xref: /linux/fs/ubifs/lpt.c (revision 60e13231561b3a4c5269bfa1ef6c0569ad6f28ec)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements the LEB properties tree (LPT) area. The LPT area
25  * contains the LEB properties tree, a table of LPT area eraseblocks (ltab), and
26  * (for the "big" model) a table of saved LEB numbers (lsave). The LPT area sits
27  * between the log and the orphan area.
28  *
29  * The LPT area is like a miniature self-contained file system. It is required
30  * that it never runs out of space, is fast to access and update, and scales
31  * logarithmically. The LEB properties tree is implemented as a wandering tree
32  * much like the TNC, and the LPT area has its own garbage collection.
33  *
34  * The LPT has two slightly different forms called the "small model" and the
35  * "big model". The small model is used when the entire LEB properties table
36  * can be written into a single eraseblock. In that case, garbage collection
37  * consists of just writing the whole table, which therefore makes all other
38  * eraseblocks reusable. In the case of the big model, dirty eraseblocks are
39  * selected for garbage collection, which consists of marking the clean nodes in
40  * that LEB as dirty, and then only the dirty nodes are written out. Also, in
41  * the case of the big model, a table of LEB numbers is saved so that the entire
42  * LPT does not to be scanned looking for empty eraseblocks when UBIFS is first
43  * mounted.
44  */
45 
46 #include "ubifs.h"
47 #include <linux/crc16.h>
48 #include <linux/math64.h>
49 #include <linux/slab.h>
50 
51 /**
52  * do_calc_lpt_geom - calculate sizes for the LPT area.
53  * @c: the UBIFS file-system description object
54  *
55  * Calculate the sizes of LPT bit fields, nodes, and tree, based on the
56  * properties of the flash and whether LPT is "big" (c->big_lpt).
57  */
58 static void do_calc_lpt_geom(struct ubifs_info *c)
59 {
60 	int i, n, bits, per_leb_wastage, max_pnode_cnt;
61 	long long sz, tot_wastage;
62 
63 	n = c->main_lebs + c->max_leb_cnt - c->leb_cnt;
64 	max_pnode_cnt = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
65 
66 	c->lpt_hght = 1;
67 	n = UBIFS_LPT_FANOUT;
68 	while (n < max_pnode_cnt) {
69 		c->lpt_hght += 1;
70 		n <<= UBIFS_LPT_FANOUT_SHIFT;
71 	}
72 
73 	c->pnode_cnt = DIV_ROUND_UP(c->main_lebs, UBIFS_LPT_FANOUT);
74 
75 	n = DIV_ROUND_UP(c->pnode_cnt, UBIFS_LPT_FANOUT);
76 	c->nnode_cnt = n;
77 	for (i = 1; i < c->lpt_hght; i++) {
78 		n = DIV_ROUND_UP(n, UBIFS_LPT_FANOUT);
79 		c->nnode_cnt += n;
80 	}
81 
82 	c->space_bits = fls(c->leb_size) - 3;
83 	c->lpt_lnum_bits = fls(c->lpt_lebs);
84 	c->lpt_offs_bits = fls(c->leb_size - 1);
85 	c->lpt_spc_bits = fls(c->leb_size);
86 
87 	n = DIV_ROUND_UP(c->max_leb_cnt, UBIFS_LPT_FANOUT);
88 	c->pcnt_bits = fls(n - 1);
89 
90 	c->lnum_bits = fls(c->max_leb_cnt - 1);
91 
92 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
93 	       (c->big_lpt ? c->pcnt_bits : 0) +
94 	       (c->space_bits * 2 + 1) * UBIFS_LPT_FANOUT;
95 	c->pnode_sz = (bits + 7) / 8;
96 
97 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
98 	       (c->big_lpt ? c->pcnt_bits : 0) +
99 	       (c->lpt_lnum_bits + c->lpt_offs_bits) * UBIFS_LPT_FANOUT;
100 	c->nnode_sz = (bits + 7) / 8;
101 
102 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
103 	       c->lpt_lebs * c->lpt_spc_bits * 2;
104 	c->ltab_sz = (bits + 7) / 8;
105 
106 	bits = UBIFS_LPT_CRC_BITS + UBIFS_LPT_TYPE_BITS +
107 	       c->lnum_bits * c->lsave_cnt;
108 	c->lsave_sz = (bits + 7) / 8;
109 
110 	/* Calculate the minimum LPT size */
111 	c->lpt_sz = (long long)c->pnode_cnt * c->pnode_sz;
112 	c->lpt_sz += (long long)c->nnode_cnt * c->nnode_sz;
113 	c->lpt_sz += c->ltab_sz;
114 	if (c->big_lpt)
115 		c->lpt_sz += c->lsave_sz;
116 
117 	/* Add wastage */
118 	sz = c->lpt_sz;
119 	per_leb_wastage = max_t(int, c->pnode_sz, c->nnode_sz);
120 	sz += per_leb_wastage;
121 	tot_wastage = per_leb_wastage;
122 	while (sz > c->leb_size) {
123 		sz += per_leb_wastage;
124 		sz -= c->leb_size;
125 		tot_wastage += per_leb_wastage;
126 	}
127 	tot_wastage += ALIGN(sz, c->min_io_size) - sz;
128 	c->lpt_sz += tot_wastage;
129 }
130 
131 /**
132  * ubifs_calc_lpt_geom - calculate and check sizes for the LPT area.
133  * @c: the UBIFS file-system description object
134  *
135  * This function returns %0 on success and a negative error code on failure.
136  */
137 int ubifs_calc_lpt_geom(struct ubifs_info *c)
138 {
139 	int lebs_needed;
140 	long long sz;
141 
142 	do_calc_lpt_geom(c);
143 
144 	/* Verify that lpt_lebs is big enough */
145 	sz = c->lpt_sz * 2; /* Must have at least 2 times the size */
146 	lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
147 	if (lebs_needed > c->lpt_lebs) {
148 		ubifs_err("too few LPT LEBs");
149 		return -EINVAL;
150 	}
151 
152 	/* Verify that ltab fits in a single LEB (since ltab is a single node */
153 	if (c->ltab_sz > c->leb_size) {
154 		ubifs_err("LPT ltab too big");
155 		return -EINVAL;
156 	}
157 
158 	c->check_lpt_free = c->big_lpt;
159 	return 0;
160 }
161 
162 /**
163  * calc_dflt_lpt_geom - calculate default LPT geometry.
164  * @c: the UBIFS file-system description object
165  * @main_lebs: number of main area LEBs is passed and returned here
166  * @big_lpt: whether the LPT area is "big" is returned here
167  *
168  * The size of the LPT area depends on parameters that themselves are dependent
169  * on the size of the LPT area. This function, successively recalculates the LPT
170  * area geometry until the parameters and resultant geometry are consistent.
171  *
172  * This function returns %0 on success and a negative error code on failure.
173  */
174 static int calc_dflt_lpt_geom(struct ubifs_info *c, int *main_lebs,
175 			      int *big_lpt)
176 {
177 	int i, lebs_needed;
178 	long long sz;
179 
180 	/* Start by assuming the minimum number of LPT LEBs */
181 	c->lpt_lebs = UBIFS_MIN_LPT_LEBS;
182 	c->main_lebs = *main_lebs - c->lpt_lebs;
183 	if (c->main_lebs <= 0)
184 		return -EINVAL;
185 
186 	/* And assume we will use the small LPT model */
187 	c->big_lpt = 0;
188 
189 	/*
190 	 * Calculate the geometry based on assumptions above and then see if it
191 	 * makes sense
192 	 */
193 	do_calc_lpt_geom(c);
194 
195 	/* Small LPT model must have lpt_sz < leb_size */
196 	if (c->lpt_sz > c->leb_size) {
197 		/* Nope, so try again using big LPT model */
198 		c->big_lpt = 1;
199 		do_calc_lpt_geom(c);
200 	}
201 
202 	/* Now check there are enough LPT LEBs */
203 	for (i = 0; i < 64 ; i++) {
204 		sz = c->lpt_sz * 4; /* Allow 4 times the size */
205 		lebs_needed = div_u64(sz + c->leb_size - 1, c->leb_size);
206 		if (lebs_needed > c->lpt_lebs) {
207 			/* Not enough LPT LEBs so try again with more */
208 			c->lpt_lebs = lebs_needed;
209 			c->main_lebs = *main_lebs - c->lpt_lebs;
210 			if (c->main_lebs <= 0)
211 				return -EINVAL;
212 			do_calc_lpt_geom(c);
213 			continue;
214 		}
215 		if (c->ltab_sz > c->leb_size) {
216 			ubifs_err("LPT ltab too big");
217 			return -EINVAL;
218 		}
219 		*main_lebs = c->main_lebs;
220 		*big_lpt = c->big_lpt;
221 		return 0;
222 	}
223 	return -EINVAL;
224 }
225 
226 /**
227  * pack_bits - pack bit fields end-to-end.
228  * @addr: address at which to pack (passed and next address returned)
229  * @pos: bit position at which to pack (passed and next position returned)
230  * @val: value to pack
231  * @nrbits: number of bits of value to pack (1-32)
232  */
233 static void pack_bits(uint8_t **addr, int *pos, uint32_t val, int nrbits)
234 {
235 	uint8_t *p = *addr;
236 	int b = *pos;
237 
238 	ubifs_assert(nrbits > 0);
239 	ubifs_assert(nrbits <= 32);
240 	ubifs_assert(*pos >= 0);
241 	ubifs_assert(*pos < 8);
242 	ubifs_assert((val >> nrbits) == 0 || nrbits == 32);
243 	if (b) {
244 		*p |= ((uint8_t)val) << b;
245 		nrbits += b;
246 		if (nrbits > 8) {
247 			*++p = (uint8_t)(val >>= (8 - b));
248 			if (nrbits > 16) {
249 				*++p = (uint8_t)(val >>= 8);
250 				if (nrbits > 24) {
251 					*++p = (uint8_t)(val >>= 8);
252 					if (nrbits > 32)
253 						*++p = (uint8_t)(val >>= 8);
254 				}
255 			}
256 		}
257 	} else {
258 		*p = (uint8_t)val;
259 		if (nrbits > 8) {
260 			*++p = (uint8_t)(val >>= 8);
261 			if (nrbits > 16) {
262 				*++p = (uint8_t)(val >>= 8);
263 				if (nrbits > 24)
264 					*++p = (uint8_t)(val >>= 8);
265 			}
266 		}
267 	}
268 	b = nrbits & 7;
269 	if (b == 0)
270 		p++;
271 	*addr = p;
272 	*pos = b;
273 }
274 
275 /**
276  * ubifs_unpack_bits - unpack bit fields.
277  * @addr: address at which to unpack (passed and next address returned)
278  * @pos: bit position at which to unpack (passed and next position returned)
279  * @nrbits: number of bits of value to unpack (1-32)
280  *
281  * This functions returns the value unpacked.
282  */
283 uint32_t ubifs_unpack_bits(uint8_t **addr, int *pos, int nrbits)
284 {
285 	const int k = 32 - nrbits;
286 	uint8_t *p = *addr;
287 	int b = *pos;
288 	uint32_t uninitialized_var(val);
289 	const int bytes = (nrbits + b + 7) >> 3;
290 
291 	ubifs_assert(nrbits > 0);
292 	ubifs_assert(nrbits <= 32);
293 	ubifs_assert(*pos >= 0);
294 	ubifs_assert(*pos < 8);
295 	if (b) {
296 		switch (bytes) {
297 		case 2:
298 			val = p[1];
299 			break;
300 		case 3:
301 			val = p[1] | ((uint32_t)p[2] << 8);
302 			break;
303 		case 4:
304 			val = p[1] | ((uint32_t)p[2] << 8) |
305 				     ((uint32_t)p[3] << 16);
306 			break;
307 		case 5:
308 			val = p[1] | ((uint32_t)p[2] << 8) |
309 				     ((uint32_t)p[3] << 16) |
310 				     ((uint32_t)p[4] << 24);
311 		}
312 		val <<= (8 - b);
313 		val |= *p >> b;
314 		nrbits += b;
315 	} else {
316 		switch (bytes) {
317 		case 1:
318 			val = p[0];
319 			break;
320 		case 2:
321 			val = p[0] | ((uint32_t)p[1] << 8);
322 			break;
323 		case 3:
324 			val = p[0] | ((uint32_t)p[1] << 8) |
325 				     ((uint32_t)p[2] << 16);
326 			break;
327 		case 4:
328 			val = p[0] | ((uint32_t)p[1] << 8) |
329 				     ((uint32_t)p[2] << 16) |
330 				     ((uint32_t)p[3] << 24);
331 			break;
332 		}
333 	}
334 	val <<= k;
335 	val >>= k;
336 	b = nrbits & 7;
337 	p += nrbits >> 3;
338 	*addr = p;
339 	*pos = b;
340 	ubifs_assert((val >> nrbits) == 0 || nrbits - b == 32);
341 	return val;
342 }
343 
344 /**
345  * ubifs_pack_pnode - pack all the bit fields of a pnode.
346  * @c: UBIFS file-system description object
347  * @buf: buffer into which to pack
348  * @pnode: pnode to pack
349  */
350 void ubifs_pack_pnode(struct ubifs_info *c, void *buf,
351 		      struct ubifs_pnode *pnode)
352 {
353 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
354 	int i, pos = 0;
355 	uint16_t crc;
356 
357 	pack_bits(&addr, &pos, UBIFS_LPT_PNODE, UBIFS_LPT_TYPE_BITS);
358 	if (c->big_lpt)
359 		pack_bits(&addr, &pos, pnode->num, c->pcnt_bits);
360 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
361 		pack_bits(&addr, &pos, pnode->lprops[i].free >> 3,
362 			  c->space_bits);
363 		pack_bits(&addr, &pos, pnode->lprops[i].dirty >> 3,
364 			  c->space_bits);
365 		if (pnode->lprops[i].flags & LPROPS_INDEX)
366 			pack_bits(&addr, &pos, 1, 1);
367 		else
368 			pack_bits(&addr, &pos, 0, 1);
369 	}
370 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
371 		    c->pnode_sz - UBIFS_LPT_CRC_BYTES);
372 	addr = buf;
373 	pos = 0;
374 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
375 }
376 
377 /**
378  * ubifs_pack_nnode - pack all the bit fields of a nnode.
379  * @c: UBIFS file-system description object
380  * @buf: buffer into which to pack
381  * @nnode: nnode to pack
382  */
383 void ubifs_pack_nnode(struct ubifs_info *c, void *buf,
384 		      struct ubifs_nnode *nnode)
385 {
386 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
387 	int i, pos = 0;
388 	uint16_t crc;
389 
390 	pack_bits(&addr, &pos, UBIFS_LPT_NNODE, UBIFS_LPT_TYPE_BITS);
391 	if (c->big_lpt)
392 		pack_bits(&addr, &pos, nnode->num, c->pcnt_bits);
393 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
394 		int lnum = nnode->nbranch[i].lnum;
395 
396 		if (lnum == 0)
397 			lnum = c->lpt_last + 1;
398 		pack_bits(&addr, &pos, lnum - c->lpt_first, c->lpt_lnum_bits);
399 		pack_bits(&addr, &pos, nnode->nbranch[i].offs,
400 			  c->lpt_offs_bits);
401 	}
402 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
403 		    c->nnode_sz - UBIFS_LPT_CRC_BYTES);
404 	addr = buf;
405 	pos = 0;
406 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
407 }
408 
409 /**
410  * ubifs_pack_ltab - pack the LPT's own lprops table.
411  * @c: UBIFS file-system description object
412  * @buf: buffer into which to pack
413  * @ltab: LPT's own lprops table to pack
414  */
415 void ubifs_pack_ltab(struct ubifs_info *c, void *buf,
416 		     struct ubifs_lpt_lprops *ltab)
417 {
418 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
419 	int i, pos = 0;
420 	uint16_t crc;
421 
422 	pack_bits(&addr, &pos, UBIFS_LPT_LTAB, UBIFS_LPT_TYPE_BITS);
423 	for (i = 0; i < c->lpt_lebs; i++) {
424 		pack_bits(&addr, &pos, ltab[i].free, c->lpt_spc_bits);
425 		pack_bits(&addr, &pos, ltab[i].dirty, c->lpt_spc_bits);
426 	}
427 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
428 		    c->ltab_sz - UBIFS_LPT_CRC_BYTES);
429 	addr = buf;
430 	pos = 0;
431 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
432 }
433 
434 /**
435  * ubifs_pack_lsave - pack the LPT's save table.
436  * @c: UBIFS file-system description object
437  * @buf: buffer into which to pack
438  * @lsave: LPT's save table to pack
439  */
440 void ubifs_pack_lsave(struct ubifs_info *c, void *buf, int *lsave)
441 {
442 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
443 	int i, pos = 0;
444 	uint16_t crc;
445 
446 	pack_bits(&addr, &pos, UBIFS_LPT_LSAVE, UBIFS_LPT_TYPE_BITS);
447 	for (i = 0; i < c->lsave_cnt; i++)
448 		pack_bits(&addr, &pos, lsave[i], c->lnum_bits);
449 	crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
450 		    c->lsave_sz - UBIFS_LPT_CRC_BYTES);
451 	addr = buf;
452 	pos = 0;
453 	pack_bits(&addr, &pos, crc, UBIFS_LPT_CRC_BITS);
454 }
455 
456 /**
457  * ubifs_add_lpt_dirt - add dirty space to LPT LEB properties.
458  * @c: UBIFS file-system description object
459  * @lnum: LEB number to which to add dirty space
460  * @dirty: amount of dirty space to add
461  */
462 void ubifs_add_lpt_dirt(struct ubifs_info *c, int lnum, int dirty)
463 {
464 	if (!dirty || !lnum)
465 		return;
466 	dbg_lp("LEB %d add %d to %d",
467 	       lnum, dirty, c->ltab[lnum - c->lpt_first].dirty);
468 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
469 	c->ltab[lnum - c->lpt_first].dirty += dirty;
470 }
471 
472 /**
473  * set_ltab - set LPT LEB properties.
474  * @c: UBIFS file-system description object
475  * @lnum: LEB number
476  * @free: amount of free space
477  * @dirty: amount of dirty space
478  */
479 static void set_ltab(struct ubifs_info *c, int lnum, int free, int dirty)
480 {
481 	dbg_lp("LEB %d free %d dirty %d to %d %d",
482 	       lnum, c->ltab[lnum - c->lpt_first].free,
483 	       c->ltab[lnum - c->lpt_first].dirty, free, dirty);
484 	ubifs_assert(lnum >= c->lpt_first && lnum <= c->lpt_last);
485 	c->ltab[lnum - c->lpt_first].free = free;
486 	c->ltab[lnum - c->lpt_first].dirty = dirty;
487 }
488 
489 /**
490  * ubifs_add_nnode_dirt - add dirty space to LPT LEB properties.
491  * @c: UBIFS file-system description object
492  * @nnode: nnode for which to add dirt
493  */
494 void ubifs_add_nnode_dirt(struct ubifs_info *c, struct ubifs_nnode *nnode)
495 {
496 	struct ubifs_nnode *np = nnode->parent;
497 
498 	if (np)
499 		ubifs_add_lpt_dirt(c, np->nbranch[nnode->iip].lnum,
500 				   c->nnode_sz);
501 	else {
502 		ubifs_add_lpt_dirt(c, c->lpt_lnum, c->nnode_sz);
503 		if (!(c->lpt_drty_flgs & LTAB_DIRTY)) {
504 			c->lpt_drty_flgs |= LTAB_DIRTY;
505 			ubifs_add_lpt_dirt(c, c->ltab_lnum, c->ltab_sz);
506 		}
507 	}
508 }
509 
510 /**
511  * add_pnode_dirt - add dirty space to LPT LEB properties.
512  * @c: UBIFS file-system description object
513  * @pnode: pnode for which to add dirt
514  */
515 static void add_pnode_dirt(struct ubifs_info *c, struct ubifs_pnode *pnode)
516 {
517 	ubifs_add_lpt_dirt(c, pnode->parent->nbranch[pnode->iip].lnum,
518 			   c->pnode_sz);
519 }
520 
521 /**
522  * calc_nnode_num - calculate nnode number.
523  * @row: the row in the tree (root is zero)
524  * @col: the column in the row (leftmost is zero)
525  *
526  * The nnode number is a number that uniquely identifies a nnode and can be used
527  * easily to traverse the tree from the root to that nnode.
528  *
529  * This function calculates and returns the nnode number for the nnode at @row
530  * and @col.
531  */
532 static int calc_nnode_num(int row, int col)
533 {
534 	int num, bits;
535 
536 	num = 1;
537 	while (row--) {
538 		bits = (col & (UBIFS_LPT_FANOUT - 1));
539 		col >>= UBIFS_LPT_FANOUT_SHIFT;
540 		num <<= UBIFS_LPT_FANOUT_SHIFT;
541 		num |= bits;
542 	}
543 	return num;
544 }
545 
546 /**
547  * calc_nnode_num_from_parent - calculate nnode number.
548  * @c: UBIFS file-system description object
549  * @parent: parent nnode
550  * @iip: index in parent
551  *
552  * The nnode number is a number that uniquely identifies a nnode and can be used
553  * easily to traverse the tree from the root to that nnode.
554  *
555  * This function calculates and returns the nnode number based on the parent's
556  * nnode number and the index in parent.
557  */
558 static int calc_nnode_num_from_parent(const struct ubifs_info *c,
559 				      struct ubifs_nnode *parent, int iip)
560 {
561 	int num, shft;
562 
563 	if (!parent)
564 		return 1;
565 	shft = (c->lpt_hght - parent->level) * UBIFS_LPT_FANOUT_SHIFT;
566 	num = parent->num ^ (1 << shft);
567 	num |= (UBIFS_LPT_FANOUT + iip) << shft;
568 	return num;
569 }
570 
571 /**
572  * calc_pnode_num_from_parent - calculate pnode number.
573  * @c: UBIFS file-system description object
574  * @parent: parent nnode
575  * @iip: index in parent
576  *
577  * The pnode number is a number that uniquely identifies a pnode and can be used
578  * easily to traverse the tree from the root to that pnode.
579  *
580  * This function calculates and returns the pnode number based on the parent's
581  * nnode number and the index in parent.
582  */
583 static int calc_pnode_num_from_parent(const struct ubifs_info *c,
584 				      struct ubifs_nnode *parent, int iip)
585 {
586 	int i, n = c->lpt_hght - 1, pnum = parent->num, num = 0;
587 
588 	for (i = 0; i < n; i++) {
589 		num <<= UBIFS_LPT_FANOUT_SHIFT;
590 		num |= pnum & (UBIFS_LPT_FANOUT - 1);
591 		pnum >>= UBIFS_LPT_FANOUT_SHIFT;
592 	}
593 	num <<= UBIFS_LPT_FANOUT_SHIFT;
594 	num |= iip;
595 	return num;
596 }
597 
598 /**
599  * ubifs_create_dflt_lpt - create default LPT.
600  * @c: UBIFS file-system description object
601  * @main_lebs: number of main area LEBs is passed and returned here
602  * @lpt_first: LEB number of first LPT LEB
603  * @lpt_lebs: number of LEBs for LPT is passed and returned here
604  * @big_lpt: use big LPT model is passed and returned here
605  *
606  * This function returns %0 on success and a negative error code on failure.
607  */
608 int ubifs_create_dflt_lpt(struct ubifs_info *c, int *main_lebs, int lpt_first,
609 			  int *lpt_lebs, int *big_lpt)
610 {
611 	int lnum, err = 0, node_sz, iopos, i, j, cnt, len, alen, row;
612 	int blnum, boffs, bsz, bcnt;
613 	struct ubifs_pnode *pnode = NULL;
614 	struct ubifs_nnode *nnode = NULL;
615 	void *buf = NULL, *p;
616 	struct ubifs_lpt_lprops *ltab = NULL;
617 	int *lsave = NULL;
618 
619 	err = calc_dflt_lpt_geom(c, main_lebs, big_lpt);
620 	if (err)
621 		return err;
622 	*lpt_lebs = c->lpt_lebs;
623 
624 	/* Needed by 'ubifs_pack_nnode()' and 'set_ltab()' */
625 	c->lpt_first = lpt_first;
626 	/* Needed by 'set_ltab()' */
627 	c->lpt_last = lpt_first + c->lpt_lebs - 1;
628 	/* Needed by 'ubifs_pack_lsave()' */
629 	c->main_first = c->leb_cnt - *main_lebs;
630 
631 	lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_KERNEL);
632 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_KERNEL);
633 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_KERNEL);
634 	buf = vmalloc(c->leb_size);
635 	ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
636 	if (!pnode || !nnode || !buf || !ltab || !lsave) {
637 		err = -ENOMEM;
638 		goto out;
639 	}
640 
641 	ubifs_assert(!c->ltab);
642 	c->ltab = ltab; /* Needed by set_ltab */
643 
644 	/* Initialize LPT's own lprops */
645 	for (i = 0; i < c->lpt_lebs; i++) {
646 		ltab[i].free = c->leb_size;
647 		ltab[i].dirty = 0;
648 		ltab[i].tgc = 0;
649 		ltab[i].cmt = 0;
650 	}
651 
652 	lnum = lpt_first;
653 	p = buf;
654 	/* Number of leaf nodes (pnodes) */
655 	cnt = c->pnode_cnt;
656 
657 	/*
658 	 * The first pnode contains the LEB properties for the LEBs that contain
659 	 * the root inode node and the root index node of the index tree.
660 	 */
661 	node_sz = ALIGN(ubifs_idx_node_sz(c, 1), 8);
662 	iopos = ALIGN(node_sz, c->min_io_size);
663 	pnode->lprops[0].free = c->leb_size - iopos;
664 	pnode->lprops[0].dirty = iopos - node_sz;
665 	pnode->lprops[0].flags = LPROPS_INDEX;
666 
667 	node_sz = UBIFS_INO_NODE_SZ;
668 	iopos = ALIGN(node_sz, c->min_io_size);
669 	pnode->lprops[1].free = c->leb_size - iopos;
670 	pnode->lprops[1].dirty = iopos - node_sz;
671 
672 	for (i = 2; i < UBIFS_LPT_FANOUT; i++)
673 		pnode->lprops[i].free = c->leb_size;
674 
675 	/* Add first pnode */
676 	ubifs_pack_pnode(c, p, pnode);
677 	p += c->pnode_sz;
678 	len = c->pnode_sz;
679 	pnode->num += 1;
680 
681 	/* Reset pnode values for remaining pnodes */
682 	pnode->lprops[0].free = c->leb_size;
683 	pnode->lprops[0].dirty = 0;
684 	pnode->lprops[0].flags = 0;
685 
686 	pnode->lprops[1].free = c->leb_size;
687 	pnode->lprops[1].dirty = 0;
688 
689 	/*
690 	 * To calculate the internal node branches, we keep information about
691 	 * the level below.
692 	 */
693 	blnum = lnum; /* LEB number of level below */
694 	boffs = 0; /* Offset of level below */
695 	bcnt = cnt; /* Number of nodes in level below */
696 	bsz = c->pnode_sz; /* Size of nodes in level below */
697 
698 	/* Add all remaining pnodes */
699 	for (i = 1; i < cnt; i++) {
700 		if (len + c->pnode_sz > c->leb_size) {
701 			alen = ALIGN(len, c->min_io_size);
702 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
703 			memset(p, 0xff, alen - len);
704 			err = ubifs_leb_change(c, lnum++, buf, alen,
705 					       UBI_SHORTTERM);
706 			if (err)
707 				goto out;
708 			p = buf;
709 			len = 0;
710 		}
711 		ubifs_pack_pnode(c, p, pnode);
712 		p += c->pnode_sz;
713 		len += c->pnode_sz;
714 		/*
715 		 * pnodes are simply numbered left to right starting at zero,
716 		 * which means the pnode number can be used easily to traverse
717 		 * down the tree to the corresponding pnode.
718 		 */
719 		pnode->num += 1;
720 	}
721 
722 	row = 0;
723 	for (i = UBIFS_LPT_FANOUT; cnt > i; i <<= UBIFS_LPT_FANOUT_SHIFT)
724 		row += 1;
725 	/* Add all nnodes, one level at a time */
726 	while (1) {
727 		/* Number of internal nodes (nnodes) at next level */
728 		cnt = DIV_ROUND_UP(cnt, UBIFS_LPT_FANOUT);
729 		for (i = 0; i < cnt; i++) {
730 			if (len + c->nnode_sz > c->leb_size) {
731 				alen = ALIGN(len, c->min_io_size);
732 				set_ltab(c, lnum, c->leb_size - alen,
733 					    alen - len);
734 				memset(p, 0xff, alen - len);
735 				err = ubifs_leb_change(c, lnum++, buf, alen,
736 						       UBI_SHORTTERM);
737 				if (err)
738 					goto out;
739 				p = buf;
740 				len = 0;
741 			}
742 			/* Only 1 nnode at this level, so it is the root */
743 			if (cnt == 1) {
744 				c->lpt_lnum = lnum;
745 				c->lpt_offs = len;
746 			}
747 			/* Set branches to the level below */
748 			for (j = 0; j < UBIFS_LPT_FANOUT; j++) {
749 				if (bcnt) {
750 					if (boffs + bsz > c->leb_size) {
751 						blnum += 1;
752 						boffs = 0;
753 					}
754 					nnode->nbranch[j].lnum = blnum;
755 					nnode->nbranch[j].offs = boffs;
756 					boffs += bsz;
757 					bcnt--;
758 				} else {
759 					nnode->nbranch[j].lnum = 0;
760 					nnode->nbranch[j].offs = 0;
761 				}
762 			}
763 			nnode->num = calc_nnode_num(row, i);
764 			ubifs_pack_nnode(c, p, nnode);
765 			p += c->nnode_sz;
766 			len += c->nnode_sz;
767 		}
768 		/* Only 1 nnode at this level, so it is the root */
769 		if (cnt == 1)
770 			break;
771 		/* Update the information about the level below */
772 		bcnt = cnt;
773 		bsz = c->nnode_sz;
774 		row -= 1;
775 	}
776 
777 	if (*big_lpt) {
778 		/* Need to add LPT's save table */
779 		if (len + c->lsave_sz > c->leb_size) {
780 			alen = ALIGN(len, c->min_io_size);
781 			set_ltab(c, lnum, c->leb_size - alen, alen - len);
782 			memset(p, 0xff, alen - len);
783 			err = ubifs_leb_change(c, lnum++, buf, alen,
784 					       UBI_SHORTTERM);
785 			if (err)
786 				goto out;
787 			p = buf;
788 			len = 0;
789 		}
790 
791 		c->lsave_lnum = lnum;
792 		c->lsave_offs = len;
793 
794 		for (i = 0; i < c->lsave_cnt && i < *main_lebs; i++)
795 			lsave[i] = c->main_first + i;
796 		for (; i < c->lsave_cnt; i++)
797 			lsave[i] = c->main_first;
798 
799 		ubifs_pack_lsave(c, p, lsave);
800 		p += c->lsave_sz;
801 		len += c->lsave_sz;
802 	}
803 
804 	/* Need to add LPT's own LEB properties table */
805 	if (len + c->ltab_sz > c->leb_size) {
806 		alen = ALIGN(len, c->min_io_size);
807 		set_ltab(c, lnum, c->leb_size - alen, alen - len);
808 		memset(p, 0xff, alen - len);
809 		err = ubifs_leb_change(c, lnum++, buf, alen, UBI_SHORTTERM);
810 		if (err)
811 			goto out;
812 		p = buf;
813 		len = 0;
814 	}
815 
816 	c->ltab_lnum = lnum;
817 	c->ltab_offs = len;
818 
819 	/* Update ltab before packing it */
820 	len += c->ltab_sz;
821 	alen = ALIGN(len, c->min_io_size);
822 	set_ltab(c, lnum, c->leb_size - alen, alen - len);
823 
824 	ubifs_pack_ltab(c, p, ltab);
825 	p += c->ltab_sz;
826 
827 	/* Write remaining buffer */
828 	memset(p, 0xff, alen - len);
829 	err = ubifs_leb_change(c, lnum, buf, alen, UBI_SHORTTERM);
830 	if (err)
831 		goto out;
832 
833 	c->nhead_lnum = lnum;
834 	c->nhead_offs = ALIGN(len, c->min_io_size);
835 
836 	dbg_lp("space_bits %d", c->space_bits);
837 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
838 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
839 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
840 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
841 	dbg_lp("lnum_bits %d", c->lnum_bits);
842 	dbg_lp("pnode_sz %d", c->pnode_sz);
843 	dbg_lp("nnode_sz %d", c->nnode_sz);
844 	dbg_lp("ltab_sz %d", c->ltab_sz);
845 	dbg_lp("lsave_sz %d", c->lsave_sz);
846 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
847 	dbg_lp("lpt_hght %d", c->lpt_hght);
848 	dbg_lp("big_lpt %d", c->big_lpt);
849 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
850 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
851 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
852 	if (c->big_lpt)
853 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
854 out:
855 	c->ltab = NULL;
856 	kfree(lsave);
857 	vfree(ltab);
858 	vfree(buf);
859 	kfree(nnode);
860 	kfree(pnode);
861 	return err;
862 }
863 
864 /**
865  * update_cats - add LEB properties of a pnode to LEB category lists and heaps.
866  * @c: UBIFS file-system description object
867  * @pnode: pnode
868  *
869  * When a pnode is loaded into memory, the LEB properties it contains are added,
870  * by this function, to the LEB category lists and heaps.
871  */
872 static void update_cats(struct ubifs_info *c, struct ubifs_pnode *pnode)
873 {
874 	int i;
875 
876 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
877 		int cat = pnode->lprops[i].flags & LPROPS_CAT_MASK;
878 		int lnum = pnode->lprops[i].lnum;
879 
880 		if (!lnum)
881 			return;
882 		ubifs_add_to_cat(c, &pnode->lprops[i], cat);
883 	}
884 }
885 
886 /**
887  * replace_cats - add LEB properties of a pnode to LEB category lists and heaps.
888  * @c: UBIFS file-system description object
889  * @old_pnode: pnode copied
890  * @new_pnode: pnode copy
891  *
892  * During commit it is sometimes necessary to copy a pnode
893  * (see dirty_cow_pnode).  When that happens, references in
894  * category lists and heaps must be replaced.  This function does that.
895  */
896 static void replace_cats(struct ubifs_info *c, struct ubifs_pnode *old_pnode,
897 			 struct ubifs_pnode *new_pnode)
898 {
899 	int i;
900 
901 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
902 		if (!new_pnode->lprops[i].lnum)
903 			return;
904 		ubifs_replace_cat(c, &old_pnode->lprops[i],
905 				  &new_pnode->lprops[i]);
906 	}
907 }
908 
909 /**
910  * check_lpt_crc - check LPT node crc is correct.
911  * @c: UBIFS file-system description object
912  * @buf: buffer containing node
913  * @len: length of node
914  *
915  * This function returns %0 on success and a negative error code on failure.
916  */
917 static int check_lpt_crc(void *buf, int len)
918 {
919 	int pos = 0;
920 	uint8_t *addr = buf;
921 	uint16_t crc, calc_crc;
922 
923 	crc = ubifs_unpack_bits(&addr, &pos, UBIFS_LPT_CRC_BITS);
924 	calc_crc = crc16(-1, buf + UBIFS_LPT_CRC_BYTES,
925 			 len - UBIFS_LPT_CRC_BYTES);
926 	if (crc != calc_crc) {
927 		ubifs_err("invalid crc in LPT node: crc %hx calc %hx", crc,
928 			  calc_crc);
929 		dbg_dump_stack();
930 		return -EINVAL;
931 	}
932 	return 0;
933 }
934 
935 /**
936  * check_lpt_type - check LPT node type is correct.
937  * @c: UBIFS file-system description object
938  * @addr: address of type bit field is passed and returned updated here
939  * @pos: position of type bit field is passed and returned updated here
940  * @type: expected type
941  *
942  * This function returns %0 on success and a negative error code on failure.
943  */
944 static int check_lpt_type(uint8_t **addr, int *pos, int type)
945 {
946 	int node_type;
947 
948 	node_type = ubifs_unpack_bits(addr, pos, UBIFS_LPT_TYPE_BITS);
949 	if (node_type != type) {
950 		ubifs_err("invalid type (%d) in LPT node type %d", node_type,
951 			  type);
952 		dbg_dump_stack();
953 		return -EINVAL;
954 	}
955 	return 0;
956 }
957 
958 /**
959  * unpack_pnode - unpack a pnode.
960  * @c: UBIFS file-system description object
961  * @buf: buffer containing packed pnode to unpack
962  * @pnode: pnode structure to fill
963  *
964  * This function returns %0 on success and a negative error code on failure.
965  */
966 static int unpack_pnode(const struct ubifs_info *c, void *buf,
967 			struct ubifs_pnode *pnode)
968 {
969 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
970 	int i, pos = 0, err;
971 
972 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_PNODE);
973 	if (err)
974 		return err;
975 	if (c->big_lpt)
976 		pnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
977 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
978 		struct ubifs_lprops * const lprops = &pnode->lprops[i];
979 
980 		lprops->free = ubifs_unpack_bits(&addr, &pos, c->space_bits);
981 		lprops->free <<= 3;
982 		lprops->dirty = ubifs_unpack_bits(&addr, &pos, c->space_bits);
983 		lprops->dirty <<= 3;
984 
985 		if (ubifs_unpack_bits(&addr, &pos, 1))
986 			lprops->flags = LPROPS_INDEX;
987 		else
988 			lprops->flags = 0;
989 		lprops->flags |= ubifs_categorize_lprops(c, lprops);
990 	}
991 	err = check_lpt_crc(buf, c->pnode_sz);
992 	return err;
993 }
994 
995 /**
996  * ubifs_unpack_nnode - unpack a nnode.
997  * @c: UBIFS file-system description object
998  * @buf: buffer containing packed nnode to unpack
999  * @nnode: nnode structure to fill
1000  *
1001  * This function returns %0 on success and a negative error code on failure.
1002  */
1003 int ubifs_unpack_nnode(const struct ubifs_info *c, void *buf,
1004 		       struct ubifs_nnode *nnode)
1005 {
1006 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1007 	int i, pos = 0, err;
1008 
1009 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_NNODE);
1010 	if (err)
1011 		return err;
1012 	if (c->big_lpt)
1013 		nnode->num = ubifs_unpack_bits(&addr, &pos, c->pcnt_bits);
1014 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1015 		int lnum;
1016 
1017 		lnum = ubifs_unpack_bits(&addr, &pos, c->lpt_lnum_bits) +
1018 		       c->lpt_first;
1019 		if (lnum == c->lpt_last + 1)
1020 			lnum = 0;
1021 		nnode->nbranch[i].lnum = lnum;
1022 		nnode->nbranch[i].offs = ubifs_unpack_bits(&addr, &pos,
1023 						     c->lpt_offs_bits);
1024 	}
1025 	err = check_lpt_crc(buf, c->nnode_sz);
1026 	return err;
1027 }
1028 
1029 /**
1030  * unpack_ltab - unpack the LPT's own lprops table.
1031  * @c: UBIFS file-system description object
1032  * @buf: buffer from which to unpack
1033  *
1034  * This function returns %0 on success and a negative error code on failure.
1035  */
1036 static int unpack_ltab(const struct ubifs_info *c, void *buf)
1037 {
1038 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1039 	int i, pos = 0, err;
1040 
1041 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LTAB);
1042 	if (err)
1043 		return err;
1044 	for (i = 0; i < c->lpt_lebs; i++) {
1045 		int free = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1046 		int dirty = ubifs_unpack_bits(&addr, &pos, c->lpt_spc_bits);
1047 
1048 		if (free < 0 || free > c->leb_size || dirty < 0 ||
1049 		    dirty > c->leb_size || free + dirty > c->leb_size)
1050 			return -EINVAL;
1051 
1052 		c->ltab[i].free = free;
1053 		c->ltab[i].dirty = dirty;
1054 		c->ltab[i].tgc = 0;
1055 		c->ltab[i].cmt = 0;
1056 	}
1057 	err = check_lpt_crc(buf, c->ltab_sz);
1058 	return err;
1059 }
1060 
1061 /**
1062  * unpack_lsave - unpack the LPT's save table.
1063  * @c: UBIFS file-system description object
1064  * @buf: buffer from which to unpack
1065  *
1066  * This function returns %0 on success and a negative error code on failure.
1067  */
1068 static int unpack_lsave(const struct ubifs_info *c, void *buf)
1069 {
1070 	uint8_t *addr = buf + UBIFS_LPT_CRC_BYTES;
1071 	int i, pos = 0, err;
1072 
1073 	err = check_lpt_type(&addr, &pos, UBIFS_LPT_LSAVE);
1074 	if (err)
1075 		return err;
1076 	for (i = 0; i < c->lsave_cnt; i++) {
1077 		int lnum = ubifs_unpack_bits(&addr, &pos, c->lnum_bits);
1078 
1079 		if (lnum < c->main_first || lnum >= c->leb_cnt)
1080 			return -EINVAL;
1081 		c->lsave[i] = lnum;
1082 	}
1083 	err = check_lpt_crc(buf, c->lsave_sz);
1084 	return err;
1085 }
1086 
1087 /**
1088  * validate_nnode - validate a nnode.
1089  * @c: UBIFS file-system description object
1090  * @nnode: nnode to validate
1091  * @parent: parent nnode (or NULL for the root nnode)
1092  * @iip: index in parent
1093  *
1094  * This function returns %0 on success and a negative error code on failure.
1095  */
1096 static int validate_nnode(const struct ubifs_info *c, struct ubifs_nnode *nnode,
1097 			  struct ubifs_nnode *parent, int iip)
1098 {
1099 	int i, lvl, max_offs;
1100 
1101 	if (c->big_lpt) {
1102 		int num = calc_nnode_num_from_parent(c, parent, iip);
1103 
1104 		if (nnode->num != num)
1105 			return -EINVAL;
1106 	}
1107 	lvl = parent ? parent->level - 1 : c->lpt_hght;
1108 	if (lvl < 1)
1109 		return -EINVAL;
1110 	if (lvl == 1)
1111 		max_offs = c->leb_size - c->pnode_sz;
1112 	else
1113 		max_offs = c->leb_size - c->nnode_sz;
1114 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1115 		int lnum = nnode->nbranch[i].lnum;
1116 		int offs = nnode->nbranch[i].offs;
1117 
1118 		if (lnum == 0) {
1119 			if (offs != 0)
1120 				return -EINVAL;
1121 			continue;
1122 		}
1123 		if (lnum < c->lpt_first || lnum > c->lpt_last)
1124 			return -EINVAL;
1125 		if (offs < 0 || offs > max_offs)
1126 			return -EINVAL;
1127 	}
1128 	return 0;
1129 }
1130 
1131 /**
1132  * validate_pnode - validate a pnode.
1133  * @c: UBIFS file-system description object
1134  * @pnode: pnode to validate
1135  * @parent: parent nnode
1136  * @iip: index in parent
1137  *
1138  * This function returns %0 on success and a negative error code on failure.
1139  */
1140 static int validate_pnode(const struct ubifs_info *c, struct ubifs_pnode *pnode,
1141 			  struct ubifs_nnode *parent, int iip)
1142 {
1143 	int i;
1144 
1145 	if (c->big_lpt) {
1146 		int num = calc_pnode_num_from_parent(c, parent, iip);
1147 
1148 		if (pnode->num != num)
1149 			return -EINVAL;
1150 	}
1151 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1152 		int free = pnode->lprops[i].free;
1153 		int dirty = pnode->lprops[i].dirty;
1154 
1155 		if (free < 0 || free > c->leb_size || free % c->min_io_size ||
1156 		    (free & 7))
1157 			return -EINVAL;
1158 		if (dirty < 0 || dirty > c->leb_size || (dirty & 7))
1159 			return -EINVAL;
1160 		if (dirty + free > c->leb_size)
1161 			return -EINVAL;
1162 	}
1163 	return 0;
1164 }
1165 
1166 /**
1167  * set_pnode_lnum - set LEB numbers on a pnode.
1168  * @c: UBIFS file-system description object
1169  * @pnode: pnode to update
1170  *
1171  * This function calculates the LEB numbers for the LEB properties it contains
1172  * based on the pnode number.
1173  */
1174 static void set_pnode_lnum(const struct ubifs_info *c,
1175 			   struct ubifs_pnode *pnode)
1176 {
1177 	int i, lnum;
1178 
1179 	lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + c->main_first;
1180 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1181 		if (lnum >= c->leb_cnt)
1182 			return;
1183 		pnode->lprops[i].lnum = lnum++;
1184 	}
1185 }
1186 
1187 /**
1188  * ubifs_read_nnode - read a nnode from flash and link it to the tree in memory.
1189  * @c: UBIFS file-system description object
1190  * @parent: parent nnode (or NULL for the root)
1191  * @iip: index in parent
1192  *
1193  * This function returns %0 on success and a negative error code on failure.
1194  */
1195 int ubifs_read_nnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1196 {
1197 	struct ubifs_nbranch *branch = NULL;
1198 	struct ubifs_nnode *nnode = NULL;
1199 	void *buf = c->lpt_nod_buf;
1200 	int err, lnum, offs;
1201 
1202 	if (parent) {
1203 		branch = &parent->nbranch[iip];
1204 		lnum = branch->lnum;
1205 		offs = branch->offs;
1206 	} else {
1207 		lnum = c->lpt_lnum;
1208 		offs = c->lpt_offs;
1209 	}
1210 	nnode = kzalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1211 	if (!nnode) {
1212 		err = -ENOMEM;
1213 		goto out;
1214 	}
1215 	if (lnum == 0) {
1216 		/*
1217 		 * This nnode was not written which just means that the LEB
1218 		 * properties in the subtree below it describe empty LEBs. We
1219 		 * make the nnode as though we had read it, which in fact means
1220 		 * doing almost nothing.
1221 		 */
1222 		if (c->big_lpt)
1223 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1224 	} else {
1225 		err = ubifs_leb_read(c, lnum, buf, offs, c->nnode_sz, 1);
1226 		if (err)
1227 			goto out;
1228 		err = ubifs_unpack_nnode(c, buf, nnode);
1229 		if (err)
1230 			goto out;
1231 	}
1232 	err = validate_nnode(c, nnode, parent, iip);
1233 	if (err)
1234 		goto out;
1235 	if (!c->big_lpt)
1236 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1237 	if (parent) {
1238 		branch->nnode = nnode;
1239 		nnode->level = parent->level - 1;
1240 	} else {
1241 		c->nroot = nnode;
1242 		nnode->level = c->lpt_hght;
1243 	}
1244 	nnode->parent = parent;
1245 	nnode->iip = iip;
1246 	return 0;
1247 
1248 out:
1249 	ubifs_err("error %d reading nnode at %d:%d", err, lnum, offs);
1250 	dbg_dump_stack();
1251 	kfree(nnode);
1252 	return err;
1253 }
1254 
1255 /**
1256  * read_pnode - read a pnode from flash and link it to the tree in memory.
1257  * @c: UBIFS file-system description object
1258  * @parent: parent nnode
1259  * @iip: index in parent
1260  *
1261  * This function returns %0 on success and a negative error code on failure.
1262  */
1263 static int read_pnode(struct ubifs_info *c, struct ubifs_nnode *parent, int iip)
1264 {
1265 	struct ubifs_nbranch *branch;
1266 	struct ubifs_pnode *pnode = NULL;
1267 	void *buf = c->lpt_nod_buf;
1268 	int err, lnum, offs;
1269 
1270 	branch = &parent->nbranch[iip];
1271 	lnum = branch->lnum;
1272 	offs = branch->offs;
1273 	pnode = kzalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1274 	if (!pnode)
1275 		return -ENOMEM;
1276 
1277 	if (lnum == 0) {
1278 		/*
1279 		 * This pnode was not written which just means that the LEB
1280 		 * properties in it describe empty LEBs. We make the pnode as
1281 		 * though we had read it.
1282 		 */
1283 		int i;
1284 
1285 		if (c->big_lpt)
1286 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1287 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1288 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1289 
1290 			lprops->free = c->leb_size;
1291 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1292 		}
1293 	} else {
1294 		err = ubifs_leb_read(c, lnum, buf, offs, c->pnode_sz, 1);
1295 		if (err)
1296 			goto out;
1297 		err = unpack_pnode(c, buf, pnode);
1298 		if (err)
1299 			goto out;
1300 	}
1301 	err = validate_pnode(c, pnode, parent, iip);
1302 	if (err)
1303 		goto out;
1304 	if (!c->big_lpt)
1305 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1306 	branch->pnode = pnode;
1307 	pnode->parent = parent;
1308 	pnode->iip = iip;
1309 	set_pnode_lnum(c, pnode);
1310 	c->pnodes_have += 1;
1311 	return 0;
1312 
1313 out:
1314 	ubifs_err("error %d reading pnode at %d:%d", err, lnum, offs);
1315 	dbg_dump_pnode(c, pnode, parent, iip);
1316 	dbg_dump_stack();
1317 	dbg_msg("calc num: %d", calc_pnode_num_from_parent(c, parent, iip));
1318 	kfree(pnode);
1319 	return err;
1320 }
1321 
1322 /**
1323  * read_ltab - read LPT's own lprops table.
1324  * @c: UBIFS file-system description object
1325  *
1326  * This function returns %0 on success and a negative error code on failure.
1327  */
1328 static int read_ltab(struct ubifs_info *c)
1329 {
1330 	int err;
1331 	void *buf;
1332 
1333 	buf = vmalloc(c->ltab_sz);
1334 	if (!buf)
1335 		return -ENOMEM;
1336 	err = ubifs_leb_read(c, c->ltab_lnum, buf, c->ltab_offs, c->ltab_sz, 1);
1337 	if (err)
1338 		goto out;
1339 	err = unpack_ltab(c, buf);
1340 out:
1341 	vfree(buf);
1342 	return err;
1343 }
1344 
1345 /**
1346  * read_lsave - read LPT's save table.
1347  * @c: UBIFS file-system description object
1348  *
1349  * This function returns %0 on success and a negative error code on failure.
1350  */
1351 static int read_lsave(struct ubifs_info *c)
1352 {
1353 	int err, i;
1354 	void *buf;
1355 
1356 	buf = vmalloc(c->lsave_sz);
1357 	if (!buf)
1358 		return -ENOMEM;
1359 	err = ubifs_leb_read(c, c->lsave_lnum, buf, c->lsave_offs,
1360 			     c->lsave_sz, 1);
1361 	if (err)
1362 		goto out;
1363 	err = unpack_lsave(c, buf);
1364 	if (err)
1365 		goto out;
1366 	for (i = 0; i < c->lsave_cnt; i++) {
1367 		int lnum = c->lsave[i];
1368 		struct ubifs_lprops *lprops;
1369 
1370 		/*
1371 		 * Due to automatic resizing, the values in the lsave table
1372 		 * could be beyond the volume size - just ignore them.
1373 		 */
1374 		if (lnum >= c->leb_cnt)
1375 			continue;
1376 		lprops = ubifs_lpt_lookup(c, lnum);
1377 		if (IS_ERR(lprops)) {
1378 			err = PTR_ERR(lprops);
1379 			goto out;
1380 		}
1381 	}
1382 out:
1383 	vfree(buf);
1384 	return err;
1385 }
1386 
1387 /**
1388  * ubifs_get_nnode - get a nnode.
1389  * @c: UBIFS file-system description object
1390  * @parent: parent nnode (or NULL for the root)
1391  * @iip: index in parent
1392  *
1393  * This function returns a pointer to the nnode on success or a negative error
1394  * code on failure.
1395  */
1396 struct ubifs_nnode *ubifs_get_nnode(struct ubifs_info *c,
1397 				    struct ubifs_nnode *parent, int iip)
1398 {
1399 	struct ubifs_nbranch *branch;
1400 	struct ubifs_nnode *nnode;
1401 	int err;
1402 
1403 	branch = &parent->nbranch[iip];
1404 	nnode = branch->nnode;
1405 	if (nnode)
1406 		return nnode;
1407 	err = ubifs_read_nnode(c, parent, iip);
1408 	if (err)
1409 		return ERR_PTR(err);
1410 	return branch->nnode;
1411 }
1412 
1413 /**
1414  * ubifs_get_pnode - get a pnode.
1415  * @c: UBIFS file-system description object
1416  * @parent: parent nnode
1417  * @iip: index in parent
1418  *
1419  * This function returns a pointer to the pnode on success or a negative error
1420  * code on failure.
1421  */
1422 struct ubifs_pnode *ubifs_get_pnode(struct ubifs_info *c,
1423 				    struct ubifs_nnode *parent, int iip)
1424 {
1425 	struct ubifs_nbranch *branch;
1426 	struct ubifs_pnode *pnode;
1427 	int err;
1428 
1429 	branch = &parent->nbranch[iip];
1430 	pnode = branch->pnode;
1431 	if (pnode)
1432 		return pnode;
1433 	err = read_pnode(c, parent, iip);
1434 	if (err)
1435 		return ERR_PTR(err);
1436 	update_cats(c, branch->pnode);
1437 	return branch->pnode;
1438 }
1439 
1440 /**
1441  * ubifs_lpt_lookup - lookup LEB properties in the LPT.
1442  * @c: UBIFS file-system description object
1443  * @lnum: LEB number to lookup
1444  *
1445  * This function returns a pointer to the LEB properties on success or a
1446  * negative error code on failure.
1447  */
1448 struct ubifs_lprops *ubifs_lpt_lookup(struct ubifs_info *c, int lnum)
1449 {
1450 	int err, i, h, iip, shft;
1451 	struct ubifs_nnode *nnode;
1452 	struct ubifs_pnode *pnode;
1453 
1454 	if (!c->nroot) {
1455 		err = ubifs_read_nnode(c, NULL, 0);
1456 		if (err)
1457 			return ERR_PTR(err);
1458 	}
1459 	nnode = c->nroot;
1460 	i = lnum - c->main_first;
1461 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1462 	for (h = 1; h < c->lpt_hght; h++) {
1463 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1464 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1465 		nnode = ubifs_get_nnode(c, nnode, iip);
1466 		if (IS_ERR(nnode))
1467 			return ERR_CAST(nnode);
1468 	}
1469 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1470 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1471 	pnode = ubifs_get_pnode(c, nnode, iip);
1472 	if (IS_ERR(pnode))
1473 		return ERR_CAST(pnode);
1474 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1475 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1476 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1477 	       pnode->lprops[iip].flags);
1478 	return &pnode->lprops[iip];
1479 }
1480 
1481 /**
1482  * dirty_cow_nnode - ensure a nnode is not being committed.
1483  * @c: UBIFS file-system description object
1484  * @nnode: nnode to check
1485  *
1486  * Returns dirtied nnode on success or negative error code on failure.
1487  */
1488 static struct ubifs_nnode *dirty_cow_nnode(struct ubifs_info *c,
1489 					   struct ubifs_nnode *nnode)
1490 {
1491 	struct ubifs_nnode *n;
1492 	int i;
1493 
1494 	if (!test_bit(COW_CNODE, &nnode->flags)) {
1495 		/* nnode is not being committed */
1496 		if (!test_and_set_bit(DIRTY_CNODE, &nnode->flags)) {
1497 			c->dirty_nn_cnt += 1;
1498 			ubifs_add_nnode_dirt(c, nnode);
1499 		}
1500 		return nnode;
1501 	}
1502 
1503 	/* nnode is being committed, so copy it */
1504 	n = kmalloc(sizeof(struct ubifs_nnode), GFP_NOFS);
1505 	if (unlikely(!n))
1506 		return ERR_PTR(-ENOMEM);
1507 
1508 	memcpy(n, nnode, sizeof(struct ubifs_nnode));
1509 	n->cnext = NULL;
1510 	__set_bit(DIRTY_CNODE, &n->flags);
1511 	__clear_bit(COW_CNODE, &n->flags);
1512 
1513 	/* The children now have new parent */
1514 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1515 		struct ubifs_nbranch *branch = &n->nbranch[i];
1516 
1517 		if (branch->cnode)
1518 			branch->cnode->parent = n;
1519 	}
1520 
1521 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &nnode->flags));
1522 	__set_bit(OBSOLETE_CNODE, &nnode->flags);
1523 
1524 	c->dirty_nn_cnt += 1;
1525 	ubifs_add_nnode_dirt(c, nnode);
1526 	if (nnode->parent)
1527 		nnode->parent->nbranch[n->iip].nnode = n;
1528 	else
1529 		c->nroot = n;
1530 	return n;
1531 }
1532 
1533 /**
1534  * dirty_cow_pnode - ensure a pnode is not being committed.
1535  * @c: UBIFS file-system description object
1536  * @pnode: pnode to check
1537  *
1538  * Returns dirtied pnode on success or negative error code on failure.
1539  */
1540 static struct ubifs_pnode *dirty_cow_pnode(struct ubifs_info *c,
1541 					   struct ubifs_pnode *pnode)
1542 {
1543 	struct ubifs_pnode *p;
1544 
1545 	if (!test_bit(COW_CNODE, &pnode->flags)) {
1546 		/* pnode is not being committed */
1547 		if (!test_and_set_bit(DIRTY_CNODE, &pnode->flags)) {
1548 			c->dirty_pn_cnt += 1;
1549 			add_pnode_dirt(c, pnode);
1550 		}
1551 		return pnode;
1552 	}
1553 
1554 	/* pnode is being committed, so copy it */
1555 	p = kmalloc(sizeof(struct ubifs_pnode), GFP_NOFS);
1556 	if (unlikely(!p))
1557 		return ERR_PTR(-ENOMEM);
1558 
1559 	memcpy(p, pnode, sizeof(struct ubifs_pnode));
1560 	p->cnext = NULL;
1561 	__set_bit(DIRTY_CNODE, &p->flags);
1562 	__clear_bit(COW_CNODE, &p->flags);
1563 	replace_cats(c, pnode, p);
1564 
1565 	ubifs_assert(!test_bit(OBSOLETE_CNODE, &pnode->flags));
1566 	__set_bit(OBSOLETE_CNODE, &pnode->flags);
1567 
1568 	c->dirty_pn_cnt += 1;
1569 	add_pnode_dirt(c, pnode);
1570 	pnode->parent->nbranch[p->iip].pnode = p;
1571 	return p;
1572 }
1573 
1574 /**
1575  * ubifs_lpt_lookup_dirty - lookup LEB properties in the LPT.
1576  * @c: UBIFS file-system description object
1577  * @lnum: LEB number to lookup
1578  *
1579  * This function returns a pointer to the LEB properties on success or a
1580  * negative error code on failure.
1581  */
1582 struct ubifs_lprops *ubifs_lpt_lookup_dirty(struct ubifs_info *c, int lnum)
1583 {
1584 	int err, i, h, iip, shft;
1585 	struct ubifs_nnode *nnode;
1586 	struct ubifs_pnode *pnode;
1587 
1588 	if (!c->nroot) {
1589 		err = ubifs_read_nnode(c, NULL, 0);
1590 		if (err)
1591 			return ERR_PTR(err);
1592 	}
1593 	nnode = c->nroot;
1594 	nnode = dirty_cow_nnode(c, nnode);
1595 	if (IS_ERR(nnode))
1596 		return ERR_CAST(nnode);
1597 	i = lnum - c->main_first;
1598 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1599 	for (h = 1; h < c->lpt_hght; h++) {
1600 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1601 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1602 		nnode = ubifs_get_nnode(c, nnode, iip);
1603 		if (IS_ERR(nnode))
1604 			return ERR_CAST(nnode);
1605 		nnode = dirty_cow_nnode(c, nnode);
1606 		if (IS_ERR(nnode))
1607 			return ERR_CAST(nnode);
1608 	}
1609 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1610 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1611 	pnode = ubifs_get_pnode(c, nnode, iip);
1612 	if (IS_ERR(pnode))
1613 		return ERR_CAST(pnode);
1614 	pnode = dirty_cow_pnode(c, pnode);
1615 	if (IS_ERR(pnode))
1616 		return ERR_CAST(pnode);
1617 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1618 	dbg_lp("LEB %d, free %d, dirty %d, flags %d", lnum,
1619 	       pnode->lprops[iip].free, pnode->lprops[iip].dirty,
1620 	       pnode->lprops[iip].flags);
1621 	ubifs_assert(test_bit(DIRTY_CNODE, &pnode->flags));
1622 	return &pnode->lprops[iip];
1623 }
1624 
1625 /**
1626  * lpt_init_rd - initialize the LPT for reading.
1627  * @c: UBIFS file-system description object
1628  *
1629  * This function returns %0 on success and a negative error code on failure.
1630  */
1631 static int lpt_init_rd(struct ubifs_info *c)
1632 {
1633 	int err, i;
1634 
1635 	c->ltab = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1636 	if (!c->ltab)
1637 		return -ENOMEM;
1638 
1639 	i = max_t(int, c->nnode_sz, c->pnode_sz);
1640 	c->lpt_nod_buf = kmalloc(i, GFP_KERNEL);
1641 	if (!c->lpt_nod_buf)
1642 		return -ENOMEM;
1643 
1644 	for (i = 0; i < LPROPS_HEAP_CNT; i++) {
1645 		c->lpt_heap[i].arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ,
1646 					     GFP_KERNEL);
1647 		if (!c->lpt_heap[i].arr)
1648 			return -ENOMEM;
1649 		c->lpt_heap[i].cnt = 0;
1650 		c->lpt_heap[i].max_cnt = LPT_HEAP_SZ;
1651 	}
1652 
1653 	c->dirty_idx.arr = kmalloc(sizeof(void *) * LPT_HEAP_SZ, GFP_KERNEL);
1654 	if (!c->dirty_idx.arr)
1655 		return -ENOMEM;
1656 	c->dirty_idx.cnt = 0;
1657 	c->dirty_idx.max_cnt = LPT_HEAP_SZ;
1658 
1659 	err = read_ltab(c);
1660 	if (err)
1661 		return err;
1662 
1663 	dbg_lp("space_bits %d", c->space_bits);
1664 	dbg_lp("lpt_lnum_bits %d", c->lpt_lnum_bits);
1665 	dbg_lp("lpt_offs_bits %d", c->lpt_offs_bits);
1666 	dbg_lp("lpt_spc_bits %d", c->lpt_spc_bits);
1667 	dbg_lp("pcnt_bits %d", c->pcnt_bits);
1668 	dbg_lp("lnum_bits %d", c->lnum_bits);
1669 	dbg_lp("pnode_sz %d", c->pnode_sz);
1670 	dbg_lp("nnode_sz %d", c->nnode_sz);
1671 	dbg_lp("ltab_sz %d", c->ltab_sz);
1672 	dbg_lp("lsave_sz %d", c->lsave_sz);
1673 	dbg_lp("lsave_cnt %d", c->lsave_cnt);
1674 	dbg_lp("lpt_hght %d", c->lpt_hght);
1675 	dbg_lp("big_lpt %d", c->big_lpt);
1676 	dbg_lp("LPT root is at %d:%d", c->lpt_lnum, c->lpt_offs);
1677 	dbg_lp("LPT head is at %d:%d", c->nhead_lnum, c->nhead_offs);
1678 	dbg_lp("LPT ltab is at %d:%d", c->ltab_lnum, c->ltab_offs);
1679 	if (c->big_lpt)
1680 		dbg_lp("LPT lsave is at %d:%d", c->lsave_lnum, c->lsave_offs);
1681 
1682 	return 0;
1683 }
1684 
1685 /**
1686  * lpt_init_wr - initialize the LPT for writing.
1687  * @c: UBIFS file-system description object
1688  *
1689  * 'lpt_init_rd()' must have been called already.
1690  *
1691  * This function returns %0 on success and a negative error code on failure.
1692  */
1693 static int lpt_init_wr(struct ubifs_info *c)
1694 {
1695 	int err, i;
1696 
1697 	c->ltab_cmt = vmalloc(sizeof(struct ubifs_lpt_lprops) * c->lpt_lebs);
1698 	if (!c->ltab_cmt)
1699 		return -ENOMEM;
1700 
1701 	c->lpt_buf = vmalloc(c->leb_size);
1702 	if (!c->lpt_buf)
1703 		return -ENOMEM;
1704 
1705 	if (c->big_lpt) {
1706 		c->lsave = kmalloc(sizeof(int) * c->lsave_cnt, GFP_NOFS);
1707 		if (!c->lsave)
1708 			return -ENOMEM;
1709 		err = read_lsave(c);
1710 		if (err)
1711 			return err;
1712 	}
1713 
1714 	for (i = 0; i < c->lpt_lebs; i++)
1715 		if (c->ltab[i].free == c->leb_size) {
1716 			err = ubifs_leb_unmap(c, i + c->lpt_first);
1717 			if (err)
1718 				return err;
1719 		}
1720 
1721 	return 0;
1722 }
1723 
1724 /**
1725  * ubifs_lpt_init - initialize the LPT.
1726  * @c: UBIFS file-system description object
1727  * @rd: whether to initialize lpt for reading
1728  * @wr: whether to initialize lpt for writing
1729  *
1730  * For mounting 'rw', @rd and @wr are both true. For mounting 'ro', @rd is true
1731  * and @wr is false. For mounting from 'ro' to 'rw', @rd is false and @wr is
1732  * true.
1733  *
1734  * This function returns %0 on success and a negative error code on failure.
1735  */
1736 int ubifs_lpt_init(struct ubifs_info *c, int rd, int wr)
1737 {
1738 	int err;
1739 
1740 	if (rd) {
1741 		err = lpt_init_rd(c);
1742 		if (err)
1743 			return err;
1744 	}
1745 
1746 	if (wr) {
1747 		err = lpt_init_wr(c);
1748 		if (err)
1749 			return err;
1750 	}
1751 
1752 	return 0;
1753 }
1754 
1755 /**
1756  * struct lpt_scan_node - somewhere to put nodes while we scan LPT.
1757  * @nnode: where to keep a nnode
1758  * @pnode: where to keep a pnode
1759  * @cnode: where to keep a cnode
1760  * @in_tree: is the node in the tree in memory
1761  * @ptr.nnode: pointer to the nnode (if it is an nnode) which may be here or in
1762  * the tree
1763  * @ptr.pnode: ditto for pnode
1764  * @ptr.cnode: ditto for cnode
1765  */
1766 struct lpt_scan_node {
1767 	union {
1768 		struct ubifs_nnode nnode;
1769 		struct ubifs_pnode pnode;
1770 		struct ubifs_cnode cnode;
1771 	};
1772 	int in_tree;
1773 	union {
1774 		struct ubifs_nnode *nnode;
1775 		struct ubifs_pnode *pnode;
1776 		struct ubifs_cnode *cnode;
1777 	} ptr;
1778 };
1779 
1780 /**
1781  * scan_get_nnode - for the scan, get a nnode from either the tree or flash.
1782  * @c: the UBIFS file-system description object
1783  * @path: where to put the nnode
1784  * @parent: parent of the nnode
1785  * @iip: index in parent of the nnode
1786  *
1787  * This function returns a pointer to the nnode on success or a negative error
1788  * code on failure.
1789  */
1790 static struct ubifs_nnode *scan_get_nnode(struct ubifs_info *c,
1791 					  struct lpt_scan_node *path,
1792 					  struct ubifs_nnode *parent, int iip)
1793 {
1794 	struct ubifs_nbranch *branch;
1795 	struct ubifs_nnode *nnode;
1796 	void *buf = c->lpt_nod_buf;
1797 	int err;
1798 
1799 	branch = &parent->nbranch[iip];
1800 	nnode = branch->nnode;
1801 	if (nnode) {
1802 		path->in_tree = 1;
1803 		path->ptr.nnode = nnode;
1804 		return nnode;
1805 	}
1806 	nnode = &path->nnode;
1807 	path->in_tree = 0;
1808 	path->ptr.nnode = nnode;
1809 	memset(nnode, 0, sizeof(struct ubifs_nnode));
1810 	if (branch->lnum == 0) {
1811 		/*
1812 		 * This nnode was not written which just means that the LEB
1813 		 * properties in the subtree below it describe empty LEBs. We
1814 		 * make the nnode as though we had read it, which in fact means
1815 		 * doing almost nothing.
1816 		 */
1817 		if (c->big_lpt)
1818 			nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1819 	} else {
1820 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1821 				     c->nnode_sz, 1);
1822 		if (err)
1823 			return ERR_PTR(err);
1824 		err = ubifs_unpack_nnode(c, buf, nnode);
1825 		if (err)
1826 			return ERR_PTR(err);
1827 	}
1828 	err = validate_nnode(c, nnode, parent, iip);
1829 	if (err)
1830 		return ERR_PTR(err);
1831 	if (!c->big_lpt)
1832 		nnode->num = calc_nnode_num_from_parent(c, parent, iip);
1833 	nnode->level = parent->level - 1;
1834 	nnode->parent = parent;
1835 	nnode->iip = iip;
1836 	return nnode;
1837 }
1838 
1839 /**
1840  * scan_get_pnode - for the scan, get a pnode from either the tree or flash.
1841  * @c: the UBIFS file-system description object
1842  * @path: where to put the pnode
1843  * @parent: parent of the pnode
1844  * @iip: index in parent of the pnode
1845  *
1846  * This function returns a pointer to the pnode on success or a negative error
1847  * code on failure.
1848  */
1849 static struct ubifs_pnode *scan_get_pnode(struct ubifs_info *c,
1850 					  struct lpt_scan_node *path,
1851 					  struct ubifs_nnode *parent, int iip)
1852 {
1853 	struct ubifs_nbranch *branch;
1854 	struct ubifs_pnode *pnode;
1855 	void *buf = c->lpt_nod_buf;
1856 	int err;
1857 
1858 	branch = &parent->nbranch[iip];
1859 	pnode = branch->pnode;
1860 	if (pnode) {
1861 		path->in_tree = 1;
1862 		path->ptr.pnode = pnode;
1863 		return pnode;
1864 	}
1865 	pnode = &path->pnode;
1866 	path->in_tree = 0;
1867 	path->ptr.pnode = pnode;
1868 	memset(pnode, 0, sizeof(struct ubifs_pnode));
1869 	if (branch->lnum == 0) {
1870 		/*
1871 		 * This pnode was not written which just means that the LEB
1872 		 * properties in it describe empty LEBs. We make the pnode as
1873 		 * though we had read it.
1874 		 */
1875 		int i;
1876 
1877 		if (c->big_lpt)
1878 			pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1879 		for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
1880 			struct ubifs_lprops * const lprops = &pnode->lprops[i];
1881 
1882 			lprops->free = c->leb_size;
1883 			lprops->flags = ubifs_categorize_lprops(c, lprops);
1884 		}
1885 	} else {
1886 		ubifs_assert(branch->lnum >= c->lpt_first &&
1887 			     branch->lnum <= c->lpt_last);
1888 		ubifs_assert(branch->offs >= 0 && branch->offs < c->leb_size);
1889 		err = ubifs_leb_read(c, branch->lnum, buf, branch->offs,
1890 				     c->pnode_sz, 1);
1891 		if (err)
1892 			return ERR_PTR(err);
1893 		err = unpack_pnode(c, buf, pnode);
1894 		if (err)
1895 			return ERR_PTR(err);
1896 	}
1897 	err = validate_pnode(c, pnode, parent, iip);
1898 	if (err)
1899 		return ERR_PTR(err);
1900 	if (!c->big_lpt)
1901 		pnode->num = calc_pnode_num_from_parent(c, parent, iip);
1902 	pnode->parent = parent;
1903 	pnode->iip = iip;
1904 	set_pnode_lnum(c, pnode);
1905 	return pnode;
1906 }
1907 
1908 /**
1909  * ubifs_lpt_scan_nolock - scan the LPT.
1910  * @c: the UBIFS file-system description object
1911  * @start_lnum: LEB number from which to start scanning
1912  * @end_lnum: LEB number at which to stop scanning
1913  * @scan_cb: callback function called for each lprops
1914  * @data: data to be passed to the callback function
1915  *
1916  * This function returns %0 on success and a negative error code on failure.
1917  */
1918 int ubifs_lpt_scan_nolock(struct ubifs_info *c, int start_lnum, int end_lnum,
1919 			  ubifs_lpt_scan_callback scan_cb, void *data)
1920 {
1921 	int err = 0, i, h, iip, shft;
1922 	struct ubifs_nnode *nnode;
1923 	struct ubifs_pnode *pnode;
1924 	struct lpt_scan_node *path;
1925 
1926 	if (start_lnum == -1) {
1927 		start_lnum = end_lnum + 1;
1928 		if (start_lnum >= c->leb_cnt)
1929 			start_lnum = c->main_first;
1930 	}
1931 
1932 	ubifs_assert(start_lnum >= c->main_first && start_lnum < c->leb_cnt);
1933 	ubifs_assert(end_lnum >= c->main_first && end_lnum < c->leb_cnt);
1934 
1935 	if (!c->nroot) {
1936 		err = ubifs_read_nnode(c, NULL, 0);
1937 		if (err)
1938 			return err;
1939 	}
1940 
1941 	path = kmalloc(sizeof(struct lpt_scan_node) * (c->lpt_hght + 1),
1942 		       GFP_NOFS);
1943 	if (!path)
1944 		return -ENOMEM;
1945 
1946 	path[0].ptr.nnode = c->nroot;
1947 	path[0].in_tree = 1;
1948 again:
1949 	/* Descend to the pnode containing start_lnum */
1950 	nnode = c->nroot;
1951 	i = start_lnum - c->main_first;
1952 	shft = c->lpt_hght * UBIFS_LPT_FANOUT_SHIFT;
1953 	for (h = 1; h < c->lpt_hght; h++) {
1954 		iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1955 		shft -= UBIFS_LPT_FANOUT_SHIFT;
1956 		nnode = scan_get_nnode(c, path + h, nnode, iip);
1957 		if (IS_ERR(nnode)) {
1958 			err = PTR_ERR(nnode);
1959 			goto out;
1960 		}
1961 	}
1962 	iip = ((i >> shft) & (UBIFS_LPT_FANOUT - 1));
1963 	shft -= UBIFS_LPT_FANOUT_SHIFT;
1964 	pnode = scan_get_pnode(c, path + h, nnode, iip);
1965 	if (IS_ERR(pnode)) {
1966 		err = PTR_ERR(pnode);
1967 		goto out;
1968 	}
1969 	iip = (i & (UBIFS_LPT_FANOUT - 1));
1970 
1971 	/* Loop for each lprops */
1972 	while (1) {
1973 		struct ubifs_lprops *lprops = &pnode->lprops[iip];
1974 		int ret, lnum = lprops->lnum;
1975 
1976 		ret = scan_cb(c, lprops, path[h].in_tree, data);
1977 		if (ret < 0) {
1978 			err = ret;
1979 			goto out;
1980 		}
1981 		if (ret & LPT_SCAN_ADD) {
1982 			/* Add all the nodes in path to the tree in memory */
1983 			for (h = 1; h < c->lpt_hght; h++) {
1984 				const size_t sz = sizeof(struct ubifs_nnode);
1985 				struct ubifs_nnode *parent;
1986 
1987 				if (path[h].in_tree)
1988 					continue;
1989 				nnode = kmalloc(sz, GFP_NOFS);
1990 				if (!nnode) {
1991 					err = -ENOMEM;
1992 					goto out;
1993 				}
1994 				memcpy(nnode, &path[h].nnode, sz);
1995 				parent = nnode->parent;
1996 				parent->nbranch[nnode->iip].nnode = nnode;
1997 				path[h].ptr.nnode = nnode;
1998 				path[h].in_tree = 1;
1999 				path[h + 1].cnode.parent = nnode;
2000 			}
2001 			if (path[h].in_tree)
2002 				ubifs_ensure_cat(c, lprops);
2003 			else {
2004 				const size_t sz = sizeof(struct ubifs_pnode);
2005 				struct ubifs_nnode *parent;
2006 
2007 				pnode = kmalloc(sz, GFP_NOFS);
2008 				if (!pnode) {
2009 					err = -ENOMEM;
2010 					goto out;
2011 				}
2012 				memcpy(pnode, &path[h].pnode, sz);
2013 				parent = pnode->parent;
2014 				parent->nbranch[pnode->iip].pnode = pnode;
2015 				path[h].ptr.pnode = pnode;
2016 				path[h].in_tree = 1;
2017 				update_cats(c, pnode);
2018 				c->pnodes_have += 1;
2019 			}
2020 			err = dbg_check_lpt_nodes(c, (struct ubifs_cnode *)
2021 						  c->nroot, 0, 0);
2022 			if (err)
2023 				goto out;
2024 			err = dbg_check_cats(c);
2025 			if (err)
2026 				goto out;
2027 		}
2028 		if (ret & LPT_SCAN_STOP) {
2029 			err = 0;
2030 			break;
2031 		}
2032 		/* Get the next lprops */
2033 		if (lnum == end_lnum) {
2034 			/*
2035 			 * We got to the end without finding what we were
2036 			 * looking for
2037 			 */
2038 			err = -ENOSPC;
2039 			goto out;
2040 		}
2041 		if (lnum + 1 >= c->leb_cnt) {
2042 			/* Wrap-around to the beginning */
2043 			start_lnum = c->main_first;
2044 			goto again;
2045 		}
2046 		if (iip + 1 < UBIFS_LPT_FANOUT) {
2047 			/* Next lprops is in the same pnode */
2048 			iip += 1;
2049 			continue;
2050 		}
2051 		/* We need to get the next pnode. Go up until we can go right */
2052 		iip = pnode->iip;
2053 		while (1) {
2054 			h -= 1;
2055 			ubifs_assert(h >= 0);
2056 			nnode = path[h].ptr.nnode;
2057 			if (iip + 1 < UBIFS_LPT_FANOUT)
2058 				break;
2059 			iip = nnode->iip;
2060 		}
2061 		/* Go right */
2062 		iip += 1;
2063 		/* Descend to the pnode */
2064 		h += 1;
2065 		for (; h < c->lpt_hght; h++) {
2066 			nnode = scan_get_nnode(c, path + h, nnode, iip);
2067 			if (IS_ERR(nnode)) {
2068 				err = PTR_ERR(nnode);
2069 				goto out;
2070 			}
2071 			iip = 0;
2072 		}
2073 		pnode = scan_get_pnode(c, path + h, nnode, iip);
2074 		if (IS_ERR(pnode)) {
2075 			err = PTR_ERR(pnode);
2076 			goto out;
2077 		}
2078 		iip = 0;
2079 	}
2080 out:
2081 	kfree(path);
2082 	return err;
2083 }
2084 
2085 #ifdef CONFIG_UBIFS_FS_DEBUG
2086 
2087 /**
2088  * dbg_chk_pnode - check a pnode.
2089  * @c: the UBIFS file-system description object
2090  * @pnode: pnode to check
2091  * @col: pnode column
2092  *
2093  * This function returns %0 on success and a negative error code on failure.
2094  */
2095 static int dbg_chk_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
2096 			 int col)
2097 {
2098 	int i;
2099 
2100 	if (pnode->num != col) {
2101 		dbg_err("pnode num %d expected %d parent num %d iip %d",
2102 			pnode->num, col, pnode->parent->num, pnode->iip);
2103 		return -EINVAL;
2104 	}
2105 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
2106 		struct ubifs_lprops *lp, *lprops = &pnode->lprops[i];
2107 		int lnum = (pnode->num << UBIFS_LPT_FANOUT_SHIFT) + i +
2108 			   c->main_first;
2109 		int found, cat = lprops->flags & LPROPS_CAT_MASK;
2110 		struct ubifs_lpt_heap *heap;
2111 		struct list_head *list = NULL;
2112 
2113 		if (lnum >= c->leb_cnt)
2114 			continue;
2115 		if (lprops->lnum != lnum) {
2116 			dbg_err("bad LEB number %d expected %d",
2117 				lprops->lnum, lnum);
2118 			return -EINVAL;
2119 		}
2120 		if (lprops->flags & LPROPS_TAKEN) {
2121 			if (cat != LPROPS_UNCAT) {
2122 				dbg_err("LEB %d taken but not uncat %d",
2123 					lprops->lnum, cat);
2124 				return -EINVAL;
2125 			}
2126 			continue;
2127 		}
2128 		if (lprops->flags & LPROPS_INDEX) {
2129 			switch (cat) {
2130 			case LPROPS_UNCAT:
2131 			case LPROPS_DIRTY_IDX:
2132 			case LPROPS_FRDI_IDX:
2133 				break;
2134 			default:
2135 				dbg_err("LEB %d index but cat %d",
2136 					lprops->lnum, cat);
2137 				return -EINVAL;
2138 			}
2139 		} else {
2140 			switch (cat) {
2141 			case LPROPS_UNCAT:
2142 			case LPROPS_DIRTY:
2143 			case LPROPS_FREE:
2144 			case LPROPS_EMPTY:
2145 			case LPROPS_FREEABLE:
2146 				break;
2147 			default:
2148 				dbg_err("LEB %d not index but cat %d",
2149 					lprops->lnum, cat);
2150 				return -EINVAL;
2151 			}
2152 		}
2153 		switch (cat) {
2154 		case LPROPS_UNCAT:
2155 			list = &c->uncat_list;
2156 			break;
2157 		case LPROPS_EMPTY:
2158 			list = &c->empty_list;
2159 			break;
2160 		case LPROPS_FREEABLE:
2161 			list = &c->freeable_list;
2162 			break;
2163 		case LPROPS_FRDI_IDX:
2164 			list = &c->frdi_idx_list;
2165 			break;
2166 		}
2167 		found = 0;
2168 		switch (cat) {
2169 		case LPROPS_DIRTY:
2170 		case LPROPS_DIRTY_IDX:
2171 		case LPROPS_FREE:
2172 			heap = &c->lpt_heap[cat - 1];
2173 			if (lprops->hpos < heap->cnt &&
2174 			    heap->arr[lprops->hpos] == lprops)
2175 				found = 1;
2176 			break;
2177 		case LPROPS_UNCAT:
2178 		case LPROPS_EMPTY:
2179 		case LPROPS_FREEABLE:
2180 		case LPROPS_FRDI_IDX:
2181 			list_for_each_entry(lp, list, list)
2182 				if (lprops == lp) {
2183 					found = 1;
2184 					break;
2185 				}
2186 			break;
2187 		}
2188 		if (!found) {
2189 			dbg_err("LEB %d cat %d not found in cat heap/list",
2190 				lprops->lnum, cat);
2191 			return -EINVAL;
2192 		}
2193 		switch (cat) {
2194 		case LPROPS_EMPTY:
2195 			if (lprops->free != c->leb_size) {
2196 				dbg_err("LEB %d cat %d free %d dirty %d",
2197 					lprops->lnum, cat, lprops->free,
2198 					lprops->dirty);
2199 				return -EINVAL;
2200 			}
2201 		case LPROPS_FREEABLE:
2202 		case LPROPS_FRDI_IDX:
2203 			if (lprops->free + lprops->dirty != c->leb_size) {
2204 				dbg_err("LEB %d cat %d free %d dirty %d",
2205 					lprops->lnum, cat, lprops->free,
2206 					lprops->dirty);
2207 				return -EINVAL;
2208 			}
2209 		}
2210 	}
2211 	return 0;
2212 }
2213 
2214 /**
2215  * dbg_check_lpt_nodes - check nnodes and pnodes.
2216  * @c: the UBIFS file-system description object
2217  * @cnode: next cnode (nnode or pnode) to check
2218  * @row: row of cnode (root is zero)
2219  * @col: column of cnode (leftmost is zero)
2220  *
2221  * This function returns %0 on success and a negative error code on failure.
2222  */
2223 int dbg_check_lpt_nodes(struct ubifs_info *c, struct ubifs_cnode *cnode,
2224 			int row, int col)
2225 {
2226 	struct ubifs_nnode *nnode, *nn;
2227 	struct ubifs_cnode *cn;
2228 	int num, iip = 0, err;
2229 
2230 	if (!dbg_is_chk_lprops(c))
2231 		return 0;
2232 
2233 	while (cnode) {
2234 		ubifs_assert(row >= 0);
2235 		nnode = cnode->parent;
2236 		if (cnode->level) {
2237 			/* cnode is a nnode */
2238 			num = calc_nnode_num(row, col);
2239 			if (cnode->num != num) {
2240 				dbg_err("nnode num %d expected %d "
2241 					"parent num %d iip %d", cnode->num, num,
2242 					(nnode ? nnode->num : 0), cnode->iip);
2243 				return -EINVAL;
2244 			}
2245 			nn = (struct ubifs_nnode *)cnode;
2246 			while (iip < UBIFS_LPT_FANOUT) {
2247 				cn = nn->nbranch[iip].cnode;
2248 				if (cn) {
2249 					/* Go down */
2250 					row += 1;
2251 					col <<= UBIFS_LPT_FANOUT_SHIFT;
2252 					col += iip;
2253 					iip = 0;
2254 					cnode = cn;
2255 					break;
2256 				}
2257 				/* Go right */
2258 				iip += 1;
2259 			}
2260 			if (iip < UBIFS_LPT_FANOUT)
2261 				continue;
2262 		} else {
2263 			struct ubifs_pnode *pnode;
2264 
2265 			/* cnode is a pnode */
2266 			pnode = (struct ubifs_pnode *)cnode;
2267 			err = dbg_chk_pnode(c, pnode, col);
2268 			if (err)
2269 				return err;
2270 		}
2271 		/* Go up and to the right */
2272 		row -= 1;
2273 		col >>= UBIFS_LPT_FANOUT_SHIFT;
2274 		iip = cnode->iip + 1;
2275 		cnode = (struct ubifs_cnode *)nnode;
2276 	}
2277 	return 0;
2278 }
2279 
2280 #endif /* CONFIG_UBIFS_FS_DEBUG */
2281