode *parent, int iip) 1801 { 1802 struct ubifs_nbranch *branch; 1803 struct ubifs_nnode *nnode; 1804 void *buf = c->lpt_nod_buf; 1805 int err; 1806 1807 branch = &parent->nbranch[iip]; 1808 nnode = branch->nnode; 1809 if (nnode) { 1810 path->in_tree = 1; 1811 path->ptr.nnode = nnode; 1812 return nnode; 1813 } 1814 nnode = &path->nnode; 1815 path->in_tree = 0; 1816 path->ptr.nnode = nnode; 1817 memset(nnode, 0, sizeof(struct ubifs_nnode)); 1818 if (branch->lnum == 0) { 1819 /* 1820 * This nnode was not written which just means that the LEB 1821 * properties in the subtree below it describe empty LEBs. We 1822 * make the nnode as though we had read it, which in fact means 1823 * doing almost nothing. 1824 */ 1825 if (c->big_lpt) 1826 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1827 } else { 1828 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, 1829 c->nnode_sz, 1); 1830 if (err) 1831 return ERR_PTR(err); 1832 err = ubifs_unpack_nnode(c, buf, nnode); 1833 if (err) 1834 return ERR_PTR(err); 1835 } 1836 err = validate_nnode(c, nnode, parent, iip); 1837 if (err) 1838 return ERR_PTR(err); 1839 if (!c->big_lpt) 1840 nnode->num = calc_nnode_num_from_parent(c, parent, iip); 1841 nnode->level = parent->level - 1; 1842 nnode->parent = parent; 1843 nnode->iip = iip; 1844 return nnode; 1845 } 1846 1847 /** 1848 * scan_get_pnode - for the scan, get a pnode from either the tree or flash. 1849 * @c: the UBIFS file-system description object 1850 * @path: where to put the pnode 1851 * @parent: parent of the pnode 1852 * @iip: index in parent of the pnode 1853 * 1854 * This function returns a pointer to the pnode on success or a negative error 1855 * code on failure. 1856 */ 1857 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c, 1858 struct lpt_scan_node *path, 1859 struct ubifs_nnode *parent, int iip) 1860 { 1861 struct ubifs_nbranch *branch; 1862 struct ubifs_pnode *pnode; 1863 void *buf = c->lpt_nod_buf; 1864 int err; 1865 1866 branch = &parent->nbranch[iip]; 1867 pnode = branch->pnode; 1868 if (pnode) { 1869 path->in_tree = 1; 1870 path->ptr.pnode = pnode; 1871 return pnode; 1872 } 1873 pnode = &path->pnode; 1874 path->in_tree = 0; 1875 path->ptr.pnode = pnode; 1876 memset(pnode, 0, sizeof(struct ubifs_pnode)); 1877 if (branch->lnum == 0) { 1878 /* 1879 * This pnode was not written which just means that the LEB 1880 * properties in it describe empty LEBs. We make the pnode as 1881 * though we had read it. 1882 */ 1883 int i; 1884 1885 if (c->big_lpt) 1886 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1887 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 1888 struct ubifs_lprops * const lprops = &pnode->lprops[i]; 1889 1890 lprops->free = c->leb_size; 1891 lprops->flags = ubifs_categorize_lprops(c, lprops); 1892 } 1893 } else { 1894 ubifs_assert(c, branch->lnum >= c->lpt_first && 1895 branch->lnum <= c->lpt_last); 1896 ubifs_assert(c, branch->offs >= 0 && branch->offs < c->leb_size); 1897 err = ubifs_leb_read(c, branch->lnum, buf, branch->offs, 1898 c->pnode_sz, 1); 1899 if (err) 1900 return ERR_PTR(err); 1901 err = unpack_pnode(c, buf, pnode); 1902 if (err) 1903 return ERR_PTR(err); 1904 } 1905 err = validate_pnode(c, pnode, parent, iip); 1906 if (err) 1907 return ERR_PTR(err); 1908 if (!c->big_lpt) 1909 pnode->num = calc_pnode_num_from_parent(c, parent, iip); 1910 pnode->parent = parent; 1911 pnode->iip = iip; 1912 set_pnode_lnum(c, pnode); 1913 return pnode; 1914 } 1915 1916 /** 1917 * ubifs_lpt_scan_nolock - scan the LPT. 1918 * @c: the UBIFS file-system description object 1919 * @start_lnum: LEB number from which to start scanning 1920 * @end_lnum: LEB number at which to stop scanning 1921 * @scan_cb: callback function called for each lprops 1922 * @data: data to be passed to the callback function 1923 * 1924 * This function returns %0 on success and a negative error code on failure. 1925 */ 1926 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum, 1927 ubifs_lpt_scan_callback scan_cb, void *data) 1928 { 1929 int err = 0, i, h, iip, shft; 1930 struct ubifs_nnode *nnode; 1931 struct ubifs_pnode *pnode; 1932 struct lpt_scan_node *path; 1933 1934 if (start_lnum == -1) { 1935 start_lnum = end_lnum + 1; 1936 if (start_lnum >= c->leb_cnt) 1937 start_lnum = c->main_first; 1938 } 1939 1940 ubifs_assert(c, start_lnum >= c->main_first && start_lnum < c->leb_cnt); 1941 ubifs_assert(c, end_lnum >= c->main_first && end_lnum < c->leb_cnt); 1942 1943 if (!c->nroot) { 1944 err = ubifs_read_nnode(c, NULL, 0); 1945 if (err) 1946 return err; 1947 } 1948 1949 path = kmalloc_array(c->lpt_hght + 1, sizeof(struct lpt_scan_node), 1950 GFP_NOFS); 1951 if (!path) 1952 return -ENOMEM; 1953 1954 path[0].ptr.nnode = c->nroot; 1955 path[0].in_tree = 1; 1956 again: 1957 /* Descend to the pnode containing start_lnum */ 1958 nnode = c->nroot; 1959 i = start_lnum - c->main_first; 1960 shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT; 1961 for (h = 1; h < c->lpt_hght; h++) { 1962 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1963 shft -= UBIFS_LPT_FANOUT_SHIFT; 1964 nnode = scan_get_nnode(c, path + h, nnode, iip); 1965 if (IS_ERR(nnode)) { 1966 err = PTR_ERR(nnode); 1967 goto out; 1968 } 1969 } 1970 iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1)); 1971 pnode = scan_get_pnode(c, path + h, nnode, iip); 1972 if (IS_ERR(pnode)) { 1973 err = PTR_ERR(pnode); 1974 goto out; 1975 } 1976 iip = (i & (UBIFS_LPT_FANOUT - 1)); 1977 1978 /* Loop for each lprops */ 1979 while (1) { 1980 struct ubifs_lprops *lprops = &pnode->lprops[iip]; 1981 int ret, lnum = lprops->lnum; 1982 1983 ret = scan_cb(c, lprops, path[h].in_tree, data); 1984 if (ret < 0) { 1985 err = ret; 1986 goto out; 1987 } 1988 if (ret & LPT_SCAN_ADD) { 1989 /* Add all the nodes in path to the tree in memory */ 1990 for (h = 1; h < c->lpt_hght; h++) { 1991 const size_t sz = sizeof(struct ubifs_nnode); 1992 struct ubifs_nnode *parent; 1993 1994 if (path[h].in_tree) 1995 continue; 1996 nnode = kmemdup(&path[h].nnode, sz, GFP_NOFS); 1997 if (!nnode) { 1998 err = -ENOMEM; 1999 goto out; 2000 } 2001 parent = nnode->parent; 2002 parent->nbranch[nnode->iip].nnode = nnode; 2003 path[h].ptr.nnode = nnode; 2004 path[h].in_tree = 1; 2005 path[h + 1].cnode.parent = nnode; 2006 } 2007 if (path[h].in_tree) 2008 ubifs_ensure_cat(c, lprops); 2009 else { 2010 const size_t sz = sizeof(struct ubifs_pnode); 2011 struct ubifs_nnode *parent; 2012 2013 pnode = kmemdup(&path[h].pnode, sz, GFP_NOFS); 2014 if (!pnode) { 2015 err = -ENOMEM; 2016 goto out; 2017 } 2018 parent = pnode->parent; 2019 parent->nbranch[pnode->iip].pnode = pnode; 2020 path[h].ptr.pnode = pnode; 2021 path[h].in_tree = 1; 2022 update_cats(c, pnode); 2023 c->pnodes_have += 1; 2024 } 2025 err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *) 2026 c->nroot, 0, 0); 2027 if (err) 2028 goto out; 2029 err = dbg_check_cats(c); 2030 if (err) 2031 goto out; 2032 } 2033 if (ret & LPT_SCAN_STOP) { 2034 err = 0; 2035 break; 2036 } 2037 /* Get the next lprops */ 2038 if (lnum == end_lnum) { 2039 /* 2040 * We got to the end without finding what we were 2041 * looking for 2042 */ 2043 err = -ENOSPC; 2044 goto out; 2045 } 2046 if (lnum + 1 >= c->leb_cnt) { 2047 /* Wrap-around to the beginning */ 2048 start_lnum = c->main_first; 2049 goto again; 2050 } 2051 if (iip + 1 < UBIFS_LPT_FANOUT) { 2052 /* Next lprops is in the same pnode */ 2053 iip += 1; 2054 continue; 2055 } 2056 /* We need to get the next pnode. Go up until we can go right */ 2057 iip = pnode->iip; 2058 while (1) { 2059 h -= 1; 2060 ubifs_assert(c, h >= 0); 2061 nnode = path[h].ptr.nnode; 2062 if (iip + 1 < UBIFS_LPT_FANOUT) 2063 break; 2064 iip = nnode->iip; 2065 } 2066 /* Go right */ 2067 iip += 1; 2068 /* Descend to the pnode */ 2069 h += 1; 2070 for (; h < c->lpt_hght; h++) { 2071 nnode = scan_get_nnode(c, path + h, nnode, iip); 2072 if (IS_ERR(nnode)) { 2073 err = PTR_ERR(nnode); 2074 goto out; 2075 } 2076 iip = 0; 2077 } 2078 pnode = scan_get_pnode(c, path + h, nnode, iip); 2079 if (IS_ERR(pnode)) { 2080 err = PTR_ERR(pnode); 2081 goto out; 2082 } 2083 iip = 0; 2084 } 2085 out: 2086 kfree(path); 2087 return err; 2088 } 2089 2090 /** 2091 * dbg_chk_pnode - check a pnode. 2092 * @c: the UBIFS file-system description object 2093 * @pnode: pnode to check 2094 * @col: pnode column 2095 * 2096 * This function returns %0 on success and a negative error code on failure. 2097 */ 2098 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 2099 int col) 2100 { 2101 int i; 2102 2103 if (pnode->num != col) { 2104 ubifs_err(c, "pnode num %d expected %d parent num %d iip %d", 2105 pnode->num, col, pnode->parent->num, pnode->iip); 2106 return -EINVAL; 2107 } 2108 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 2109 struct ubifs_lprops *lp, *lprops = &pnode->lprops[i]; 2110 int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i + 2111 c->main_first; 2112 int found, cat = lprops->flags & LPROPS_CAT_MASK; 2113 struct ubifs_lpt_heap *heap; 2114 struct list_head *list = NULL; 2115 2116 if (lnum >= c->leb_cnt) 2117 continue; 2118 if (lprops->lnum != lnum) { 2119 ubifs_err(c, "bad LEB number %d expected %d", 2120 lprops->lnum, lnum); 2121 return -EINVAL; 2122 } 2123 if (lprops->flags & LPROPS_TAKEN) { 2124 if (cat != LPROPS_UNCAT) { 2125 ubifs_err(c, "LEB %d taken but not uncat %d", 2126 lprops->lnum, cat); 2127 return -EINVAL; 2128 } 2129 continue; 2130 } 2131 if (lprops->flags & LPROPS_INDEX) { 2132 switch (cat) { 2133 case LPROPS_UNCAT: 2134 case LPROPS_DIRTY_IDX: 2135 case LPROPS_FRDI_IDX: 2136 break; 2137 default: 2138 ubifs_err(c, "LEB %d index but cat %d", 2139 lprops->lnum, cat); 2140 return -EINVAL; 2141 } 2142 } else { 2143 switch (cat) { 2144 case LPROPS_UNCAT: 2145 case LPROPS_DIRTY: 2146 case LPROPS_FREE: 2147 case LPROPS_EMPTY: 2148 case LPROPS_FREEABLE: 2149 break; 2150 default: 2151 ubifs_err(c, "LEB %d not index but cat %d", 2152 lprops->lnum, cat); 2153 return -EINVAL; 2154 } 2155 } 2156 switch (cat) { 2157 case LPROPS_UNCAT: 2158 list = &c->uncat_list; 2159 break; 2160 case LPROPS_EMPTY: 2161 list = &c->empty_list; 2162 break; 2163 case LPROPS_FREEABLE: 2164 list = &c->freeable_list; 2165 break; 2166 case LPROPS_FRDI_IDX: 2167 list = &c->frdi_idx_list; 2168 break; 2169 } 2170 found = 0; 2171 switch (cat) { 2172 case LPROPS_DIRTY: 2173 case LPROPS_DIRTY_IDX: 2174 case LPROPS_FREE: 2175 heap = &c->lpt_heap[cat - 1]; 2176 if (lprops->hpos < heap->cnt && 2177 heap->arr[lprops->hpos] == lprops) 2178 found = 1; 2179 break; 2180 case LPROPS_UNCAT: 2181 case LPROPS_EMPTY: 2182 case LPROPS_FREEABLE: 2183 case LPROPS_FRDI_IDX: 2184 list_for_each_entry(lp, list, list) 2185 if (lprops == lp) { 2186 found = 1; 2187 break; 2188 } 2189 break; 2190 } 2191 if (!found) { 2192 ubifs_err(c, "LEB %d cat %d not found in cat heap/list", 2193 lprops->lnum, cat); 2194 return -EINVAL; 2195 } 2196 switch (cat) { 2197 case LPROPS_EMPTY: 2198 if (lprops->free != c->leb_size) { 2199 ubifs_err(c, "LEB %d cat %d free %d dirty %d", 2200 lprops->lnum, cat, lprops->free, 2201 lprops->dirty); 2202 return -EINVAL; 2203 } 2204 break; 2205 case LPROPS_FREEABLE: 2206 case LPROPS_FRDI_IDX: 2207 if (lprops->free + lprops->dirty != c->leb_size) { 2208 ubifs_err(c, "LEB %d cat %d free %d dirty %d", 2209 lprops->lnum, cat, lprops->free, 2210 lprops->dirty); 2211 return -EINVAL; 2212 } 2213 break; 2214 } 2215 } 2216 return 0; 2217 } 2218 2219 /** 2220 * dbg_check_lpt_nodes - check nnodes and pnodes. 2221 * @c: the UBIFS file-system description object 2222 * @cnode: next cnode (nnode or pnode) to check 2223 * @row: row of cnode (root is zero) 2224 * @col: column of cnode (leftmost is zero) 2225 * 2226 * This function returns %0 on success and a negative error code on failure. 2227 */ 2228 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode, 2229 int row, int col) 2230 { 2231 struct ubifs_nnode *nnode, *nn; 2232 struct ubifs_cnode *cn; 2233 int num, iip = 0, err; 2234 2235 if (!dbg_is_chk_lprops(c)) 2236 return 0; 2237 2238 while (cnode) { 2239 ubifs_assert(c, row >= 0); 2240 nnode = cnode->parent; 2241 if (cnode->level) { 2242 /* cnode is a nnode */ 2243 num = calc_nnode_num(row, col); 2244 if (cnode->num != num) { 2245 ubifs_err(c, "nnode num %d expected %d parent num %d iip %d", 2246 cnode->num, num, 2247 (nnode ? nnode->num : 0), cnode->iip); 2248 return -EINVAL; 2249 } 2250 nn = (struct ubifs_nnode *)cnode; 2251 while (iip < UBIFS_LPT_FANOUT) { 2252 cn = nn->nbranch[iip].cnode; 2253 if (cn) { 2254 /* Go down */ 2255 row += 1; 2256 col <<= UBIFS_LPT_FANOUT_SHIFT; 2257 col += iip; 2258 iip = 0; 2259 cnode = cn; 2260 break; 2261 } 2262 /* Go right */ 2263 iip += 1; 2264 } 2265 if (iip < UBIFS_LPT_FANOUT) 2266 continue; 2267 } else { 2268 struct ubifs_pnode *pnode; 2269 2270 /* cnode is a pnode */ 2271 pnode = (struct ubifs_pnode *)cnode; 2272 err = dbg_chk_pnode(c, pnode, col); 2273 if (err) 2274 return err; 2275 } 2276 /* Go up and to the right */ 2277 row -= 1; 2278 col >>= UBIFS_LPT_FANOUT_SHIFT; 2279 iip = cnode->iip + 1; 2280 cnode = (struct ubifs_cnode *)nnode; 2281 } 2282 return 0; 2283 } 2284