1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements UBIFS journal. 25 * 26 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 27 * length and position, while a bud logical eraseblock is any LEB in the main 28 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 29 * contains only references to buds and some other stuff like commit 30 * start node. The idea is that when we commit the journal, we do 31 * not copy the data, the buds just become indexed. Since after the commit the 32 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 33 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 34 * become leafs in the future. 35 * 36 * The journal is multi-headed because we want to write data to the journal as 37 * optimally as possible. It is nice to have nodes belonging to the same inode 38 * in one LEB, so we may write data owned by different inodes to different 39 * journal heads, although at present only one data head is used. 40 * 41 * For recovery reasons, the base head contains all inode nodes, all directory 42 * entry nodes and all truncate nodes. This means that the other heads contain 43 * only data nodes. 44 * 45 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 46 * time of commit, the bud is retained to continue to be used in the journal, 47 * even though the "front" of the LEB is now indexed. In that case, the log 48 * reference contains the offset where the bud starts for the purposes of the 49 * journal. 50 * 51 * The journal size has to be limited, because the larger is the journal, the 52 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 53 * takes (indexing in the TNC). 54 * 55 * All the journal write operations like 'ubifs_jnl_update()' here, which write 56 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 57 * unclean reboots. Should the unclean reboot happen, the recovery code drops 58 * all the nodes. 59 */ 60 61 #include "ubifs.h" 62 63 /** 64 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 65 * @ino: the inode to zero out 66 */ 67 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 68 { 69 memset(ino->padding1, 0, 4); 70 memset(ino->padding2, 0, 26); 71 } 72 73 /** 74 * zero_dent_node_unused - zero out unused fields of an on-flash directory 75 * entry node. 76 * @dent: the directory entry to zero out 77 */ 78 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 79 { 80 dent->padding1 = 0; 81 memset(dent->padding2, 0, 4); 82 } 83 84 /** 85 * zero_data_node_unused - zero out unused fields of an on-flash data node. 86 * @data: the data node to zero out 87 */ 88 static inline void zero_data_node_unused(struct ubifs_data_node *data) 89 { 90 memset(data->padding, 0, 2); 91 } 92 93 /** 94 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 95 * node. 96 * @trun: the truncation node to zero out 97 */ 98 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 99 { 100 memset(trun->padding, 0, 12); 101 } 102 103 /** 104 * reserve_space - reserve space in the journal. 105 * @c: UBIFS file-system description object 106 * @jhead: journal head number 107 * @len: node length 108 * 109 * This function reserves space in journal head @head. If the reservation 110 * succeeded, the journal head stays locked and later has to be unlocked using 111 * 'release_head()'. 'write_node()' and 'write_head()' functions also unlock 112 * it. Returns zero in case of success, %-EAGAIN if commit has to be done, and 113 * other negative error codes in case of other failures. 114 */ 115 static int reserve_space(struct ubifs_info *c, int jhead, int len) 116 { 117 int err = 0, err1, retries = 0, avail, lnum, offs, free, squeeze; 118 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 119 120 /* 121 * Typically, the base head has smaller nodes written to it, so it is 122 * better to try to allocate space at the ends of eraseblocks. This is 123 * what the squeeze parameter does. 124 */ 125 squeeze = (jhead == BASEHD); 126 again: 127 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 128 129 if (c->ro_media) { 130 err = -EROFS; 131 goto out_unlock; 132 } 133 134 avail = c->leb_size - wbuf->offs - wbuf->used; 135 if (wbuf->lnum != -1 && avail >= len) 136 return 0; 137 138 /* 139 * Write buffer wasn't seek'ed or there is no enough space - look for an 140 * LEB with some empty space. 141 */ 142 lnum = ubifs_find_free_space(c, len, &free, squeeze); 143 if (lnum >= 0) { 144 /* Found an LEB, add it to the journal head */ 145 offs = c->leb_size - free; 146 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 147 if (err) 148 goto out_return; 149 /* A new bud was successfully allocated and added to the log */ 150 goto out; 151 } 152 153 err = lnum; 154 if (err != -ENOSPC) 155 goto out_unlock; 156 157 /* 158 * No free space, we have to run garbage collector to make 159 * some. But the write-buffer mutex has to be unlocked because 160 * GC also takes it. 161 */ 162 dbg_jnl("no free space jhead %d, run GC", jhead); 163 mutex_unlock(&wbuf->io_mutex); 164 165 lnum = ubifs_garbage_collect(c, 0); 166 if (lnum < 0) { 167 err = lnum; 168 if (err != -ENOSPC) 169 return err; 170 171 /* 172 * GC could not make a free LEB. But someone else may 173 * have allocated new bud for this journal head, 174 * because we dropped @wbuf->io_mutex, so try once 175 * again. 176 */ 177 dbg_jnl("GC couldn't make a free LEB for jhead %d", jhead); 178 if (retries++ < 2) { 179 dbg_jnl("retry (%d)", retries); 180 goto again; 181 } 182 183 dbg_jnl("return -ENOSPC"); 184 return err; 185 } 186 187 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 188 dbg_jnl("got LEB %d for jhead %d", lnum, jhead); 189 avail = c->leb_size - wbuf->offs - wbuf->used; 190 191 if (wbuf->lnum != -1 && avail >= len) { 192 /* 193 * Someone else has switched the journal head and we have 194 * enough space now. This happens when more than one process is 195 * trying to write to the same journal head at the same time. 196 */ 197 dbg_jnl("return LEB %d back, already have LEB %d:%d", 198 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 199 err = ubifs_return_leb(c, lnum); 200 if (err) 201 goto out_unlock; 202 return 0; 203 } 204 205 err = ubifs_add_bud_to_log(c, jhead, lnum, 0); 206 if (err) 207 goto out_return; 208 offs = 0; 209 210 out: 211 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs, wbuf->dtype); 212 if (err) 213 goto out_unlock; 214 215 return 0; 216 217 out_unlock: 218 mutex_unlock(&wbuf->io_mutex); 219 return err; 220 221 out_return: 222 /* An error occurred and the LEB has to be returned to lprops */ 223 ubifs_assert(err < 0); 224 err1 = ubifs_return_leb(c, lnum); 225 if (err1 && err == -EAGAIN) 226 /* 227 * Return original error code only if it is not %-EAGAIN, 228 * which is not really an error. Otherwise, return the error 229 * code of 'ubifs_return_leb()'. 230 */ 231 err = err1; 232 mutex_unlock(&wbuf->io_mutex); 233 return err; 234 } 235 236 /** 237 * write_node - write node to a journal head. 238 * @c: UBIFS file-system description object 239 * @jhead: journal head 240 * @node: node to write 241 * @len: node length 242 * @lnum: LEB number written is returned here 243 * @offs: offset written is returned here 244 * 245 * This function writes a node to reserved space of journal head @jhead. 246 * Returns zero in case of success and a negative error code in case of 247 * failure. 248 */ 249 static int write_node(struct ubifs_info *c, int jhead, void *node, int len, 250 int *lnum, int *offs) 251 { 252 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 253 254 ubifs_assert(jhead != GCHD); 255 256 *lnum = c->jheads[jhead].wbuf.lnum; 257 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 258 259 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len); 260 ubifs_prepare_node(c, node, len, 0); 261 262 return ubifs_wbuf_write_nolock(wbuf, node, len); 263 } 264 265 /** 266 * write_head - write data to a journal head. 267 * @c: UBIFS file-system description object 268 * @jhead: journal head 269 * @buf: buffer to write 270 * @len: length to write 271 * @lnum: LEB number written is returned here 272 * @offs: offset written is returned here 273 * @sync: non-zero if the write-buffer has to by synchronized 274 * 275 * This function is the same as 'write_node()' but it does not assume the 276 * buffer it is writing is a node, so it does not prepare it (which means 277 * initializing common header and calculating CRC). 278 */ 279 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 280 int *lnum, int *offs, int sync) 281 { 282 int err; 283 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 284 285 ubifs_assert(jhead != GCHD); 286 287 *lnum = c->jheads[jhead].wbuf.lnum; 288 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 289 dbg_jnl("jhead %d, LEB %d:%d, len %d", jhead, *lnum, *offs, len); 290 291 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 292 if (err) 293 return err; 294 if (sync) 295 err = ubifs_wbuf_sync_nolock(wbuf); 296 return err; 297 } 298 299 /** 300 * make_reservation - reserve journal space. 301 * @c: UBIFS file-system description object 302 * @jhead: journal head 303 * @len: how many bytes to reserve 304 * 305 * This function makes space reservation in journal head @jhead. The function 306 * takes the commit lock and locks the journal head, and the caller has to 307 * unlock the head and finish the reservation with 'finish_reservation()'. 308 * Returns zero in case of success and a negative error code in case of 309 * failure. 310 * 311 * Note, the journal head may be unlocked as soon as the data is written, while 312 * the commit lock has to be released after the data has been added to the 313 * TNC. 314 */ 315 static int make_reservation(struct ubifs_info *c, int jhead, int len) 316 { 317 int err, cmt_retries = 0, nospc_retries = 0; 318 319 again: 320 down_read(&c->commit_sem); 321 err = reserve_space(c, jhead, len); 322 if (!err) 323 return 0; 324 up_read(&c->commit_sem); 325 326 if (err == -ENOSPC) { 327 /* 328 * GC could not make any progress. We should try to commit 329 * once because it could make some dirty space and GC would 330 * make progress, so make the error -EAGAIN so that the below 331 * will commit and re-try. 332 */ 333 if (nospc_retries++ < 2) { 334 dbg_jnl("no space, retry"); 335 err = -EAGAIN; 336 } 337 338 /* 339 * This means that the budgeting is incorrect. We always have 340 * to be able to write to the media, because all operations are 341 * budgeted. Deletions are not budgeted, though, but we reserve 342 * an extra LEB for them. 343 */ 344 } 345 346 if (err != -EAGAIN) 347 goto out; 348 349 /* 350 * -EAGAIN means that the journal is full or too large, or the above 351 * code wants to do one commit. Do this and re-try. 352 */ 353 if (cmt_retries > 128) { 354 /* 355 * This should not happen unless the journal size limitations 356 * are too tough. 357 */ 358 ubifs_err("stuck in space allocation"); 359 err = -ENOSPC; 360 goto out; 361 } else if (cmt_retries > 32) 362 ubifs_warn("too many space allocation re-tries (%d)", 363 cmt_retries); 364 365 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 366 cmt_retries); 367 cmt_retries += 1; 368 369 err = ubifs_run_commit(c); 370 if (err) 371 return err; 372 goto again; 373 374 out: 375 ubifs_err("cannot reserve %d bytes in jhead %d, error %d", 376 len, jhead, err); 377 if (err == -ENOSPC) { 378 /* This are some budgeting problems, print useful information */ 379 down_write(&c->commit_sem); 380 spin_lock(&c->space_lock); 381 dbg_dump_stack(); 382 dbg_dump_budg(c); 383 spin_unlock(&c->space_lock); 384 dbg_dump_lprops(c); 385 cmt_retries = dbg_check_lprops(c); 386 up_write(&c->commit_sem); 387 } 388 return err; 389 } 390 391 /** 392 * release_head - release a journal head. 393 * @c: UBIFS file-system description object 394 * @jhead: journal head 395 * 396 * This function releases journal head @jhead which was locked by 397 * the 'make_reservation()' function. It has to be called after each successful 398 * 'make_reservation()' invocation. 399 */ 400 static inline void release_head(struct ubifs_info *c, int jhead) 401 { 402 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 403 } 404 405 /** 406 * finish_reservation - finish a reservation. 407 * @c: UBIFS file-system description object 408 * 409 * This function finishes journal space reservation. It must be called after 410 * 'make_reservation()'. 411 */ 412 static void finish_reservation(struct ubifs_info *c) 413 { 414 up_read(&c->commit_sem); 415 } 416 417 /** 418 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 419 * @mode: inode mode 420 */ 421 static int get_dent_type(int mode) 422 { 423 switch (mode & S_IFMT) { 424 case S_IFREG: 425 return UBIFS_ITYPE_REG; 426 case S_IFDIR: 427 return UBIFS_ITYPE_DIR; 428 case S_IFLNK: 429 return UBIFS_ITYPE_LNK; 430 case S_IFBLK: 431 return UBIFS_ITYPE_BLK; 432 case S_IFCHR: 433 return UBIFS_ITYPE_CHR; 434 case S_IFIFO: 435 return UBIFS_ITYPE_FIFO; 436 case S_IFSOCK: 437 return UBIFS_ITYPE_SOCK; 438 default: 439 BUG(); 440 } 441 return 0; 442 } 443 444 /** 445 * pack_inode - pack an inode node. 446 * @c: UBIFS file-system description object 447 * @ino: buffer in which to pack inode node 448 * @inode: inode to pack 449 * @last: indicates the last node of the group 450 */ 451 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 452 const struct inode *inode, int last) 453 { 454 int data_len = 0, last_reference = !inode->i_nlink; 455 struct ubifs_inode *ui = ubifs_inode(inode); 456 457 ino->ch.node_type = UBIFS_INO_NODE; 458 ino_key_init_flash(c, &ino->key, inode->i_ino); 459 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 460 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 461 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 462 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 463 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 464 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 465 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 466 ino->uid = cpu_to_le32(inode->i_uid); 467 ino->gid = cpu_to_le32(inode->i_gid); 468 ino->mode = cpu_to_le32(inode->i_mode); 469 ino->flags = cpu_to_le32(ui->flags); 470 ino->size = cpu_to_le64(ui->ui_size); 471 ino->nlink = cpu_to_le32(inode->i_nlink); 472 ino->compr_type = cpu_to_le16(ui->compr_type); 473 ino->data_len = cpu_to_le32(ui->data_len); 474 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 475 ino->xattr_size = cpu_to_le32(ui->xattr_size); 476 ino->xattr_names = cpu_to_le32(ui->xattr_names); 477 zero_ino_node_unused(ino); 478 479 /* 480 * Drop the attached data if this is a deletion inode, the data is not 481 * needed anymore. 482 */ 483 if (!last_reference) { 484 memcpy(ino->data, ui->data, ui->data_len); 485 data_len = ui->data_len; 486 } 487 488 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 489 } 490 491 /** 492 * mark_inode_clean - mark UBIFS inode as clean. 493 * @c: UBIFS file-system description object 494 * @ui: UBIFS inode to mark as clean 495 * 496 * This helper function marks UBIFS inode @ui as clean by cleaning the 497 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 498 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 499 * just do nothing. 500 */ 501 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 502 { 503 if (ui->dirty) 504 ubifs_release_dirty_inode_budget(c, ui); 505 ui->dirty = 0; 506 } 507 508 /** 509 * ubifs_jnl_update - update inode. 510 * @c: UBIFS file-system description object 511 * @dir: parent inode or host inode in case of extended attributes 512 * @nm: directory entry name 513 * @inode: inode to update 514 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 515 * @xent: non-zero if the directory entry is an extended attribute entry 516 * 517 * This function updates an inode by writing a directory entry (or extended 518 * attribute entry), the inode itself, and the parent directory inode (or the 519 * host inode) to the journal. 520 * 521 * The function writes the host inode @dir last, which is important in case of 522 * extended attributes. Indeed, then we guarantee that if the host inode gets 523 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 524 * the extended attribute inode gets flushed too. And this is exactly what the 525 * user expects - synchronizing the host inode synchronizes its extended 526 * attributes. Similarly, this guarantees that if @dir is synchronized, its 527 * directory entry corresponding to @nm gets synchronized too. 528 * 529 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 530 * function synchronizes the write-buffer. 531 * 532 * This function marks the @dir and @inode inodes as clean and returns zero on 533 * success. In case of failure, a negative error code is returned. 534 */ 535 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 536 const struct qstr *nm, const struct inode *inode, 537 int deletion, int xent) 538 { 539 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 540 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 541 int last_reference = !!(deletion && inode->i_nlink == 0); 542 struct ubifs_inode *ui = ubifs_inode(inode); 543 struct ubifs_inode *dir_ui = ubifs_inode(dir); 544 struct ubifs_dent_node *dent; 545 struct ubifs_ino_node *ino; 546 union ubifs_key dent_key, ino_key; 547 548 dbg_jnl("ino %lu, dent '%.*s', data len %d in dir ino %lu", 549 inode->i_ino, nm->len, nm->name, ui->data_len, dir->i_ino); 550 ubifs_assert(dir_ui->data_len == 0); 551 ubifs_assert(mutex_is_locked(&dir_ui->ui_mutex)); 552 553 dlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 554 ilen = UBIFS_INO_NODE_SZ; 555 556 /* 557 * If the last reference to the inode is being deleted, then there is 558 * no need to attach and write inode data, it is being deleted anyway. 559 * And if the inode is being deleted, no need to synchronize 560 * write-buffer even if the inode is synchronous. 561 */ 562 if (!last_reference) { 563 ilen += ui->data_len; 564 sync |= IS_SYNC(inode); 565 } 566 567 aligned_dlen = ALIGN(dlen, 8); 568 aligned_ilen = ALIGN(ilen, 8); 569 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 570 dent = kmalloc(len, GFP_NOFS); 571 if (!dent) 572 return -ENOMEM; 573 574 /* Make reservation before allocating sequence numbers */ 575 err = make_reservation(c, BASEHD, len); 576 if (err) 577 goto out_free; 578 579 if (!xent) { 580 dent->ch.node_type = UBIFS_DENT_NODE; 581 dent_key_init(c, &dent_key, dir->i_ino, nm); 582 } else { 583 dent->ch.node_type = UBIFS_XENT_NODE; 584 xent_key_init(c, &dent_key, dir->i_ino, nm); 585 } 586 587 key_write(c, &dent_key, dent->key); 588 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 589 dent->type = get_dent_type(inode->i_mode); 590 dent->nlen = cpu_to_le16(nm->len); 591 memcpy(dent->name, nm->name, nm->len); 592 dent->name[nm->len] = '\0'; 593 zero_dent_node_unused(dent); 594 ubifs_prep_grp_node(c, dent, dlen, 0); 595 596 ino = (void *)dent + aligned_dlen; 597 pack_inode(c, ino, inode, 0); 598 ino = (void *)ino + aligned_ilen; 599 pack_inode(c, ino, dir, 1); 600 601 if (last_reference) { 602 err = ubifs_add_orphan(c, inode->i_ino); 603 if (err) { 604 release_head(c, BASEHD); 605 goto out_finish; 606 } 607 ui->del_cmtno = c->cmt_no; 608 } 609 610 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 611 if (err) 612 goto out_release; 613 if (!sync) { 614 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 615 616 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 617 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 618 } 619 release_head(c, BASEHD); 620 kfree(dent); 621 622 if (deletion) { 623 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 624 if (err) 625 goto out_ro; 626 err = ubifs_add_dirt(c, lnum, dlen); 627 } else 628 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, nm); 629 if (err) 630 goto out_ro; 631 632 /* 633 * Note, we do not remove the inode from TNC even if the last reference 634 * to it has just been deleted, because the inode may still be opened. 635 * Instead, the inode has been added to orphan lists and the orphan 636 * subsystem will take further care about it. 637 */ 638 ino_key_init(c, &ino_key, inode->i_ino); 639 ino_offs = dent_offs + aligned_dlen; 640 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen); 641 if (err) 642 goto out_ro; 643 644 ino_key_init(c, &ino_key, dir->i_ino); 645 ino_offs += aligned_ilen; 646 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, UBIFS_INO_NODE_SZ); 647 if (err) 648 goto out_ro; 649 650 finish_reservation(c); 651 spin_lock(&ui->ui_lock); 652 ui->synced_i_size = ui->ui_size; 653 spin_unlock(&ui->ui_lock); 654 mark_inode_clean(c, ui); 655 mark_inode_clean(c, dir_ui); 656 return 0; 657 658 out_finish: 659 finish_reservation(c); 660 out_free: 661 kfree(dent); 662 return err; 663 664 out_release: 665 release_head(c, BASEHD); 666 out_ro: 667 ubifs_ro_mode(c, err); 668 if (last_reference) 669 ubifs_delete_orphan(c, inode->i_ino); 670 finish_reservation(c); 671 return err; 672 } 673 674 /** 675 * ubifs_jnl_write_data - write a data node to the journal. 676 * @c: UBIFS file-system description object 677 * @inode: inode the data node belongs to 678 * @key: node key 679 * @buf: buffer to write 680 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 681 * 682 * This function writes a data node to the journal. Returns %0 if the data node 683 * was successfully written, and a negative error code in case of failure. 684 */ 685 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 686 const union ubifs_key *key, const void *buf, int len) 687 { 688 struct ubifs_data_node *data; 689 int err, lnum, offs, compr_type, out_len; 690 int dlen = UBIFS_DATA_NODE_SZ + UBIFS_BLOCK_SIZE * WORST_COMPR_FACTOR; 691 struct ubifs_inode *ui = ubifs_inode(inode); 692 693 dbg_jnl("ino %lu, blk %u, len %d, key %s", 694 (unsigned long)key_inum(c, key), key_block(c, key), len, 695 DBGKEY(key)); 696 ubifs_assert(len <= UBIFS_BLOCK_SIZE); 697 698 data = kmalloc(dlen, GFP_NOFS); 699 if (!data) 700 return -ENOMEM; 701 702 data->ch.node_type = UBIFS_DATA_NODE; 703 key_write(c, key, &data->key); 704 data->size = cpu_to_le32(len); 705 zero_data_node_unused(data); 706 707 if (!(ui->flags & UBIFS_COMPR_FL)) 708 /* Compression is disabled for this inode */ 709 compr_type = UBIFS_COMPR_NONE; 710 else 711 compr_type = ui->compr_type; 712 713 out_len = dlen - UBIFS_DATA_NODE_SZ; 714 ubifs_compress(buf, len, &data->data, &out_len, &compr_type); 715 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 716 717 dlen = UBIFS_DATA_NODE_SZ + out_len; 718 data->compr_type = cpu_to_le16(compr_type); 719 720 /* Make reservation before allocating sequence numbers */ 721 err = make_reservation(c, DATAHD, dlen); 722 if (err) 723 goto out_free; 724 725 err = write_node(c, DATAHD, data, dlen, &lnum, &offs); 726 if (err) 727 goto out_release; 728 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 729 release_head(c, DATAHD); 730 731 err = ubifs_tnc_add(c, key, lnum, offs, dlen); 732 if (err) 733 goto out_ro; 734 735 finish_reservation(c); 736 kfree(data); 737 return 0; 738 739 out_release: 740 release_head(c, DATAHD); 741 out_ro: 742 ubifs_ro_mode(c, err); 743 finish_reservation(c); 744 out_free: 745 kfree(data); 746 return err; 747 } 748 749 /** 750 * ubifs_jnl_write_inode - flush inode to the journal. 751 * @c: UBIFS file-system description object 752 * @inode: inode to flush 753 * 754 * This function writes inode @inode to the journal. If the inode is 755 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 756 * success and a negative error code in case of failure. 757 */ 758 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 759 { 760 int err, lnum, offs; 761 struct ubifs_ino_node *ino; 762 struct ubifs_inode *ui = ubifs_inode(inode); 763 int sync = 0, len = UBIFS_INO_NODE_SZ, last_reference = !inode->i_nlink; 764 765 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 766 767 /* 768 * If the inode is being deleted, do not write the attached data. No 769 * need to synchronize the write-buffer either. 770 */ 771 if (!last_reference) { 772 len += ui->data_len; 773 sync = IS_SYNC(inode); 774 } 775 ino = kmalloc(len, GFP_NOFS); 776 if (!ino) 777 return -ENOMEM; 778 779 /* Make reservation before allocating sequence numbers */ 780 err = make_reservation(c, BASEHD, len); 781 if (err) 782 goto out_free; 783 784 pack_inode(c, ino, inode, 1); 785 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 786 if (err) 787 goto out_release; 788 if (!sync) 789 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 790 inode->i_ino); 791 release_head(c, BASEHD); 792 793 if (last_reference) { 794 err = ubifs_tnc_remove_ino(c, inode->i_ino); 795 if (err) 796 goto out_ro; 797 ubifs_delete_orphan(c, inode->i_ino); 798 err = ubifs_add_dirt(c, lnum, len); 799 } else { 800 union ubifs_key key; 801 802 ino_key_init(c, &key, inode->i_ino); 803 err = ubifs_tnc_add(c, &key, lnum, offs, len); 804 } 805 if (err) 806 goto out_ro; 807 808 finish_reservation(c); 809 spin_lock(&ui->ui_lock); 810 ui->synced_i_size = ui->ui_size; 811 spin_unlock(&ui->ui_lock); 812 kfree(ino); 813 return 0; 814 815 out_release: 816 release_head(c, BASEHD); 817 out_ro: 818 ubifs_ro_mode(c, err); 819 finish_reservation(c); 820 out_free: 821 kfree(ino); 822 return err; 823 } 824 825 /** 826 * ubifs_jnl_delete_inode - delete an inode. 827 * @c: UBIFS file-system description object 828 * @inode: inode to delete 829 * 830 * This function deletes inode @inode which includes removing it from orphans, 831 * deleting it from TNC and, in some cases, writing a deletion inode to the 832 * journal. 833 * 834 * When regular file inodes are unlinked or a directory inode is removed, the 835 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 836 * direntry to the media, and adds the inode to orphans. After this, when the 837 * last reference to this inode has been dropped, this function is called. In 838 * general, it has to write one more deletion inode to the media, because if 839 * a commit happened between 'ubifs_jnl_update()' and 840 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 841 * anymore, and in fact it might not be on the flash anymore, because it might 842 * have been garbage-collected already. And for optimization reasons UBIFS does 843 * not read the orphan area if it has been unmounted cleanly, so it would have 844 * no indication in the journal that there is a deleted inode which has to be 845 * removed from TNC. 846 * 847 * However, if there was no commit between 'ubifs_jnl_update()' and 848 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 849 * inode to the media for the second time. And this is quite a typical case. 850 * 851 * This function returns zero in case of success and a negative error code in 852 * case of failure. 853 */ 854 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 855 { 856 int err; 857 struct ubifs_inode *ui = ubifs_inode(inode); 858 859 ubifs_assert(inode->i_nlink == 0); 860 861 if (ui->del_cmtno != c->cmt_no) 862 /* A commit happened for sure */ 863 return ubifs_jnl_write_inode(c, inode); 864 865 down_read(&c->commit_sem); 866 /* 867 * Check commit number again, because the first test has been done 868 * without @c->commit_sem, so a commit might have happened. 869 */ 870 if (ui->del_cmtno != c->cmt_no) { 871 up_read(&c->commit_sem); 872 return ubifs_jnl_write_inode(c, inode); 873 } 874 875 err = ubifs_tnc_remove_ino(c, inode->i_ino); 876 if (err) 877 ubifs_ro_mode(c, err); 878 else 879 ubifs_delete_orphan(c, inode->i_ino); 880 up_read(&c->commit_sem); 881 return err; 882 } 883 884 /** 885 * ubifs_jnl_rename - rename a directory entry. 886 * @c: UBIFS file-system description object 887 * @old_dir: parent inode of directory entry to rename 888 * @old_dentry: directory entry to rename 889 * @new_dir: parent inode of directory entry to rename 890 * @new_dentry: new directory entry (or directory entry to replace) 891 * @sync: non-zero if the write-buffer has to be synchronized 892 * 893 * This function implements the re-name operation which may involve writing up 894 * to 3 inodes and 2 directory entries. It marks the written inodes as clean 895 * and returns zero on success. In case of failure, a negative error code is 896 * returned. 897 */ 898 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 899 const struct dentry *old_dentry, 900 const struct inode *new_dir, 901 const struct dentry *new_dentry, int sync) 902 { 903 void *p; 904 union ubifs_key key; 905 struct ubifs_dent_node *dent, *dent2; 906 int err, dlen1, dlen2, ilen, lnum, offs, len; 907 const struct inode *old_inode = old_dentry->d_inode; 908 const struct inode *new_inode = new_dentry->d_inode; 909 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 910 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 911 int move = (old_dir != new_dir); 912 struct ubifs_inode *uninitialized_var(new_ui); 913 914 dbg_jnl("dent '%.*s' in dir ino %lu to dent '%.*s' in dir ino %lu", 915 old_dentry->d_name.len, old_dentry->d_name.name, 916 old_dir->i_ino, new_dentry->d_name.len, 917 new_dentry->d_name.name, new_dir->i_ino); 918 ubifs_assert(ubifs_inode(old_dir)->data_len == 0); 919 ubifs_assert(ubifs_inode(new_dir)->data_len == 0); 920 ubifs_assert(mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 921 ubifs_assert(mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 922 923 dlen1 = UBIFS_DENT_NODE_SZ + new_dentry->d_name.len + 1; 924 dlen2 = UBIFS_DENT_NODE_SZ + old_dentry->d_name.len + 1; 925 if (new_inode) { 926 new_ui = ubifs_inode(new_inode); 927 ubifs_assert(mutex_is_locked(&new_ui->ui_mutex)); 928 ilen = UBIFS_INO_NODE_SZ; 929 if (!last_reference) 930 ilen += new_ui->data_len; 931 } else 932 ilen = 0; 933 934 aligned_dlen1 = ALIGN(dlen1, 8); 935 aligned_dlen2 = ALIGN(dlen2, 8); 936 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 937 if (old_dir != new_dir) 938 len += plen; 939 dent = kmalloc(len, GFP_NOFS); 940 if (!dent) 941 return -ENOMEM; 942 943 /* Make reservation before allocating sequence numbers */ 944 err = make_reservation(c, BASEHD, len); 945 if (err) 946 goto out_free; 947 948 /* Make new dent */ 949 dent->ch.node_type = UBIFS_DENT_NODE; 950 dent_key_init_flash(c, &dent->key, new_dir->i_ino, &new_dentry->d_name); 951 dent->inum = cpu_to_le64(old_inode->i_ino); 952 dent->type = get_dent_type(old_inode->i_mode); 953 dent->nlen = cpu_to_le16(new_dentry->d_name.len); 954 memcpy(dent->name, new_dentry->d_name.name, new_dentry->d_name.len); 955 dent->name[new_dentry->d_name.len] = '\0'; 956 zero_dent_node_unused(dent); 957 ubifs_prep_grp_node(c, dent, dlen1, 0); 958 959 /* Make deletion dent */ 960 dent2 = (void *)dent + aligned_dlen1; 961 dent2->ch.node_type = UBIFS_DENT_NODE; 962 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, 963 &old_dentry->d_name); 964 dent2->inum = 0; 965 dent2->type = DT_UNKNOWN; 966 dent2->nlen = cpu_to_le16(old_dentry->d_name.len); 967 memcpy(dent2->name, old_dentry->d_name.name, old_dentry->d_name.len); 968 dent2->name[old_dentry->d_name.len] = '\0'; 969 zero_dent_node_unused(dent2); 970 ubifs_prep_grp_node(c, dent2, dlen2, 0); 971 972 p = (void *)dent2 + aligned_dlen2; 973 if (new_inode) { 974 pack_inode(c, p, new_inode, 0); 975 p += ALIGN(ilen, 8); 976 } 977 978 if (!move) 979 pack_inode(c, p, old_dir, 1); 980 else { 981 pack_inode(c, p, old_dir, 0); 982 p += ALIGN(plen, 8); 983 pack_inode(c, p, new_dir, 1); 984 } 985 986 if (last_reference) { 987 err = ubifs_add_orphan(c, new_inode->i_ino); 988 if (err) { 989 release_head(c, BASEHD); 990 goto out_finish; 991 } 992 new_ui->del_cmtno = c->cmt_no; 993 } 994 995 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 996 if (err) 997 goto out_release; 998 if (!sync) { 999 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1000 1001 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1002 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1003 if (new_inode) 1004 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1005 new_inode->i_ino); 1006 } 1007 release_head(c, BASEHD); 1008 1009 dent_key_init(c, &key, new_dir->i_ino, &new_dentry->d_name); 1010 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, &new_dentry->d_name); 1011 if (err) 1012 goto out_ro; 1013 1014 err = ubifs_add_dirt(c, lnum, dlen2); 1015 if (err) 1016 goto out_ro; 1017 1018 dent_key_init(c, &key, old_dir->i_ino, &old_dentry->d_name); 1019 err = ubifs_tnc_remove_nm(c, &key, &old_dentry->d_name); 1020 if (err) 1021 goto out_ro; 1022 1023 offs += aligned_dlen1 + aligned_dlen2; 1024 if (new_inode) { 1025 ino_key_init(c, &key, new_inode->i_ino); 1026 err = ubifs_tnc_add(c, &key, lnum, offs, ilen); 1027 if (err) 1028 goto out_ro; 1029 offs += ALIGN(ilen, 8); 1030 } 1031 1032 ino_key_init(c, &key, old_dir->i_ino); 1033 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1034 if (err) 1035 goto out_ro; 1036 1037 if (old_dir != new_dir) { 1038 offs += ALIGN(plen, 8); 1039 ino_key_init(c, &key, new_dir->i_ino); 1040 err = ubifs_tnc_add(c, &key, lnum, offs, plen); 1041 if (err) 1042 goto out_ro; 1043 } 1044 1045 finish_reservation(c); 1046 if (new_inode) { 1047 mark_inode_clean(c, new_ui); 1048 spin_lock(&new_ui->ui_lock); 1049 new_ui->synced_i_size = new_ui->ui_size; 1050 spin_unlock(&new_ui->ui_lock); 1051 } 1052 mark_inode_clean(c, ubifs_inode(old_dir)); 1053 if (move) 1054 mark_inode_clean(c, ubifs_inode(new_dir)); 1055 kfree(dent); 1056 return 0; 1057 1058 out_release: 1059 release_head(c, BASEHD); 1060 out_ro: 1061 ubifs_ro_mode(c, err); 1062 if (last_reference) 1063 ubifs_delete_orphan(c, new_inode->i_ino); 1064 out_finish: 1065 finish_reservation(c); 1066 out_free: 1067 kfree(dent); 1068 return err; 1069 } 1070 1071 /** 1072 * recomp_data_node - re-compress a truncated data node. 1073 * @dn: data node to re-compress 1074 * @new_len: new length 1075 * 1076 * This function is used when an inode is truncated and the last data node of 1077 * the inode has to be re-compressed and re-written. 1078 */ 1079 static int recomp_data_node(struct ubifs_data_node *dn, int *new_len) 1080 { 1081 void *buf; 1082 int err, len, compr_type, out_len; 1083 1084 out_len = le32_to_cpu(dn->size); 1085 buf = kmalloc(out_len * WORST_COMPR_FACTOR, GFP_NOFS); 1086 if (!buf) 1087 return -ENOMEM; 1088 1089 len = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1090 compr_type = le16_to_cpu(dn->compr_type); 1091 err = ubifs_decompress(&dn->data, len, buf, &out_len, compr_type); 1092 if (err) 1093 goto out; 1094 1095 ubifs_compress(buf, *new_len, &dn->data, &out_len, &compr_type); 1096 ubifs_assert(out_len <= UBIFS_BLOCK_SIZE); 1097 dn->compr_type = cpu_to_le16(compr_type); 1098 dn->size = cpu_to_le32(*new_len); 1099 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1100 out: 1101 kfree(buf); 1102 return err; 1103 } 1104 1105 /** 1106 * ubifs_jnl_truncate - update the journal for a truncation. 1107 * @c: UBIFS file-system description object 1108 * @inode: inode to truncate 1109 * @old_size: old size 1110 * @new_size: new size 1111 * 1112 * When the size of a file decreases due to truncation, a truncation node is 1113 * written, the journal tree is updated, and the last data block is re-written 1114 * if it has been affected. The inode is also updated in order to synchronize 1115 * the new inode size. 1116 * 1117 * This function marks the inode as clean and returns zero on success. In case 1118 * of failure, a negative error code is returned. 1119 */ 1120 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1121 loff_t old_size, loff_t new_size) 1122 { 1123 union ubifs_key key, to_key; 1124 struct ubifs_ino_node *ino; 1125 struct ubifs_trun_node *trun; 1126 struct ubifs_data_node *uninitialized_var(dn); 1127 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1128 struct ubifs_inode *ui = ubifs_inode(inode); 1129 ino_t inum = inode->i_ino; 1130 unsigned int blk; 1131 1132 dbg_jnl("ino %lu, size %lld -> %lld", 1133 (unsigned long)inum, old_size, new_size); 1134 ubifs_assert(!ui->data_len); 1135 ubifs_assert(S_ISREG(inode->i_mode)); 1136 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 1137 1138 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1139 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1140 ino = kmalloc(sz, GFP_NOFS); 1141 if (!ino) 1142 return -ENOMEM; 1143 1144 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1145 trun->ch.node_type = UBIFS_TRUN_NODE; 1146 trun->inum = cpu_to_le32(inum); 1147 trun->old_size = cpu_to_le64(old_size); 1148 trun->new_size = cpu_to_le64(new_size); 1149 zero_trun_node_unused(trun); 1150 1151 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1152 if (dlen) { 1153 /* Get last data block so it can be truncated */ 1154 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1155 blk = new_size >> UBIFS_BLOCK_SHIFT; 1156 data_key_init(c, &key, inum, blk); 1157 dbg_jnl("last block key %s", DBGKEY(&key)); 1158 err = ubifs_tnc_lookup(c, &key, dn); 1159 if (err == -ENOENT) 1160 dlen = 0; /* Not found (so it is a hole) */ 1161 else if (err) 1162 goto out_free; 1163 else { 1164 if (le32_to_cpu(dn->size) <= dlen) 1165 dlen = 0; /* Nothing to do */ 1166 else { 1167 int compr_type = le16_to_cpu(dn->compr_type); 1168 1169 if (compr_type != UBIFS_COMPR_NONE) { 1170 err = recomp_data_node(dn, &dlen); 1171 if (err) 1172 goto out_free; 1173 } else { 1174 dn->size = cpu_to_le32(dlen); 1175 dlen += UBIFS_DATA_NODE_SZ; 1176 } 1177 zero_data_node_unused(dn); 1178 } 1179 } 1180 } 1181 1182 /* Must make reservation before allocating sequence numbers */ 1183 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1184 if (dlen) 1185 len += dlen; 1186 err = make_reservation(c, BASEHD, len); 1187 if (err) 1188 goto out_free; 1189 1190 pack_inode(c, ino, inode, 0); 1191 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1192 if (dlen) 1193 ubifs_prep_grp_node(c, dn, dlen, 1); 1194 1195 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1196 if (err) 1197 goto out_release; 1198 if (!sync) 1199 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1200 release_head(c, BASEHD); 1201 1202 if (dlen) { 1203 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1204 err = ubifs_tnc_add(c, &key, lnum, sz, dlen); 1205 if (err) 1206 goto out_ro; 1207 } 1208 1209 ino_key_init(c, &key, inum); 1210 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ); 1211 if (err) 1212 goto out_ro; 1213 1214 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1215 if (err) 1216 goto out_ro; 1217 1218 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1219 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1220 data_key_init(c, &key, inum, blk); 1221 1222 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1223 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1224 data_key_init(c, &to_key, inum, blk); 1225 1226 err = ubifs_tnc_remove_range(c, &key, &to_key); 1227 if (err) 1228 goto out_ro; 1229 1230 finish_reservation(c); 1231 spin_lock(&ui->ui_lock); 1232 ui->synced_i_size = ui->ui_size; 1233 spin_unlock(&ui->ui_lock); 1234 mark_inode_clean(c, ui); 1235 kfree(ino); 1236 return 0; 1237 1238 out_release: 1239 release_head(c, BASEHD); 1240 out_ro: 1241 ubifs_ro_mode(c, err); 1242 finish_reservation(c); 1243 out_free: 1244 kfree(ino); 1245 return err; 1246 } 1247 1248 #ifdef CONFIG_UBIFS_FS_XATTR 1249 1250 /** 1251 * ubifs_jnl_delete_xattr - delete an extended attribute. 1252 * @c: UBIFS file-system description object 1253 * @host: host inode 1254 * @inode: extended attribute inode 1255 * @nm: extended attribute entry name 1256 * 1257 * This function delete an extended attribute which is very similar to 1258 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1259 * updates the target inode. Returns zero in case of success and a negative 1260 * error code in case of failure. 1261 */ 1262 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1263 const struct inode *inode, const struct qstr *nm) 1264 { 1265 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen; 1266 struct ubifs_dent_node *xent; 1267 struct ubifs_ino_node *ino; 1268 union ubifs_key xent_key, key1, key2; 1269 int sync = IS_DIRSYNC(host); 1270 struct ubifs_inode *host_ui = ubifs_inode(host); 1271 1272 dbg_jnl("host %lu, xattr ino %lu, name '%s', data len %d", 1273 host->i_ino, inode->i_ino, nm->name, 1274 ubifs_inode(inode)->data_len); 1275 ubifs_assert(inode->i_nlink == 0); 1276 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1277 1278 /* 1279 * Since we are deleting the inode, we do not bother to attach any data 1280 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1281 */ 1282 xlen = UBIFS_DENT_NODE_SZ + nm->len + 1; 1283 aligned_xlen = ALIGN(xlen, 8); 1284 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1285 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1286 1287 xent = kmalloc(len, GFP_NOFS); 1288 if (!xent) 1289 return -ENOMEM; 1290 1291 /* Make reservation before allocating sequence numbers */ 1292 err = make_reservation(c, BASEHD, len); 1293 if (err) { 1294 kfree(xent); 1295 return err; 1296 } 1297 1298 xent->ch.node_type = UBIFS_XENT_NODE; 1299 xent_key_init(c, &xent_key, host->i_ino, nm); 1300 key_write(c, &xent_key, xent->key); 1301 xent->inum = 0; 1302 xent->type = get_dent_type(inode->i_mode); 1303 xent->nlen = cpu_to_le16(nm->len); 1304 memcpy(xent->name, nm->name, nm->len); 1305 xent->name[nm->len] = '\0'; 1306 zero_dent_node_unused(xent); 1307 ubifs_prep_grp_node(c, xent, xlen, 0); 1308 1309 ino = (void *)xent + aligned_xlen; 1310 pack_inode(c, ino, inode, 0); 1311 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1312 pack_inode(c, ino, host, 1); 1313 1314 err = write_head(c, BASEHD, xent, len, &lnum, &xent_offs, sync); 1315 if (!sync && !err) 1316 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1317 release_head(c, BASEHD); 1318 kfree(xent); 1319 if (err) 1320 goto out_ro; 1321 1322 /* Remove the extended attribute entry from TNC */ 1323 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1324 if (err) 1325 goto out_ro; 1326 err = ubifs_add_dirt(c, lnum, xlen); 1327 if (err) 1328 goto out_ro; 1329 1330 /* 1331 * Remove all nodes belonging to the extended attribute inode from TNC. 1332 * Well, there actually must be only one node - the inode itself. 1333 */ 1334 lowest_ino_key(c, &key1, inode->i_ino); 1335 highest_ino_key(c, &key2, inode->i_ino); 1336 err = ubifs_tnc_remove_range(c, &key1, &key2); 1337 if (err) 1338 goto out_ro; 1339 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1340 if (err) 1341 goto out_ro; 1342 1343 /* And update TNC with the new host inode position */ 1344 ino_key_init(c, &key1, host->i_ino); 1345 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen); 1346 if (err) 1347 goto out_ro; 1348 1349 finish_reservation(c); 1350 spin_lock(&host_ui->ui_lock); 1351 host_ui->synced_i_size = host_ui->ui_size; 1352 spin_unlock(&host_ui->ui_lock); 1353 mark_inode_clean(c, host_ui); 1354 return 0; 1355 1356 out_ro: 1357 ubifs_ro_mode(c, err); 1358 finish_reservation(c); 1359 return err; 1360 } 1361 1362 /** 1363 * ubifs_jnl_change_xattr - change an extended attribute. 1364 * @c: UBIFS file-system description object 1365 * @inode: extended attribute inode 1366 * @host: host inode 1367 * 1368 * This function writes the updated version of an extended attribute inode and 1369 * the host inode tho the journal (to the base head). The host inode is written 1370 * after the extended attribute inode in order to guarantee that the extended 1371 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1372 * consequently, the write-buffer is synchronized. This function returns zero 1373 * in case of success and a negative error code in case of failure. 1374 */ 1375 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1376 const struct inode *host) 1377 { 1378 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1379 struct ubifs_inode *host_ui = ubifs_inode(host); 1380 struct ubifs_ino_node *ino; 1381 union ubifs_key key; 1382 int sync = IS_DIRSYNC(host); 1383 1384 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1385 ubifs_assert(host->i_nlink > 0); 1386 ubifs_assert(inode->i_nlink > 0); 1387 ubifs_assert(mutex_is_locked(&host_ui->ui_mutex)); 1388 1389 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1390 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1391 aligned_len1 = ALIGN(len1, 8); 1392 aligned_len = aligned_len1 + ALIGN(len2, 8); 1393 1394 ino = kmalloc(aligned_len, GFP_NOFS); 1395 if (!ino) 1396 return -ENOMEM; 1397 1398 /* Make reservation before allocating sequence numbers */ 1399 err = make_reservation(c, BASEHD, aligned_len); 1400 if (err) 1401 goto out_free; 1402 1403 pack_inode(c, ino, host, 0); 1404 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1405 1406 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1407 if (!sync && !err) { 1408 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1409 1410 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1411 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1412 } 1413 release_head(c, BASEHD); 1414 if (err) 1415 goto out_ro; 1416 1417 ino_key_init(c, &key, host->i_ino); 1418 err = ubifs_tnc_add(c, &key, lnum, offs, len1); 1419 if (err) 1420 goto out_ro; 1421 1422 ino_key_init(c, &key, inode->i_ino); 1423 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2); 1424 if (err) 1425 goto out_ro; 1426 1427 finish_reservation(c); 1428 spin_lock(&host_ui->ui_lock); 1429 host_ui->synced_i_size = host_ui->ui_size; 1430 spin_unlock(&host_ui->ui_lock); 1431 mark_inode_clean(c, host_ui); 1432 kfree(ino); 1433 return 0; 1434 1435 out_ro: 1436 ubifs_ro_mode(c, err); 1437 finish_reservation(c); 1438 out_free: 1439 kfree(ino); 1440 return err; 1441 } 1442 1443 #endif /* CONFIG_UBIFS_FS_XATTR */ 1444