xref: /linux/fs/ubifs/journal.c (revision bd628c1bed7902ec1f24ba0fe70758949146abbe)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements UBIFS journal.
25  *
26  * The journal consists of 2 parts - the log and bud LEBs. The log has fixed
27  * length and position, while a bud logical eraseblock is any LEB in the main
28  * area. Buds contain file system data - data nodes, inode nodes, etc. The log
29  * contains only references to buds and some other stuff like commit
30  * start node. The idea is that when we commit the journal, we do
31  * not copy the data, the buds just become indexed. Since after the commit the
32  * nodes in bud eraseblocks become leaf nodes of the file system index tree, we
33  * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will
34  * become leafs in the future.
35  *
36  * The journal is multi-headed because we want to write data to the journal as
37  * optimally as possible. It is nice to have nodes belonging to the same inode
38  * in one LEB, so we may write data owned by different inodes to different
39  * journal heads, although at present only one data head is used.
40  *
41  * For recovery reasons, the base head contains all inode nodes, all directory
42  * entry nodes and all truncate nodes. This means that the other heads contain
43  * only data nodes.
44  *
45  * Bud LEBs may be half-indexed. For example, if the bud was not full at the
46  * time of commit, the bud is retained to continue to be used in the journal,
47  * even though the "front" of the LEB is now indexed. In that case, the log
48  * reference contains the offset where the bud starts for the purposes of the
49  * journal.
50  *
51  * The journal size has to be limited, because the larger is the journal, the
52  * longer it takes to mount UBIFS (scanning the journal) and the more memory it
53  * takes (indexing in the TNC).
54  *
55  * All the journal write operations like 'ubifs_jnl_update()' here, which write
56  * multiple UBIFS nodes to the journal at one go, are atomic with respect to
57  * unclean reboots. Should the unclean reboot happen, the recovery code drops
58  * all the nodes.
59  */
60 
61 #include "ubifs.h"
62 
63 /**
64  * zero_ino_node_unused - zero out unused fields of an on-flash inode node.
65  * @ino: the inode to zero out
66  */
67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino)
68 {
69 	memset(ino->padding1, 0, 4);
70 	memset(ino->padding2, 0, 26);
71 }
72 
73 /**
74  * zero_dent_node_unused - zero out unused fields of an on-flash directory
75  *                         entry node.
76  * @dent: the directory entry to zero out
77  */
78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent)
79 {
80 	dent->padding1 = 0;
81 }
82 
83 /**
84  * zero_trun_node_unused - zero out unused fields of an on-flash truncation
85  *                         node.
86  * @trun: the truncation node to zero out
87  */
88 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun)
89 {
90 	memset(trun->padding, 0, 12);
91 }
92 
93 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum)
94 {
95 	if (ubifs_authenticated(c))
96 		ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c));
97 }
98 
99 /**
100  * reserve_space - reserve space in the journal.
101  * @c: UBIFS file-system description object
102  * @jhead: journal head number
103  * @len: node length
104  *
105  * This function reserves space in journal head @head. If the reservation
106  * succeeded, the journal head stays locked and later has to be unlocked using
107  * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to
108  * be done, and other negative error codes in case of other failures.
109  */
110 static int reserve_space(struct ubifs_info *c, int jhead, int len)
111 {
112 	int err = 0, err1, retries = 0, avail, lnum, offs, squeeze;
113 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
114 
115 	/*
116 	 * Typically, the base head has smaller nodes written to it, so it is
117 	 * better to try to allocate space at the ends of eraseblocks. This is
118 	 * what the squeeze parameter does.
119 	 */
120 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
121 	squeeze = (jhead == BASEHD);
122 again:
123 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
124 
125 	if (c->ro_error) {
126 		err = -EROFS;
127 		goto out_unlock;
128 	}
129 
130 	avail = c->leb_size - wbuf->offs - wbuf->used;
131 	if (wbuf->lnum != -1 && avail >= len)
132 		return 0;
133 
134 	/*
135 	 * Write buffer wasn't seek'ed or there is no enough space - look for an
136 	 * LEB with some empty space.
137 	 */
138 	lnum = ubifs_find_free_space(c, len, &offs, squeeze);
139 	if (lnum >= 0)
140 		goto out;
141 
142 	err = lnum;
143 	if (err != -ENOSPC)
144 		goto out_unlock;
145 
146 	/*
147 	 * No free space, we have to run garbage collector to make
148 	 * some. But the write-buffer mutex has to be unlocked because
149 	 * GC also takes it.
150 	 */
151 	dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead));
152 	mutex_unlock(&wbuf->io_mutex);
153 
154 	lnum = ubifs_garbage_collect(c, 0);
155 	if (lnum < 0) {
156 		err = lnum;
157 		if (err != -ENOSPC)
158 			return err;
159 
160 		/*
161 		 * GC could not make a free LEB. But someone else may
162 		 * have allocated new bud for this journal head,
163 		 * because we dropped @wbuf->io_mutex, so try once
164 		 * again.
165 		 */
166 		dbg_jnl("GC couldn't make a free LEB for jhead %s",
167 			dbg_jhead(jhead));
168 		if (retries++ < 2) {
169 			dbg_jnl("retry (%d)", retries);
170 			goto again;
171 		}
172 
173 		dbg_jnl("return -ENOSPC");
174 		return err;
175 	}
176 
177 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
178 	dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead));
179 	avail = c->leb_size - wbuf->offs - wbuf->used;
180 
181 	if (wbuf->lnum != -1 && avail >= len) {
182 		/*
183 		 * Someone else has switched the journal head and we have
184 		 * enough space now. This happens when more than one process is
185 		 * trying to write to the same journal head at the same time.
186 		 */
187 		dbg_jnl("return LEB %d back, already have LEB %d:%d",
188 			lnum, wbuf->lnum, wbuf->offs + wbuf->used);
189 		err = ubifs_return_leb(c, lnum);
190 		if (err)
191 			goto out_unlock;
192 		return 0;
193 	}
194 
195 	offs = 0;
196 
197 out:
198 	/*
199 	 * Make sure we synchronize the write-buffer before we add the new bud
200 	 * to the log. Otherwise we may have a power cut after the log
201 	 * reference node for the last bud (@lnum) is written but before the
202 	 * write-buffer data are written to the next-to-last bud
203 	 * (@wbuf->lnum). And the effect would be that the recovery would see
204 	 * that there is corruption in the next-to-last bud.
205 	 */
206 	err = ubifs_wbuf_sync_nolock(wbuf);
207 	if (err)
208 		goto out_return;
209 	err = ubifs_add_bud_to_log(c, jhead, lnum, offs);
210 	if (err)
211 		goto out_return;
212 	err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs);
213 	if (err)
214 		goto out_unlock;
215 
216 	return 0;
217 
218 out_unlock:
219 	mutex_unlock(&wbuf->io_mutex);
220 	return err;
221 
222 out_return:
223 	/* An error occurred and the LEB has to be returned to lprops */
224 	ubifs_assert(c, err < 0);
225 	err1 = ubifs_return_leb(c, lnum);
226 	if (err1 && err == -EAGAIN)
227 		/*
228 		 * Return original error code only if it is not %-EAGAIN,
229 		 * which is not really an error. Otherwise, return the error
230 		 * code of 'ubifs_return_leb()'.
231 		 */
232 		err = err1;
233 	mutex_unlock(&wbuf->io_mutex);
234 	return err;
235 }
236 
237 static int ubifs_hash_nodes(struct ubifs_info *c, void *node,
238 			     int len, struct shash_desc *hash)
239 {
240 	int auth_node_size = ubifs_auth_node_sz(c);
241 	int err;
242 
243 	while (1) {
244 		const struct ubifs_ch *ch = node;
245 		int nodelen = le32_to_cpu(ch->len);
246 
247 		ubifs_assert(c, len >= auth_node_size);
248 
249 		if (len == auth_node_size)
250 			break;
251 
252 		ubifs_assert(c, len > nodelen);
253 		ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC));
254 
255 		err = ubifs_shash_update(c, hash, (void *)node, nodelen);
256 		if (err)
257 			return err;
258 
259 		node += ALIGN(nodelen, 8);
260 		len -= ALIGN(nodelen, 8);
261 	}
262 
263 	return ubifs_prepare_auth_node(c, node, hash);
264 }
265 
266 /**
267  * write_head - write data to a journal head.
268  * @c: UBIFS file-system description object
269  * @jhead: journal head
270  * @buf: buffer to write
271  * @len: length to write
272  * @lnum: LEB number written is returned here
273  * @offs: offset written is returned here
274  * @sync: non-zero if the write-buffer has to by synchronized
275  *
276  * This function writes data to the reserved space of journal head @jhead.
277  * Returns zero in case of success and a negative error code in case of
278  * failure.
279  */
280 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len,
281 		      int *lnum, int *offs, int sync)
282 {
283 	int err;
284 	struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf;
285 
286 	ubifs_assert(c, jhead != GCHD);
287 
288 	*lnum = c->jheads[jhead].wbuf.lnum;
289 	*offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used;
290 	dbg_jnl("jhead %s, LEB %d:%d, len %d",
291 		dbg_jhead(jhead), *lnum, *offs, len);
292 
293 	if (ubifs_authenticated(c)) {
294 		err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash);
295 		if (err)
296 			return err;
297 	}
298 
299 	err = ubifs_wbuf_write_nolock(wbuf, buf, len);
300 	if (err)
301 		return err;
302 	if (sync)
303 		err = ubifs_wbuf_sync_nolock(wbuf);
304 	return err;
305 }
306 
307 /**
308  * make_reservation - reserve journal space.
309  * @c: UBIFS file-system description object
310  * @jhead: journal head
311  * @len: how many bytes to reserve
312  *
313  * This function makes space reservation in journal head @jhead. The function
314  * takes the commit lock and locks the journal head, and the caller has to
315  * unlock the head and finish the reservation with 'finish_reservation()'.
316  * Returns zero in case of success and a negative error code in case of
317  * failure.
318  *
319  * Note, the journal head may be unlocked as soon as the data is written, while
320  * the commit lock has to be released after the data has been added to the
321  * TNC.
322  */
323 static int make_reservation(struct ubifs_info *c, int jhead, int len)
324 {
325 	int err, cmt_retries = 0, nospc_retries = 0;
326 
327 again:
328 	down_read(&c->commit_sem);
329 	err = reserve_space(c, jhead, len);
330 	if (!err)
331 		/* c->commit_sem will get released via finish_reservation(). */
332 		return 0;
333 	up_read(&c->commit_sem);
334 
335 	if (err == -ENOSPC) {
336 		/*
337 		 * GC could not make any progress. We should try to commit
338 		 * once because it could make some dirty space and GC would
339 		 * make progress, so make the error -EAGAIN so that the below
340 		 * will commit and re-try.
341 		 */
342 		if (nospc_retries++ < 2) {
343 			dbg_jnl("no space, retry");
344 			err = -EAGAIN;
345 		}
346 
347 		/*
348 		 * This means that the budgeting is incorrect. We always have
349 		 * to be able to write to the media, because all operations are
350 		 * budgeted. Deletions are not budgeted, though, but we reserve
351 		 * an extra LEB for them.
352 		 */
353 	}
354 
355 	if (err != -EAGAIN)
356 		goto out;
357 
358 	/*
359 	 * -EAGAIN means that the journal is full or too large, or the above
360 	 * code wants to do one commit. Do this and re-try.
361 	 */
362 	if (cmt_retries > 128) {
363 		/*
364 		 * This should not happen unless the journal size limitations
365 		 * are too tough.
366 		 */
367 		ubifs_err(c, "stuck in space allocation");
368 		err = -ENOSPC;
369 		goto out;
370 	} else if (cmt_retries > 32)
371 		ubifs_warn(c, "too many space allocation re-tries (%d)",
372 			   cmt_retries);
373 
374 	dbg_jnl("-EAGAIN, commit and retry (retried %d times)",
375 		cmt_retries);
376 	cmt_retries += 1;
377 
378 	err = ubifs_run_commit(c);
379 	if (err)
380 		return err;
381 	goto again;
382 
383 out:
384 	ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d",
385 		  len, jhead, err);
386 	if (err == -ENOSPC) {
387 		/* This are some budgeting problems, print useful information */
388 		down_write(&c->commit_sem);
389 		dump_stack();
390 		ubifs_dump_budg(c, &c->bi);
391 		ubifs_dump_lprops(c);
392 		cmt_retries = dbg_check_lprops(c);
393 		up_write(&c->commit_sem);
394 	}
395 	return err;
396 }
397 
398 /**
399  * release_head - release a journal head.
400  * @c: UBIFS file-system description object
401  * @jhead: journal head
402  *
403  * This function releases journal head @jhead which was locked by
404  * the 'make_reservation()' function. It has to be called after each successful
405  * 'make_reservation()' invocation.
406  */
407 static inline void release_head(struct ubifs_info *c, int jhead)
408 {
409 	mutex_unlock(&c->jheads[jhead].wbuf.io_mutex);
410 }
411 
412 /**
413  * finish_reservation - finish a reservation.
414  * @c: UBIFS file-system description object
415  *
416  * This function finishes journal space reservation. It must be called after
417  * 'make_reservation()'.
418  */
419 static void finish_reservation(struct ubifs_info *c)
420 {
421 	up_read(&c->commit_sem);
422 }
423 
424 /**
425  * get_dent_type - translate VFS inode mode to UBIFS directory entry type.
426  * @mode: inode mode
427  */
428 static int get_dent_type(int mode)
429 {
430 	switch (mode & S_IFMT) {
431 	case S_IFREG:
432 		return UBIFS_ITYPE_REG;
433 	case S_IFDIR:
434 		return UBIFS_ITYPE_DIR;
435 	case S_IFLNK:
436 		return UBIFS_ITYPE_LNK;
437 	case S_IFBLK:
438 		return UBIFS_ITYPE_BLK;
439 	case S_IFCHR:
440 		return UBIFS_ITYPE_CHR;
441 	case S_IFIFO:
442 		return UBIFS_ITYPE_FIFO;
443 	case S_IFSOCK:
444 		return UBIFS_ITYPE_SOCK;
445 	default:
446 		BUG();
447 	}
448 	return 0;
449 }
450 
451 /**
452  * pack_inode - pack an inode node.
453  * @c: UBIFS file-system description object
454  * @ino: buffer in which to pack inode node
455  * @inode: inode to pack
456  * @last: indicates the last node of the group
457  */
458 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino,
459 		       const struct inode *inode, int last)
460 {
461 	int data_len = 0, last_reference = !inode->i_nlink;
462 	struct ubifs_inode *ui = ubifs_inode(inode);
463 
464 	ino->ch.node_type = UBIFS_INO_NODE;
465 	ino_key_init_flash(c, &ino->key, inode->i_ino);
466 	ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum);
467 	ino->atime_sec  = cpu_to_le64(inode->i_atime.tv_sec);
468 	ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec);
469 	ino->ctime_sec  = cpu_to_le64(inode->i_ctime.tv_sec);
470 	ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec);
471 	ino->mtime_sec  = cpu_to_le64(inode->i_mtime.tv_sec);
472 	ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec);
473 	ino->uid   = cpu_to_le32(i_uid_read(inode));
474 	ino->gid   = cpu_to_le32(i_gid_read(inode));
475 	ino->mode  = cpu_to_le32(inode->i_mode);
476 	ino->flags = cpu_to_le32(ui->flags);
477 	ino->size  = cpu_to_le64(ui->ui_size);
478 	ino->nlink = cpu_to_le32(inode->i_nlink);
479 	ino->compr_type  = cpu_to_le16(ui->compr_type);
480 	ino->data_len    = cpu_to_le32(ui->data_len);
481 	ino->xattr_cnt   = cpu_to_le32(ui->xattr_cnt);
482 	ino->xattr_size  = cpu_to_le32(ui->xattr_size);
483 	ino->xattr_names = cpu_to_le32(ui->xattr_names);
484 	zero_ino_node_unused(ino);
485 
486 	/*
487 	 * Drop the attached data if this is a deletion inode, the data is not
488 	 * needed anymore.
489 	 */
490 	if (!last_reference) {
491 		memcpy(ino->data, ui->data, ui->data_len);
492 		data_len = ui->data_len;
493 	}
494 
495 	ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last);
496 }
497 
498 /**
499  * mark_inode_clean - mark UBIFS inode as clean.
500  * @c: UBIFS file-system description object
501  * @ui: UBIFS inode to mark as clean
502  *
503  * This helper function marks UBIFS inode @ui as clean by cleaning the
504  * @ui->dirty flag and releasing its budget. Note, VFS may still treat the
505  * inode as dirty and try to write it back, but 'ubifs_write_inode()' would
506  * just do nothing.
507  */
508 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui)
509 {
510 	if (ui->dirty)
511 		ubifs_release_dirty_inode_budget(c, ui);
512 	ui->dirty = 0;
513 }
514 
515 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent)
516 {
517 	if (c->double_hash)
518 		dent->cookie = prandom_u32();
519 	else
520 		dent->cookie = 0;
521 }
522 
523 /**
524  * ubifs_jnl_update - update inode.
525  * @c: UBIFS file-system description object
526  * @dir: parent inode or host inode in case of extended attributes
527  * @nm: directory entry name
528  * @inode: inode to update
529  * @deletion: indicates a directory entry deletion i.e unlink or rmdir
530  * @xent: non-zero if the directory entry is an extended attribute entry
531  *
532  * This function updates an inode by writing a directory entry (or extended
533  * attribute entry), the inode itself, and the parent directory inode (or the
534  * host inode) to the journal.
535  *
536  * The function writes the host inode @dir last, which is important in case of
537  * extended attributes. Indeed, then we guarantee that if the host inode gets
538  * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed,
539  * the extended attribute inode gets flushed too. And this is exactly what the
540  * user expects - synchronizing the host inode synchronizes its extended
541  * attributes. Similarly, this guarantees that if @dir is synchronized, its
542  * directory entry corresponding to @nm gets synchronized too.
543  *
544  * If the inode (@inode) or the parent directory (@dir) are synchronous, this
545  * function synchronizes the write-buffer.
546  *
547  * This function marks the @dir and @inode inodes as clean and returns zero on
548  * success. In case of failure, a negative error code is returned.
549  */
550 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir,
551 		     const struct fscrypt_name *nm, const struct inode *inode,
552 		     int deletion, int xent)
553 {
554 	int err, dlen, ilen, len, lnum, ino_offs, dent_offs;
555 	int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir);
556 	int last_reference = !!(deletion && inode->i_nlink == 0);
557 	struct ubifs_inode *ui = ubifs_inode(inode);
558 	struct ubifs_inode *host_ui = ubifs_inode(dir);
559 	struct ubifs_dent_node *dent;
560 	struct ubifs_ino_node *ino;
561 	union ubifs_key dent_key, ino_key;
562 	u8 hash_dent[UBIFS_HASH_ARR_SZ];
563 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
564 	u8 hash_ino_host[UBIFS_HASH_ARR_SZ];
565 
566 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
567 
568 	dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
569 	ilen = UBIFS_INO_NODE_SZ;
570 
571 	/*
572 	 * If the last reference to the inode is being deleted, then there is
573 	 * no need to attach and write inode data, it is being deleted anyway.
574 	 * And if the inode is being deleted, no need to synchronize
575 	 * write-buffer even if the inode is synchronous.
576 	 */
577 	if (!last_reference) {
578 		ilen += ui->data_len;
579 		sync |= IS_SYNC(inode);
580 	}
581 
582 	aligned_dlen = ALIGN(dlen, 8);
583 	aligned_ilen = ALIGN(ilen, 8);
584 
585 	len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ;
586 	/* Make sure to also account for extended attributes */
587 	if (ubifs_authenticated(c))
588 		len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c);
589 	else
590 		len += host_ui->data_len;
591 
592 	dent = kzalloc(len, GFP_NOFS);
593 	if (!dent)
594 		return -ENOMEM;
595 
596 	/* Make reservation before allocating sequence numbers */
597 	err = make_reservation(c, BASEHD, len);
598 	if (err)
599 		goto out_free;
600 
601 	if (!xent) {
602 		dent->ch.node_type = UBIFS_DENT_NODE;
603 		if (nm->hash)
604 			dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash);
605 		else
606 			dent_key_init(c, &dent_key, dir->i_ino, nm);
607 	} else {
608 		dent->ch.node_type = UBIFS_XENT_NODE;
609 		xent_key_init(c, &dent_key, dir->i_ino, nm);
610 	}
611 
612 	key_write(c, &dent_key, dent->key);
613 	dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino);
614 	dent->type = get_dent_type(inode->i_mode);
615 	dent->nlen = cpu_to_le16(fname_len(nm));
616 	memcpy(dent->name, fname_name(nm), fname_len(nm));
617 	dent->name[fname_len(nm)] = '\0';
618 	set_dent_cookie(c, dent);
619 
620 	zero_dent_node_unused(dent);
621 	ubifs_prep_grp_node(c, dent, dlen, 0);
622 	err = ubifs_node_calc_hash(c, dent, hash_dent);
623 	if (err)
624 		goto out_release;
625 
626 	ino = (void *)dent + aligned_dlen;
627 	pack_inode(c, ino, inode, 0);
628 	err = ubifs_node_calc_hash(c, ino, hash_ino);
629 	if (err)
630 		goto out_release;
631 
632 	ino = (void *)ino + aligned_ilen;
633 	pack_inode(c, ino, dir, 1);
634 	err = ubifs_node_calc_hash(c, ino, hash_ino_host);
635 	if (err)
636 		goto out_release;
637 
638 	if (last_reference) {
639 		err = ubifs_add_orphan(c, inode->i_ino);
640 		if (err) {
641 			release_head(c, BASEHD);
642 			goto out_finish;
643 		}
644 		ui->del_cmtno = c->cmt_no;
645 	}
646 
647 	err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync);
648 	if (err)
649 		goto out_release;
650 	if (!sync) {
651 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
652 
653 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
654 		ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino);
655 	}
656 	release_head(c, BASEHD);
657 	kfree(dent);
658 	ubifs_add_auth_dirt(c, lnum);
659 
660 	if (deletion) {
661 		if (nm->hash)
662 			err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash);
663 		else
664 			err = ubifs_tnc_remove_nm(c, &dent_key, nm);
665 		if (err)
666 			goto out_ro;
667 		err = ubifs_add_dirt(c, lnum, dlen);
668 	} else
669 		err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen,
670 				       hash_dent, nm);
671 	if (err)
672 		goto out_ro;
673 
674 	/*
675 	 * Note, we do not remove the inode from TNC even if the last reference
676 	 * to it has just been deleted, because the inode may still be opened.
677 	 * Instead, the inode has been added to orphan lists and the orphan
678 	 * subsystem will take further care about it.
679 	 */
680 	ino_key_init(c, &ino_key, inode->i_ino);
681 	ino_offs = dent_offs + aligned_dlen;
682 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino);
683 	if (err)
684 		goto out_ro;
685 
686 	ino_key_init(c, &ino_key, dir->i_ino);
687 	ino_offs += aligned_ilen;
688 	err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs,
689 			    UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host);
690 	if (err)
691 		goto out_ro;
692 
693 	finish_reservation(c);
694 	spin_lock(&ui->ui_lock);
695 	ui->synced_i_size = ui->ui_size;
696 	spin_unlock(&ui->ui_lock);
697 	if (xent) {
698 		spin_lock(&host_ui->ui_lock);
699 		host_ui->synced_i_size = host_ui->ui_size;
700 		spin_unlock(&host_ui->ui_lock);
701 	}
702 	mark_inode_clean(c, ui);
703 	mark_inode_clean(c, host_ui);
704 	return 0;
705 
706 out_finish:
707 	finish_reservation(c);
708 out_free:
709 	kfree(dent);
710 	return err;
711 
712 out_release:
713 	release_head(c, BASEHD);
714 	kfree(dent);
715 out_ro:
716 	ubifs_ro_mode(c, err);
717 	if (last_reference)
718 		ubifs_delete_orphan(c, inode->i_ino);
719 	finish_reservation(c);
720 	return err;
721 }
722 
723 /**
724  * ubifs_jnl_write_data - write a data node to the journal.
725  * @c: UBIFS file-system description object
726  * @inode: inode the data node belongs to
727  * @key: node key
728  * @buf: buffer to write
729  * @len: data length (must not exceed %UBIFS_BLOCK_SIZE)
730  *
731  * This function writes a data node to the journal. Returns %0 if the data node
732  * was successfully written, and a negative error code in case of failure.
733  */
734 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode,
735 			 const union ubifs_key *key, const void *buf, int len)
736 {
737 	struct ubifs_data_node *data;
738 	int err, lnum, offs, compr_type, out_len, compr_len, auth_len;
739 	int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1;
740 	int write_len;
741 	struct ubifs_inode *ui = ubifs_inode(inode);
742 	bool encrypted = ubifs_crypt_is_encrypted(inode);
743 	u8 hash[UBIFS_HASH_ARR_SZ];
744 
745 	dbg_jnlk(key, "ino %lu, blk %u, len %d, key ",
746 		(unsigned long)key_inum(c, key), key_block(c, key), len);
747 	ubifs_assert(c, len <= UBIFS_BLOCK_SIZE);
748 
749 	if (encrypted)
750 		dlen += UBIFS_CIPHER_BLOCK_SIZE;
751 
752 	auth_len = ubifs_auth_node_sz(c);
753 
754 	data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN);
755 	if (!data) {
756 		/*
757 		 * Fall-back to the write reserve buffer. Note, we might be
758 		 * currently on the memory reclaim path, when the kernel is
759 		 * trying to free some memory by writing out dirty pages. The
760 		 * write reserve buffer helps us to guarantee that we are
761 		 * always able to write the data.
762 		 */
763 		allocated = 0;
764 		mutex_lock(&c->write_reserve_mutex);
765 		data = c->write_reserve_buf;
766 	}
767 
768 	data->ch.node_type = UBIFS_DATA_NODE;
769 	key_write(c, key, &data->key);
770 	data->size = cpu_to_le32(len);
771 
772 	if (!(ui->flags & UBIFS_COMPR_FL))
773 		/* Compression is disabled for this inode */
774 		compr_type = UBIFS_COMPR_NONE;
775 	else
776 		compr_type = ui->compr_type;
777 
778 	out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ;
779 	ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type);
780 	ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE);
781 
782 	if (encrypted) {
783 		err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key));
784 		if (err)
785 			goto out_free;
786 
787 	} else {
788 		data->compr_size = 0;
789 		out_len = compr_len;
790 	}
791 
792 	dlen = UBIFS_DATA_NODE_SZ + out_len;
793 	if (ubifs_authenticated(c))
794 		write_len = ALIGN(dlen, 8) + auth_len;
795 	else
796 		write_len = dlen;
797 
798 	data->compr_type = cpu_to_le16(compr_type);
799 
800 	/* Make reservation before allocating sequence numbers */
801 	err = make_reservation(c, DATAHD, write_len);
802 	if (err)
803 		goto out_free;
804 
805 	ubifs_prepare_node(c, data, dlen, 0);
806 	err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0);
807 	if (err)
808 		goto out_release;
809 
810 	err = ubifs_node_calc_hash(c, data, hash);
811 	if (err)
812 		goto out_release;
813 
814 	ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key));
815 	release_head(c, DATAHD);
816 
817 	ubifs_add_auth_dirt(c, lnum);
818 
819 	err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash);
820 	if (err)
821 		goto out_ro;
822 
823 	finish_reservation(c);
824 	if (!allocated)
825 		mutex_unlock(&c->write_reserve_mutex);
826 	else
827 		kfree(data);
828 	return 0;
829 
830 out_release:
831 	release_head(c, DATAHD);
832 out_ro:
833 	ubifs_ro_mode(c, err);
834 	finish_reservation(c);
835 out_free:
836 	if (!allocated)
837 		mutex_unlock(&c->write_reserve_mutex);
838 	else
839 		kfree(data);
840 	return err;
841 }
842 
843 /**
844  * ubifs_jnl_write_inode - flush inode to the journal.
845  * @c: UBIFS file-system description object
846  * @inode: inode to flush
847  *
848  * This function writes inode @inode to the journal. If the inode is
849  * synchronous, it also synchronizes the write-buffer. Returns zero in case of
850  * success and a negative error code in case of failure.
851  */
852 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode)
853 {
854 	int err, lnum, offs;
855 	struct ubifs_ino_node *ino;
856 	struct ubifs_inode *ui = ubifs_inode(inode);
857 	int sync = 0, write_len, ilen = UBIFS_INO_NODE_SZ;
858 	int last_reference = !inode->i_nlink;
859 	u8 hash[UBIFS_HASH_ARR_SZ];
860 
861 	dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink);
862 
863 	/*
864 	 * If the inode is being deleted, do not write the attached data. No
865 	 * need to synchronize the write-buffer either.
866 	 */
867 	if (!last_reference) {
868 		ilen += ui->data_len;
869 		sync = IS_SYNC(inode);
870 	}
871 
872 	if (ubifs_authenticated(c))
873 		write_len = ALIGN(ilen, 8) + ubifs_auth_node_sz(c);
874 	else
875 		write_len = ilen;
876 
877 	ino = kmalloc(write_len, GFP_NOFS);
878 	if (!ino)
879 		return -ENOMEM;
880 
881 	/* Make reservation before allocating sequence numbers */
882 	err = make_reservation(c, BASEHD, write_len);
883 	if (err)
884 		goto out_free;
885 
886 	pack_inode(c, ino, inode, 1);
887 	err = ubifs_node_calc_hash(c, ino, hash);
888 	if (err)
889 		goto out_release;
890 
891 	err = write_head(c, BASEHD, ino, write_len, &lnum, &offs, sync);
892 	if (err)
893 		goto out_release;
894 	if (!sync)
895 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
896 					  inode->i_ino);
897 	release_head(c, BASEHD);
898 
899 	ubifs_add_auth_dirt(c, lnum);
900 
901 	if (last_reference) {
902 		err = ubifs_tnc_remove_ino(c, inode->i_ino);
903 		if (err)
904 			goto out_ro;
905 		ubifs_delete_orphan(c, inode->i_ino);
906 		err = ubifs_add_dirt(c, lnum, ilen);
907 	} else {
908 		union ubifs_key key;
909 
910 		ino_key_init(c, &key, inode->i_ino);
911 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash);
912 	}
913 	if (err)
914 		goto out_ro;
915 
916 	finish_reservation(c);
917 	spin_lock(&ui->ui_lock);
918 	ui->synced_i_size = ui->ui_size;
919 	spin_unlock(&ui->ui_lock);
920 	kfree(ino);
921 	return 0;
922 
923 out_release:
924 	release_head(c, BASEHD);
925 out_ro:
926 	ubifs_ro_mode(c, err);
927 	finish_reservation(c);
928 out_free:
929 	kfree(ino);
930 	return err;
931 }
932 
933 /**
934  * ubifs_jnl_delete_inode - delete an inode.
935  * @c: UBIFS file-system description object
936  * @inode: inode to delete
937  *
938  * This function deletes inode @inode which includes removing it from orphans,
939  * deleting it from TNC and, in some cases, writing a deletion inode to the
940  * journal.
941  *
942  * When regular file inodes are unlinked or a directory inode is removed, the
943  * 'ubifs_jnl_update()' function writes a corresponding deletion inode and
944  * direntry to the media, and adds the inode to orphans. After this, when the
945  * last reference to this inode has been dropped, this function is called. In
946  * general, it has to write one more deletion inode to the media, because if
947  * a commit happened between 'ubifs_jnl_update()' and
948  * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal
949  * anymore, and in fact it might not be on the flash anymore, because it might
950  * have been garbage-collected already. And for optimization reasons UBIFS does
951  * not read the orphan area if it has been unmounted cleanly, so it would have
952  * no indication in the journal that there is a deleted inode which has to be
953  * removed from TNC.
954  *
955  * However, if there was no commit between 'ubifs_jnl_update()' and
956  * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion
957  * inode to the media for the second time. And this is quite a typical case.
958  *
959  * This function returns zero in case of success and a negative error code in
960  * case of failure.
961  */
962 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode)
963 {
964 	int err;
965 	struct ubifs_inode *ui = ubifs_inode(inode);
966 
967 	ubifs_assert(c, inode->i_nlink == 0);
968 
969 	if (ui->del_cmtno != c->cmt_no)
970 		/* A commit happened for sure */
971 		return ubifs_jnl_write_inode(c, inode);
972 
973 	down_read(&c->commit_sem);
974 	/*
975 	 * Check commit number again, because the first test has been done
976 	 * without @c->commit_sem, so a commit might have happened.
977 	 */
978 	if (ui->del_cmtno != c->cmt_no) {
979 		up_read(&c->commit_sem);
980 		return ubifs_jnl_write_inode(c, inode);
981 	}
982 
983 	err = ubifs_tnc_remove_ino(c, inode->i_ino);
984 	if (err)
985 		ubifs_ro_mode(c, err);
986 	else
987 		ubifs_delete_orphan(c, inode->i_ino);
988 	up_read(&c->commit_sem);
989 	return err;
990 }
991 
992 /**
993  * ubifs_jnl_xrename - cross rename two directory entries.
994  * @c: UBIFS file-system description object
995  * @fst_dir: parent inode of 1st directory entry to exchange
996  * @fst_inode: 1st inode to exchange
997  * @fst_nm: name of 1st inode to exchange
998  * @snd_dir: parent inode of 2nd directory entry to exchange
999  * @snd_inode: 2nd inode to exchange
1000  * @snd_nm: name of 2nd inode to exchange
1001  * @sync: non-zero if the write-buffer has to be synchronized
1002  *
1003  * This function implements the cross rename operation which may involve
1004  * writing 2 inodes and 2 directory entries. It marks the written inodes as clean
1005  * and returns zero on success. In case of failure, a negative error code is
1006  * returned.
1007  */
1008 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir,
1009 		      const struct inode *fst_inode,
1010 		      const struct fscrypt_name *fst_nm,
1011 		      const struct inode *snd_dir,
1012 		      const struct inode *snd_inode,
1013 		      const struct fscrypt_name *snd_nm, int sync)
1014 {
1015 	union ubifs_key key;
1016 	struct ubifs_dent_node *dent1, *dent2;
1017 	int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ;
1018 	int aligned_dlen1, aligned_dlen2;
1019 	int twoparents = (fst_dir != snd_dir);
1020 	void *p;
1021 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1022 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1023 	u8 hash_p1[UBIFS_HASH_ARR_SZ];
1024 	u8 hash_p2[UBIFS_HASH_ARR_SZ];
1025 
1026 	ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0);
1027 	ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0);
1028 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex));
1029 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex));
1030 
1031 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1;
1032 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1;
1033 	aligned_dlen1 = ALIGN(dlen1, 8);
1034 	aligned_dlen2 = ALIGN(dlen2, 8);
1035 
1036 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8);
1037 	if (twoparents)
1038 		len += plen;
1039 
1040 	len += ubifs_auth_node_sz(c);
1041 
1042 	dent1 = kzalloc(len, GFP_NOFS);
1043 	if (!dent1)
1044 		return -ENOMEM;
1045 
1046 	/* Make reservation before allocating sequence numbers */
1047 	err = make_reservation(c, BASEHD, len);
1048 	if (err)
1049 		goto out_free;
1050 
1051 	/* Make new dent for 1st entry */
1052 	dent1->ch.node_type = UBIFS_DENT_NODE;
1053 	dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm);
1054 	dent1->inum = cpu_to_le64(fst_inode->i_ino);
1055 	dent1->type = get_dent_type(fst_inode->i_mode);
1056 	dent1->nlen = cpu_to_le16(fname_len(snd_nm));
1057 	memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm));
1058 	dent1->name[fname_len(snd_nm)] = '\0';
1059 	set_dent_cookie(c, dent1);
1060 	zero_dent_node_unused(dent1);
1061 	ubifs_prep_grp_node(c, dent1, dlen1, 0);
1062 	err = ubifs_node_calc_hash(c, dent1, hash_dent1);
1063 	if (err)
1064 		goto out_release;
1065 
1066 	/* Make new dent for 2nd entry */
1067 	dent2 = (void *)dent1 + aligned_dlen1;
1068 	dent2->ch.node_type = UBIFS_DENT_NODE;
1069 	dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm);
1070 	dent2->inum = cpu_to_le64(snd_inode->i_ino);
1071 	dent2->type = get_dent_type(snd_inode->i_mode);
1072 	dent2->nlen = cpu_to_le16(fname_len(fst_nm));
1073 	memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm));
1074 	dent2->name[fname_len(fst_nm)] = '\0';
1075 	set_dent_cookie(c, dent2);
1076 	zero_dent_node_unused(dent2);
1077 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1078 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1079 	if (err)
1080 		goto out_release;
1081 
1082 	p = (void *)dent2 + aligned_dlen2;
1083 	if (!twoparents) {
1084 		pack_inode(c, p, fst_dir, 1);
1085 		err = ubifs_node_calc_hash(c, p, hash_p1);
1086 		if (err)
1087 			goto out_release;
1088 	} else {
1089 		pack_inode(c, p, fst_dir, 0);
1090 		err = ubifs_node_calc_hash(c, p, hash_p1);
1091 		if (err)
1092 			goto out_release;
1093 		p += ALIGN(plen, 8);
1094 		pack_inode(c, p, snd_dir, 1);
1095 		err = ubifs_node_calc_hash(c, p, hash_p2);
1096 		if (err)
1097 			goto out_release;
1098 	}
1099 
1100 	err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync);
1101 	if (err)
1102 		goto out_release;
1103 	if (!sync) {
1104 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1105 
1106 		ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino);
1107 		ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino);
1108 	}
1109 	release_head(c, BASEHD);
1110 
1111 	ubifs_add_auth_dirt(c, lnum);
1112 
1113 	dent_key_init(c, &key, snd_dir->i_ino, snd_nm);
1114 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm);
1115 	if (err)
1116 		goto out_ro;
1117 
1118 	offs += aligned_dlen1;
1119 	dent_key_init(c, &key, fst_dir->i_ino, fst_nm);
1120 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm);
1121 	if (err)
1122 		goto out_ro;
1123 
1124 	offs += aligned_dlen2;
1125 
1126 	ino_key_init(c, &key, fst_dir->i_ino);
1127 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1);
1128 	if (err)
1129 		goto out_ro;
1130 
1131 	if (twoparents) {
1132 		offs += ALIGN(plen, 8);
1133 		ino_key_init(c, &key, snd_dir->i_ino);
1134 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2);
1135 		if (err)
1136 			goto out_ro;
1137 	}
1138 
1139 	finish_reservation(c);
1140 
1141 	mark_inode_clean(c, ubifs_inode(fst_dir));
1142 	if (twoparents)
1143 		mark_inode_clean(c, ubifs_inode(snd_dir));
1144 	kfree(dent1);
1145 	return 0;
1146 
1147 out_release:
1148 	release_head(c, BASEHD);
1149 out_ro:
1150 	ubifs_ro_mode(c, err);
1151 	finish_reservation(c);
1152 out_free:
1153 	kfree(dent1);
1154 	return err;
1155 }
1156 
1157 /**
1158  * ubifs_jnl_rename - rename a directory entry.
1159  * @c: UBIFS file-system description object
1160  * @old_dir: parent inode of directory entry to rename
1161  * @old_dentry: directory entry to rename
1162  * @new_dir: parent inode of directory entry to rename
1163  * @new_dentry: new directory entry (or directory entry to replace)
1164  * @sync: non-zero if the write-buffer has to be synchronized
1165  *
1166  * This function implements the re-name operation which may involve writing up
1167  * to 4 inodes and 2 directory entries. It marks the written inodes as clean
1168  * and returns zero on success. In case of failure, a negative error code is
1169  * returned.
1170  */
1171 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir,
1172 		     const struct inode *old_inode,
1173 		     const struct fscrypt_name *old_nm,
1174 		     const struct inode *new_dir,
1175 		     const struct inode *new_inode,
1176 		     const struct fscrypt_name *new_nm,
1177 		     const struct inode *whiteout, int sync)
1178 {
1179 	void *p;
1180 	union ubifs_key key;
1181 	struct ubifs_dent_node *dent, *dent2;
1182 	int err, dlen1, dlen2, ilen, lnum, offs, len;
1183 	int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ;
1184 	int last_reference = !!(new_inode && new_inode->i_nlink == 0);
1185 	int move = (old_dir != new_dir);
1186 	struct ubifs_inode *uninitialized_var(new_ui);
1187 	u8 hash_old_dir[UBIFS_HASH_ARR_SZ];
1188 	u8 hash_new_dir[UBIFS_HASH_ARR_SZ];
1189 	u8 hash_new_inode[UBIFS_HASH_ARR_SZ];
1190 	u8 hash_dent1[UBIFS_HASH_ARR_SZ];
1191 	u8 hash_dent2[UBIFS_HASH_ARR_SZ];
1192 
1193 	ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0);
1194 	ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0);
1195 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex));
1196 	ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex));
1197 
1198 	dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1;
1199 	dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1;
1200 	if (new_inode) {
1201 		new_ui = ubifs_inode(new_inode);
1202 		ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex));
1203 		ilen = UBIFS_INO_NODE_SZ;
1204 		if (!last_reference)
1205 			ilen += new_ui->data_len;
1206 	} else
1207 		ilen = 0;
1208 
1209 	aligned_dlen1 = ALIGN(dlen1, 8);
1210 	aligned_dlen2 = ALIGN(dlen2, 8);
1211 	len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8);
1212 	if (move)
1213 		len += plen;
1214 
1215 	len += ubifs_auth_node_sz(c);
1216 
1217 	dent = kzalloc(len, GFP_NOFS);
1218 	if (!dent)
1219 		return -ENOMEM;
1220 
1221 	/* Make reservation before allocating sequence numbers */
1222 	err = make_reservation(c, BASEHD, len);
1223 	if (err)
1224 		goto out_free;
1225 
1226 	/* Make new dent */
1227 	dent->ch.node_type = UBIFS_DENT_NODE;
1228 	dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm);
1229 	dent->inum = cpu_to_le64(old_inode->i_ino);
1230 	dent->type = get_dent_type(old_inode->i_mode);
1231 	dent->nlen = cpu_to_le16(fname_len(new_nm));
1232 	memcpy(dent->name, fname_name(new_nm), fname_len(new_nm));
1233 	dent->name[fname_len(new_nm)] = '\0';
1234 	set_dent_cookie(c, dent);
1235 	zero_dent_node_unused(dent);
1236 	ubifs_prep_grp_node(c, dent, dlen1, 0);
1237 	err = ubifs_node_calc_hash(c, dent, hash_dent1);
1238 	if (err)
1239 		goto out_release;
1240 
1241 	dent2 = (void *)dent + aligned_dlen1;
1242 	dent2->ch.node_type = UBIFS_DENT_NODE;
1243 	dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm);
1244 
1245 	if (whiteout) {
1246 		dent2->inum = cpu_to_le64(whiteout->i_ino);
1247 		dent2->type = get_dent_type(whiteout->i_mode);
1248 	} else {
1249 		/* Make deletion dent */
1250 		dent2->inum = 0;
1251 		dent2->type = DT_UNKNOWN;
1252 	}
1253 	dent2->nlen = cpu_to_le16(fname_len(old_nm));
1254 	memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm));
1255 	dent2->name[fname_len(old_nm)] = '\0';
1256 	set_dent_cookie(c, dent2);
1257 	zero_dent_node_unused(dent2);
1258 	ubifs_prep_grp_node(c, dent2, dlen2, 0);
1259 	err = ubifs_node_calc_hash(c, dent2, hash_dent2);
1260 	if (err)
1261 		goto out_release;
1262 
1263 	p = (void *)dent2 + aligned_dlen2;
1264 	if (new_inode) {
1265 		pack_inode(c, p, new_inode, 0);
1266 		err = ubifs_node_calc_hash(c, p, hash_new_inode);
1267 		if (err)
1268 			goto out_release;
1269 
1270 		p += ALIGN(ilen, 8);
1271 	}
1272 
1273 	if (!move) {
1274 		pack_inode(c, p, old_dir, 1);
1275 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1276 		if (err)
1277 			goto out_release;
1278 	} else {
1279 		pack_inode(c, p, old_dir, 0);
1280 		err = ubifs_node_calc_hash(c, p, hash_old_dir);
1281 		if (err)
1282 			goto out_release;
1283 
1284 		p += ALIGN(plen, 8);
1285 		pack_inode(c, p, new_dir, 1);
1286 		err = ubifs_node_calc_hash(c, p, hash_new_dir);
1287 		if (err)
1288 			goto out_release;
1289 	}
1290 
1291 	if (last_reference) {
1292 		err = ubifs_add_orphan(c, new_inode->i_ino);
1293 		if (err) {
1294 			release_head(c, BASEHD);
1295 			goto out_finish;
1296 		}
1297 		new_ui->del_cmtno = c->cmt_no;
1298 	}
1299 
1300 	err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync);
1301 	if (err)
1302 		goto out_release;
1303 	if (!sync) {
1304 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1305 
1306 		ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino);
1307 		ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino);
1308 		if (new_inode)
1309 			ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf,
1310 						  new_inode->i_ino);
1311 	}
1312 	release_head(c, BASEHD);
1313 
1314 	ubifs_add_auth_dirt(c, lnum);
1315 
1316 	dent_key_init(c, &key, new_dir->i_ino, new_nm);
1317 	err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm);
1318 	if (err)
1319 		goto out_ro;
1320 
1321 	offs += aligned_dlen1;
1322 	if (whiteout) {
1323 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1324 		err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm);
1325 		if (err)
1326 			goto out_ro;
1327 
1328 		ubifs_delete_orphan(c, whiteout->i_ino);
1329 	} else {
1330 		err = ubifs_add_dirt(c, lnum, dlen2);
1331 		if (err)
1332 			goto out_ro;
1333 
1334 		dent_key_init(c, &key, old_dir->i_ino, old_nm);
1335 		err = ubifs_tnc_remove_nm(c, &key, old_nm);
1336 		if (err)
1337 			goto out_ro;
1338 	}
1339 
1340 	offs += aligned_dlen2;
1341 	if (new_inode) {
1342 		ino_key_init(c, &key, new_inode->i_ino);
1343 		err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode);
1344 		if (err)
1345 			goto out_ro;
1346 		offs += ALIGN(ilen, 8);
1347 	}
1348 
1349 	ino_key_init(c, &key, old_dir->i_ino);
1350 	err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir);
1351 	if (err)
1352 		goto out_ro;
1353 
1354 	if (move) {
1355 		offs += ALIGN(plen, 8);
1356 		ino_key_init(c, &key, new_dir->i_ino);
1357 		err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir);
1358 		if (err)
1359 			goto out_ro;
1360 	}
1361 
1362 	finish_reservation(c);
1363 	if (new_inode) {
1364 		mark_inode_clean(c, new_ui);
1365 		spin_lock(&new_ui->ui_lock);
1366 		new_ui->synced_i_size = new_ui->ui_size;
1367 		spin_unlock(&new_ui->ui_lock);
1368 	}
1369 	mark_inode_clean(c, ubifs_inode(old_dir));
1370 	if (move)
1371 		mark_inode_clean(c, ubifs_inode(new_dir));
1372 	kfree(dent);
1373 	return 0;
1374 
1375 out_release:
1376 	release_head(c, BASEHD);
1377 out_ro:
1378 	ubifs_ro_mode(c, err);
1379 	if (last_reference)
1380 		ubifs_delete_orphan(c, new_inode->i_ino);
1381 out_finish:
1382 	finish_reservation(c);
1383 out_free:
1384 	kfree(dent);
1385 	return err;
1386 }
1387 
1388 /**
1389  * truncate_data_node - re-compress/encrypt a truncated data node.
1390  * @c: UBIFS file-system description object
1391  * @inode: inode which referes to the data node
1392  * @block: data block number
1393  * @dn: data node to re-compress
1394  * @new_len: new length
1395  *
1396  * This function is used when an inode is truncated and the last data node of
1397  * the inode has to be re-compressed/encrypted and re-written.
1398  */
1399 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode,
1400 			      unsigned int block, struct ubifs_data_node *dn,
1401 			      int *new_len)
1402 {
1403 	void *buf;
1404 	int err, dlen, compr_type, out_len, old_dlen;
1405 
1406 	out_len = le32_to_cpu(dn->size);
1407 	buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS);
1408 	if (!buf)
1409 		return -ENOMEM;
1410 
1411 	dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
1412 	compr_type = le16_to_cpu(dn->compr_type);
1413 
1414 	if (ubifs_crypt_is_encrypted(inode)) {
1415 		err = ubifs_decrypt(inode, dn, &dlen, block);
1416 		if (err)
1417 			goto out;
1418 	}
1419 
1420 	if (compr_type == UBIFS_COMPR_NONE) {
1421 		out_len = *new_len;
1422 	} else {
1423 		err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type);
1424 		if (err)
1425 			goto out;
1426 
1427 		ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type);
1428 	}
1429 
1430 	if (ubifs_crypt_is_encrypted(inode)) {
1431 		err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block);
1432 		if (err)
1433 			goto out;
1434 
1435 		out_len = old_dlen;
1436 	} else {
1437 		dn->compr_size = 0;
1438 	}
1439 
1440 	ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE);
1441 	dn->compr_type = cpu_to_le16(compr_type);
1442 	dn->size = cpu_to_le32(*new_len);
1443 	*new_len = UBIFS_DATA_NODE_SZ + out_len;
1444 	err = 0;
1445 out:
1446 	kfree(buf);
1447 	return err;
1448 }
1449 
1450 /**
1451  * ubifs_jnl_truncate - update the journal for a truncation.
1452  * @c: UBIFS file-system description object
1453  * @inode: inode to truncate
1454  * @old_size: old size
1455  * @new_size: new size
1456  *
1457  * When the size of a file decreases due to truncation, a truncation node is
1458  * written, the journal tree is updated, and the last data block is re-written
1459  * if it has been affected. The inode is also updated in order to synchronize
1460  * the new inode size.
1461  *
1462  * This function marks the inode as clean and returns zero on success. In case
1463  * of failure, a negative error code is returned.
1464  */
1465 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode,
1466 		       loff_t old_size, loff_t new_size)
1467 {
1468 	union ubifs_key key, to_key;
1469 	struct ubifs_ino_node *ino;
1470 	struct ubifs_trun_node *trun;
1471 	struct ubifs_data_node *uninitialized_var(dn);
1472 	int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode);
1473 	struct ubifs_inode *ui = ubifs_inode(inode);
1474 	ino_t inum = inode->i_ino;
1475 	unsigned int blk;
1476 	u8 hash_ino[UBIFS_HASH_ARR_SZ];
1477 	u8 hash_dn[UBIFS_HASH_ARR_SZ];
1478 
1479 	dbg_jnl("ino %lu, size %lld -> %lld",
1480 		(unsigned long)inum, old_size, new_size);
1481 	ubifs_assert(c, !ui->data_len);
1482 	ubifs_assert(c, S_ISREG(inode->i_mode));
1483 	ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
1484 
1485 	sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ +
1486 	     UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR;
1487 
1488 	sz += ubifs_auth_node_sz(c);
1489 
1490 	ino = kmalloc(sz, GFP_NOFS);
1491 	if (!ino)
1492 		return -ENOMEM;
1493 
1494 	trun = (void *)ino + UBIFS_INO_NODE_SZ;
1495 	trun->ch.node_type = UBIFS_TRUN_NODE;
1496 	trun->inum = cpu_to_le32(inum);
1497 	trun->old_size = cpu_to_le64(old_size);
1498 	trun->new_size = cpu_to_le64(new_size);
1499 	zero_trun_node_unused(trun);
1500 
1501 	dlen = new_size & (UBIFS_BLOCK_SIZE - 1);
1502 	if (dlen) {
1503 		/* Get last data block so it can be truncated */
1504 		dn = (void *)trun + UBIFS_TRUN_NODE_SZ;
1505 		blk = new_size >> UBIFS_BLOCK_SHIFT;
1506 		data_key_init(c, &key, inum, blk);
1507 		dbg_jnlk(&key, "last block key ");
1508 		err = ubifs_tnc_lookup(c, &key, dn);
1509 		if (err == -ENOENT)
1510 			dlen = 0; /* Not found (so it is a hole) */
1511 		else if (err)
1512 			goto out_free;
1513 		else {
1514 			int dn_len = le32_to_cpu(dn->size);
1515 
1516 			if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) {
1517 				ubifs_err(c, "bad data node (block %u, inode %lu)",
1518 					  blk, inode->i_ino);
1519 				ubifs_dump_node(c, dn);
1520 				goto out_free;
1521 			}
1522 
1523 			if (dn_len <= dlen)
1524 				dlen = 0; /* Nothing to do */
1525 			else {
1526 				err = truncate_data_node(c, inode, blk, dn, &dlen);
1527 				if (err)
1528 					goto out_free;
1529 			}
1530 		}
1531 	}
1532 
1533 	/* Must make reservation before allocating sequence numbers */
1534 	len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ;
1535 
1536 	if (ubifs_authenticated(c))
1537 		len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c);
1538 	else
1539 		len += dlen;
1540 
1541 	err = make_reservation(c, BASEHD, len);
1542 	if (err)
1543 		goto out_free;
1544 
1545 	pack_inode(c, ino, inode, 0);
1546 	err = ubifs_node_calc_hash(c, ino, hash_ino);
1547 	if (err)
1548 		goto out_release;
1549 
1550 	ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1);
1551 	if (dlen) {
1552 		ubifs_prep_grp_node(c, dn, dlen, 1);
1553 		err = ubifs_node_calc_hash(c, dn, hash_dn);
1554 		if (err)
1555 			goto out_release;
1556 	}
1557 
1558 	err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync);
1559 	if (err)
1560 		goto out_release;
1561 	if (!sync)
1562 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum);
1563 	release_head(c, BASEHD);
1564 
1565 	ubifs_add_auth_dirt(c, lnum);
1566 
1567 	if (dlen) {
1568 		sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ;
1569 		err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn);
1570 		if (err)
1571 			goto out_ro;
1572 	}
1573 
1574 	ino_key_init(c, &key, inum);
1575 	err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino);
1576 	if (err)
1577 		goto out_ro;
1578 
1579 	err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ);
1580 	if (err)
1581 		goto out_ro;
1582 
1583 	bit = new_size & (UBIFS_BLOCK_SIZE - 1);
1584 	blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0);
1585 	data_key_init(c, &key, inum, blk);
1586 
1587 	bit = old_size & (UBIFS_BLOCK_SIZE - 1);
1588 	blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1);
1589 	data_key_init(c, &to_key, inum, blk);
1590 
1591 	err = ubifs_tnc_remove_range(c, &key, &to_key);
1592 	if (err)
1593 		goto out_ro;
1594 
1595 	finish_reservation(c);
1596 	spin_lock(&ui->ui_lock);
1597 	ui->synced_i_size = ui->ui_size;
1598 	spin_unlock(&ui->ui_lock);
1599 	mark_inode_clean(c, ui);
1600 	kfree(ino);
1601 	return 0;
1602 
1603 out_release:
1604 	release_head(c, BASEHD);
1605 out_ro:
1606 	ubifs_ro_mode(c, err);
1607 	finish_reservation(c);
1608 out_free:
1609 	kfree(ino);
1610 	return err;
1611 }
1612 
1613 
1614 /**
1615  * ubifs_jnl_delete_xattr - delete an extended attribute.
1616  * @c: UBIFS file-system description object
1617  * @host: host inode
1618  * @inode: extended attribute inode
1619  * @nm: extended attribute entry name
1620  *
1621  * This function delete an extended attribute which is very similar to
1622  * un-linking regular files - it writes a deletion xentry, a deletion inode and
1623  * updates the target inode. Returns zero in case of success and a negative
1624  * error code in case of failure.
1625  */
1626 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host,
1627 			   const struct inode *inode,
1628 			   const struct fscrypt_name *nm)
1629 {
1630 	int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len;
1631 	struct ubifs_dent_node *xent;
1632 	struct ubifs_ino_node *ino;
1633 	union ubifs_key xent_key, key1, key2;
1634 	int sync = IS_DIRSYNC(host);
1635 	struct ubifs_inode *host_ui = ubifs_inode(host);
1636 	u8 hash[UBIFS_HASH_ARR_SZ];
1637 
1638 	ubifs_assert(c, inode->i_nlink == 0);
1639 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1640 
1641 	/*
1642 	 * Since we are deleting the inode, we do not bother to attach any data
1643 	 * to it and assume its length is %UBIFS_INO_NODE_SZ.
1644 	 */
1645 	xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1;
1646 	aligned_xlen = ALIGN(xlen, 8);
1647 	hlen = host_ui->data_len + UBIFS_INO_NODE_SZ;
1648 	len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8);
1649 
1650 	write_len = len + ubifs_auth_node_sz(c);
1651 
1652 	xent = kzalloc(write_len, GFP_NOFS);
1653 	if (!xent)
1654 		return -ENOMEM;
1655 
1656 	/* Make reservation before allocating sequence numbers */
1657 	err = make_reservation(c, BASEHD, write_len);
1658 	if (err) {
1659 		kfree(xent);
1660 		return err;
1661 	}
1662 
1663 	xent->ch.node_type = UBIFS_XENT_NODE;
1664 	xent_key_init(c, &xent_key, host->i_ino, nm);
1665 	key_write(c, &xent_key, xent->key);
1666 	xent->inum = 0;
1667 	xent->type = get_dent_type(inode->i_mode);
1668 	xent->nlen = cpu_to_le16(fname_len(nm));
1669 	memcpy(xent->name, fname_name(nm), fname_len(nm));
1670 	xent->name[fname_len(nm)] = '\0';
1671 	zero_dent_node_unused(xent);
1672 	ubifs_prep_grp_node(c, xent, xlen, 0);
1673 
1674 	ino = (void *)xent + aligned_xlen;
1675 	pack_inode(c, ino, inode, 0);
1676 	ino = (void *)ino + UBIFS_INO_NODE_SZ;
1677 	pack_inode(c, ino, host, 1);
1678 	err = ubifs_node_calc_hash(c, ino, hash);
1679 	if (err)
1680 		goto out_release;
1681 
1682 	err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync);
1683 	if (!sync && !err)
1684 		ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino);
1685 	release_head(c, BASEHD);
1686 
1687 	ubifs_add_auth_dirt(c, lnum);
1688 	kfree(xent);
1689 	if (err)
1690 		goto out_ro;
1691 
1692 	/* Remove the extended attribute entry from TNC */
1693 	err = ubifs_tnc_remove_nm(c, &xent_key, nm);
1694 	if (err)
1695 		goto out_ro;
1696 	err = ubifs_add_dirt(c, lnum, xlen);
1697 	if (err)
1698 		goto out_ro;
1699 
1700 	/*
1701 	 * Remove all nodes belonging to the extended attribute inode from TNC.
1702 	 * Well, there actually must be only one node - the inode itself.
1703 	 */
1704 	lowest_ino_key(c, &key1, inode->i_ino);
1705 	highest_ino_key(c, &key2, inode->i_ino);
1706 	err = ubifs_tnc_remove_range(c, &key1, &key2);
1707 	if (err)
1708 		goto out_ro;
1709 	err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ);
1710 	if (err)
1711 		goto out_ro;
1712 
1713 	/* And update TNC with the new host inode position */
1714 	ino_key_init(c, &key1, host->i_ino);
1715 	err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash);
1716 	if (err)
1717 		goto out_ro;
1718 
1719 	finish_reservation(c);
1720 	spin_lock(&host_ui->ui_lock);
1721 	host_ui->synced_i_size = host_ui->ui_size;
1722 	spin_unlock(&host_ui->ui_lock);
1723 	mark_inode_clean(c, host_ui);
1724 	return 0;
1725 
1726 out_release:
1727 	kfree(xent);
1728 	release_head(c, BASEHD);
1729 out_ro:
1730 	ubifs_ro_mode(c, err);
1731 	finish_reservation(c);
1732 	return err;
1733 }
1734 
1735 /**
1736  * ubifs_jnl_change_xattr - change an extended attribute.
1737  * @c: UBIFS file-system description object
1738  * @inode: extended attribute inode
1739  * @host: host inode
1740  *
1741  * This function writes the updated version of an extended attribute inode and
1742  * the host inode to the journal (to the base head). The host inode is written
1743  * after the extended attribute inode in order to guarantee that the extended
1744  * attribute will be flushed when the inode is synchronized by 'fsync()' and
1745  * consequently, the write-buffer is synchronized. This function returns zero
1746  * in case of success and a negative error code in case of failure.
1747  */
1748 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode,
1749 			   const struct inode *host)
1750 {
1751 	int err, len1, len2, aligned_len, aligned_len1, lnum, offs;
1752 	struct ubifs_inode *host_ui = ubifs_inode(host);
1753 	struct ubifs_ino_node *ino;
1754 	union ubifs_key key;
1755 	int sync = IS_DIRSYNC(host);
1756 	u8 hash_host[UBIFS_HASH_ARR_SZ];
1757 	u8 hash[UBIFS_HASH_ARR_SZ];
1758 
1759 	dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino);
1760 	ubifs_assert(c, host->i_nlink > 0);
1761 	ubifs_assert(c, inode->i_nlink > 0);
1762 	ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex));
1763 
1764 	len1 = UBIFS_INO_NODE_SZ + host_ui->data_len;
1765 	len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len;
1766 	aligned_len1 = ALIGN(len1, 8);
1767 	aligned_len = aligned_len1 + ALIGN(len2, 8);
1768 
1769 	aligned_len += ubifs_auth_node_sz(c);
1770 
1771 	ino = kzalloc(aligned_len, GFP_NOFS);
1772 	if (!ino)
1773 		return -ENOMEM;
1774 
1775 	/* Make reservation before allocating sequence numbers */
1776 	err = make_reservation(c, BASEHD, aligned_len);
1777 	if (err)
1778 		goto out_free;
1779 
1780 	pack_inode(c, ino, host, 0);
1781 	err = ubifs_node_calc_hash(c, ino, hash_host);
1782 	if (err)
1783 		goto out_release;
1784 	pack_inode(c, (void *)ino + aligned_len1, inode, 1);
1785 	err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash);
1786 	if (err)
1787 		goto out_release;
1788 
1789 	err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0);
1790 	if (!sync && !err) {
1791 		struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf;
1792 
1793 		ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino);
1794 		ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino);
1795 	}
1796 	release_head(c, BASEHD);
1797 	if (err)
1798 		goto out_ro;
1799 
1800 	ubifs_add_auth_dirt(c, lnum);
1801 
1802 	ino_key_init(c, &key, host->i_ino);
1803 	err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host);
1804 	if (err)
1805 		goto out_ro;
1806 
1807 	ino_key_init(c, &key, inode->i_ino);
1808 	err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash);
1809 	if (err)
1810 		goto out_ro;
1811 
1812 	finish_reservation(c);
1813 	spin_lock(&host_ui->ui_lock);
1814 	host_ui->synced_i_size = host_ui->ui_size;
1815 	spin_unlock(&host_ui->ui_lock);
1816 	mark_inode_clean(c, host_ui);
1817 	kfree(ino);
1818 	return 0;
1819 
1820 out_release:
1821 	release_head(c, BASEHD);
1822 out_ro:
1823 	ubifs_ro_mode(c, err);
1824 	finish_reservation(c);
1825 out_free:
1826 	kfree(ino);
1827 	return err;
1828 }
1829 
1830