1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program; if not, write to the Free Software Foundation, Inc., 51 18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Authors: Artem Bityutskiy (Битюцкий Артём) 21 * Adrian Hunter 22 * Zoltan Sogor 23 */ 24 25 /* 26 * This file implements UBIFS I/O subsystem which provides various I/O-related 27 * helper functions (reading/writing/checking/validating nodes) and implements 28 * write-buffering support. Write buffers help to save space which otherwise 29 * would have been wasted for padding to the nearest minimal I/O unit boundary. 30 * Instead, data first goes to the write-buffer and is flushed when the 31 * buffer is full or when it is not used for some time (by timer). This is 32 * similarto the mechanism is used by JFFS2. 33 * 34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 35 * mutexes defined inside these objects. Since sometimes upper-level code 36 * has to lock the write-buffer (e.g. journal space reservation code), many 37 * functions related to write-buffers have "nolock" suffix which means that the 38 * caller has to lock the write-buffer before calling this function. 39 * 40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 41 * aligned, UBIFS starts the next node from the aligned address, and the padded 42 * bytes may contain any rubbish. In other words, UBIFS does not put padding 43 * bytes in those small gaps. Common headers of nodes store real node lengths, 44 * not aligned lengths. Indexing nodes also store real lengths in branches. 45 * 46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 47 * uses padding nodes or padding bytes, if the padding node does not fit. 48 * 49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes 50 * every time they are read from the flash media. 51 */ 52 53 #include <linux/crc32.h> 54 #include "ubifs.h" 55 56 /** 57 * ubifs_ro_mode - switch UBIFS to read read-only mode. 58 * @c: UBIFS file-system description object 59 * @err: error code which is the reason of switching to R/O mode 60 */ 61 void ubifs_ro_mode(struct ubifs_info *c, int err) 62 { 63 if (!c->ro_media) { 64 c->ro_media = 1; 65 c->no_chk_data_crc = 0; 66 ubifs_warn("switched to read-only mode, error %d", err); 67 dbg_dump_stack(); 68 } 69 } 70 71 /** 72 * ubifs_check_node - check node. 73 * @c: UBIFS file-system description object 74 * @buf: node to check 75 * @lnum: logical eraseblock number 76 * @offs: offset within the logical eraseblock 77 * @quiet: print no messages 78 * @chk_crc: indicates whether to always check the CRC 79 * 80 * This function checks node magic number and CRC checksum. This function also 81 * validates node length to prevent UBIFS from becoming crazy when an attacker 82 * feeds it a file-system image with incorrect nodes. For example, too large 83 * node length in the common header could cause UBIFS to read memory outside of 84 * allocated buffer when checking the CRC checksum. 85 * 86 * This function returns zero in case of success %-EUCLEAN in case of bad CRC 87 * or magic. 88 */ 89 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 90 int offs, int quiet, int chk_crc) 91 { 92 int err = -EINVAL, type, node_len; 93 uint32_t crc, node_crc, magic; 94 const struct ubifs_ch *ch = buf; 95 96 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 97 ubifs_assert(!(offs & 7) && offs < c->leb_size); 98 99 magic = le32_to_cpu(ch->magic); 100 if (magic != UBIFS_NODE_MAGIC) { 101 if (!quiet) 102 ubifs_err("bad magic %#08x, expected %#08x", 103 magic, UBIFS_NODE_MAGIC); 104 err = -EUCLEAN; 105 goto out; 106 } 107 108 type = ch->node_type; 109 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 110 if (!quiet) 111 ubifs_err("bad node type %d", type); 112 goto out; 113 } 114 115 node_len = le32_to_cpu(ch->len); 116 if (node_len + offs > c->leb_size) 117 goto out_len; 118 119 if (c->ranges[type].max_len == 0) { 120 if (node_len != c->ranges[type].len) 121 goto out_len; 122 } else if (node_len < c->ranges[type].min_len || 123 node_len > c->ranges[type].max_len) 124 goto out_len; 125 126 if (!chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc) 127 if (c->no_chk_data_crc) 128 return 0; 129 130 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 131 node_crc = le32_to_cpu(ch->crc); 132 if (crc != node_crc) { 133 if (!quiet) 134 ubifs_err("bad CRC: calculated %#08x, read %#08x", 135 crc, node_crc); 136 err = -EUCLEAN; 137 goto out; 138 } 139 140 return 0; 141 142 out_len: 143 if (!quiet) 144 ubifs_err("bad node length %d", node_len); 145 out: 146 if (!quiet) { 147 ubifs_err("bad node at LEB %d:%d", lnum, offs); 148 dbg_dump_node(c, buf); 149 dbg_dump_stack(); 150 } 151 return err; 152 } 153 154 /** 155 * ubifs_pad - pad flash space. 156 * @c: UBIFS file-system description object 157 * @buf: buffer to put padding to 158 * @pad: how many bytes to pad 159 * 160 * The flash media obliges us to write only in chunks of %c->min_io_size and 161 * when we have to write less data we add padding node to the write-buffer and 162 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 163 * media is being scanned. If the amount of wasted space is not enough to fit a 164 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 165 * pattern (%UBIFS_PADDING_BYTE). 166 * 167 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 168 * used. 169 */ 170 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 171 { 172 uint32_t crc; 173 174 ubifs_assert(pad >= 0 && !(pad & 7)); 175 176 if (pad >= UBIFS_PAD_NODE_SZ) { 177 struct ubifs_ch *ch = buf; 178 struct ubifs_pad_node *pad_node = buf; 179 180 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 181 ch->node_type = UBIFS_PAD_NODE; 182 ch->group_type = UBIFS_NO_NODE_GROUP; 183 ch->padding[0] = ch->padding[1] = 0; 184 ch->sqnum = 0; 185 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 186 pad -= UBIFS_PAD_NODE_SZ; 187 pad_node->pad_len = cpu_to_le32(pad); 188 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 189 ch->crc = cpu_to_le32(crc); 190 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 191 } else if (pad > 0) 192 /* Too little space, padding node won't fit */ 193 memset(buf, UBIFS_PADDING_BYTE, pad); 194 } 195 196 /** 197 * next_sqnum - get next sequence number. 198 * @c: UBIFS file-system description object 199 */ 200 static unsigned long long next_sqnum(struct ubifs_info *c) 201 { 202 unsigned long long sqnum; 203 204 spin_lock(&c->cnt_lock); 205 sqnum = ++c->max_sqnum; 206 spin_unlock(&c->cnt_lock); 207 208 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 209 if (sqnum >= SQNUM_WATERMARK) { 210 ubifs_err("sequence number overflow %llu, end of life", 211 sqnum); 212 ubifs_ro_mode(c, -EINVAL); 213 } 214 ubifs_warn("running out of sequence numbers, end of life soon"); 215 } 216 217 return sqnum; 218 } 219 220 /** 221 * ubifs_prepare_node - prepare node to be written to flash. 222 * @c: UBIFS file-system description object 223 * @node: the node to pad 224 * @len: node length 225 * @pad: if the buffer has to be padded 226 * 227 * This function prepares node at @node to be written to the media - it 228 * calculates node CRC, fills the common header, and adds proper padding up to 229 * the next minimum I/O unit if @pad is not zero. 230 */ 231 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 232 { 233 uint32_t crc; 234 struct ubifs_ch *ch = node; 235 unsigned long long sqnum = next_sqnum(c); 236 237 ubifs_assert(len >= UBIFS_CH_SZ); 238 239 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 240 ch->len = cpu_to_le32(len); 241 ch->group_type = UBIFS_NO_NODE_GROUP; 242 ch->sqnum = cpu_to_le64(sqnum); 243 ch->padding[0] = ch->padding[1] = 0; 244 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 245 ch->crc = cpu_to_le32(crc); 246 247 if (pad) { 248 len = ALIGN(len, 8); 249 pad = ALIGN(len, c->min_io_size) - len; 250 ubifs_pad(c, node + len, pad); 251 } 252 } 253 254 /** 255 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 256 * @c: UBIFS file-system description object 257 * @node: the node to pad 258 * @len: node length 259 * @last: indicates the last node of the group 260 * 261 * This function prepares node at @node to be written to the media - it 262 * calculates node CRC and fills the common header. 263 */ 264 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 265 { 266 uint32_t crc; 267 struct ubifs_ch *ch = node; 268 unsigned long long sqnum = next_sqnum(c); 269 270 ubifs_assert(len >= UBIFS_CH_SZ); 271 272 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 273 ch->len = cpu_to_le32(len); 274 if (last) 275 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 276 else 277 ch->group_type = UBIFS_IN_NODE_GROUP; 278 ch->sqnum = cpu_to_le64(sqnum); 279 ch->padding[0] = ch->padding[1] = 0; 280 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 281 ch->crc = cpu_to_le32(crc); 282 } 283 284 /** 285 * wbuf_timer_callback - write-buffer timer callback function. 286 * @data: timer data (write-buffer descriptor) 287 * 288 * This function is called when the write-buffer timer expires. 289 */ 290 static void wbuf_timer_callback_nolock(unsigned long data) 291 { 292 struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data; 293 294 wbuf->need_sync = 1; 295 wbuf->c->need_wbuf_sync = 1; 296 ubifs_wake_up_bgt(wbuf->c); 297 } 298 299 /** 300 * new_wbuf_timer - start new write-buffer timer. 301 * @wbuf: write-buffer descriptor 302 */ 303 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 304 { 305 ubifs_assert(!timer_pending(&wbuf->timer)); 306 307 if (!wbuf->timeout) 308 return; 309 310 wbuf->timer.expires = jiffies + wbuf->timeout; 311 add_timer(&wbuf->timer); 312 } 313 314 /** 315 * cancel_wbuf_timer - cancel write-buffer timer. 316 * @wbuf: write-buffer descriptor 317 */ 318 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 319 { 320 /* 321 * If the syncer is waiting for the lock (from the background thread's 322 * context) and another task is changing write-buffer then the syncing 323 * should be canceled. 324 */ 325 wbuf->need_sync = 0; 326 del_timer(&wbuf->timer); 327 } 328 329 /** 330 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 331 * @wbuf: write-buffer to synchronize 332 * 333 * This function synchronizes write-buffer @buf and returns zero in case of 334 * success or a negative error code in case of failure. 335 */ 336 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 337 { 338 struct ubifs_info *c = wbuf->c; 339 int err, dirt; 340 341 cancel_wbuf_timer_nolock(wbuf); 342 if (!wbuf->used || wbuf->lnum == -1) 343 /* Write-buffer is empty or not seeked */ 344 return 0; 345 346 dbg_io("LEB %d:%d, %d bytes", 347 wbuf->lnum, wbuf->offs, wbuf->used); 348 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 349 ubifs_assert(!(wbuf->avail & 7)); 350 ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size); 351 352 if (c->ro_media) 353 return -EROFS; 354 355 ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail); 356 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 357 c->min_io_size, wbuf->dtype); 358 if (err) { 359 ubifs_err("cannot write %d bytes to LEB %d:%d", 360 c->min_io_size, wbuf->lnum, wbuf->offs); 361 dbg_dump_stack(); 362 return err; 363 } 364 365 dirt = wbuf->avail; 366 367 spin_lock(&wbuf->lock); 368 wbuf->offs += c->min_io_size; 369 wbuf->avail = c->min_io_size; 370 wbuf->used = 0; 371 wbuf->next_ino = 0; 372 spin_unlock(&wbuf->lock); 373 374 if (wbuf->sync_callback) 375 err = wbuf->sync_callback(c, wbuf->lnum, 376 c->leb_size - wbuf->offs, dirt); 377 return err; 378 } 379 380 /** 381 * ubifs_wbuf_seek_nolock - seek write-buffer. 382 * @wbuf: write-buffer 383 * @lnum: logical eraseblock number to seek to 384 * @offs: logical eraseblock offset to seek to 385 * @dtype: data type 386 * 387 * This function targets the write buffer to logical eraseblock @lnum:@offs. 388 * The write-buffer is synchronized if it is not empty. Returns zero in case of 389 * success and a negative error code in case of failure. 390 */ 391 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, 392 int dtype) 393 { 394 const struct ubifs_info *c = wbuf->c; 395 396 dbg_io("LEB %d:%d", lnum, offs); 397 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 398 ubifs_assert(offs >= 0 && offs <= c->leb_size); 399 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 400 ubifs_assert(lnum != wbuf->lnum); 401 402 if (wbuf->used > 0) { 403 int err = ubifs_wbuf_sync_nolock(wbuf); 404 405 if (err) 406 return err; 407 } 408 409 spin_lock(&wbuf->lock); 410 wbuf->lnum = lnum; 411 wbuf->offs = offs; 412 wbuf->avail = c->min_io_size; 413 wbuf->used = 0; 414 spin_unlock(&wbuf->lock); 415 wbuf->dtype = dtype; 416 417 return 0; 418 } 419 420 /** 421 * ubifs_bg_wbufs_sync - synchronize write-buffers. 422 * @c: UBIFS file-system description object 423 * 424 * This function is called by background thread to synchronize write-buffers. 425 * Returns zero in case of success and a negative error code in case of 426 * failure. 427 */ 428 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 429 { 430 int err, i; 431 432 if (!c->need_wbuf_sync) 433 return 0; 434 c->need_wbuf_sync = 0; 435 436 if (c->ro_media) { 437 err = -EROFS; 438 goto out_timers; 439 } 440 441 dbg_io("synchronize"); 442 for (i = 0; i < c->jhead_cnt; i++) { 443 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 444 445 cond_resched(); 446 447 /* 448 * If the mutex is locked then wbuf is being changed, so 449 * synchronization is not necessary. 450 */ 451 if (mutex_is_locked(&wbuf->io_mutex)) 452 continue; 453 454 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 455 if (!wbuf->need_sync) { 456 mutex_unlock(&wbuf->io_mutex); 457 continue; 458 } 459 460 err = ubifs_wbuf_sync_nolock(wbuf); 461 mutex_unlock(&wbuf->io_mutex); 462 if (err) { 463 ubifs_err("cannot sync write-buffer, error %d", err); 464 ubifs_ro_mode(c, err); 465 goto out_timers; 466 } 467 } 468 469 return 0; 470 471 out_timers: 472 /* Cancel all timers to prevent repeated errors */ 473 for (i = 0; i < c->jhead_cnt; i++) { 474 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 475 476 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 477 cancel_wbuf_timer_nolock(wbuf); 478 mutex_unlock(&wbuf->io_mutex); 479 } 480 return err; 481 } 482 483 /** 484 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 485 * @wbuf: write-buffer 486 * @buf: node to write 487 * @len: node length 488 * 489 * This function writes data to flash via write-buffer @wbuf. This means that 490 * the last piece of the node won't reach the flash media immediately if it 491 * does not take whole minimal I/O unit. Instead, the node will sit in RAM 492 * until the write-buffer is synchronized (e.g., by timer). 493 * 494 * This function returns zero in case of success and a negative error code in 495 * case of failure. If the node cannot be written because there is no more 496 * space in this logical eraseblock, %-ENOSPC is returned. 497 */ 498 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 499 { 500 struct ubifs_info *c = wbuf->c; 501 int err, written, n, aligned_len = ALIGN(len, 8), offs; 502 503 dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len, 504 dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum, 505 wbuf->offs + wbuf->used); 506 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 507 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 508 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 509 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size); 510 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 511 512 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 513 err = -ENOSPC; 514 goto out; 515 } 516 517 cancel_wbuf_timer_nolock(wbuf); 518 519 if (c->ro_media) 520 return -EROFS; 521 522 if (aligned_len <= wbuf->avail) { 523 /* 524 * The node is not very large and fits entirely within 525 * write-buffer. 526 */ 527 memcpy(wbuf->buf + wbuf->used, buf, len); 528 529 if (aligned_len == wbuf->avail) { 530 dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, 531 wbuf->offs); 532 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, 533 wbuf->offs, c->min_io_size, 534 wbuf->dtype); 535 if (err) 536 goto out; 537 538 spin_lock(&wbuf->lock); 539 wbuf->offs += c->min_io_size; 540 wbuf->avail = c->min_io_size; 541 wbuf->used = 0; 542 wbuf->next_ino = 0; 543 spin_unlock(&wbuf->lock); 544 } else { 545 spin_lock(&wbuf->lock); 546 wbuf->avail -= aligned_len; 547 wbuf->used += aligned_len; 548 spin_unlock(&wbuf->lock); 549 } 550 551 goto exit; 552 } 553 554 /* 555 * The node is large enough and does not fit entirely within current 556 * minimal I/O unit. We have to fill and flush write-buffer and switch 557 * to the next min. I/O unit. 558 */ 559 dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs); 560 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 561 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 562 c->min_io_size, wbuf->dtype); 563 if (err) 564 goto out; 565 566 offs = wbuf->offs + c->min_io_size; 567 len -= wbuf->avail; 568 aligned_len -= wbuf->avail; 569 written = wbuf->avail; 570 571 /* 572 * The remaining data may take more whole min. I/O units, so write the 573 * remains multiple to min. I/O unit size directly to the flash media. 574 * We align node length to 8-byte boundary because we anyway flash wbuf 575 * if the remaining space is less than 8 bytes. 576 */ 577 n = aligned_len >> c->min_io_shift; 578 if (n) { 579 n <<= c->min_io_shift; 580 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs); 581 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n, 582 wbuf->dtype); 583 if (err) 584 goto out; 585 offs += n; 586 aligned_len -= n; 587 len -= n; 588 written += n; 589 } 590 591 spin_lock(&wbuf->lock); 592 if (aligned_len) 593 /* 594 * And now we have what's left and what does not take whole 595 * min. I/O unit, so write it to the write-buffer and we are 596 * done. 597 */ 598 memcpy(wbuf->buf, buf + written, len); 599 600 wbuf->offs = offs; 601 wbuf->used = aligned_len; 602 wbuf->avail = c->min_io_size - aligned_len; 603 wbuf->next_ino = 0; 604 spin_unlock(&wbuf->lock); 605 606 exit: 607 if (wbuf->sync_callback) { 608 int free = c->leb_size - wbuf->offs - wbuf->used; 609 610 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 611 if (err) 612 goto out; 613 } 614 615 if (wbuf->used) 616 new_wbuf_timer_nolock(wbuf); 617 618 return 0; 619 620 out: 621 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 622 len, wbuf->lnum, wbuf->offs, err); 623 dbg_dump_node(c, buf); 624 dbg_dump_stack(); 625 dbg_dump_leb(c, wbuf->lnum); 626 return err; 627 } 628 629 /** 630 * ubifs_write_node - write node to the media. 631 * @c: UBIFS file-system description object 632 * @buf: the node to write 633 * @len: node length 634 * @lnum: logical eraseblock number 635 * @offs: offset within the logical eraseblock 636 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN) 637 * 638 * This function automatically fills node magic number, assigns sequence 639 * number, and calculates node CRC checksum. The length of the @buf buffer has 640 * to be aligned to the minimal I/O unit size. This function automatically 641 * appends padding node and padding bytes if needed. Returns zero in case of 642 * success and a negative error code in case of failure. 643 */ 644 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 645 int offs, int dtype) 646 { 647 int err, buf_len = ALIGN(len, c->min_io_size); 648 649 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 650 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 651 buf_len); 652 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 653 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 654 655 if (c->ro_media) 656 return -EROFS; 657 658 ubifs_prepare_node(c, buf, len, 1); 659 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype); 660 if (err) { 661 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 662 buf_len, lnum, offs, err); 663 dbg_dump_node(c, buf); 664 dbg_dump_stack(); 665 } 666 667 return err; 668 } 669 670 /** 671 * ubifs_read_node_wbuf - read node from the media or write-buffer. 672 * @wbuf: wbuf to check for un-written data 673 * @buf: buffer to read to 674 * @type: node type 675 * @len: node length 676 * @lnum: logical eraseblock number 677 * @offs: offset within the logical eraseblock 678 * 679 * This function reads a node of known type and length, checks it and stores 680 * in @buf. If the node partially or fully sits in the write-buffer, this 681 * function takes data from the buffer, otherwise it reads the flash media. 682 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 683 * error code in case of failure. 684 */ 685 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 686 int lnum, int offs) 687 { 688 const struct ubifs_info *c = wbuf->c; 689 int err, rlen, overlap; 690 struct ubifs_ch *ch = buf; 691 692 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 693 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 694 ubifs_assert(!(offs & 7) && offs < c->leb_size); 695 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 696 697 spin_lock(&wbuf->lock); 698 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 699 if (!overlap) { 700 /* We may safely unlock the write-buffer and read the data */ 701 spin_unlock(&wbuf->lock); 702 return ubifs_read_node(c, buf, type, len, lnum, offs); 703 } 704 705 /* Don't read under wbuf */ 706 rlen = wbuf->offs - offs; 707 if (rlen < 0) 708 rlen = 0; 709 710 /* Copy the rest from the write-buffer */ 711 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 712 spin_unlock(&wbuf->lock); 713 714 if (rlen > 0) { 715 /* Read everything that goes before write-buffer */ 716 err = ubi_read(c->ubi, lnum, buf, offs, rlen); 717 if (err && err != -EBADMSG) { 718 ubifs_err("failed to read node %d from LEB %d:%d, " 719 "error %d", type, lnum, offs, err); 720 dbg_dump_stack(); 721 return err; 722 } 723 } 724 725 if (type != ch->node_type) { 726 ubifs_err("bad node type (%d but expected %d)", 727 ch->node_type, type); 728 goto out; 729 } 730 731 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 732 if (err) { 733 ubifs_err("expected node type %d", type); 734 return err; 735 } 736 737 rlen = le32_to_cpu(ch->len); 738 if (rlen != len) { 739 ubifs_err("bad node length %d, expected %d", rlen, len); 740 goto out; 741 } 742 743 return 0; 744 745 out: 746 ubifs_err("bad node at LEB %d:%d", lnum, offs); 747 dbg_dump_node(c, buf); 748 dbg_dump_stack(); 749 return -EINVAL; 750 } 751 752 /** 753 * ubifs_read_node - read node. 754 * @c: UBIFS file-system description object 755 * @buf: buffer to read to 756 * @type: node type 757 * @len: node length (not aligned) 758 * @lnum: logical eraseblock number 759 * @offs: offset within the logical eraseblock 760 * 761 * This function reads a node of known type and and length, checks it and 762 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 763 * and a negative error code in case of failure. 764 */ 765 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 766 int lnum, int offs) 767 { 768 int err, l; 769 struct ubifs_ch *ch = buf; 770 771 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 772 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 773 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 774 ubifs_assert(!(offs & 7) && offs < c->leb_size); 775 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 776 777 err = ubi_read(c->ubi, lnum, buf, offs, len); 778 if (err && err != -EBADMSG) { 779 ubifs_err("cannot read node %d from LEB %d:%d, error %d", 780 type, lnum, offs, err); 781 return err; 782 } 783 784 if (type != ch->node_type) { 785 ubifs_err("bad node type (%d but expected %d)", 786 ch->node_type, type); 787 goto out; 788 } 789 790 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 791 if (err) { 792 ubifs_err("expected node type %d", type); 793 return err; 794 } 795 796 l = le32_to_cpu(ch->len); 797 if (l != len) { 798 ubifs_err("bad node length %d, expected %d", l, len); 799 goto out; 800 } 801 802 return 0; 803 804 out: 805 ubifs_err("bad node at LEB %d:%d", lnum, offs); 806 dbg_dump_node(c, buf); 807 dbg_dump_stack(); 808 return -EINVAL; 809 } 810 811 /** 812 * ubifs_wbuf_init - initialize write-buffer. 813 * @c: UBIFS file-system description object 814 * @wbuf: write-buffer to initialize 815 * 816 * This function initializes write buffer. Returns zero in case of success 817 * %-ENOMEM in case of failure. 818 */ 819 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 820 { 821 size_t size; 822 823 wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL); 824 if (!wbuf->buf) 825 return -ENOMEM; 826 827 size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 828 wbuf->inodes = kmalloc(size, GFP_KERNEL); 829 if (!wbuf->inodes) { 830 kfree(wbuf->buf); 831 wbuf->buf = NULL; 832 return -ENOMEM; 833 } 834 835 wbuf->used = 0; 836 wbuf->lnum = wbuf->offs = -1; 837 wbuf->avail = c->min_io_size; 838 wbuf->dtype = UBI_UNKNOWN; 839 wbuf->sync_callback = NULL; 840 mutex_init(&wbuf->io_mutex); 841 spin_lock_init(&wbuf->lock); 842 843 wbuf->c = c; 844 init_timer(&wbuf->timer); 845 wbuf->timer.function = wbuf_timer_callback_nolock; 846 wbuf->timer.data = (unsigned long)wbuf; 847 wbuf->timeout = DEFAULT_WBUF_TIMEOUT; 848 wbuf->next_ino = 0; 849 850 return 0; 851 } 852 853 /** 854 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 855 * @wbuf: the write-buffer whereto add 856 * @inum: the inode number 857 * 858 * This function adds an inode number to the inode array of the write-buffer. 859 */ 860 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 861 { 862 if (!wbuf->buf) 863 /* NOR flash or something similar */ 864 return; 865 866 spin_lock(&wbuf->lock); 867 if (wbuf->used) 868 wbuf->inodes[wbuf->next_ino++] = inum; 869 spin_unlock(&wbuf->lock); 870 } 871 872 /** 873 * wbuf_has_ino - returns if the wbuf contains data from the inode. 874 * @wbuf: the write-buffer 875 * @inum: the inode number 876 * 877 * This function returns with %1 if the write-buffer contains some data from the 878 * given inode otherwise it returns with %0. 879 */ 880 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 881 { 882 int i, ret = 0; 883 884 spin_lock(&wbuf->lock); 885 for (i = 0; i < wbuf->next_ino; i++) 886 if (inum == wbuf->inodes[i]) { 887 ret = 1; 888 break; 889 } 890 spin_unlock(&wbuf->lock); 891 892 return ret; 893 } 894 895 /** 896 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 897 * @c: UBIFS file-system description object 898 * @inode: inode to synchronize 899 * 900 * This function synchronizes write-buffers which contain nodes belonging to 901 * @inode. Returns zero in case of success and a negative error code in case of 902 * failure. 903 */ 904 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 905 { 906 int i, err = 0; 907 908 for (i = 0; i < c->jhead_cnt; i++) { 909 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 910 911 if (i == GCHD) 912 /* 913 * GC head is special, do not look at it. Even if the 914 * head contains something related to this inode, it is 915 * a _copy_ of corresponding on-flash node which sits 916 * somewhere else. 917 */ 918 continue; 919 920 if (!wbuf_has_ino(wbuf, inode->i_ino)) 921 continue; 922 923 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 924 if (wbuf_has_ino(wbuf, inode->i_ino)) 925 err = ubifs_wbuf_sync_nolock(wbuf); 926 mutex_unlock(&wbuf->io_mutex); 927 928 if (err) { 929 ubifs_ro_mode(c, err); 930 return err; 931 } 932 } 933 return 0; 934 } 935