1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements UBIFS journal. 13 * 14 * The journal consists of 2 parts - the log and bud LEBs. The log has fixed 15 * length and position, while a bud logical eraseblock is any LEB in the main 16 * area. Buds contain file system data - data nodes, inode nodes, etc. The log 17 * contains only references to buds and some other stuff like commit 18 * start node. The idea is that when we commit the journal, we do 19 * not copy the data, the buds just become indexed. Since after the commit the 20 * nodes in bud eraseblocks become leaf nodes of the file system index tree, we 21 * use term "bud". Analogy is obvious, bud eraseblocks contain nodes which will 22 * become leafs in the future. 23 * 24 * The journal is multi-headed because we want to write data to the journal as 25 * optimally as possible. It is nice to have nodes belonging to the same inode 26 * in one LEB, so we may write data owned by different inodes to different 27 * journal heads, although at present only one data head is used. 28 * 29 * For recovery reasons, the base head contains all inode nodes, all directory 30 * entry nodes and all truncate nodes. This means that the other heads contain 31 * only data nodes. 32 * 33 * Bud LEBs may be half-indexed. For example, if the bud was not full at the 34 * time of commit, the bud is retained to continue to be used in the journal, 35 * even though the "front" of the LEB is now indexed. In that case, the log 36 * reference contains the offset where the bud starts for the purposes of the 37 * journal. 38 * 39 * The journal size has to be limited, because the larger is the journal, the 40 * longer it takes to mount UBIFS (scanning the journal) and the more memory it 41 * takes (indexing in the TNC). 42 * 43 * All the journal write operations like 'ubifs_jnl_update()' here, which write 44 * multiple UBIFS nodes to the journal at one go, are atomic with respect to 45 * unclean reboots. Should the unclean reboot happen, the recovery code drops 46 * all the nodes. 47 */ 48 49 #include "ubifs.h" 50 51 /** 52 * zero_ino_node_unused - zero out unused fields of an on-flash inode node. 53 * @ino: the inode to zero out 54 */ 55 static inline void zero_ino_node_unused(struct ubifs_ino_node *ino) 56 { 57 memset(ino->padding1, 0, 4); 58 memset(ino->padding2, 0, 26); 59 } 60 61 /** 62 * zero_dent_node_unused - zero out unused fields of an on-flash directory 63 * entry node. 64 * @dent: the directory entry to zero out 65 */ 66 static inline void zero_dent_node_unused(struct ubifs_dent_node *dent) 67 { 68 dent->padding1 = 0; 69 } 70 71 /** 72 * zero_trun_node_unused - zero out unused fields of an on-flash truncation 73 * node. 74 * @trun: the truncation node to zero out 75 */ 76 static inline void zero_trun_node_unused(struct ubifs_trun_node *trun) 77 { 78 memset(trun->padding, 0, 12); 79 } 80 81 static void ubifs_add_auth_dirt(struct ubifs_info *c, int lnum) 82 { 83 if (ubifs_authenticated(c)) 84 ubifs_add_dirt(c, lnum, ubifs_auth_node_sz(c)); 85 } 86 87 /** 88 * reserve_space - reserve space in the journal. 89 * @c: UBIFS file-system description object 90 * @jhead: journal head number 91 * @len: node length 92 * 93 * This function reserves space in journal head @head. If the reservation 94 * succeeded, the journal head stays locked and later has to be unlocked using 95 * 'release_head()'. Returns zero in case of success, %-EAGAIN if commit has to 96 * be done, and other negative error codes in case of other failures. 97 */ 98 static int reserve_space(struct ubifs_info *c, int jhead, int len) 99 { 100 int err = 0, err1, retries = 0, avail, lnum, offs, squeeze; 101 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 102 103 /* 104 * Typically, the base head has smaller nodes written to it, so it is 105 * better to try to allocate space at the ends of eraseblocks. This is 106 * what the squeeze parameter does. 107 */ 108 ubifs_assert(c, !c->ro_media && !c->ro_mount); 109 squeeze = (jhead == BASEHD); 110 again: 111 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 112 113 if (c->ro_error) { 114 err = -EROFS; 115 goto out_unlock; 116 } 117 118 avail = c->leb_size - wbuf->offs - wbuf->used; 119 if (wbuf->lnum != -1 && avail >= len) 120 return 0; 121 122 /* 123 * Write buffer wasn't seek'ed or there is no enough space - look for an 124 * LEB with some empty space. 125 */ 126 lnum = ubifs_find_free_space(c, len, &offs, squeeze); 127 if (lnum >= 0) 128 goto out; 129 130 err = lnum; 131 if (err != -ENOSPC) 132 goto out_unlock; 133 134 /* 135 * No free space, we have to run garbage collector to make 136 * some. But the write-buffer mutex has to be unlocked because 137 * GC also takes it. 138 */ 139 dbg_jnl("no free space in jhead %s, run GC", dbg_jhead(jhead)); 140 mutex_unlock(&wbuf->io_mutex); 141 142 lnum = ubifs_garbage_collect(c, 0); 143 if (lnum < 0) { 144 err = lnum; 145 if (err != -ENOSPC) 146 return err; 147 148 /* 149 * GC could not make a free LEB. But someone else may 150 * have allocated new bud for this journal head, 151 * because we dropped @wbuf->io_mutex, so try once 152 * again. 153 */ 154 dbg_jnl("GC couldn't make a free LEB for jhead %s", 155 dbg_jhead(jhead)); 156 if (retries++ < 2) { 157 dbg_jnl("retry (%d)", retries); 158 goto again; 159 } 160 161 dbg_jnl("return -ENOSPC"); 162 return err; 163 } 164 165 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 166 dbg_jnl("got LEB %d for jhead %s", lnum, dbg_jhead(jhead)); 167 avail = c->leb_size - wbuf->offs - wbuf->used; 168 169 if (wbuf->lnum != -1 && avail >= len) { 170 /* 171 * Someone else has switched the journal head and we have 172 * enough space now. This happens when more than one process is 173 * trying to write to the same journal head at the same time. 174 */ 175 dbg_jnl("return LEB %d back, already have LEB %d:%d", 176 lnum, wbuf->lnum, wbuf->offs + wbuf->used); 177 err = ubifs_return_leb(c, lnum); 178 if (err) 179 goto out_unlock; 180 return 0; 181 } 182 183 offs = 0; 184 185 out: 186 /* 187 * Make sure we synchronize the write-buffer before we add the new bud 188 * to the log. Otherwise we may have a power cut after the log 189 * reference node for the last bud (@lnum) is written but before the 190 * write-buffer data are written to the next-to-last bud 191 * (@wbuf->lnum). And the effect would be that the recovery would see 192 * that there is corruption in the next-to-last bud. 193 */ 194 err = ubifs_wbuf_sync_nolock(wbuf); 195 if (err) 196 goto out_return; 197 err = ubifs_add_bud_to_log(c, jhead, lnum, offs); 198 if (err) 199 goto out_return; 200 err = ubifs_wbuf_seek_nolock(wbuf, lnum, offs); 201 if (err) 202 goto out_unlock; 203 204 return 0; 205 206 out_unlock: 207 mutex_unlock(&wbuf->io_mutex); 208 return err; 209 210 out_return: 211 /* An error occurred and the LEB has to be returned to lprops */ 212 ubifs_assert(c, err < 0); 213 err1 = ubifs_return_leb(c, lnum); 214 if (err1 && err == -EAGAIN) 215 /* 216 * Return original error code only if it is not %-EAGAIN, 217 * which is not really an error. Otherwise, return the error 218 * code of 'ubifs_return_leb()'. 219 */ 220 err = err1; 221 mutex_unlock(&wbuf->io_mutex); 222 return err; 223 } 224 225 static int ubifs_hash_nodes(struct ubifs_info *c, void *node, 226 int len, struct shash_desc *hash) 227 { 228 int auth_node_size = ubifs_auth_node_sz(c); 229 int err; 230 231 while (1) { 232 const struct ubifs_ch *ch = node; 233 int nodelen = le32_to_cpu(ch->len); 234 235 ubifs_assert(c, len >= auth_node_size); 236 237 if (len == auth_node_size) 238 break; 239 240 ubifs_assert(c, len > nodelen); 241 ubifs_assert(c, ch->magic == cpu_to_le32(UBIFS_NODE_MAGIC)); 242 243 err = ubifs_shash_update(c, hash, (void *)node, nodelen); 244 if (err) 245 return err; 246 247 node += ALIGN(nodelen, 8); 248 len -= ALIGN(nodelen, 8); 249 } 250 251 return ubifs_prepare_auth_node(c, node, hash); 252 } 253 254 /** 255 * write_head - write data to a journal head. 256 * @c: UBIFS file-system description object 257 * @jhead: journal head 258 * @buf: buffer to write 259 * @len: length to write 260 * @lnum: LEB number written is returned here 261 * @offs: offset written is returned here 262 * @sync: non-zero if the write-buffer has to by synchronized 263 * 264 * This function writes data to the reserved space of journal head @jhead. 265 * Returns zero in case of success and a negative error code in case of 266 * failure. 267 */ 268 static int write_head(struct ubifs_info *c, int jhead, void *buf, int len, 269 int *lnum, int *offs, int sync) 270 { 271 int err; 272 struct ubifs_wbuf *wbuf = &c->jheads[jhead].wbuf; 273 274 ubifs_assert(c, jhead != GCHD); 275 276 *lnum = c->jheads[jhead].wbuf.lnum; 277 *offs = c->jheads[jhead].wbuf.offs + c->jheads[jhead].wbuf.used; 278 dbg_jnl("jhead %s, LEB %d:%d, len %d", 279 dbg_jhead(jhead), *lnum, *offs, len); 280 281 if (ubifs_authenticated(c)) { 282 err = ubifs_hash_nodes(c, buf, len, c->jheads[jhead].log_hash); 283 if (err) 284 return err; 285 } 286 287 err = ubifs_wbuf_write_nolock(wbuf, buf, len); 288 if (err) 289 return err; 290 if (sync) 291 err = ubifs_wbuf_sync_nolock(wbuf); 292 return err; 293 } 294 295 /** 296 * make_reservation - reserve journal space. 297 * @c: UBIFS file-system description object 298 * @jhead: journal head 299 * @len: how many bytes to reserve 300 * 301 * This function makes space reservation in journal head @jhead. The function 302 * takes the commit lock and locks the journal head, and the caller has to 303 * unlock the head and finish the reservation with 'finish_reservation()'. 304 * Returns zero in case of success and a negative error code in case of 305 * failure. 306 * 307 * Note, the journal head may be unlocked as soon as the data is written, while 308 * the commit lock has to be released after the data has been added to the 309 * TNC. 310 */ 311 static int make_reservation(struct ubifs_info *c, int jhead, int len) 312 { 313 int err, cmt_retries = 0, nospc_retries = 0; 314 315 again: 316 down_read(&c->commit_sem); 317 err = reserve_space(c, jhead, len); 318 if (!err) 319 /* c->commit_sem will get released via finish_reservation(). */ 320 return 0; 321 up_read(&c->commit_sem); 322 323 if (err == -ENOSPC) { 324 /* 325 * GC could not make any progress. We should try to commit 326 * once because it could make some dirty space and GC would 327 * make progress, so make the error -EAGAIN so that the below 328 * will commit and re-try. 329 */ 330 if (nospc_retries++ < 2) { 331 dbg_jnl("no space, retry"); 332 err = -EAGAIN; 333 } 334 335 /* 336 * This means that the budgeting is incorrect. We always have 337 * to be able to write to the media, because all operations are 338 * budgeted. Deletions are not budgeted, though, but we reserve 339 * an extra LEB for them. 340 */ 341 } 342 343 if (err != -EAGAIN) 344 goto out; 345 346 /* 347 * -EAGAIN means that the journal is full or too large, or the above 348 * code wants to do one commit. Do this and re-try. 349 */ 350 if (cmt_retries > 128) { 351 /* 352 * This should not happen unless the journal size limitations 353 * are too tough. 354 */ 355 ubifs_err(c, "stuck in space allocation"); 356 err = -ENOSPC; 357 goto out; 358 } else if (cmt_retries > 32) 359 ubifs_warn(c, "too many space allocation re-tries (%d)", 360 cmt_retries); 361 362 dbg_jnl("-EAGAIN, commit and retry (retried %d times)", 363 cmt_retries); 364 cmt_retries += 1; 365 366 err = ubifs_run_commit(c); 367 if (err) 368 return err; 369 goto again; 370 371 out: 372 ubifs_err(c, "cannot reserve %d bytes in jhead %d, error %d", 373 len, jhead, err); 374 if (err == -ENOSPC) { 375 /* This are some budgeting problems, print useful information */ 376 down_write(&c->commit_sem); 377 dump_stack(); 378 ubifs_dump_budg(c, &c->bi); 379 ubifs_dump_lprops(c); 380 cmt_retries = dbg_check_lprops(c); 381 up_write(&c->commit_sem); 382 } 383 return err; 384 } 385 386 /** 387 * release_head - release a journal head. 388 * @c: UBIFS file-system description object 389 * @jhead: journal head 390 * 391 * This function releases journal head @jhead which was locked by 392 * the 'make_reservation()' function. It has to be called after each successful 393 * 'make_reservation()' invocation. 394 */ 395 static inline void release_head(struct ubifs_info *c, int jhead) 396 { 397 mutex_unlock(&c->jheads[jhead].wbuf.io_mutex); 398 } 399 400 /** 401 * finish_reservation - finish a reservation. 402 * @c: UBIFS file-system description object 403 * 404 * This function finishes journal space reservation. It must be called after 405 * 'make_reservation()'. 406 */ 407 static void finish_reservation(struct ubifs_info *c) 408 { 409 up_read(&c->commit_sem); 410 } 411 412 /** 413 * get_dent_type - translate VFS inode mode to UBIFS directory entry type. 414 * @mode: inode mode 415 */ 416 static int get_dent_type(int mode) 417 { 418 switch (mode & S_IFMT) { 419 case S_IFREG: 420 return UBIFS_ITYPE_REG; 421 case S_IFDIR: 422 return UBIFS_ITYPE_DIR; 423 case S_IFLNK: 424 return UBIFS_ITYPE_LNK; 425 case S_IFBLK: 426 return UBIFS_ITYPE_BLK; 427 case S_IFCHR: 428 return UBIFS_ITYPE_CHR; 429 case S_IFIFO: 430 return UBIFS_ITYPE_FIFO; 431 case S_IFSOCK: 432 return UBIFS_ITYPE_SOCK; 433 default: 434 BUG(); 435 } 436 return 0; 437 } 438 439 /** 440 * pack_inode - pack an inode node. 441 * @c: UBIFS file-system description object 442 * @ino: buffer in which to pack inode node 443 * @inode: inode to pack 444 * @last: indicates the last node of the group 445 */ 446 static void pack_inode(struct ubifs_info *c, struct ubifs_ino_node *ino, 447 const struct inode *inode, int last) 448 { 449 int data_len = 0, last_reference = !inode->i_nlink; 450 struct ubifs_inode *ui = ubifs_inode(inode); 451 452 ino->ch.node_type = UBIFS_INO_NODE; 453 ino_key_init_flash(c, &ino->key, inode->i_ino); 454 ino->creat_sqnum = cpu_to_le64(ui->creat_sqnum); 455 ino->atime_sec = cpu_to_le64(inode->i_atime.tv_sec); 456 ino->atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 457 ino->ctime_sec = cpu_to_le64(inode->i_ctime.tv_sec); 458 ino->ctime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 459 ino->mtime_sec = cpu_to_le64(inode->i_mtime.tv_sec); 460 ino->mtime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 461 ino->uid = cpu_to_le32(i_uid_read(inode)); 462 ino->gid = cpu_to_le32(i_gid_read(inode)); 463 ino->mode = cpu_to_le32(inode->i_mode); 464 ino->flags = cpu_to_le32(ui->flags); 465 ino->size = cpu_to_le64(ui->ui_size); 466 ino->nlink = cpu_to_le32(inode->i_nlink); 467 ino->compr_type = cpu_to_le16(ui->compr_type); 468 ino->data_len = cpu_to_le32(ui->data_len); 469 ino->xattr_cnt = cpu_to_le32(ui->xattr_cnt); 470 ino->xattr_size = cpu_to_le32(ui->xattr_size); 471 ino->xattr_names = cpu_to_le32(ui->xattr_names); 472 zero_ino_node_unused(ino); 473 474 /* 475 * Drop the attached data if this is a deletion inode, the data is not 476 * needed anymore. 477 */ 478 if (!last_reference) { 479 memcpy(ino->data, ui->data, ui->data_len); 480 data_len = ui->data_len; 481 } 482 483 ubifs_prep_grp_node(c, ino, UBIFS_INO_NODE_SZ + data_len, last); 484 } 485 486 /** 487 * mark_inode_clean - mark UBIFS inode as clean. 488 * @c: UBIFS file-system description object 489 * @ui: UBIFS inode to mark as clean 490 * 491 * This helper function marks UBIFS inode @ui as clean by cleaning the 492 * @ui->dirty flag and releasing its budget. Note, VFS may still treat the 493 * inode as dirty and try to write it back, but 'ubifs_write_inode()' would 494 * just do nothing. 495 */ 496 static void mark_inode_clean(struct ubifs_info *c, struct ubifs_inode *ui) 497 { 498 if (ui->dirty) 499 ubifs_release_dirty_inode_budget(c, ui); 500 ui->dirty = 0; 501 } 502 503 static void set_dent_cookie(struct ubifs_info *c, struct ubifs_dent_node *dent) 504 { 505 if (c->double_hash) 506 dent->cookie = prandom_u32(); 507 else 508 dent->cookie = 0; 509 } 510 511 /** 512 * ubifs_jnl_update - update inode. 513 * @c: UBIFS file-system description object 514 * @dir: parent inode or host inode in case of extended attributes 515 * @nm: directory entry name 516 * @inode: inode to update 517 * @deletion: indicates a directory entry deletion i.e unlink or rmdir 518 * @xent: non-zero if the directory entry is an extended attribute entry 519 * 520 * This function updates an inode by writing a directory entry (or extended 521 * attribute entry), the inode itself, and the parent directory inode (or the 522 * host inode) to the journal. 523 * 524 * The function writes the host inode @dir last, which is important in case of 525 * extended attributes. Indeed, then we guarantee that if the host inode gets 526 * synchronized (with 'fsync()'), and the write-buffer it sits in gets flushed, 527 * the extended attribute inode gets flushed too. And this is exactly what the 528 * user expects - synchronizing the host inode synchronizes its extended 529 * attributes. Similarly, this guarantees that if @dir is synchronized, its 530 * directory entry corresponding to @nm gets synchronized too. 531 * 532 * If the inode (@inode) or the parent directory (@dir) are synchronous, this 533 * function synchronizes the write-buffer. 534 * 535 * This function marks the @dir and @inode inodes as clean and returns zero on 536 * success. In case of failure, a negative error code is returned. 537 */ 538 int ubifs_jnl_update(struct ubifs_info *c, const struct inode *dir, 539 const struct fscrypt_name *nm, const struct inode *inode, 540 int deletion, int xent) 541 { 542 int err, dlen, ilen, len, lnum, ino_offs, dent_offs; 543 int aligned_dlen, aligned_ilen, sync = IS_DIRSYNC(dir); 544 int last_reference = !!(deletion && inode->i_nlink == 0); 545 struct ubifs_inode *ui = ubifs_inode(inode); 546 struct ubifs_inode *host_ui = ubifs_inode(dir); 547 struct ubifs_dent_node *dent; 548 struct ubifs_ino_node *ino; 549 union ubifs_key dent_key, ino_key; 550 u8 hash_dent[UBIFS_HASH_ARR_SZ]; 551 u8 hash_ino[UBIFS_HASH_ARR_SZ]; 552 u8 hash_ino_host[UBIFS_HASH_ARR_SZ]; 553 554 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 555 556 dlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 557 ilen = UBIFS_INO_NODE_SZ; 558 559 /* 560 * If the last reference to the inode is being deleted, then there is 561 * no need to attach and write inode data, it is being deleted anyway. 562 * And if the inode is being deleted, no need to synchronize 563 * write-buffer even if the inode is synchronous. 564 */ 565 if (!last_reference) { 566 ilen += ui->data_len; 567 sync |= IS_SYNC(inode); 568 } 569 570 aligned_dlen = ALIGN(dlen, 8); 571 aligned_ilen = ALIGN(ilen, 8); 572 573 len = aligned_dlen + aligned_ilen + UBIFS_INO_NODE_SZ; 574 /* Make sure to also account for extended attributes */ 575 if (ubifs_authenticated(c)) 576 len += ALIGN(host_ui->data_len, 8) + ubifs_auth_node_sz(c); 577 else 578 len += host_ui->data_len; 579 580 dent = kzalloc(len, GFP_NOFS); 581 if (!dent) 582 return -ENOMEM; 583 584 /* Make reservation before allocating sequence numbers */ 585 err = make_reservation(c, BASEHD, len); 586 if (err) 587 goto out_free; 588 589 if (!xent) { 590 dent->ch.node_type = UBIFS_DENT_NODE; 591 if (nm->hash) 592 dent_key_init_hash(c, &dent_key, dir->i_ino, nm->hash); 593 else 594 dent_key_init(c, &dent_key, dir->i_ino, nm); 595 } else { 596 dent->ch.node_type = UBIFS_XENT_NODE; 597 xent_key_init(c, &dent_key, dir->i_ino, nm); 598 } 599 600 key_write(c, &dent_key, dent->key); 601 dent->inum = deletion ? 0 : cpu_to_le64(inode->i_ino); 602 dent->type = get_dent_type(inode->i_mode); 603 dent->nlen = cpu_to_le16(fname_len(nm)); 604 memcpy(dent->name, fname_name(nm), fname_len(nm)); 605 dent->name[fname_len(nm)] = '\0'; 606 set_dent_cookie(c, dent); 607 608 zero_dent_node_unused(dent); 609 ubifs_prep_grp_node(c, dent, dlen, 0); 610 err = ubifs_node_calc_hash(c, dent, hash_dent); 611 if (err) 612 goto out_release; 613 614 ino = (void *)dent + aligned_dlen; 615 pack_inode(c, ino, inode, 0); 616 err = ubifs_node_calc_hash(c, ino, hash_ino); 617 if (err) 618 goto out_release; 619 620 ino = (void *)ino + aligned_ilen; 621 pack_inode(c, ino, dir, 1); 622 err = ubifs_node_calc_hash(c, ino, hash_ino_host); 623 if (err) 624 goto out_release; 625 626 if (last_reference) { 627 err = ubifs_add_orphan(c, inode->i_ino); 628 if (err) { 629 release_head(c, BASEHD); 630 goto out_finish; 631 } 632 ui->del_cmtno = c->cmt_no; 633 } 634 635 err = write_head(c, BASEHD, dent, len, &lnum, &dent_offs, sync); 636 if (err) 637 goto out_release; 638 if (!sync) { 639 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 640 641 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 642 ubifs_wbuf_add_ino_nolock(wbuf, dir->i_ino); 643 } 644 release_head(c, BASEHD); 645 kfree(dent); 646 ubifs_add_auth_dirt(c, lnum); 647 648 if (deletion) { 649 if (nm->hash) 650 err = ubifs_tnc_remove_dh(c, &dent_key, nm->minor_hash); 651 else 652 err = ubifs_tnc_remove_nm(c, &dent_key, nm); 653 if (err) 654 goto out_ro; 655 err = ubifs_add_dirt(c, lnum, dlen); 656 } else 657 err = ubifs_tnc_add_nm(c, &dent_key, lnum, dent_offs, dlen, 658 hash_dent, nm); 659 if (err) 660 goto out_ro; 661 662 /* 663 * Note, we do not remove the inode from TNC even if the last reference 664 * to it has just been deleted, because the inode may still be opened. 665 * Instead, the inode has been added to orphan lists and the orphan 666 * subsystem will take further care about it. 667 */ 668 ino_key_init(c, &ino_key, inode->i_ino); 669 ino_offs = dent_offs + aligned_dlen; 670 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, ilen, hash_ino); 671 if (err) 672 goto out_ro; 673 674 ino_key_init(c, &ino_key, dir->i_ino); 675 ino_offs += aligned_ilen; 676 err = ubifs_tnc_add(c, &ino_key, lnum, ino_offs, 677 UBIFS_INO_NODE_SZ + host_ui->data_len, hash_ino_host); 678 if (err) 679 goto out_ro; 680 681 finish_reservation(c); 682 spin_lock(&ui->ui_lock); 683 ui->synced_i_size = ui->ui_size; 684 spin_unlock(&ui->ui_lock); 685 if (xent) { 686 spin_lock(&host_ui->ui_lock); 687 host_ui->synced_i_size = host_ui->ui_size; 688 spin_unlock(&host_ui->ui_lock); 689 } 690 mark_inode_clean(c, ui); 691 mark_inode_clean(c, host_ui); 692 return 0; 693 694 out_finish: 695 finish_reservation(c); 696 out_free: 697 kfree(dent); 698 return err; 699 700 out_release: 701 release_head(c, BASEHD); 702 kfree(dent); 703 out_ro: 704 ubifs_ro_mode(c, err); 705 if (last_reference) 706 ubifs_delete_orphan(c, inode->i_ino); 707 finish_reservation(c); 708 return err; 709 } 710 711 /** 712 * ubifs_jnl_write_data - write a data node to the journal. 713 * @c: UBIFS file-system description object 714 * @inode: inode the data node belongs to 715 * @key: node key 716 * @buf: buffer to write 717 * @len: data length (must not exceed %UBIFS_BLOCK_SIZE) 718 * 719 * This function writes a data node to the journal. Returns %0 if the data node 720 * was successfully written, and a negative error code in case of failure. 721 */ 722 int ubifs_jnl_write_data(struct ubifs_info *c, const struct inode *inode, 723 const union ubifs_key *key, const void *buf, int len) 724 { 725 struct ubifs_data_node *data; 726 int err, lnum, offs, compr_type, out_len, compr_len, auth_len; 727 int dlen = COMPRESSED_DATA_NODE_BUF_SZ, allocated = 1; 728 int write_len; 729 struct ubifs_inode *ui = ubifs_inode(inode); 730 bool encrypted = ubifs_crypt_is_encrypted(inode); 731 u8 hash[UBIFS_HASH_ARR_SZ]; 732 733 dbg_jnlk(key, "ino %lu, blk %u, len %d, key ", 734 (unsigned long)key_inum(c, key), key_block(c, key), len); 735 ubifs_assert(c, len <= UBIFS_BLOCK_SIZE); 736 737 if (encrypted) 738 dlen += UBIFS_CIPHER_BLOCK_SIZE; 739 740 auth_len = ubifs_auth_node_sz(c); 741 742 data = kmalloc(dlen + auth_len, GFP_NOFS | __GFP_NOWARN); 743 if (!data) { 744 /* 745 * Fall-back to the write reserve buffer. Note, we might be 746 * currently on the memory reclaim path, when the kernel is 747 * trying to free some memory by writing out dirty pages. The 748 * write reserve buffer helps us to guarantee that we are 749 * always able to write the data. 750 */ 751 allocated = 0; 752 mutex_lock(&c->write_reserve_mutex); 753 data = c->write_reserve_buf; 754 } 755 756 data->ch.node_type = UBIFS_DATA_NODE; 757 key_write(c, key, &data->key); 758 data->size = cpu_to_le32(len); 759 760 if (!(ui->flags & UBIFS_COMPR_FL)) 761 /* Compression is disabled for this inode */ 762 compr_type = UBIFS_COMPR_NONE; 763 else 764 compr_type = ui->compr_type; 765 766 out_len = compr_len = dlen - UBIFS_DATA_NODE_SZ; 767 ubifs_compress(c, buf, len, &data->data, &compr_len, &compr_type); 768 ubifs_assert(c, compr_len <= UBIFS_BLOCK_SIZE); 769 770 if (encrypted) { 771 err = ubifs_encrypt(inode, data, compr_len, &out_len, key_block(c, key)); 772 if (err) 773 goto out_free; 774 775 } else { 776 data->compr_size = 0; 777 out_len = compr_len; 778 } 779 780 dlen = UBIFS_DATA_NODE_SZ + out_len; 781 if (ubifs_authenticated(c)) 782 write_len = ALIGN(dlen, 8) + auth_len; 783 else 784 write_len = dlen; 785 786 data->compr_type = cpu_to_le16(compr_type); 787 788 /* Make reservation before allocating sequence numbers */ 789 err = make_reservation(c, DATAHD, write_len); 790 if (err) 791 goto out_free; 792 793 ubifs_prepare_node(c, data, dlen, 0); 794 err = write_head(c, DATAHD, data, write_len, &lnum, &offs, 0); 795 if (err) 796 goto out_release; 797 798 err = ubifs_node_calc_hash(c, data, hash); 799 if (err) 800 goto out_release; 801 802 ubifs_wbuf_add_ino_nolock(&c->jheads[DATAHD].wbuf, key_inum(c, key)); 803 release_head(c, DATAHD); 804 805 ubifs_add_auth_dirt(c, lnum); 806 807 err = ubifs_tnc_add(c, key, lnum, offs, dlen, hash); 808 if (err) 809 goto out_ro; 810 811 finish_reservation(c); 812 if (!allocated) 813 mutex_unlock(&c->write_reserve_mutex); 814 else 815 kfree(data); 816 return 0; 817 818 out_release: 819 release_head(c, DATAHD); 820 out_ro: 821 ubifs_ro_mode(c, err); 822 finish_reservation(c); 823 out_free: 824 if (!allocated) 825 mutex_unlock(&c->write_reserve_mutex); 826 else 827 kfree(data); 828 return err; 829 } 830 831 /** 832 * ubifs_jnl_write_inode - flush inode to the journal. 833 * @c: UBIFS file-system description object 834 * @inode: inode to flush 835 * 836 * This function writes inode @inode to the journal. If the inode is 837 * synchronous, it also synchronizes the write-buffer. Returns zero in case of 838 * success and a negative error code in case of failure. 839 */ 840 int ubifs_jnl_write_inode(struct ubifs_info *c, const struct inode *inode) 841 { 842 int err, lnum, offs; 843 struct ubifs_ino_node *ino, *ino_start; 844 struct ubifs_inode *ui = ubifs_inode(inode); 845 int sync = 0, write_len = 0, ilen = UBIFS_INO_NODE_SZ; 846 int last_reference = !inode->i_nlink; 847 int kill_xattrs = ui->xattr_cnt && last_reference; 848 u8 hash[UBIFS_HASH_ARR_SZ]; 849 850 dbg_jnl("ino %lu, nlink %u", inode->i_ino, inode->i_nlink); 851 852 /* 853 * If the inode is being deleted, do not write the attached data. No 854 * need to synchronize the write-buffer either. 855 */ 856 if (!last_reference) { 857 ilen += ui->data_len; 858 sync = IS_SYNC(inode); 859 } else if (kill_xattrs) { 860 write_len += UBIFS_INO_NODE_SZ * ui->xattr_cnt; 861 } 862 863 if (ubifs_authenticated(c)) 864 write_len += ALIGN(ilen, 8) + ubifs_auth_node_sz(c); 865 else 866 write_len += ilen; 867 868 ino_start = ino = kmalloc(write_len, GFP_NOFS); 869 if (!ino) 870 return -ENOMEM; 871 872 /* Make reservation before allocating sequence numbers */ 873 err = make_reservation(c, BASEHD, write_len); 874 if (err) 875 goto out_free; 876 877 if (kill_xattrs) { 878 union ubifs_key key; 879 struct fscrypt_name nm = {0}; 880 struct inode *xino; 881 struct ubifs_dent_node *xent, *pxent = NULL; 882 883 if (ui->xattr_cnt >= ubifs_xattr_max_cnt(c)) { 884 ubifs_err(c, "Cannot delete inode, it has too much xattrs!"); 885 goto out_release; 886 } 887 888 lowest_xent_key(c, &key, inode->i_ino); 889 while (1) { 890 xent = ubifs_tnc_next_ent(c, &key, &nm); 891 if (IS_ERR(xent)) { 892 err = PTR_ERR(xent); 893 if (err == -ENOENT) 894 break; 895 896 goto out_release; 897 } 898 899 fname_name(&nm) = xent->name; 900 fname_len(&nm) = le16_to_cpu(xent->nlen); 901 902 xino = ubifs_iget(c->vfs_sb, xent->inum); 903 if (IS_ERR(xino)) { 904 err = PTR_ERR(xino); 905 ubifs_err(c, "dead directory entry '%s', error %d", 906 xent->name, err); 907 ubifs_ro_mode(c, err); 908 goto out_release; 909 } 910 ubifs_assert(c, ubifs_inode(xino)->xattr); 911 912 clear_nlink(xino); 913 pack_inode(c, ino, xino, 0); 914 ino = (void *)ino + UBIFS_INO_NODE_SZ; 915 iput(xino); 916 917 kfree(pxent); 918 pxent = xent; 919 key_read(c, &xent->key, &key); 920 } 921 kfree(pxent); 922 } 923 924 pack_inode(c, ino, inode, 1); 925 err = ubifs_node_calc_hash(c, ino, hash); 926 if (err) 927 goto out_release; 928 929 err = write_head(c, BASEHD, ino_start, write_len, &lnum, &offs, sync); 930 if (err) 931 goto out_release; 932 if (!sync) 933 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 934 inode->i_ino); 935 release_head(c, BASEHD); 936 937 ubifs_add_auth_dirt(c, lnum); 938 939 if (last_reference) { 940 err = ubifs_tnc_remove_ino(c, inode->i_ino); 941 if (err) 942 goto out_ro; 943 ubifs_delete_orphan(c, inode->i_ino); 944 err = ubifs_add_dirt(c, lnum, write_len); 945 } else { 946 union ubifs_key key; 947 948 ino_key_init(c, &key, inode->i_ino); 949 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash); 950 } 951 if (err) 952 goto out_ro; 953 954 finish_reservation(c); 955 spin_lock(&ui->ui_lock); 956 ui->synced_i_size = ui->ui_size; 957 spin_unlock(&ui->ui_lock); 958 kfree(ino_start); 959 return 0; 960 961 out_release: 962 release_head(c, BASEHD); 963 out_ro: 964 ubifs_ro_mode(c, err); 965 finish_reservation(c); 966 out_free: 967 kfree(ino_start); 968 return err; 969 } 970 971 /** 972 * ubifs_jnl_delete_inode - delete an inode. 973 * @c: UBIFS file-system description object 974 * @inode: inode to delete 975 * 976 * This function deletes inode @inode which includes removing it from orphans, 977 * deleting it from TNC and, in some cases, writing a deletion inode to the 978 * journal. 979 * 980 * When regular file inodes are unlinked or a directory inode is removed, the 981 * 'ubifs_jnl_update()' function writes a corresponding deletion inode and 982 * direntry to the media, and adds the inode to orphans. After this, when the 983 * last reference to this inode has been dropped, this function is called. In 984 * general, it has to write one more deletion inode to the media, because if 985 * a commit happened between 'ubifs_jnl_update()' and 986 * 'ubifs_jnl_delete_inode()', the deletion inode is not in the journal 987 * anymore, and in fact it might not be on the flash anymore, because it might 988 * have been garbage-collected already. And for optimization reasons UBIFS does 989 * not read the orphan area if it has been unmounted cleanly, so it would have 990 * no indication in the journal that there is a deleted inode which has to be 991 * removed from TNC. 992 * 993 * However, if there was no commit between 'ubifs_jnl_update()' and 994 * 'ubifs_jnl_delete_inode()', then there is no need to write the deletion 995 * inode to the media for the second time. And this is quite a typical case. 996 * 997 * This function returns zero in case of success and a negative error code in 998 * case of failure. 999 */ 1000 int ubifs_jnl_delete_inode(struct ubifs_info *c, const struct inode *inode) 1001 { 1002 int err; 1003 struct ubifs_inode *ui = ubifs_inode(inode); 1004 1005 ubifs_assert(c, inode->i_nlink == 0); 1006 1007 if (ui->xattr_cnt || ui->del_cmtno != c->cmt_no) 1008 /* A commit happened for sure or inode hosts xattrs */ 1009 return ubifs_jnl_write_inode(c, inode); 1010 1011 down_read(&c->commit_sem); 1012 /* 1013 * Check commit number again, because the first test has been done 1014 * without @c->commit_sem, so a commit might have happened. 1015 */ 1016 if (ui->del_cmtno != c->cmt_no) { 1017 up_read(&c->commit_sem); 1018 return ubifs_jnl_write_inode(c, inode); 1019 } 1020 1021 err = ubifs_tnc_remove_ino(c, inode->i_ino); 1022 if (err) 1023 ubifs_ro_mode(c, err); 1024 else 1025 ubifs_delete_orphan(c, inode->i_ino); 1026 up_read(&c->commit_sem); 1027 return err; 1028 } 1029 1030 /** 1031 * ubifs_jnl_xrename - cross rename two directory entries. 1032 * @c: UBIFS file-system description object 1033 * @fst_dir: parent inode of 1st directory entry to exchange 1034 * @fst_inode: 1st inode to exchange 1035 * @fst_nm: name of 1st inode to exchange 1036 * @snd_dir: parent inode of 2nd directory entry to exchange 1037 * @snd_inode: 2nd inode to exchange 1038 * @snd_nm: name of 2nd inode to exchange 1039 * @sync: non-zero if the write-buffer has to be synchronized 1040 * 1041 * This function implements the cross rename operation which may involve 1042 * writing 2 inodes and 2 directory entries. It marks the written inodes as clean 1043 * and returns zero on success. In case of failure, a negative error code is 1044 * returned. 1045 */ 1046 int ubifs_jnl_xrename(struct ubifs_info *c, const struct inode *fst_dir, 1047 const struct inode *fst_inode, 1048 const struct fscrypt_name *fst_nm, 1049 const struct inode *snd_dir, 1050 const struct inode *snd_inode, 1051 const struct fscrypt_name *snd_nm, int sync) 1052 { 1053 union ubifs_key key; 1054 struct ubifs_dent_node *dent1, *dent2; 1055 int err, dlen1, dlen2, lnum, offs, len, plen = UBIFS_INO_NODE_SZ; 1056 int aligned_dlen1, aligned_dlen2; 1057 int twoparents = (fst_dir != snd_dir); 1058 void *p; 1059 u8 hash_dent1[UBIFS_HASH_ARR_SZ]; 1060 u8 hash_dent2[UBIFS_HASH_ARR_SZ]; 1061 u8 hash_p1[UBIFS_HASH_ARR_SZ]; 1062 u8 hash_p2[UBIFS_HASH_ARR_SZ]; 1063 1064 ubifs_assert(c, ubifs_inode(fst_dir)->data_len == 0); 1065 ubifs_assert(c, ubifs_inode(snd_dir)->data_len == 0); 1066 ubifs_assert(c, mutex_is_locked(&ubifs_inode(fst_dir)->ui_mutex)); 1067 ubifs_assert(c, mutex_is_locked(&ubifs_inode(snd_dir)->ui_mutex)); 1068 1069 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(snd_nm) + 1; 1070 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(fst_nm) + 1; 1071 aligned_dlen1 = ALIGN(dlen1, 8); 1072 aligned_dlen2 = ALIGN(dlen2, 8); 1073 1074 len = aligned_dlen1 + aligned_dlen2 + ALIGN(plen, 8); 1075 if (twoparents) 1076 len += plen; 1077 1078 len += ubifs_auth_node_sz(c); 1079 1080 dent1 = kzalloc(len, GFP_NOFS); 1081 if (!dent1) 1082 return -ENOMEM; 1083 1084 /* Make reservation before allocating sequence numbers */ 1085 err = make_reservation(c, BASEHD, len); 1086 if (err) 1087 goto out_free; 1088 1089 /* Make new dent for 1st entry */ 1090 dent1->ch.node_type = UBIFS_DENT_NODE; 1091 dent_key_init_flash(c, &dent1->key, snd_dir->i_ino, snd_nm); 1092 dent1->inum = cpu_to_le64(fst_inode->i_ino); 1093 dent1->type = get_dent_type(fst_inode->i_mode); 1094 dent1->nlen = cpu_to_le16(fname_len(snd_nm)); 1095 memcpy(dent1->name, fname_name(snd_nm), fname_len(snd_nm)); 1096 dent1->name[fname_len(snd_nm)] = '\0'; 1097 set_dent_cookie(c, dent1); 1098 zero_dent_node_unused(dent1); 1099 ubifs_prep_grp_node(c, dent1, dlen1, 0); 1100 err = ubifs_node_calc_hash(c, dent1, hash_dent1); 1101 if (err) 1102 goto out_release; 1103 1104 /* Make new dent for 2nd entry */ 1105 dent2 = (void *)dent1 + aligned_dlen1; 1106 dent2->ch.node_type = UBIFS_DENT_NODE; 1107 dent_key_init_flash(c, &dent2->key, fst_dir->i_ino, fst_nm); 1108 dent2->inum = cpu_to_le64(snd_inode->i_ino); 1109 dent2->type = get_dent_type(snd_inode->i_mode); 1110 dent2->nlen = cpu_to_le16(fname_len(fst_nm)); 1111 memcpy(dent2->name, fname_name(fst_nm), fname_len(fst_nm)); 1112 dent2->name[fname_len(fst_nm)] = '\0'; 1113 set_dent_cookie(c, dent2); 1114 zero_dent_node_unused(dent2); 1115 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1116 err = ubifs_node_calc_hash(c, dent2, hash_dent2); 1117 if (err) 1118 goto out_release; 1119 1120 p = (void *)dent2 + aligned_dlen2; 1121 if (!twoparents) { 1122 pack_inode(c, p, fst_dir, 1); 1123 err = ubifs_node_calc_hash(c, p, hash_p1); 1124 if (err) 1125 goto out_release; 1126 } else { 1127 pack_inode(c, p, fst_dir, 0); 1128 err = ubifs_node_calc_hash(c, p, hash_p1); 1129 if (err) 1130 goto out_release; 1131 p += ALIGN(plen, 8); 1132 pack_inode(c, p, snd_dir, 1); 1133 err = ubifs_node_calc_hash(c, p, hash_p2); 1134 if (err) 1135 goto out_release; 1136 } 1137 1138 err = write_head(c, BASEHD, dent1, len, &lnum, &offs, sync); 1139 if (err) 1140 goto out_release; 1141 if (!sync) { 1142 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1143 1144 ubifs_wbuf_add_ino_nolock(wbuf, fst_dir->i_ino); 1145 ubifs_wbuf_add_ino_nolock(wbuf, snd_dir->i_ino); 1146 } 1147 release_head(c, BASEHD); 1148 1149 ubifs_add_auth_dirt(c, lnum); 1150 1151 dent_key_init(c, &key, snd_dir->i_ino, snd_nm); 1152 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, snd_nm); 1153 if (err) 1154 goto out_ro; 1155 1156 offs += aligned_dlen1; 1157 dent_key_init(c, &key, fst_dir->i_ino, fst_nm); 1158 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, fst_nm); 1159 if (err) 1160 goto out_ro; 1161 1162 offs += aligned_dlen2; 1163 1164 ino_key_init(c, &key, fst_dir->i_ino); 1165 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p1); 1166 if (err) 1167 goto out_ro; 1168 1169 if (twoparents) { 1170 offs += ALIGN(plen, 8); 1171 ino_key_init(c, &key, snd_dir->i_ino); 1172 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_p2); 1173 if (err) 1174 goto out_ro; 1175 } 1176 1177 finish_reservation(c); 1178 1179 mark_inode_clean(c, ubifs_inode(fst_dir)); 1180 if (twoparents) 1181 mark_inode_clean(c, ubifs_inode(snd_dir)); 1182 kfree(dent1); 1183 return 0; 1184 1185 out_release: 1186 release_head(c, BASEHD); 1187 out_ro: 1188 ubifs_ro_mode(c, err); 1189 finish_reservation(c); 1190 out_free: 1191 kfree(dent1); 1192 return err; 1193 } 1194 1195 /** 1196 * ubifs_jnl_rename - rename a directory entry. 1197 * @c: UBIFS file-system description object 1198 * @old_dir: parent inode of directory entry to rename 1199 * @old_dentry: directory entry to rename 1200 * @new_dir: parent inode of directory entry to rename 1201 * @new_dentry: new directory entry (or directory entry to replace) 1202 * @sync: non-zero if the write-buffer has to be synchronized 1203 * 1204 * This function implements the re-name operation which may involve writing up 1205 * to 4 inodes and 2 directory entries. It marks the written inodes as clean 1206 * and returns zero on success. In case of failure, a negative error code is 1207 * returned. 1208 */ 1209 int ubifs_jnl_rename(struct ubifs_info *c, const struct inode *old_dir, 1210 const struct inode *old_inode, 1211 const struct fscrypt_name *old_nm, 1212 const struct inode *new_dir, 1213 const struct inode *new_inode, 1214 const struct fscrypt_name *new_nm, 1215 const struct inode *whiteout, int sync) 1216 { 1217 void *p; 1218 union ubifs_key key; 1219 struct ubifs_dent_node *dent, *dent2; 1220 int err, dlen1, dlen2, ilen, lnum, offs, len; 1221 int aligned_dlen1, aligned_dlen2, plen = UBIFS_INO_NODE_SZ; 1222 int last_reference = !!(new_inode && new_inode->i_nlink == 0); 1223 int move = (old_dir != new_dir); 1224 struct ubifs_inode *uninitialized_var(new_ui); 1225 u8 hash_old_dir[UBIFS_HASH_ARR_SZ]; 1226 u8 hash_new_dir[UBIFS_HASH_ARR_SZ]; 1227 u8 hash_new_inode[UBIFS_HASH_ARR_SZ]; 1228 u8 hash_dent1[UBIFS_HASH_ARR_SZ]; 1229 u8 hash_dent2[UBIFS_HASH_ARR_SZ]; 1230 1231 ubifs_assert(c, ubifs_inode(old_dir)->data_len == 0); 1232 ubifs_assert(c, ubifs_inode(new_dir)->data_len == 0); 1233 ubifs_assert(c, mutex_is_locked(&ubifs_inode(old_dir)->ui_mutex)); 1234 ubifs_assert(c, mutex_is_locked(&ubifs_inode(new_dir)->ui_mutex)); 1235 1236 dlen1 = UBIFS_DENT_NODE_SZ + fname_len(new_nm) + 1; 1237 dlen2 = UBIFS_DENT_NODE_SZ + fname_len(old_nm) + 1; 1238 if (new_inode) { 1239 new_ui = ubifs_inode(new_inode); 1240 ubifs_assert(c, mutex_is_locked(&new_ui->ui_mutex)); 1241 ilen = UBIFS_INO_NODE_SZ; 1242 if (!last_reference) 1243 ilen += new_ui->data_len; 1244 } else 1245 ilen = 0; 1246 1247 aligned_dlen1 = ALIGN(dlen1, 8); 1248 aligned_dlen2 = ALIGN(dlen2, 8); 1249 len = aligned_dlen1 + aligned_dlen2 + ALIGN(ilen, 8) + ALIGN(plen, 8); 1250 if (move) 1251 len += plen; 1252 1253 len += ubifs_auth_node_sz(c); 1254 1255 dent = kzalloc(len, GFP_NOFS); 1256 if (!dent) 1257 return -ENOMEM; 1258 1259 /* Make reservation before allocating sequence numbers */ 1260 err = make_reservation(c, BASEHD, len); 1261 if (err) 1262 goto out_free; 1263 1264 /* Make new dent */ 1265 dent->ch.node_type = UBIFS_DENT_NODE; 1266 dent_key_init_flash(c, &dent->key, new_dir->i_ino, new_nm); 1267 dent->inum = cpu_to_le64(old_inode->i_ino); 1268 dent->type = get_dent_type(old_inode->i_mode); 1269 dent->nlen = cpu_to_le16(fname_len(new_nm)); 1270 memcpy(dent->name, fname_name(new_nm), fname_len(new_nm)); 1271 dent->name[fname_len(new_nm)] = '\0'; 1272 set_dent_cookie(c, dent); 1273 zero_dent_node_unused(dent); 1274 ubifs_prep_grp_node(c, dent, dlen1, 0); 1275 err = ubifs_node_calc_hash(c, dent, hash_dent1); 1276 if (err) 1277 goto out_release; 1278 1279 dent2 = (void *)dent + aligned_dlen1; 1280 dent2->ch.node_type = UBIFS_DENT_NODE; 1281 dent_key_init_flash(c, &dent2->key, old_dir->i_ino, old_nm); 1282 1283 if (whiteout) { 1284 dent2->inum = cpu_to_le64(whiteout->i_ino); 1285 dent2->type = get_dent_type(whiteout->i_mode); 1286 } else { 1287 /* Make deletion dent */ 1288 dent2->inum = 0; 1289 dent2->type = DT_UNKNOWN; 1290 } 1291 dent2->nlen = cpu_to_le16(fname_len(old_nm)); 1292 memcpy(dent2->name, fname_name(old_nm), fname_len(old_nm)); 1293 dent2->name[fname_len(old_nm)] = '\0'; 1294 set_dent_cookie(c, dent2); 1295 zero_dent_node_unused(dent2); 1296 ubifs_prep_grp_node(c, dent2, dlen2, 0); 1297 err = ubifs_node_calc_hash(c, dent2, hash_dent2); 1298 if (err) 1299 goto out_release; 1300 1301 p = (void *)dent2 + aligned_dlen2; 1302 if (new_inode) { 1303 pack_inode(c, p, new_inode, 0); 1304 err = ubifs_node_calc_hash(c, p, hash_new_inode); 1305 if (err) 1306 goto out_release; 1307 1308 p += ALIGN(ilen, 8); 1309 } 1310 1311 if (!move) { 1312 pack_inode(c, p, old_dir, 1); 1313 err = ubifs_node_calc_hash(c, p, hash_old_dir); 1314 if (err) 1315 goto out_release; 1316 } else { 1317 pack_inode(c, p, old_dir, 0); 1318 err = ubifs_node_calc_hash(c, p, hash_old_dir); 1319 if (err) 1320 goto out_release; 1321 1322 p += ALIGN(plen, 8); 1323 pack_inode(c, p, new_dir, 1); 1324 err = ubifs_node_calc_hash(c, p, hash_new_dir); 1325 if (err) 1326 goto out_release; 1327 } 1328 1329 if (last_reference) { 1330 err = ubifs_add_orphan(c, new_inode->i_ino); 1331 if (err) { 1332 release_head(c, BASEHD); 1333 goto out_finish; 1334 } 1335 new_ui->del_cmtno = c->cmt_no; 1336 } 1337 1338 err = write_head(c, BASEHD, dent, len, &lnum, &offs, sync); 1339 if (err) 1340 goto out_release; 1341 if (!sync) { 1342 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1343 1344 ubifs_wbuf_add_ino_nolock(wbuf, new_dir->i_ino); 1345 ubifs_wbuf_add_ino_nolock(wbuf, old_dir->i_ino); 1346 if (new_inode) 1347 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, 1348 new_inode->i_ino); 1349 } 1350 release_head(c, BASEHD); 1351 1352 ubifs_add_auth_dirt(c, lnum); 1353 1354 dent_key_init(c, &key, new_dir->i_ino, new_nm); 1355 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen1, hash_dent1, new_nm); 1356 if (err) 1357 goto out_ro; 1358 1359 offs += aligned_dlen1; 1360 if (whiteout) { 1361 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1362 err = ubifs_tnc_add_nm(c, &key, lnum, offs, dlen2, hash_dent2, old_nm); 1363 if (err) 1364 goto out_ro; 1365 1366 ubifs_delete_orphan(c, whiteout->i_ino); 1367 } else { 1368 err = ubifs_add_dirt(c, lnum, dlen2); 1369 if (err) 1370 goto out_ro; 1371 1372 dent_key_init(c, &key, old_dir->i_ino, old_nm); 1373 err = ubifs_tnc_remove_nm(c, &key, old_nm); 1374 if (err) 1375 goto out_ro; 1376 } 1377 1378 offs += aligned_dlen2; 1379 if (new_inode) { 1380 ino_key_init(c, &key, new_inode->i_ino); 1381 err = ubifs_tnc_add(c, &key, lnum, offs, ilen, hash_new_inode); 1382 if (err) 1383 goto out_ro; 1384 offs += ALIGN(ilen, 8); 1385 } 1386 1387 ino_key_init(c, &key, old_dir->i_ino); 1388 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_old_dir); 1389 if (err) 1390 goto out_ro; 1391 1392 if (move) { 1393 offs += ALIGN(plen, 8); 1394 ino_key_init(c, &key, new_dir->i_ino); 1395 err = ubifs_tnc_add(c, &key, lnum, offs, plen, hash_new_dir); 1396 if (err) 1397 goto out_ro; 1398 } 1399 1400 finish_reservation(c); 1401 if (new_inode) { 1402 mark_inode_clean(c, new_ui); 1403 spin_lock(&new_ui->ui_lock); 1404 new_ui->synced_i_size = new_ui->ui_size; 1405 spin_unlock(&new_ui->ui_lock); 1406 } 1407 mark_inode_clean(c, ubifs_inode(old_dir)); 1408 if (move) 1409 mark_inode_clean(c, ubifs_inode(new_dir)); 1410 kfree(dent); 1411 return 0; 1412 1413 out_release: 1414 release_head(c, BASEHD); 1415 out_ro: 1416 ubifs_ro_mode(c, err); 1417 if (last_reference) 1418 ubifs_delete_orphan(c, new_inode->i_ino); 1419 out_finish: 1420 finish_reservation(c); 1421 out_free: 1422 kfree(dent); 1423 return err; 1424 } 1425 1426 /** 1427 * truncate_data_node - re-compress/encrypt a truncated data node. 1428 * @c: UBIFS file-system description object 1429 * @inode: inode which referes to the data node 1430 * @block: data block number 1431 * @dn: data node to re-compress 1432 * @new_len: new length 1433 * 1434 * This function is used when an inode is truncated and the last data node of 1435 * the inode has to be re-compressed/encrypted and re-written. 1436 */ 1437 static int truncate_data_node(const struct ubifs_info *c, const struct inode *inode, 1438 unsigned int block, struct ubifs_data_node *dn, 1439 int *new_len) 1440 { 1441 void *buf; 1442 int err, dlen, compr_type, out_len, old_dlen; 1443 1444 out_len = le32_to_cpu(dn->size); 1445 buf = kmalloc_array(out_len, WORST_COMPR_FACTOR, GFP_NOFS); 1446 if (!buf) 1447 return -ENOMEM; 1448 1449 dlen = old_dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 1450 compr_type = le16_to_cpu(dn->compr_type); 1451 1452 if (ubifs_crypt_is_encrypted(inode)) { 1453 err = ubifs_decrypt(inode, dn, &dlen, block); 1454 if (err) 1455 goto out; 1456 } 1457 1458 if (compr_type == UBIFS_COMPR_NONE) { 1459 out_len = *new_len; 1460 } else { 1461 err = ubifs_decompress(c, &dn->data, dlen, buf, &out_len, compr_type); 1462 if (err) 1463 goto out; 1464 1465 ubifs_compress(c, buf, *new_len, &dn->data, &out_len, &compr_type); 1466 } 1467 1468 if (ubifs_crypt_is_encrypted(inode)) { 1469 err = ubifs_encrypt(inode, dn, out_len, &old_dlen, block); 1470 if (err) 1471 goto out; 1472 1473 out_len = old_dlen; 1474 } else { 1475 dn->compr_size = 0; 1476 } 1477 1478 ubifs_assert(c, out_len <= UBIFS_BLOCK_SIZE); 1479 dn->compr_type = cpu_to_le16(compr_type); 1480 dn->size = cpu_to_le32(*new_len); 1481 *new_len = UBIFS_DATA_NODE_SZ + out_len; 1482 err = 0; 1483 out: 1484 kfree(buf); 1485 return err; 1486 } 1487 1488 /** 1489 * ubifs_jnl_truncate - update the journal for a truncation. 1490 * @c: UBIFS file-system description object 1491 * @inode: inode to truncate 1492 * @old_size: old size 1493 * @new_size: new size 1494 * 1495 * When the size of a file decreases due to truncation, a truncation node is 1496 * written, the journal tree is updated, and the last data block is re-written 1497 * if it has been affected. The inode is also updated in order to synchronize 1498 * the new inode size. 1499 * 1500 * This function marks the inode as clean and returns zero on success. In case 1501 * of failure, a negative error code is returned. 1502 */ 1503 int ubifs_jnl_truncate(struct ubifs_info *c, const struct inode *inode, 1504 loff_t old_size, loff_t new_size) 1505 { 1506 union ubifs_key key, to_key; 1507 struct ubifs_ino_node *ino; 1508 struct ubifs_trun_node *trun; 1509 struct ubifs_data_node *uninitialized_var(dn); 1510 int err, dlen, len, lnum, offs, bit, sz, sync = IS_SYNC(inode); 1511 struct ubifs_inode *ui = ubifs_inode(inode); 1512 ino_t inum = inode->i_ino; 1513 unsigned int blk; 1514 u8 hash_ino[UBIFS_HASH_ARR_SZ]; 1515 u8 hash_dn[UBIFS_HASH_ARR_SZ]; 1516 1517 dbg_jnl("ino %lu, size %lld -> %lld", 1518 (unsigned long)inum, old_size, new_size); 1519 ubifs_assert(c, !ui->data_len); 1520 ubifs_assert(c, S_ISREG(inode->i_mode)); 1521 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 1522 1523 sz = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ + 1524 UBIFS_MAX_DATA_NODE_SZ * WORST_COMPR_FACTOR; 1525 1526 sz += ubifs_auth_node_sz(c); 1527 1528 ino = kmalloc(sz, GFP_NOFS); 1529 if (!ino) 1530 return -ENOMEM; 1531 1532 trun = (void *)ino + UBIFS_INO_NODE_SZ; 1533 trun->ch.node_type = UBIFS_TRUN_NODE; 1534 trun->inum = cpu_to_le32(inum); 1535 trun->old_size = cpu_to_le64(old_size); 1536 trun->new_size = cpu_to_le64(new_size); 1537 zero_trun_node_unused(trun); 1538 1539 dlen = new_size & (UBIFS_BLOCK_SIZE - 1); 1540 if (dlen) { 1541 /* Get last data block so it can be truncated */ 1542 dn = (void *)trun + UBIFS_TRUN_NODE_SZ; 1543 blk = new_size >> UBIFS_BLOCK_SHIFT; 1544 data_key_init(c, &key, inum, blk); 1545 dbg_jnlk(&key, "last block key "); 1546 err = ubifs_tnc_lookup(c, &key, dn); 1547 if (err == -ENOENT) 1548 dlen = 0; /* Not found (so it is a hole) */ 1549 else if (err) 1550 goto out_free; 1551 else { 1552 int dn_len = le32_to_cpu(dn->size); 1553 1554 if (dn_len <= 0 || dn_len > UBIFS_BLOCK_SIZE) { 1555 ubifs_err(c, "bad data node (block %u, inode %lu)", 1556 blk, inode->i_ino); 1557 ubifs_dump_node(c, dn); 1558 goto out_free; 1559 } 1560 1561 if (dn_len <= dlen) 1562 dlen = 0; /* Nothing to do */ 1563 else { 1564 err = truncate_data_node(c, inode, blk, dn, &dlen); 1565 if (err) 1566 goto out_free; 1567 } 1568 } 1569 } 1570 1571 /* Must make reservation before allocating sequence numbers */ 1572 len = UBIFS_TRUN_NODE_SZ + UBIFS_INO_NODE_SZ; 1573 1574 if (ubifs_authenticated(c)) 1575 len += ALIGN(dlen, 8) + ubifs_auth_node_sz(c); 1576 else 1577 len += dlen; 1578 1579 err = make_reservation(c, BASEHD, len); 1580 if (err) 1581 goto out_free; 1582 1583 pack_inode(c, ino, inode, 0); 1584 err = ubifs_node_calc_hash(c, ino, hash_ino); 1585 if (err) 1586 goto out_release; 1587 1588 ubifs_prep_grp_node(c, trun, UBIFS_TRUN_NODE_SZ, dlen ? 0 : 1); 1589 if (dlen) { 1590 ubifs_prep_grp_node(c, dn, dlen, 1); 1591 err = ubifs_node_calc_hash(c, dn, hash_dn); 1592 if (err) 1593 goto out_release; 1594 } 1595 1596 err = write_head(c, BASEHD, ino, len, &lnum, &offs, sync); 1597 if (err) 1598 goto out_release; 1599 if (!sync) 1600 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, inum); 1601 release_head(c, BASEHD); 1602 1603 ubifs_add_auth_dirt(c, lnum); 1604 1605 if (dlen) { 1606 sz = offs + UBIFS_INO_NODE_SZ + UBIFS_TRUN_NODE_SZ; 1607 err = ubifs_tnc_add(c, &key, lnum, sz, dlen, hash_dn); 1608 if (err) 1609 goto out_ro; 1610 } 1611 1612 ino_key_init(c, &key, inum); 1613 err = ubifs_tnc_add(c, &key, lnum, offs, UBIFS_INO_NODE_SZ, hash_ino); 1614 if (err) 1615 goto out_ro; 1616 1617 err = ubifs_add_dirt(c, lnum, UBIFS_TRUN_NODE_SZ); 1618 if (err) 1619 goto out_ro; 1620 1621 bit = new_size & (UBIFS_BLOCK_SIZE - 1); 1622 blk = (new_size >> UBIFS_BLOCK_SHIFT) + (bit ? 1 : 0); 1623 data_key_init(c, &key, inum, blk); 1624 1625 bit = old_size & (UBIFS_BLOCK_SIZE - 1); 1626 blk = (old_size >> UBIFS_BLOCK_SHIFT) - (bit ? 0 : 1); 1627 data_key_init(c, &to_key, inum, blk); 1628 1629 err = ubifs_tnc_remove_range(c, &key, &to_key); 1630 if (err) 1631 goto out_ro; 1632 1633 finish_reservation(c); 1634 spin_lock(&ui->ui_lock); 1635 ui->synced_i_size = ui->ui_size; 1636 spin_unlock(&ui->ui_lock); 1637 mark_inode_clean(c, ui); 1638 kfree(ino); 1639 return 0; 1640 1641 out_release: 1642 release_head(c, BASEHD); 1643 out_ro: 1644 ubifs_ro_mode(c, err); 1645 finish_reservation(c); 1646 out_free: 1647 kfree(ino); 1648 return err; 1649 } 1650 1651 1652 /** 1653 * ubifs_jnl_delete_xattr - delete an extended attribute. 1654 * @c: UBIFS file-system description object 1655 * @host: host inode 1656 * @inode: extended attribute inode 1657 * @nm: extended attribute entry name 1658 * 1659 * This function delete an extended attribute which is very similar to 1660 * un-linking regular files - it writes a deletion xentry, a deletion inode and 1661 * updates the target inode. Returns zero in case of success and a negative 1662 * error code in case of failure. 1663 */ 1664 int ubifs_jnl_delete_xattr(struct ubifs_info *c, const struct inode *host, 1665 const struct inode *inode, 1666 const struct fscrypt_name *nm) 1667 { 1668 int err, xlen, hlen, len, lnum, xent_offs, aligned_xlen, write_len; 1669 struct ubifs_dent_node *xent; 1670 struct ubifs_ino_node *ino; 1671 union ubifs_key xent_key, key1, key2; 1672 int sync = IS_DIRSYNC(host); 1673 struct ubifs_inode *host_ui = ubifs_inode(host); 1674 u8 hash[UBIFS_HASH_ARR_SZ]; 1675 1676 ubifs_assert(c, inode->i_nlink == 0); 1677 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 1678 1679 /* 1680 * Since we are deleting the inode, we do not bother to attach any data 1681 * to it and assume its length is %UBIFS_INO_NODE_SZ. 1682 */ 1683 xlen = UBIFS_DENT_NODE_SZ + fname_len(nm) + 1; 1684 aligned_xlen = ALIGN(xlen, 8); 1685 hlen = host_ui->data_len + UBIFS_INO_NODE_SZ; 1686 len = aligned_xlen + UBIFS_INO_NODE_SZ + ALIGN(hlen, 8); 1687 1688 write_len = len + ubifs_auth_node_sz(c); 1689 1690 xent = kzalloc(write_len, GFP_NOFS); 1691 if (!xent) 1692 return -ENOMEM; 1693 1694 /* Make reservation before allocating sequence numbers */ 1695 err = make_reservation(c, BASEHD, write_len); 1696 if (err) { 1697 kfree(xent); 1698 return err; 1699 } 1700 1701 xent->ch.node_type = UBIFS_XENT_NODE; 1702 xent_key_init(c, &xent_key, host->i_ino, nm); 1703 key_write(c, &xent_key, xent->key); 1704 xent->inum = 0; 1705 xent->type = get_dent_type(inode->i_mode); 1706 xent->nlen = cpu_to_le16(fname_len(nm)); 1707 memcpy(xent->name, fname_name(nm), fname_len(nm)); 1708 xent->name[fname_len(nm)] = '\0'; 1709 zero_dent_node_unused(xent); 1710 ubifs_prep_grp_node(c, xent, xlen, 0); 1711 1712 ino = (void *)xent + aligned_xlen; 1713 pack_inode(c, ino, inode, 0); 1714 ino = (void *)ino + UBIFS_INO_NODE_SZ; 1715 pack_inode(c, ino, host, 1); 1716 err = ubifs_node_calc_hash(c, ino, hash); 1717 if (err) 1718 goto out_release; 1719 1720 err = write_head(c, BASEHD, xent, write_len, &lnum, &xent_offs, sync); 1721 if (!sync && !err) 1722 ubifs_wbuf_add_ino_nolock(&c->jheads[BASEHD].wbuf, host->i_ino); 1723 release_head(c, BASEHD); 1724 1725 ubifs_add_auth_dirt(c, lnum); 1726 kfree(xent); 1727 if (err) 1728 goto out_ro; 1729 1730 /* Remove the extended attribute entry from TNC */ 1731 err = ubifs_tnc_remove_nm(c, &xent_key, nm); 1732 if (err) 1733 goto out_ro; 1734 err = ubifs_add_dirt(c, lnum, xlen); 1735 if (err) 1736 goto out_ro; 1737 1738 /* 1739 * Remove all nodes belonging to the extended attribute inode from TNC. 1740 * Well, there actually must be only one node - the inode itself. 1741 */ 1742 lowest_ino_key(c, &key1, inode->i_ino); 1743 highest_ino_key(c, &key2, inode->i_ino); 1744 err = ubifs_tnc_remove_range(c, &key1, &key2); 1745 if (err) 1746 goto out_ro; 1747 err = ubifs_add_dirt(c, lnum, UBIFS_INO_NODE_SZ); 1748 if (err) 1749 goto out_ro; 1750 1751 /* And update TNC with the new host inode position */ 1752 ino_key_init(c, &key1, host->i_ino); 1753 err = ubifs_tnc_add(c, &key1, lnum, xent_offs + len - hlen, hlen, hash); 1754 if (err) 1755 goto out_ro; 1756 1757 finish_reservation(c); 1758 spin_lock(&host_ui->ui_lock); 1759 host_ui->synced_i_size = host_ui->ui_size; 1760 spin_unlock(&host_ui->ui_lock); 1761 mark_inode_clean(c, host_ui); 1762 return 0; 1763 1764 out_release: 1765 kfree(xent); 1766 release_head(c, BASEHD); 1767 out_ro: 1768 ubifs_ro_mode(c, err); 1769 finish_reservation(c); 1770 return err; 1771 } 1772 1773 /** 1774 * ubifs_jnl_change_xattr - change an extended attribute. 1775 * @c: UBIFS file-system description object 1776 * @inode: extended attribute inode 1777 * @host: host inode 1778 * 1779 * This function writes the updated version of an extended attribute inode and 1780 * the host inode to the journal (to the base head). The host inode is written 1781 * after the extended attribute inode in order to guarantee that the extended 1782 * attribute will be flushed when the inode is synchronized by 'fsync()' and 1783 * consequently, the write-buffer is synchronized. This function returns zero 1784 * in case of success and a negative error code in case of failure. 1785 */ 1786 int ubifs_jnl_change_xattr(struct ubifs_info *c, const struct inode *inode, 1787 const struct inode *host) 1788 { 1789 int err, len1, len2, aligned_len, aligned_len1, lnum, offs; 1790 struct ubifs_inode *host_ui = ubifs_inode(host); 1791 struct ubifs_ino_node *ino; 1792 union ubifs_key key; 1793 int sync = IS_DIRSYNC(host); 1794 u8 hash_host[UBIFS_HASH_ARR_SZ]; 1795 u8 hash[UBIFS_HASH_ARR_SZ]; 1796 1797 dbg_jnl("ino %lu, ino %lu", host->i_ino, inode->i_ino); 1798 ubifs_assert(c, host->i_nlink > 0); 1799 ubifs_assert(c, inode->i_nlink > 0); 1800 ubifs_assert(c, mutex_is_locked(&host_ui->ui_mutex)); 1801 1802 len1 = UBIFS_INO_NODE_SZ + host_ui->data_len; 1803 len2 = UBIFS_INO_NODE_SZ + ubifs_inode(inode)->data_len; 1804 aligned_len1 = ALIGN(len1, 8); 1805 aligned_len = aligned_len1 + ALIGN(len2, 8); 1806 1807 aligned_len += ubifs_auth_node_sz(c); 1808 1809 ino = kzalloc(aligned_len, GFP_NOFS); 1810 if (!ino) 1811 return -ENOMEM; 1812 1813 /* Make reservation before allocating sequence numbers */ 1814 err = make_reservation(c, BASEHD, aligned_len); 1815 if (err) 1816 goto out_free; 1817 1818 pack_inode(c, ino, host, 0); 1819 err = ubifs_node_calc_hash(c, ino, hash_host); 1820 if (err) 1821 goto out_release; 1822 pack_inode(c, (void *)ino + aligned_len1, inode, 1); 1823 err = ubifs_node_calc_hash(c, (void *)ino + aligned_len1, hash); 1824 if (err) 1825 goto out_release; 1826 1827 err = write_head(c, BASEHD, ino, aligned_len, &lnum, &offs, 0); 1828 if (!sync && !err) { 1829 struct ubifs_wbuf *wbuf = &c->jheads[BASEHD].wbuf; 1830 1831 ubifs_wbuf_add_ino_nolock(wbuf, host->i_ino); 1832 ubifs_wbuf_add_ino_nolock(wbuf, inode->i_ino); 1833 } 1834 release_head(c, BASEHD); 1835 if (err) 1836 goto out_ro; 1837 1838 ubifs_add_auth_dirt(c, lnum); 1839 1840 ino_key_init(c, &key, host->i_ino); 1841 err = ubifs_tnc_add(c, &key, lnum, offs, len1, hash_host); 1842 if (err) 1843 goto out_ro; 1844 1845 ino_key_init(c, &key, inode->i_ino); 1846 err = ubifs_tnc_add(c, &key, lnum, offs + aligned_len1, len2, hash); 1847 if (err) 1848 goto out_ro; 1849 1850 finish_reservation(c); 1851 spin_lock(&host_ui->ui_lock); 1852 host_ui->synced_i_size = host_ui->ui_size; 1853 spin_unlock(&host_ui->ui_lock); 1854 mark_inode_clean(c, host_ui); 1855 kfree(ino); 1856 return 0; 1857 1858 out_release: 1859 release_head(c, BASEHD); 1860 out_ro: 1861 ubifs_ro_mode(c, err); 1862 finish_reservation(c); 1863 out_free: 1864 kfree(ino); 1865 return err; 1866 } 1867 1868