xref: /linux/fs/ubifs/journal.c (revision eb01fe7abbe2d0b38824d2a93fdb4cc3eaf2ccc1)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements UBIFS journal.
13  *
14  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
15  * length and position, while a bud logical eraseblock is any LEB in the main
16  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
17  * contains only references to buds and some other stuff like commit
18  * start node. The idea is that when we commit the journal, we do
19  * not copy the data, the buds just become indexed. Since after the commit the
20  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
21  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
22  * become leafs in the future.
23  *
24  * The journal is multi-headed because we want to write data to the journal as
25  * optimally as possible. It is nice to have nodes belonging to the same inode
26  * in one LEB, so we may write data owned by different inodes to different
27  * journal heads, although at present only one data head is used.
28  *
29  * For recovery reasons, the base head contains all inode nodes, all directory
30  * entry nodes and all truncate nodes. This means that the other heads contain
31  * only data nodes.
32  *
33  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
34  * time of commit, the bud is retained to continue to be used in the journal,
35  * even though the "front" of the LEB is now indexed. In that case, the log
36  * reference contains the offset where the bud starts for the purposes of the
37  * journal.
38  *
39  * The journal size has to be limited, because the larger is the journal, the
40  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
41  * takes (indexing in the TNC).
42  *
43  * All the journal write operations like 'ubifs_jnl_update()' here, which write
44  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
45  * unclean reboots. Should the unclean reboot happen, the recovery code drops
46  * all the nodes.
47  */
48 
49 #include "ubifs.h"
50 
51 /**
52  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
53  * @ino: the inode to zero out
54  */
55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
56 {
57 	memset(ino->padding1, 0, 4);
58 	memset(ino->padding2, 0, 26);
59 }
60 
61 /**
62  * zero_dent_node_unused - zero out unused fields of an on-flash directory
63  *                         entry node.
64  * @dent: the directory entry to zero out
65  */
66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
67 {
68 	dent->padding1 = 0;
69 }
70 
71 /**
72  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
73  *                         node.
74  * @trun: the truncation node to zero out
75  */
76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
77 {
78 	memset(trun->padding, 0, 12);
79 }
80 
81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
82 {
83 	if (ubifs_authenticated(c))
84 		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
85 }
86 
87 /**
88  * reserve_space - reserve space in the journal.
89  * @c: UBIFS file-system description object
90  * @jhead: journal head number
91  * @len: node length
92  *
93  * This function reserves space in journal head @head. If the reservation
94  * succeeded, the journal head stays locked and later has to be unlocked using
95  * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
96  * be done, and other negative error codes in case of other failures.
97  */
98 static int reserve_space(struct ubifs_info *c, int jhead, int len)
99 {
100 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
101 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
102 
103 	/*
104 	 * Typically, the base head has smaller nodes written to it, so it is
105 	 * better to try to allocate space at the ends of eraseblocks. This is
106 	 * what the squeeze parameter does.
107 	 */
108 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
109 	squeeze = (jhead == BASEHD);
110 again:
111 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
112 
113 	if (c->ro_error) {
114 		err = -EROFS;
115 		goto out_unlock;
116 	}
117 
118 	avail = c->leb_size - wbuf->offs - wbuf->used;
119 	if (wbuf->lnum != -1 && avail >= len)
120 		return 0;
121 
122 	/*
123 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
124 	 * LEB with some empty space.
125 	 */
126 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
127 	if (lnum >= 0)
128 		goto out;
129 
130 	err = lnum;
131 	if (err != -ENOSPC)
132 		goto out_unlock;
133 
134 	/*
135 	 * No free space, we have to run garbage collector to make
136 	 * some. But the write-buffer mutex has to be unlocked because
137 	 * GC also takes it.
138 	 */
139 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
140 	mutex_unlock(&wbuf->io_mutex);
141 
142 	lnum = ubifs_garbage_collect(c, 0);
143 	if (lnum < 0) {
144 		err = lnum;
145 		if (err != -ENOSPC)
146 			return err;
147 
148 		/*
149 		 * GC could not make a free LEB. But someone else may
150 		 * have allocated new bud for this journal head,
151 		 * because we dropped @wbuf->io_mutex, so try once
152 		 * again.
153 		 */
154 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
155 			dbg_jhead(jhead));
156 		if (retries++ < 2) {
157 			dbg_jnl("retry (%d)", retries);
158 			goto again;
159 		}
160 
161 		dbg_jnl("return -ENOSPC");
162 		return err;
163 	}
164 
165 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
166 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
167 	avail = c->leb_size - wbuf->offs - wbuf->used;
168 
169 	if (wbuf->lnum != -1 && avail >= len) {
170 		/*
171 		 * Someone else has switched the journal head and we have
172 		 * enough space now. This happens when more than one process is
173 		 * trying to write to the same journal head at the same time.
174 		 */
175 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
176 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
177 		err = ubifs_return_leb(c, lnum);
178 		if (err)
179 			goto out_unlock;
180 		return 0;
181 	}
182 
183 	offs = 0;
184 
185 out:
186 	/*
187 	 * Make sure we synchronize the write-buffer before we add the new bud
188 	 * to the log. Otherwise we may have a power cut after the log
189 	 * reference node for the last bud (@lnum) is written but before the
190 	 * write-buffer data are written to the next-to-last bud
191 	 * (@wbuf->lnum). And the effect would be that the recovery would see
192 	 * that there is corruption in the next-to-last bud.
193 	 */
194 	err = ubifs_wbuf_sync_nolock(wbuf);
195 	if (err)
196 		goto out_return;
197 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
198 	if (err)
199 		goto out_return;
200 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
201 	if (err)
202 		goto out_unlock;
203 
204 	return 0;
205 
206 out_unlock:
207 	mutex_unlock(&wbuf->io_mutex);
208 	return err;
209 
210 out_return:
211 	/* An error occurred and the LEB has to be returned to lprops */
212 	ubifs_assert(c, err < 0);
213 	err1 = ubifs_return_leb(c, lnum);
214 	if (err1 && err == -EAGAIN)
215 		/*
216 		 * Return original error code only if it is not %-EAGAIN,
217 		 * which is not really an error. Otherwise, return the error
218 		 * code of 'ubifs_return_leb()'.
219 		 */
220 		err = err1;
221 	mutex_unlock(&wbuf->io_mutex);
222 	return err;
223 }
224 
225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
226 			     int len, struct shash_desc *hash)
227 {
228 	int auth_node_size = ubifs_auth_node_sz(c);
229 	int err;
230 
231 	while (1) {
232 		const struct ubifs_ch *ch = node;
233 		int nodelen = le32_to_cpu(ch->len);
234 
235 		ubifs_assert(c, len >= auth_node_size);
236 
237 		if (len == auth_node_size)
238 			break;
239 
240 		ubifs_assert(c, len > nodelen);
241 		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
242 
243 		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
244 		if (err)
245 			return err;
246 
247 		node += ALIGN(nodelen, 8);
248 		len -= ALIGN(nodelen, 8);
249 	}
250 
251 	return ubifs_prepare_auth_node(c, node, hash);
252 }
253 
254 /**
255  * write_head - write data to a journal head.
256  * @c: UBIFS file-system description object
257  * @jhead: journal head
258  * @buf: buffer to write
259  * @len: length to write
260  * @lnum: LEB number written is returned here
261  * @offs: offset written is returned here
262  * @sync: non-zero if the write-buffer has to by synchronized
263  *
264  * This function writes data to the reserved space of journal head @jhead.
265  * Returns zero in case of success and a negative error code in case of
266  * failure.
267  */
268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
269 		      int *lnum, int *offs, int sync)
270 {
271 	int err;
272 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
273 
274 	ubifs_assert(c, jhead != GCHD);
275 
276 	*lnum = c->jheads[jhead].wbuf.lnum;
277 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
278 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
279 		dbg_jhead(jhead), *lnum, *offs, len);
280 
281 	if (ubifs_authenticated(c)) {
282 		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
283 		if (err)
284 			return err;
285 	}
286 
287 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
288 	if (err)
289 		return err;
290 	if (sync)
291 		err = ubifs_wbuf_sync_nolock(wbuf);
292 	return err;
293 }
294 
295 /**
296  * make_reservation - reserve journal space.
297  * @c: UBIFS file-system description object
298  * @jhead: journal head
299  * @len: how many bytes to reserve
300  *
301  * This function makes space reservation in journal head @jhead. The function
302  * takes the commit lock and locks the journal head, and the caller has to
303  * unlock the head and finish the reservation with 'finish_reservation()'.
304  * Returns zero in case of success and a negative error code in case of
305  * failure.
306  *
307  * Note, the journal head may be unlocked as soon as the data is written, while
308  * the commit lock has to be released after the data has been added to the
309  * TNC.
310  */
311 static int make_reservation(struct ubifs_info *c, int jhead, int len)
312 {
313 	int err, cmt_retries = 0, nospc_retries = 0;
314 
315 again:
316 	down_read(&c->commit_sem);
317 	err = reserve_space(c, jhead, len);
318 	if (!err)
319 		/* c->commit_sem will get released via finish_reservation(). */
320 		return 0;
321 	up_read(&c->commit_sem);
322 
323 	if (err == -ENOSPC) {
324 		/*
325 		 * GC could not make any progress. We should try to commit
326 		 * once because it could make some dirty space and GC would
327 		 * make progress, so make the error -EAGAIN so that the below
328 		 * will commit and re-try.
329 		 */
330 		if (nospc_retries++ < 2) {
331 			dbg_jnl("no space, retry");
332 			err = -EAGAIN;
333 		}
334 
335 		/*
336 		 * This means that the budgeting is incorrect. We always have
337 		 * to be able to write to the media, because all operations are
338 		 * budgeted. Deletions are not budgeted, though, but we reserve
339 		 * an extra LEB for them.
340 		 */
341 	}
342 
343 	if (err != -EAGAIN)
344 		goto out;
345 
346 	/*
347 	 * -EAGAIN means that the journal is full or too large, or the above
348 	 * code wants to do one commit. Do this and re-try.
349 	 */
350 	if (cmt_retries > 128) {
351 		/*
352 		 * This should not happen unless the journal size limitations
353 		 * are too tough.
354 		 */
355 		ubifs_err(c, "stuck in space allocation");
356 		err = -ENOSPC;
357 		goto out;
358 	} else if (cmt_retries > 32)
359 		ubifs_warn(c, "too many space allocation re-tries (%d)",
360 			   cmt_retries);
361 
362 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
363 		cmt_retries);
364 	cmt_retries += 1;
365 
366 	err = ubifs_run_commit(c);
367 	if (err)
368 		return err;
369 	goto again;
370 
371 out:
372 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
373 		  len, jhead, err);
374 	if (err == -ENOSPC) {
375 		/* This are some budgeting problems, print useful information */
376 		down_write(&c->commit_sem);
377 		dump_stack();
378 		ubifs_dump_budg(c, &c->bi);
379 		ubifs_dump_lprops(c);
380 		cmt_retries = dbg_check_lprops(c);
381 		up_write(&c->commit_sem);
382 	}
383 	return err;
384 }
385 
386 /**
387  * release_head - release a journal head.
388  * @c: UBIFS file-system description object
389  * @jhead: journal head
390  *
391  * This function releases journal head @jhead which was locked by
392  * the 'make_reservation()' function. It has to be called after each successful
393  * 'make_reservation()' invocation.
394  */
395 static inline void release_head(struct ubifs_info *c, int jhead)
396 {
397 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
398 }
399 
400 /**
401  * finish_reservation - finish a reservation.
402  * @c: UBIFS file-system description object
403  *
404  * This function finishes journal space reservation. It must be called after
405  * 'make_reservation()'.
406  */
407 static void finish_reservation(struct ubifs_info *c)
408 {
409 	up_read(&c->commit_sem);
410 }
411 
412 /**
413  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
414  * @mode: inode mode
415  */
416 static int get_dent_type(int mode)
417 {
418 	switch (mode & S_IFMT) {
419 	case S_IFREG:
420 		return UBIFS_ITYPE_REG;
421 	case S_IFDIR:
422 		return UBIFS_ITYPE_DIR;
423 	case S_IFLNK:
424 		return UBIFS_ITYPE_LNK;
425 	case S_IFBLK:
426 		return UBIFS_ITYPE_BLK;
427 	case S_IFCHR:
428 		return UBIFS_ITYPE_CHR;
429 	case S_IFIFO:
430 		return UBIFS_ITYPE_FIFO;
431 	case S_IFSOCK:
432 		return UBIFS_ITYPE_SOCK;
433 	default:
434 		BUG();
435 	}
436 	return 0;
437 }
438 
439 /**
440  * pack_inode - pack an inode node.
441  * @c: UBIFS file-system description object
442  * @ino: buffer in which to pack inode node
443  * @inode: inode to pack
444  * @last: indicates the last node of the group
445  */
446 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
447 		       const struct inode *inode, int last)
448 {
449 	int data_len = 0, last_reference = !inode->i_nlink;
450 	struct ubifs_inode *ui = ubifs_inode(inode);
451 
452 	ino->ch.node_type = UBIFS_INO_NODE;
453 	ino_key_init_flash(c, &ino->key, inode->i_ino);
454 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
455 	ino->atime_sec  = cpu_to_le64(inode_get_atime_sec(inode));
456 	ino->atime_nsec = cpu_to_le32(inode_get_atime_nsec(inode));
457 	ino->ctime_sec  = cpu_to_le64(inode_get_ctime_sec(inode));
458 	ino->ctime_nsec = cpu_to_le32(inode_get_ctime_nsec(inode));
459 	ino->mtime_sec  = cpu_to_le64(inode_get_mtime_sec(inode));
460 	ino->mtime_nsec = cpu_to_le32(inode_get_mtime_nsec(inode));
461 	ino->uid   = cpu_to_le32(i_uid_read(inode));
462 	ino->gid   = cpu_to_le32(i_gid_read(inode));
463 	ino->mode  = cpu_to_le32(inode->i_mode);
464 	ino->flags = cpu_to_le32(ui->flags);
465 	ino->size  = cpu_to_le64(ui->ui_size);
466 	ino->nlink = cpu_to_le32(inode->i_nlink);
467 	ino->compr_type  = cpu_to_le16(ui->compr_type);
468 	ino->data_len    = cpu_to_le32(ui->data_len);
469 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
470 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
471 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
472 	zero_ino_node_unused(ino);
473 
474 	/*
475 	 * Drop the attached data if this is a deletion inode, the data is not
476 	 * needed anymore.
477 	 */
478 	if (!last_reference) {
479 		memcpy(ino->data, ui->data, ui->data_len);
480 		data_len = ui->data_len;
481 	}
482 
483 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
484 }
485 
486 /**
487  * mark_inode_clean - mark UBIFS inode as clean.
488  * @c: UBIFS file-system description object
489  * @ui: UBIFS inode to mark as clean
490  *
491  * This helper function marks UBIFS inode @ui as clean by cleaning the
492  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
493  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
494  * just do nothing.
495  */
496 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
497 {
498 	if (ui->dirty)
499 		ubifs_release_dirty_inode_budget(c, ui);
500 	ui->dirty = 0;
501 }
502 
503 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
504 {
505 	if (c->double_hash)
506 		dent->cookie = (__force __le32) get_random_u32();
507 	else
508 		dent->cookie = 0;
509 }
510 
511 /**
512  * ubifs_jnl_update - update inode.
513  * @c: UBIFS file-system description object
514  * @dir: parent inode or host inode in case of extended attributes
515  * @nm: directory entry name
516  * @inode: inode to update
517  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
518  * @xent: non-zero if the directory entry is an extended attribute entry
519  *
520  * This function updates an inode by writing a directory entry (or extended
521  * attribute entry), the inode itself, and the parent directory inode (or the
522  * host inode) to the journal.
523  *
524  * The function writes the host inode @dir last, which is important in case of
525  * extended attributes. Indeed, then we guarantee that if the host inode gets
526  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
527  * the extended attribute inode gets flushed too. And this is exactly what the
528  * user expects - synchronizing the host inode synchronizes its extended
529  * attributes. Similarly, this guarantees that if @dir is synchronized, its
530  * directory entry corresponding to @nm gets synchronized too.
531  *
532  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
533  * function synchronizes the write-buffer.
534  *
535  * This function marks the @dir and @inode inodes as clean and returns zero on
536  * success. In case of failure, a negative error code is returned.
537  */
538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
539 		     const struct fscrypt_name *nm, const struct inode *inode,
540 		     int deletion, int xent)
541 {
542 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs, orphan_added = 0;
543 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
544 	int last_reference = !!(deletion && inode->i_nlink == 0);
545 	struct ubifs_inode *ui = ubifs_inode(inode);
546 	struct ubifs_inode *host_ui = ubifs_inode(dir);
547 	struct ubifs_dent_node *dent;
548 	struct ubifs_ino_node *ino;
549 	union ubifs_key dent_key, ino_key;
550 	u8 hash_dent[UBIFS_HASH_ARR_SZ];
551 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
552 	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
553 
554 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
555 
556 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
557 	ilen = UBIFS_INO_NODE_SZ;
558 
559 	/*
560 	 * If the last reference to the inode is being deleted, then there is
561 	 * no need to attach and write inode data, it is being deleted anyway.
562 	 * And if the inode is being deleted, no need to synchronize
563 	 * write-buffer even if the inode is synchronous.
564 	 */
565 	if (!last_reference) {
566 		ilen += ui->data_len;
567 		sync |= IS_SYNC(inode);
568 	}
569 
570 	aligned_dlen = ALIGN(dlen, 8);
571 	aligned_ilen = ALIGN(ilen, 8);
572 
573 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
574 	/* Make sure to also account for extended attributes */
575 	if (ubifs_authenticated(c))
576 		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
577 	else
578 		len += host_ui->data_len;
579 
580 	dent = kzalloc(len, GFP_NOFS);
581 	if (!dent)
582 		return -ENOMEM;
583 
584 	/* Make reservation before allocating sequence numbers */
585 	err = make_reservation(c, BASEHD, len);
586 	if (err)
587 		goto out_free;
588 
589 	if (!xent) {
590 		dent->ch.node_type = UBIFS_DENT_NODE;
591 		if (fname_name(nm) == NULL)
592 			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
593 		else
594 			dent_key_init(c, &dent_key, dir->i_ino, nm);
595 	} else {
596 		dent->ch.node_type = UBIFS_XENT_NODE;
597 		xent_key_init(c, &dent_key, dir->i_ino, nm);
598 	}
599 
600 	key_write(c, &dent_key, dent->key);
601 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
602 	dent->type = get_dent_type(inode->i_mode);
603 	dent->nlen = cpu_to_le16(fname_len(nm));
604 	memcpy(dent->name, fname_name(nm), fname_len(nm));
605 	dent->name[fname_len(nm)] = '\0';
606 	set_dent_cookie(c, dent);
607 
608 	zero_dent_node_unused(dent);
609 	ubifs_prep_grp_node(c, dent, dlen, 0);
610 	err = ubifs_node_calc_hash(c, dent, hash_dent);
611 	if (err)
612 		goto out_release;
613 
614 	ino = (void *)dent + aligned_dlen;
615 	pack_inode(c, ino, inode, 0);
616 	err = ubifs_node_calc_hash(c, ino, hash_ino);
617 	if (err)
618 		goto out_release;
619 
620 	ino = (void *)ino + aligned_ilen;
621 	pack_inode(c, ino, dir, 1);
622 	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
623 	if (err)
624 		goto out_release;
625 
626 	if (last_reference) {
627 		err = ubifs_add_orphan(c, inode->i_ino);
628 		if (err) {
629 			release_head(c, BASEHD);
630 			goto out_finish;
631 		}
632 		ui->del_cmtno = c->cmt_no;
633 		orphan_added = 1;
634 	}
635 
636 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
637 	if (err)
638 		goto out_release;
639 	if (!sync) {
640 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
641 
642 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
643 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
644 	}
645 	release_head(c, BASEHD);
646 	kfree(dent);
647 	ubifs_add_auth_dirt(c, lnum);
648 
649 	if (deletion) {
650 		if (fname_name(nm) == NULL)
651 			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
652 		else
653 			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
654 		if (err)
655 			goto out_ro;
656 		err = ubifs_add_dirt(c, lnum, dlen);
657 	} else
658 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
659 				       hash_dent, nm);
660 	if (err)
661 		goto out_ro;
662 
663 	/*
664 	 * Note, we do not remove the inode from TNC even if the last reference
665 	 * to it has just been deleted, because the inode may still be opened.
666 	 * Instead, the inode has been added to orphan lists and the orphan
667 	 * subsystem will take further care about it.
668 	 */
669 	ino_key_init(c, &ino_key, inode->i_ino);
670 	ino_offs = dent_offs + aligned_dlen;
671 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
672 	if (err)
673 		goto out_ro;
674 
675 	ino_key_init(c, &ino_key, dir->i_ino);
676 	ino_offs += aligned_ilen;
677 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
678 			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
679 	if (err)
680 		goto out_ro;
681 
682 	finish_reservation(c);
683 	spin_lock(&ui->ui_lock);
684 	ui->synced_i_size = ui->ui_size;
685 	spin_unlock(&ui->ui_lock);
686 	if (xent) {
687 		spin_lock(&host_ui->ui_lock);
688 		host_ui->synced_i_size = host_ui->ui_size;
689 		spin_unlock(&host_ui->ui_lock);
690 	}
691 	mark_inode_clean(c, ui);
692 	mark_inode_clean(c, host_ui);
693 	return 0;
694 
695 out_finish:
696 	finish_reservation(c);
697 out_free:
698 	kfree(dent);
699 	return err;
700 
701 out_release:
702 	release_head(c, BASEHD);
703 	kfree(dent);
704 out_ro:
705 	ubifs_ro_mode(c, err);
706 	if (orphan_added)
707 		ubifs_delete_orphan(c, inode->i_ino);
708 	finish_reservation(c);
709 	return err;
710 }
711 
712 /**
713  * ubifs_jnl_write_data - write a data node to the journal.
714  * @c: UBIFS file-system description object
715  * @inode: inode the data node belongs to
716  * @key: node key
717  * @buf: buffer to write
718  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
719  *
720  * This function writes a data node to the journal. Returns %0 if the data node
721  * was successfully written, and a negative error code in case of failure.
722  */
723 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
724 			 const union ubifs_key *key, const void *buf, int len)
725 {
726 	struct ubifs_data_node *data;
727 	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
728 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
729 	int write_len;
730 	struct ubifs_inode *ui = ubifs_inode(inode);
731 	bool encrypted = IS_ENCRYPTED(inode);
732 	u8 hash[UBIFS_HASH_ARR_SZ];
733 
734 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
735 		(unsigned long)key_inum(c, key), key_block(c, key), len);
736 	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
737 
738 	if (encrypted)
739 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
740 
741 	auth_len = ubifs_auth_node_sz(c);
742 
743 	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
744 	if (!data) {
745 		/*
746 		 * Fall-back to the write reserve buffer. Note, we might be
747 		 * currently on the memory reclaim path, when the kernel is
748 		 * trying to free some memory by writing out dirty pages. The
749 		 * write reserve buffer helps us to guarantee that we are
750 		 * always able to write the data.
751 		 */
752 		allocated = 0;
753 		mutex_lock(&c->write_reserve_mutex);
754 		data = c->write_reserve_buf;
755 	}
756 
757 	data->ch.node_type = UBIFS_DATA_NODE;
758 	key_write(c, key, &data->key);
759 	data->size = cpu_to_le32(len);
760 
761 	if (!(ui->flags & UBIFS_COMPR_FL))
762 		/* Compression is disabled for this inode */
763 		compr_type = UBIFS_COMPR_NONE;
764 	else
765 		compr_type = ui->compr_type;
766 
767 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
768 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
769 	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
770 
771 	if (encrypted) {
772 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
773 		if (err)
774 			goto out_free;
775 
776 	} else {
777 		data->compr_size = 0;
778 		out_len = compr_len;
779 	}
780 
781 	dlen = UBIFS_DATA_NODE_SZ + out_len;
782 	if (ubifs_authenticated(c))
783 		write_len = ALIGN(dlen, 8) + auth_len;
784 	else
785 		write_len = dlen;
786 
787 	data->compr_type = cpu_to_le16(compr_type);
788 
789 	/* Make reservation before allocating sequence numbers */
790 	err = make_reservation(c, DATAHD, write_len);
791 	if (err)
792 		goto out_free;
793 
794 	ubifs_prepare_node(c, data, dlen, 0);
795 	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
796 	if (err)
797 		goto out_release;
798 
799 	err = ubifs_node_calc_hash(c, data, hash);
800 	if (err)
801 		goto out_release;
802 
803 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
804 	release_head(c, DATAHD);
805 
806 	ubifs_add_auth_dirt(c, lnum);
807 
808 	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
809 	if (err)
810 		goto out_ro;
811 
812 	finish_reservation(c);
813 	if (!allocated)
814 		mutex_unlock(&c->write_reserve_mutex);
815 	else
816 		kfree(data);
817 	return 0;
818 
819 out_release:
820 	release_head(c, DATAHD);
821 out_ro:
822 	ubifs_ro_mode(c, err);
823 	finish_reservation(c);
824 out_free:
825 	if (!allocated)
826 		mutex_unlock(&c->write_reserve_mutex);
827 	else
828 		kfree(data);
829 	return err;
830 }
831 
832 /**
833  * ubifs_jnl_write_inode - flush inode to the journal.
834  * @c: UBIFS file-system description object
835  * @inode: inode to flush
836  *
837  * This function writes inode @inode to the journal. If the inode is
838  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
839  * success and a negative error code in case of failure.
840  */
841 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
842 {
843 	int err, lnum, offs;
844 	struct ubifs_ino_node *ino, *ino_start;
845 	struct ubifs_inode *ui = ubifs_inode(inode);
846 	int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ;
847 	int last_reference = !inode->i_nlink;
848 	int kill_xattrs = ui->xattr_cnt && last_reference;
849 	u8 hash[UBIFS_HASH_ARR_SZ];
850 
851 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
852 
853 	/*
854 	 * If the inode is being deleted, do not write the attached data. No
855 	 * need to synchronize the write-buffer either.
856 	 */
857 	if (!last_reference) {
858 		ilen += ui->data_len;
859 		sync = IS_SYNC(inode);
860 	} else if (kill_xattrs) {
861 		write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt;
862 	}
863 
864 	if (ubifs_authenticated(c))
865 		write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
866 	else
867 		write_len += ilen;
868 
869 	ino_start = ino = kmalloc(write_len, GFP_NOFS);
870 	if (!ino)
871 		return -ENOMEM;
872 
873 	/* Make reservation before allocating sequence numbers */
874 	err = make_reservation(c, BASEHD, write_len);
875 	if (err)
876 		goto out_free;
877 
878 	if (kill_xattrs) {
879 		union ubifs_key key;
880 		struct fscrypt_name nm = {0};
881 		struct inode *xino;
882 		struct ubifs_dent_node *xent, *pxent = NULL;
883 
884 		if (ui->xattr_cnt > ubifs_xattr_max_cnt(c)) {
885 			err = -EPERM;
886 			ubifs_err(c, "Cannot delete inode, it has too much xattrs!");
887 			goto out_release;
888 		}
889 
890 		lowest_xent_key(c, &key, inode->i_ino);
891 		while (1) {
892 			xent = ubifs_tnc_next_ent(c, &key, &nm);
893 			if (IS_ERR(xent)) {
894 				err = PTR_ERR(xent);
895 				if (err == -ENOENT)
896 					break;
897 
898 				kfree(pxent);
899 				goto out_release;
900 			}
901 
902 			fname_name(&nm) = xent->name;
903 			fname_len(&nm) = le16_to_cpu(xent->nlen);
904 
905 			xino = ubifs_iget(c->vfs_sb, le64_to_cpu(xent->inum));
906 			if (IS_ERR(xino)) {
907 				err = PTR_ERR(xino);
908 				ubifs_err(c, "dead directory entry '%s', error %d",
909 					  xent->name, err);
910 				ubifs_ro_mode(c, err);
911 				kfree(pxent);
912 				kfree(xent);
913 				goto out_release;
914 			}
915 			ubifs_assert(c, ubifs_inode(xino)->xattr);
916 
917 			clear_nlink(xino);
918 			pack_inode(c, ino, xino, 0);
919 			ino = (void *)ino + UBIFS_INO_NODE_SZ;
920 			iput(xino);
921 
922 			kfree(pxent);
923 			pxent = xent;
924 			key_read(c, &xent->key, &key);
925 		}
926 		kfree(pxent);
927 	}
928 
929 	pack_inode(c, ino, inode, 1);
930 	err = ubifs_node_calc_hash(c, ino, hash);
931 	if (err)
932 		goto out_release;
933 
934 	err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync);
935 	if (err)
936 		goto out_release;
937 	if (!sync)
938 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
939 					  inode->i_ino);
940 	release_head(c, BASEHD);
941 
942 	if (last_reference) {
943 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
944 		if (err)
945 			goto out_ro;
946 		ubifs_delete_orphan(c, inode->i_ino);
947 		err = ubifs_add_dirt(c, lnum, write_len);
948 	} else {
949 		union ubifs_key key;
950 
951 		ubifs_add_auth_dirt(c, lnum);
952 
953 		ino_key_init(c, &key, inode->i_ino);
954 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
955 	}
956 	if (err)
957 		goto out_ro;
958 
959 	finish_reservation(c);
960 	spin_lock(&ui->ui_lock);
961 	ui->synced_i_size = ui->ui_size;
962 	spin_unlock(&ui->ui_lock);
963 	kfree(ino_start);
964 	return 0;
965 
966 out_release:
967 	release_head(c, BASEHD);
968 out_ro:
969 	ubifs_ro_mode(c, err);
970 	finish_reservation(c);
971 out_free:
972 	kfree(ino_start);
973 	return err;
974 }
975 
976 /**
977  * ubifs_jnl_delete_inode - delete an inode.
978  * @c: UBIFS file-system description object
979  * @inode: inode to delete
980  *
981  * This function deletes inode @inode which includes removing it from orphans,
982  * deleting it from TNC and, in some cases, writing a deletion inode to the
983  * journal.
984  *
985  * When regular file inodes are unlinked or a directory inode is removed, the
986  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
987  * direntry to the media, and adds the inode to orphans. After this, when the
988  * last reference to this inode has been dropped, this function is called. In
989  * general, it has to write one more deletion inode to the media, because if
990  * a commit happened between 'ubifs_jnl_update()' and
991  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
992  * anymore, and in fact it might not be on the flash anymore, because it might
993  * have been garbage-collected already. And for optimization reasons UBIFS does
994  * not read the orphan area if it has been unmounted cleanly, so it would have
995  * no indication in the journal that there is a deleted inode which has to be
996  * removed from TNC.
997  *
998  * However, if there was no commit between 'ubifs_jnl_update()' and
999  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
1000  * inode to the media for the second time. And this is quite a typical case.
1001  *
1002  * This function returns zero in case of success and a negative error code in
1003  * case of failure.
1004  */
1005 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
1006 {
1007 	int err;
1008 	struct ubifs_inode *ui = ubifs_inode(inode);
1009 
1010 	ubifs_assert(c, inode->i_nlink == 0);
1011 
1012 	if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no)
1013 		/* A commit happened for sure or inode hosts xattrs */
1014 		return ubifs_jnl_write_inode(c, inode);
1015 
1016 	down_read(&c->commit_sem);
1017 	/*
1018 	 * Check commit number again, because the first test has been done
1019 	 * without @c->commit_sem, so a commit might have happened.
1020 	 */
1021 	if (ui->del_cmtno != c->cmt_no) {
1022 		up_read(&c->commit_sem);
1023 		return ubifs_jnl_write_inode(c, inode);
1024 	}
1025 
1026 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
1027 	if (err)
1028 		ubifs_ro_mode(c, err);
1029 	else
1030 		ubifs_delete_orphan(c, inode->i_ino);
1031 	up_read(&c->commit_sem);
1032 	return err;
1033 }
1034 
1035 /**
1036  * ubifs_jnl_xrename - cross rename two directory entries.
1037  * @c: UBIFS file-system description object
1038  * @fst_dir: parent inode of 1st directory entry to exchange
1039  * @fst_inode: 1st inode to exchange
1040  * @fst_nm: name of 1st inode to exchange
1041  * @snd_dir: parent inode of 2nd directory entry to exchange
1042  * @snd_inode: 2nd inode to exchange
1043  * @snd_nm: name of 2nd inode to exchange
1044  * @sync: non-zero if the write-buffer has to be synchronized
1045  *
1046  * This function implements the cross rename operation which may involve
1047  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1048  * and returns zero on success. In case of failure, a negative error code is
1049  * returned.
1050  */
1051 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1052 		      const struct inode *fst_inode,
1053 		      const struct fscrypt_name *fst_nm,
1054 		      const struct inode *snd_dir,
1055 		      const struct inode *snd_inode,
1056 		      const struct fscrypt_name *snd_nm, int sync)
1057 {
1058 	union ubifs_key key;
1059 	struct ubifs_dent_node *dent1, *dent2;
1060 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1061 	int aligned_dlen1, aligned_dlen2;
1062 	int twoparents = (fst_dir != snd_dir);
1063 	void *p;
1064 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1065 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1066 	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1067 	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1068 
1069 	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1070 	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1071 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1072 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1073 
1074 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1075 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1076 	aligned_dlen1 = ALIGN(dlen1, 8);
1077 	aligned_dlen2 = ALIGN(dlen2, 8);
1078 
1079 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1080 	if (twoparents)
1081 		len += plen;
1082 
1083 	len += ubifs_auth_node_sz(c);
1084 
1085 	dent1 = kzalloc(len, GFP_NOFS);
1086 	if (!dent1)
1087 		return -ENOMEM;
1088 
1089 	/* Make reservation before allocating sequence numbers */
1090 	err = make_reservation(c, BASEHD, len);
1091 	if (err)
1092 		goto out_free;
1093 
1094 	/* Make new dent for 1st entry */
1095 	dent1->ch.node_type = UBIFS_DENT_NODE;
1096 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1097 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1098 	dent1->type = get_dent_type(fst_inode->i_mode);
1099 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1100 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1101 	dent1->name[fname_len(snd_nm)] = '\0';
1102 	set_dent_cookie(c, dent1);
1103 	zero_dent_node_unused(dent1);
1104 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1105 	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1106 	if (err)
1107 		goto out_release;
1108 
1109 	/* Make new dent for 2nd entry */
1110 	dent2 = (void *)dent1 + aligned_dlen1;
1111 	dent2->ch.node_type = UBIFS_DENT_NODE;
1112 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1113 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1114 	dent2->type = get_dent_type(snd_inode->i_mode);
1115 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1116 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1117 	dent2->name[fname_len(fst_nm)] = '\0';
1118 	set_dent_cookie(c, dent2);
1119 	zero_dent_node_unused(dent2);
1120 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1121 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1122 	if (err)
1123 		goto out_release;
1124 
1125 	p = (void *)dent2 + aligned_dlen2;
1126 	if (!twoparents) {
1127 		pack_inode(c, p, fst_dir, 1);
1128 		err = ubifs_node_calc_hash(c, p, hash_p1);
1129 		if (err)
1130 			goto out_release;
1131 	} else {
1132 		pack_inode(c, p, fst_dir, 0);
1133 		err = ubifs_node_calc_hash(c, p, hash_p1);
1134 		if (err)
1135 			goto out_release;
1136 		p += ALIGN(plen, 8);
1137 		pack_inode(c, p, snd_dir, 1);
1138 		err = ubifs_node_calc_hash(c, p, hash_p2);
1139 		if (err)
1140 			goto out_release;
1141 	}
1142 
1143 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1144 	if (err)
1145 		goto out_release;
1146 	if (!sync) {
1147 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1148 
1149 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1150 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1151 	}
1152 	release_head(c, BASEHD);
1153 
1154 	ubifs_add_auth_dirt(c, lnum);
1155 
1156 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1157 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1158 	if (err)
1159 		goto out_ro;
1160 
1161 	offs += aligned_dlen1;
1162 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1163 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1164 	if (err)
1165 		goto out_ro;
1166 
1167 	offs += aligned_dlen2;
1168 
1169 	ino_key_init(c, &key, fst_dir->i_ino);
1170 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1171 	if (err)
1172 		goto out_ro;
1173 
1174 	if (twoparents) {
1175 		offs += ALIGN(plen, 8);
1176 		ino_key_init(c, &key, snd_dir->i_ino);
1177 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1178 		if (err)
1179 			goto out_ro;
1180 	}
1181 
1182 	finish_reservation(c);
1183 
1184 	mark_inode_clean(c, ubifs_inode(fst_dir));
1185 	if (twoparents)
1186 		mark_inode_clean(c, ubifs_inode(snd_dir));
1187 	kfree(dent1);
1188 	return 0;
1189 
1190 out_release:
1191 	release_head(c, BASEHD);
1192 out_ro:
1193 	ubifs_ro_mode(c, err);
1194 	finish_reservation(c);
1195 out_free:
1196 	kfree(dent1);
1197 	return err;
1198 }
1199 
1200 /**
1201  * ubifs_jnl_rename - rename a directory entry.
1202  * @c: UBIFS file-system description object
1203  * @old_dir: parent inode of directory entry to rename
1204  * @old_inode: directory entry's inode to rename
1205  * @old_nm: name of the old directory entry to rename
1206  * @new_dir: parent inode of directory entry to rename
1207  * @new_inode: new directory entry's inode (or directory entry's inode to
1208  *		replace)
1209  * @new_nm: new name of the new directory entry
1210  * @whiteout: whiteout inode
1211  * @sync: non-zero if the write-buffer has to be synchronized
1212  *
1213  * This function implements the re-name operation which may involve writing up
1214  * to 4 inodes(new inode, whiteout inode, old and new parent directory inodes)
1215  * and 2 directory entries. It marks the written inodes as clean and returns
1216  * zero on success. In case of failure, a negative error code is returned.
1217  */
1218 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1219 		     const struct inode *old_inode,
1220 		     const struct fscrypt_name *old_nm,
1221 		     const struct inode *new_dir,
1222 		     const struct inode *new_inode,
1223 		     const struct fscrypt_name *new_nm,
1224 		     const struct inode *whiteout, int sync)
1225 {
1226 	void *p;
1227 	union ubifs_key key;
1228 	struct ubifs_dent_node *dent, *dent2;
1229 	int err, dlen1, dlen2, ilen, wlen, lnum, offs, len, orphan_added = 0;
1230 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1231 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1232 	int move = (old_dir != new_dir);
1233 	struct ubifs_inode *new_ui, *whiteout_ui;
1234 	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1235 	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1236 	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1237 	u8 hash_whiteout_inode[UBIFS_HASH_ARR_SZ];
1238 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1239 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1240 
1241 	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1242 	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1243 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1244 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1245 
1246 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1247 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1248 	if (new_inode) {
1249 		new_ui = ubifs_inode(new_inode);
1250 		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1251 		ilen = UBIFS_INO_NODE_SZ;
1252 		if (!last_reference)
1253 			ilen += new_ui->data_len;
1254 	} else
1255 		ilen = 0;
1256 
1257 	if (whiteout) {
1258 		whiteout_ui = ubifs_inode(whiteout);
1259 		ubifs_assert(c, mutex_is_locked(&whiteout_ui->ui_mutex));
1260 		ubifs_assert(c, whiteout->i_nlink == 1);
1261 		ubifs_assert(c, !whiteout_ui->dirty);
1262 		wlen = UBIFS_INO_NODE_SZ;
1263 		wlen += whiteout_ui->data_len;
1264 	} else
1265 		wlen = 0;
1266 
1267 	aligned_dlen1 = ALIGN(dlen1, 8);
1268 	aligned_dlen2 = ALIGN(dlen2, 8);
1269 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) +
1270 	      ALIGN(wlen, 8) + ALIGN(plen, 8);
1271 	if (move)
1272 		len += plen;
1273 
1274 	len += ubifs_auth_node_sz(c);
1275 
1276 	dent = kzalloc(len, GFP_NOFS);
1277 	if (!dent)
1278 		return -ENOMEM;
1279 
1280 	/* Make reservation before allocating sequence numbers */
1281 	err = make_reservation(c, BASEHD, len);
1282 	if (err)
1283 		goto out_free;
1284 
1285 	/* Make new dent */
1286 	dent->ch.node_type = UBIFS_DENT_NODE;
1287 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1288 	dent->inum = cpu_to_le64(old_inode->i_ino);
1289 	dent->type = get_dent_type(old_inode->i_mode);
1290 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1291 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1292 	dent->name[fname_len(new_nm)] = '\0';
1293 	set_dent_cookie(c, dent);
1294 	zero_dent_node_unused(dent);
1295 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1296 	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1297 	if (err)
1298 		goto out_release;
1299 
1300 	dent2 = (void *)dent + aligned_dlen1;
1301 	dent2->ch.node_type = UBIFS_DENT_NODE;
1302 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1303 
1304 	if (whiteout) {
1305 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1306 		dent2->type = get_dent_type(whiteout->i_mode);
1307 	} else {
1308 		/* Make deletion dent */
1309 		dent2->inum = 0;
1310 		dent2->type = DT_UNKNOWN;
1311 	}
1312 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1313 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1314 	dent2->name[fname_len(old_nm)] = '\0';
1315 	set_dent_cookie(c, dent2);
1316 	zero_dent_node_unused(dent2);
1317 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1318 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1319 	if (err)
1320 		goto out_release;
1321 
1322 	p = (void *)dent2 + aligned_dlen2;
1323 	if (new_inode) {
1324 		pack_inode(c, p, new_inode, 0);
1325 		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1326 		if (err)
1327 			goto out_release;
1328 
1329 		p += ALIGN(ilen, 8);
1330 	}
1331 
1332 	if (whiteout) {
1333 		pack_inode(c, p, whiteout, 0);
1334 		err = ubifs_node_calc_hash(c, p, hash_whiteout_inode);
1335 		if (err)
1336 			goto out_release;
1337 
1338 		p += ALIGN(wlen, 8);
1339 	}
1340 
1341 	if (!move) {
1342 		pack_inode(c, p, old_dir, 1);
1343 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1344 		if (err)
1345 			goto out_release;
1346 	} else {
1347 		pack_inode(c, p, old_dir, 0);
1348 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1349 		if (err)
1350 			goto out_release;
1351 
1352 		p += ALIGN(plen, 8);
1353 		pack_inode(c, p, new_dir, 1);
1354 		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1355 		if (err)
1356 			goto out_release;
1357 	}
1358 
1359 	if (last_reference) {
1360 		err = ubifs_add_orphan(c, new_inode->i_ino);
1361 		if (err) {
1362 			release_head(c, BASEHD);
1363 			goto out_finish;
1364 		}
1365 		new_ui->del_cmtno = c->cmt_no;
1366 		orphan_added = 1;
1367 	}
1368 
1369 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1370 	if (err)
1371 		goto out_release;
1372 	if (!sync) {
1373 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1374 
1375 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1376 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1377 		if (new_inode)
1378 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1379 						  new_inode->i_ino);
1380 		if (whiteout)
1381 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1382 						  whiteout->i_ino);
1383 	}
1384 	release_head(c, BASEHD);
1385 
1386 	ubifs_add_auth_dirt(c, lnum);
1387 
1388 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1389 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1390 	if (err)
1391 		goto out_ro;
1392 
1393 	offs += aligned_dlen1;
1394 	if (whiteout) {
1395 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1396 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1397 		if (err)
1398 			goto out_ro;
1399 	} else {
1400 		err = ubifs_add_dirt(c, lnum, dlen2);
1401 		if (err)
1402 			goto out_ro;
1403 
1404 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1405 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1406 		if (err)
1407 			goto out_ro;
1408 	}
1409 
1410 	offs += aligned_dlen2;
1411 	if (new_inode) {
1412 		ino_key_init(c, &key, new_inode->i_ino);
1413 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1414 		if (err)
1415 			goto out_ro;
1416 		offs += ALIGN(ilen, 8);
1417 	}
1418 
1419 	if (whiteout) {
1420 		ino_key_init(c, &key, whiteout->i_ino);
1421 		err = ubifs_tnc_add(c, &key, lnum, offs, wlen,
1422 				    hash_whiteout_inode);
1423 		if (err)
1424 			goto out_ro;
1425 		offs += ALIGN(wlen, 8);
1426 	}
1427 
1428 	ino_key_init(c, &key, old_dir->i_ino);
1429 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1430 	if (err)
1431 		goto out_ro;
1432 
1433 	if (move) {
1434 		offs += ALIGN(plen, 8);
1435 		ino_key_init(c, &key, new_dir->i_ino);
1436 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1437 		if (err)
1438 			goto out_ro;
1439 	}
1440 
1441 	finish_reservation(c);
1442 	if (new_inode) {
1443 		mark_inode_clean(c, new_ui);
1444 		spin_lock(&new_ui->ui_lock);
1445 		new_ui->synced_i_size = new_ui->ui_size;
1446 		spin_unlock(&new_ui->ui_lock);
1447 	}
1448 	/*
1449 	 * No need to mark whiteout inode clean.
1450 	 * Whiteout doesn't have non-zero size, no need to update
1451 	 * synced_i_size for whiteout_ui.
1452 	 */
1453 	mark_inode_clean(c, ubifs_inode(old_dir));
1454 	if (move)
1455 		mark_inode_clean(c, ubifs_inode(new_dir));
1456 	kfree(dent);
1457 	return 0;
1458 
1459 out_release:
1460 	release_head(c, BASEHD);
1461 out_ro:
1462 	ubifs_ro_mode(c, err);
1463 	if (orphan_added)
1464 		ubifs_delete_orphan(c, new_inode->i_ino);
1465 out_finish:
1466 	finish_reservation(c);
1467 out_free:
1468 	kfree(dent);
1469 	return err;
1470 }
1471 
1472 /**
1473  * truncate_data_node - re-compress/encrypt a truncated data node.
1474  * @c: UBIFS file-system description object
1475  * @inode: inode which refers to the data node
1476  * @block: data block number
1477  * @dn: data node to re-compress
1478  * @new_len: new length
1479  * @dn_size: size of the data node @dn in memory
1480  *
1481  * This function is used when an inode is truncated and the last data node of
1482  * the inode has to be re-compressed/encrypted and re-written.
1483  */
1484 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1485 			      unsigned int block, struct ubifs_data_node *dn,
1486 			      int *new_len, int dn_size)
1487 {
1488 	void *buf;
1489 	int err, dlen, compr_type, out_len, data_size;
1490 
1491 	out_len = le32_to_cpu(dn->size);
1492 	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1493 	if (!buf)
1494 		return -ENOMEM;
1495 
1496 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1497 	data_size = dn_size - UBIFS_DATA_NODE_SZ;
1498 	compr_type = le16_to_cpu(dn->compr_type);
1499 
1500 	if (IS_ENCRYPTED(inode)) {
1501 		err = ubifs_decrypt(inode, dn, &dlen, block);
1502 		if (err)
1503 			goto out;
1504 	}
1505 
1506 	if (compr_type == UBIFS_COMPR_NONE) {
1507 		out_len = *new_len;
1508 	} else {
1509 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1510 		if (err)
1511 			goto out;
1512 
1513 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1514 	}
1515 
1516 	if (IS_ENCRYPTED(inode)) {
1517 		err = ubifs_encrypt(inode, dn, out_len, &data_size, block);
1518 		if (err)
1519 			goto out;
1520 
1521 		out_len = data_size;
1522 	} else {
1523 		dn->compr_size = 0;
1524 	}
1525 
1526 	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1527 	dn->compr_type = cpu_to_le16(compr_type);
1528 	dn->size = cpu_to_le32(*new_len);
1529 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1530 	err = 0;
1531 out:
1532 	kfree(buf);
1533 	return err;
1534 }
1535 
1536 /**
1537  * ubifs_jnl_truncate - update the journal for a truncation.
1538  * @c: UBIFS file-system description object
1539  * @inode: inode to truncate
1540  * @old_size: old size
1541  * @new_size: new size
1542  *
1543  * When the size of a file decreases due to truncation, a truncation node is
1544  * written, the journal tree is updated, and the last data block is re-written
1545  * if it has been affected. The inode is also updated in order to synchronize
1546  * the new inode size.
1547  *
1548  * This function marks the inode as clean and returns zero on success. In case
1549  * of failure, a negative error code is returned.
1550  */
1551 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1552 		       loff_t old_size, loff_t new_size)
1553 {
1554 	union ubifs_key key, to_key;
1555 	struct ubifs_ino_node *ino;
1556 	struct ubifs_trun_node *trun;
1557 	struct ubifs_data_node *dn;
1558 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1559 	int dn_size;
1560 	struct ubifs_inode *ui = ubifs_inode(inode);
1561 	ino_t inum = inode->i_ino;
1562 	unsigned int blk;
1563 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1564 	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1565 
1566 	dbg_jnl("ino %lu, size %lld -> %lld",
1567 		(unsigned long)inum, old_size, new_size);
1568 	ubifs_assert(c, !ui->data_len);
1569 	ubifs_assert(c, S_ISREG(inode->i_mode));
1570 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1571 
1572 	dn_size = COMPRESSED_DATA_NODE_BUF_SZ;
1573 
1574 	if (IS_ENCRYPTED(inode))
1575 		dn_size += UBIFS_CIPHER_BLOCK_SIZE;
1576 
1577 	sz =  UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1578 		dn_size + ubifs_auth_node_sz(c);
1579 
1580 	ino = kmalloc(sz, GFP_NOFS);
1581 	if (!ino)
1582 		return -ENOMEM;
1583 
1584 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1585 	trun->ch.node_type = UBIFS_TRUN_NODE;
1586 	trun->inum = cpu_to_le32(inum);
1587 	trun->old_size = cpu_to_le64(old_size);
1588 	trun->new_size = cpu_to_le64(new_size);
1589 	zero_trun_node_unused(trun);
1590 
1591 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1592 	if (dlen) {
1593 		/* Get last data block so it can be truncated */
1594 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1595 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1596 		data_key_init(c, &key, inum, blk);
1597 		dbg_jnlk(&key, "last block key ");
1598 		err = ubifs_tnc_lookup(c, &key, dn);
1599 		if (err == -ENOENT)
1600 			dlen = 0; /* Not found (so it is a hole) */
1601 		else if (err)
1602 			goto out_free;
1603 		else {
1604 			int dn_len = le32_to_cpu(dn->size);
1605 
1606 			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1607 				ubifs_err(c, "bad data node (block %u, inode %lu)",
1608 					  blk, inode->i_ino);
1609 				ubifs_dump_node(c, dn, dn_size);
1610 				err = -EUCLEAN;
1611 				goto out_free;
1612 			}
1613 
1614 			if (dn_len <= dlen)
1615 				dlen = 0; /* Nothing to do */
1616 			else {
1617 				err = truncate_data_node(c, inode, blk, dn,
1618 						&dlen, dn_size);
1619 				if (err)
1620 					goto out_free;
1621 			}
1622 		}
1623 	}
1624 
1625 	/* Must make reservation before allocating sequence numbers */
1626 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1627 
1628 	if (ubifs_authenticated(c))
1629 		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1630 	else
1631 		len += dlen;
1632 
1633 	err = make_reservation(c, BASEHD, len);
1634 	if (err)
1635 		goto out_free;
1636 
1637 	pack_inode(c, ino, inode, 0);
1638 	err = ubifs_node_calc_hash(c, ino, hash_ino);
1639 	if (err)
1640 		goto out_release;
1641 
1642 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1643 	if (dlen) {
1644 		ubifs_prep_grp_node(c, dn, dlen, 1);
1645 		err = ubifs_node_calc_hash(c, dn, hash_dn);
1646 		if (err)
1647 			goto out_release;
1648 	}
1649 
1650 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1651 	if (err)
1652 		goto out_release;
1653 	if (!sync)
1654 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1655 	release_head(c, BASEHD);
1656 
1657 	ubifs_add_auth_dirt(c, lnum);
1658 
1659 	if (dlen) {
1660 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1661 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1662 		if (err)
1663 			goto out_ro;
1664 	}
1665 
1666 	ino_key_init(c, &key, inum);
1667 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1668 	if (err)
1669 		goto out_ro;
1670 
1671 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1672 	if (err)
1673 		goto out_ro;
1674 
1675 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1676 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1677 	data_key_init(c, &key, inum, blk);
1678 
1679 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1680 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1681 	data_key_init(c, &to_key, inum, blk);
1682 
1683 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1684 	if (err)
1685 		goto out_ro;
1686 
1687 	finish_reservation(c);
1688 	spin_lock(&ui->ui_lock);
1689 	ui->synced_i_size = ui->ui_size;
1690 	spin_unlock(&ui->ui_lock);
1691 	mark_inode_clean(c, ui);
1692 	kfree(ino);
1693 	return 0;
1694 
1695 out_release:
1696 	release_head(c, BASEHD);
1697 out_ro:
1698 	ubifs_ro_mode(c, err);
1699 	finish_reservation(c);
1700 out_free:
1701 	kfree(ino);
1702 	return err;
1703 }
1704 
1705 
1706 /**
1707  * ubifs_jnl_delete_xattr - delete an extended attribute.
1708  * @c: UBIFS file-system description object
1709  * @host: host inode
1710  * @inode: extended attribute inode
1711  * @nm: extended attribute entry name
1712  *
1713  * This function delete an extended attribute which is very similar to
1714  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1715  * updates the target inode. Returns zero in case of success and a negative
1716  * error code in case of failure.
1717  */
1718 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1719 			   const struct inode *inode,
1720 			   const struct fscrypt_name *nm)
1721 {
1722 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1723 	struct ubifs_dent_node *xent;
1724 	struct ubifs_ino_node *ino;
1725 	union ubifs_key xent_key, key1, key2;
1726 	int sync = IS_DIRSYNC(host);
1727 	struct ubifs_inode *host_ui = ubifs_inode(host);
1728 	u8 hash[UBIFS_HASH_ARR_SZ];
1729 
1730 	ubifs_assert(c, inode->i_nlink == 0);
1731 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1732 
1733 	/*
1734 	 * Since we are deleting the inode, we do not bother to attach any data
1735 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1736 	 */
1737 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1738 	aligned_xlen = ALIGN(xlen, 8);
1739 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1740 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1741 
1742 	write_len = len + ubifs_auth_node_sz(c);
1743 
1744 	xent = kzalloc(write_len, GFP_NOFS);
1745 	if (!xent)
1746 		return -ENOMEM;
1747 
1748 	/* Make reservation before allocating sequence numbers */
1749 	err = make_reservation(c, BASEHD, write_len);
1750 	if (err) {
1751 		kfree(xent);
1752 		return err;
1753 	}
1754 
1755 	xent->ch.node_type = UBIFS_XENT_NODE;
1756 	xent_key_init(c, &xent_key, host->i_ino, nm);
1757 	key_write(c, &xent_key, xent->key);
1758 	xent->inum = 0;
1759 	xent->type = get_dent_type(inode->i_mode);
1760 	xent->nlen = cpu_to_le16(fname_len(nm));
1761 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1762 	xent->name[fname_len(nm)] = '\0';
1763 	zero_dent_node_unused(xent);
1764 	ubifs_prep_grp_node(c, xent, xlen, 0);
1765 
1766 	ino = (void *)xent + aligned_xlen;
1767 	pack_inode(c, ino, inode, 0);
1768 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1769 	pack_inode(c, ino, host, 1);
1770 	err = ubifs_node_calc_hash(c, ino, hash);
1771 	if (err)
1772 		goto out_release;
1773 
1774 	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1775 	if (!sync && !err)
1776 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1777 	release_head(c, BASEHD);
1778 
1779 	ubifs_add_auth_dirt(c, lnum);
1780 	kfree(xent);
1781 	if (err)
1782 		goto out_ro;
1783 
1784 	/* Remove the extended attribute entry from TNC */
1785 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1786 	if (err)
1787 		goto out_ro;
1788 	err = ubifs_add_dirt(c, lnum, xlen);
1789 	if (err)
1790 		goto out_ro;
1791 
1792 	/*
1793 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1794 	 * Well, there actually must be only one node - the inode itself.
1795 	 */
1796 	lowest_ino_key(c, &key1, inode->i_ino);
1797 	highest_ino_key(c, &key2, inode->i_ino);
1798 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1799 	if (err)
1800 		goto out_ro;
1801 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1802 	if (err)
1803 		goto out_ro;
1804 
1805 	/* And update TNC with the new host inode position */
1806 	ino_key_init(c, &key1, host->i_ino);
1807 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1808 	if (err)
1809 		goto out_ro;
1810 
1811 	finish_reservation(c);
1812 	spin_lock(&host_ui->ui_lock);
1813 	host_ui->synced_i_size = host_ui->ui_size;
1814 	spin_unlock(&host_ui->ui_lock);
1815 	mark_inode_clean(c, host_ui);
1816 	return 0;
1817 
1818 out_release:
1819 	kfree(xent);
1820 	release_head(c, BASEHD);
1821 out_ro:
1822 	ubifs_ro_mode(c, err);
1823 	finish_reservation(c);
1824 	return err;
1825 }
1826 
1827 /**
1828  * ubifs_jnl_change_xattr - change an extended attribute.
1829  * @c: UBIFS file-system description object
1830  * @inode: extended attribute inode
1831  * @host: host inode
1832  *
1833  * This function writes the updated version of an extended attribute inode and
1834  * the host inode to the journal (to the base head). The host inode is written
1835  * after the extended attribute inode in order to guarantee that the extended
1836  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1837  * consequently, the write-buffer is synchronized. This function returns zero
1838  * in case of success and a negative error code in case of failure.
1839  */
1840 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1841 			   const struct inode *host)
1842 {
1843 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1844 	struct ubifs_inode *host_ui = ubifs_inode(host);
1845 	struct ubifs_ino_node *ino;
1846 	union ubifs_key key;
1847 	int sync = IS_DIRSYNC(host);
1848 	u8 hash_host[UBIFS_HASH_ARR_SZ];
1849 	u8 hash[UBIFS_HASH_ARR_SZ];
1850 
1851 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1852 	ubifs_assert(c, inode->i_nlink > 0);
1853 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1854 
1855 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1856 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1857 	aligned_len1 = ALIGN(len1, 8);
1858 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1859 
1860 	aligned_len += ubifs_auth_node_sz(c);
1861 
1862 	ino = kzalloc(aligned_len, GFP_NOFS);
1863 	if (!ino)
1864 		return -ENOMEM;
1865 
1866 	/* Make reservation before allocating sequence numbers */
1867 	err = make_reservation(c, BASEHD, aligned_len);
1868 	if (err)
1869 		goto out_free;
1870 
1871 	pack_inode(c, ino, host, 0);
1872 	err = ubifs_node_calc_hash(c, ino, hash_host);
1873 	if (err)
1874 		goto out_release;
1875 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1876 	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1877 	if (err)
1878 		goto out_release;
1879 
1880 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1881 	if (!sync && !err) {
1882 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1883 
1884 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1885 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1886 	}
1887 	release_head(c, BASEHD);
1888 	if (err)
1889 		goto out_ro;
1890 
1891 	ubifs_add_auth_dirt(c, lnum);
1892 
1893 	ino_key_init(c, &key, host->i_ino);
1894 	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1895 	if (err)
1896 		goto out_ro;
1897 
1898 	ino_key_init(c, &key, inode->i_ino);
1899 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1900 	if (err)
1901 		goto out_ro;
1902 
1903 	finish_reservation(c);
1904 	spin_lock(&host_ui->ui_lock);
1905 	host_ui->synced_i_size = host_ui->ui_size;
1906 	spin_unlock(&host_ui->ui_lock);
1907 	mark_inode_clean(c, host_ui);
1908 	kfree(ino);
1909 	return 0;
1910 
1911 out_release:
1912 	release_head(c, BASEHD);
1913 out_ro:
1914 	ubifs_ro_mode(c, err);
1915 	finish_reservation(c);
1916 out_free:
1917 	kfree(ino);
1918 	return err;
1919 }
1920 
1921