1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program; if not, write to the Free Software Foundation, Inc., 51 18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Authors: Artem Bityutskiy (Битюцкий Артём) 21 * Adrian Hunter 22 * Zoltan Sogor 23 */ 24 25 /* 26 * This file implements UBIFS I/O subsystem which provides various I/O-related 27 * helper functions (reading/writing/checking/validating nodes) and implements 28 * write-buffering support. Write buffers help to save space which otherwise 29 * would have been wasted for padding to the nearest minimal I/O unit boundary. 30 * Instead, data first goes to the write-buffer and is flushed when the 31 * buffer is full or when it is not used for some time (by timer). This is 32 * similarto the mechanism is used by JFFS2. 33 * 34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 35 * mutexes defined inside these objects. Since sometimes upper-level code 36 * has to lock the write-buffer (e.g. journal space reservation code), many 37 * functions related to write-buffers have "nolock" suffix which means that the 38 * caller has to lock the write-buffer before calling this function. 39 * 40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 41 * aligned, UBIFS starts the next node from the aligned address, and the padded 42 * bytes may contain any rubbish. In other words, UBIFS does not put padding 43 * bytes in those small gaps. Common headers of nodes store real node lengths, 44 * not aligned lengths. Indexing nodes also store real lengths in branches. 45 * 46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 47 * uses padding nodes or padding bytes, if the padding node does not fit. 48 * 49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes 50 * every time they are read from the flash media. 51 */ 52 53 #include <linux/crc32.h> 54 #include "ubifs.h" 55 56 /** 57 * ubifs_ro_mode - switch UBIFS to read read-only mode. 58 * @c: UBIFS file-system description object 59 * @err: error code which is the reason of switching to R/O mode 60 */ 61 void ubifs_ro_mode(struct ubifs_info *c, int err) 62 { 63 if (!c->ro_media) { 64 c->ro_media = 1; 65 ubifs_warn("switched to read-only mode, error %d", err); 66 dbg_dump_stack(); 67 } 68 } 69 70 /** 71 * ubifs_check_node - check node. 72 * @c: UBIFS file-system description object 73 * @buf: node to check 74 * @lnum: logical eraseblock number 75 * @offs: offset within the logical eraseblock 76 * @quiet: print no messages 77 * 78 * This function checks node magic number and CRC checksum. This function also 79 * validates node length to prevent UBIFS from becoming crazy when an attacker 80 * feeds it a file-system image with incorrect nodes. For example, too large 81 * node length in the common header could cause UBIFS to read memory outside of 82 * allocated buffer when checking the CRC checksum. 83 * 84 * This function returns zero in case of success %-EUCLEAN in case of bad CRC 85 * or magic. 86 */ 87 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 88 int offs, int quiet) 89 { 90 int err = -EINVAL, type, node_len; 91 uint32_t crc, node_crc, magic; 92 const struct ubifs_ch *ch = buf; 93 94 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 95 ubifs_assert(!(offs & 7) && offs < c->leb_size); 96 97 magic = le32_to_cpu(ch->magic); 98 if (magic != UBIFS_NODE_MAGIC) { 99 if (!quiet) 100 ubifs_err("bad magic %#08x, expected %#08x", 101 magic, UBIFS_NODE_MAGIC); 102 err = -EUCLEAN; 103 goto out; 104 } 105 106 type = ch->node_type; 107 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 108 if (!quiet) 109 ubifs_err("bad node type %d", type); 110 goto out; 111 } 112 113 node_len = le32_to_cpu(ch->len); 114 if (node_len + offs > c->leb_size) 115 goto out_len; 116 117 if (c->ranges[type].max_len == 0) { 118 if (node_len != c->ranges[type].len) 119 goto out_len; 120 } else if (node_len < c->ranges[type].min_len || 121 node_len > c->ranges[type].max_len) 122 goto out_len; 123 124 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 125 node_crc = le32_to_cpu(ch->crc); 126 if (crc != node_crc) { 127 if (!quiet) 128 ubifs_err("bad CRC: calculated %#08x, read %#08x", 129 crc, node_crc); 130 err = -EUCLEAN; 131 goto out; 132 } 133 134 return 0; 135 136 out_len: 137 if (!quiet) 138 ubifs_err("bad node length %d", node_len); 139 out: 140 if (!quiet) { 141 ubifs_err("bad node at LEB %d:%d", lnum, offs); 142 dbg_dump_node(c, buf); 143 dbg_dump_stack(); 144 } 145 return err; 146 } 147 148 /** 149 * ubifs_pad - pad flash space. 150 * @c: UBIFS file-system description object 151 * @buf: buffer to put padding to 152 * @pad: how many bytes to pad 153 * 154 * The flash media obliges us to write only in chunks of %c->min_io_size and 155 * when we have to write less data we add padding node to the write-buffer and 156 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 157 * media is being scanned. If the amount of wasted space is not enough to fit a 158 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 159 * pattern (%UBIFS_PADDING_BYTE). 160 * 161 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 162 * used. 163 */ 164 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 165 { 166 uint32_t crc; 167 168 ubifs_assert(pad >= 0 && !(pad & 7)); 169 170 if (pad >= UBIFS_PAD_NODE_SZ) { 171 struct ubifs_ch *ch = buf; 172 struct ubifs_pad_node *pad_node = buf; 173 174 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 175 ch->node_type = UBIFS_PAD_NODE; 176 ch->group_type = UBIFS_NO_NODE_GROUP; 177 ch->padding[0] = ch->padding[1] = 0; 178 ch->sqnum = 0; 179 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 180 pad -= UBIFS_PAD_NODE_SZ; 181 pad_node->pad_len = cpu_to_le32(pad); 182 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 183 ch->crc = cpu_to_le32(crc); 184 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 185 } else if (pad > 0) 186 /* Too little space, padding node won't fit */ 187 memset(buf, UBIFS_PADDING_BYTE, pad); 188 } 189 190 /** 191 * next_sqnum - get next sequence number. 192 * @c: UBIFS file-system description object 193 */ 194 static unsigned long long next_sqnum(struct ubifs_info *c) 195 { 196 unsigned long long sqnum; 197 198 spin_lock(&c->cnt_lock); 199 sqnum = ++c->max_sqnum; 200 spin_unlock(&c->cnt_lock); 201 202 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 203 if (sqnum >= SQNUM_WATERMARK) { 204 ubifs_err("sequence number overflow %llu, end of life", 205 sqnum); 206 ubifs_ro_mode(c, -EINVAL); 207 } 208 ubifs_warn("running out of sequence numbers, end of life soon"); 209 } 210 211 return sqnum; 212 } 213 214 /** 215 * ubifs_prepare_node - prepare node to be written to flash. 216 * @c: UBIFS file-system description object 217 * @node: the node to pad 218 * @len: node length 219 * @pad: if the buffer has to be padded 220 * 221 * This function prepares node at @node to be written to the media - it 222 * calculates node CRC, fills the common header, and adds proper padding up to 223 * the next minimum I/O unit if @pad is not zero. 224 */ 225 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 226 { 227 uint32_t crc; 228 struct ubifs_ch *ch = node; 229 unsigned long long sqnum = next_sqnum(c); 230 231 ubifs_assert(len >= UBIFS_CH_SZ); 232 233 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 234 ch->len = cpu_to_le32(len); 235 ch->group_type = UBIFS_NO_NODE_GROUP; 236 ch->sqnum = cpu_to_le64(sqnum); 237 ch->padding[0] = ch->padding[1] = 0; 238 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 239 ch->crc = cpu_to_le32(crc); 240 241 if (pad) { 242 len = ALIGN(len, 8); 243 pad = ALIGN(len, c->min_io_size) - len; 244 ubifs_pad(c, node + len, pad); 245 } 246 } 247 248 /** 249 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 250 * @c: UBIFS file-system description object 251 * @node: the node to pad 252 * @len: node length 253 * @last: indicates the last node of the group 254 * 255 * This function prepares node at @node to be written to the media - it 256 * calculates node CRC and fills the common header. 257 */ 258 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 259 { 260 uint32_t crc; 261 struct ubifs_ch *ch = node; 262 unsigned long long sqnum = next_sqnum(c); 263 264 ubifs_assert(len >= UBIFS_CH_SZ); 265 266 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 267 ch->len = cpu_to_le32(len); 268 if (last) 269 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 270 else 271 ch->group_type = UBIFS_IN_NODE_GROUP; 272 ch->sqnum = cpu_to_le64(sqnum); 273 ch->padding[0] = ch->padding[1] = 0; 274 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 275 ch->crc = cpu_to_le32(crc); 276 } 277 278 /** 279 * wbuf_timer_callback - write-buffer timer callback function. 280 * @data: timer data (write-buffer descriptor) 281 * 282 * This function is called when the write-buffer timer expires. 283 */ 284 static void wbuf_timer_callback_nolock(unsigned long data) 285 { 286 struct ubifs_wbuf *wbuf = (struct ubifs_wbuf *)data; 287 288 wbuf->need_sync = 1; 289 wbuf->c->need_wbuf_sync = 1; 290 ubifs_wake_up_bgt(wbuf->c); 291 } 292 293 /** 294 * new_wbuf_timer - start new write-buffer timer. 295 * @wbuf: write-buffer descriptor 296 */ 297 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 298 { 299 ubifs_assert(!timer_pending(&wbuf->timer)); 300 301 if (!wbuf->timeout) 302 return; 303 304 wbuf->timer.expires = jiffies + wbuf->timeout; 305 add_timer(&wbuf->timer); 306 } 307 308 /** 309 * cancel_wbuf_timer - cancel write-buffer timer. 310 * @wbuf: write-buffer descriptor 311 */ 312 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 313 { 314 /* 315 * If the syncer is waiting for the lock (from the background thread's 316 * context) and another task is changing write-buffer then the syncing 317 * should be canceled. 318 */ 319 wbuf->need_sync = 0; 320 del_timer(&wbuf->timer); 321 } 322 323 /** 324 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 325 * @wbuf: write-buffer to synchronize 326 * 327 * This function synchronizes write-buffer @buf and returns zero in case of 328 * success or a negative error code in case of failure. 329 */ 330 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 331 { 332 struct ubifs_info *c = wbuf->c; 333 int err, dirt; 334 335 cancel_wbuf_timer_nolock(wbuf); 336 if (!wbuf->used || wbuf->lnum == -1) 337 /* Write-buffer is empty or not seeked */ 338 return 0; 339 340 dbg_io("LEB %d:%d, %d bytes", 341 wbuf->lnum, wbuf->offs, wbuf->used); 342 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 343 ubifs_assert(!(wbuf->avail & 7)); 344 ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size); 345 346 if (c->ro_media) 347 return -EROFS; 348 349 ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail); 350 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 351 c->min_io_size, wbuf->dtype); 352 if (err) { 353 ubifs_err("cannot write %d bytes to LEB %d:%d", 354 c->min_io_size, wbuf->lnum, wbuf->offs); 355 dbg_dump_stack(); 356 return err; 357 } 358 359 dirt = wbuf->avail; 360 361 spin_lock(&wbuf->lock); 362 wbuf->offs += c->min_io_size; 363 wbuf->avail = c->min_io_size; 364 wbuf->used = 0; 365 wbuf->next_ino = 0; 366 spin_unlock(&wbuf->lock); 367 368 if (wbuf->sync_callback) 369 err = wbuf->sync_callback(c, wbuf->lnum, 370 c->leb_size - wbuf->offs, dirt); 371 return err; 372 } 373 374 /** 375 * ubifs_wbuf_seek_nolock - seek write-buffer. 376 * @wbuf: write-buffer 377 * @lnum: logical eraseblock number to seek to 378 * @offs: logical eraseblock offset to seek to 379 * @dtype: data type 380 * 381 * This function targets the write buffer to logical eraseblock @lnum:@offs. 382 * The write-buffer is synchronized if it is not empty. Returns zero in case of 383 * success and a negative error code in case of failure. 384 */ 385 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, 386 int dtype) 387 { 388 const struct ubifs_info *c = wbuf->c; 389 390 dbg_io("LEB %d:%d", lnum, offs); 391 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 392 ubifs_assert(offs >= 0 && offs <= c->leb_size); 393 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 394 ubifs_assert(lnum != wbuf->lnum); 395 396 if (wbuf->used > 0) { 397 int err = ubifs_wbuf_sync_nolock(wbuf); 398 399 if (err) 400 return err; 401 } 402 403 spin_lock(&wbuf->lock); 404 wbuf->lnum = lnum; 405 wbuf->offs = offs; 406 wbuf->avail = c->min_io_size; 407 wbuf->used = 0; 408 spin_unlock(&wbuf->lock); 409 wbuf->dtype = dtype; 410 411 return 0; 412 } 413 414 /** 415 * ubifs_bg_wbufs_sync - synchronize write-buffers. 416 * @c: UBIFS file-system description object 417 * 418 * This function is called by background thread to synchronize write-buffers. 419 * Returns zero in case of success and a negative error code in case of 420 * failure. 421 */ 422 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 423 { 424 int err, i; 425 426 if (!c->need_wbuf_sync) 427 return 0; 428 c->need_wbuf_sync = 0; 429 430 if (c->ro_media) { 431 err = -EROFS; 432 goto out_timers; 433 } 434 435 dbg_io("synchronize"); 436 for (i = 0; i < c->jhead_cnt; i++) { 437 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 438 439 cond_resched(); 440 441 /* 442 * If the mutex is locked then wbuf is being changed, so 443 * synchronization is not necessary. 444 */ 445 if (mutex_is_locked(&wbuf->io_mutex)) 446 continue; 447 448 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 449 if (!wbuf->need_sync) { 450 mutex_unlock(&wbuf->io_mutex); 451 continue; 452 } 453 454 err = ubifs_wbuf_sync_nolock(wbuf); 455 mutex_unlock(&wbuf->io_mutex); 456 if (err) { 457 ubifs_err("cannot sync write-buffer, error %d", err); 458 ubifs_ro_mode(c, err); 459 goto out_timers; 460 } 461 } 462 463 return 0; 464 465 out_timers: 466 /* Cancel all timers to prevent repeated errors */ 467 for (i = 0; i < c->jhead_cnt; i++) { 468 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 469 470 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 471 cancel_wbuf_timer_nolock(wbuf); 472 mutex_unlock(&wbuf->io_mutex); 473 } 474 return err; 475 } 476 477 /** 478 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 479 * @wbuf: write-buffer 480 * @buf: node to write 481 * @len: node length 482 * 483 * This function writes data to flash via write-buffer @wbuf. This means that 484 * the last piece of the node won't reach the flash media immediately if it 485 * does not take whole minimal I/O unit. Instead, the node will sit in RAM 486 * until the write-buffer is synchronized (e.g., by timer). 487 * 488 * This function returns zero in case of success and a negative error code in 489 * case of failure. If the node cannot be written because there is no more 490 * space in this logical eraseblock, %-ENOSPC is returned. 491 */ 492 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 493 { 494 struct ubifs_info *c = wbuf->c; 495 int err, written, n, aligned_len = ALIGN(len, 8), offs; 496 497 dbg_io("%d bytes (%s) to wbuf at LEB %d:%d", len, 498 dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->lnum, 499 wbuf->offs + wbuf->used); 500 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 501 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 502 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 503 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size); 504 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 505 506 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 507 err = -ENOSPC; 508 goto out; 509 } 510 511 cancel_wbuf_timer_nolock(wbuf); 512 513 if (c->ro_media) 514 return -EROFS; 515 516 if (aligned_len <= wbuf->avail) { 517 /* 518 * The node is not very large and fits entirely within 519 * write-buffer. 520 */ 521 memcpy(wbuf->buf + wbuf->used, buf, len); 522 523 if (aligned_len == wbuf->avail) { 524 dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, 525 wbuf->offs); 526 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, 527 wbuf->offs, c->min_io_size, 528 wbuf->dtype); 529 if (err) 530 goto out; 531 532 spin_lock(&wbuf->lock); 533 wbuf->offs += c->min_io_size; 534 wbuf->avail = c->min_io_size; 535 wbuf->used = 0; 536 wbuf->next_ino = 0; 537 spin_unlock(&wbuf->lock); 538 } else { 539 spin_lock(&wbuf->lock); 540 wbuf->avail -= aligned_len; 541 wbuf->used += aligned_len; 542 spin_unlock(&wbuf->lock); 543 } 544 545 goto exit; 546 } 547 548 /* 549 * The node is large enough and does not fit entirely within current 550 * minimal I/O unit. We have to fill and flush write-buffer and switch 551 * to the next min. I/O unit. 552 */ 553 dbg_io("flush wbuf to LEB %d:%d", wbuf->lnum, wbuf->offs); 554 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 555 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 556 c->min_io_size, wbuf->dtype); 557 if (err) 558 goto out; 559 560 offs = wbuf->offs + c->min_io_size; 561 len -= wbuf->avail; 562 aligned_len -= wbuf->avail; 563 written = wbuf->avail; 564 565 /* 566 * The remaining data may take more whole min. I/O units, so write the 567 * remains multiple to min. I/O unit size directly to the flash media. 568 * We align node length to 8-byte boundary because we anyway flash wbuf 569 * if the remaining space is less than 8 bytes. 570 */ 571 n = aligned_len >> c->min_io_shift; 572 if (n) { 573 n <<= c->min_io_shift; 574 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs); 575 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n, 576 wbuf->dtype); 577 if (err) 578 goto out; 579 offs += n; 580 aligned_len -= n; 581 len -= n; 582 written += n; 583 } 584 585 spin_lock(&wbuf->lock); 586 if (aligned_len) 587 /* 588 * And now we have what's left and what does not take whole 589 * min. I/O unit, so write it to the write-buffer and we are 590 * done. 591 */ 592 memcpy(wbuf->buf, buf + written, len); 593 594 wbuf->offs = offs; 595 wbuf->used = aligned_len; 596 wbuf->avail = c->min_io_size - aligned_len; 597 wbuf->next_ino = 0; 598 spin_unlock(&wbuf->lock); 599 600 exit: 601 if (wbuf->sync_callback) { 602 int free = c->leb_size - wbuf->offs - wbuf->used; 603 604 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 605 if (err) 606 goto out; 607 } 608 609 if (wbuf->used) 610 new_wbuf_timer_nolock(wbuf); 611 612 return 0; 613 614 out: 615 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 616 len, wbuf->lnum, wbuf->offs, err); 617 dbg_dump_node(c, buf); 618 dbg_dump_stack(); 619 dbg_dump_leb(c, wbuf->lnum); 620 return err; 621 } 622 623 /** 624 * ubifs_write_node - write node to the media. 625 * @c: UBIFS file-system description object 626 * @buf: the node to write 627 * @len: node length 628 * @lnum: logical eraseblock number 629 * @offs: offset within the logical eraseblock 630 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN) 631 * 632 * This function automatically fills node magic number, assigns sequence 633 * number, and calculates node CRC checksum. The length of the @buf buffer has 634 * to be aligned to the minimal I/O unit size. This function automatically 635 * appends padding node and padding bytes if needed. Returns zero in case of 636 * success and a negative error code in case of failure. 637 */ 638 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 639 int offs, int dtype) 640 { 641 int err, buf_len = ALIGN(len, c->min_io_size); 642 643 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 644 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 645 buf_len); 646 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 647 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 648 649 if (c->ro_media) 650 return -EROFS; 651 652 ubifs_prepare_node(c, buf, len, 1); 653 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype); 654 if (err) { 655 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 656 buf_len, lnum, offs, err); 657 dbg_dump_node(c, buf); 658 dbg_dump_stack(); 659 } 660 661 return err; 662 } 663 664 /** 665 * ubifs_read_node_wbuf - read node from the media or write-buffer. 666 * @wbuf: wbuf to check for un-written data 667 * @buf: buffer to read to 668 * @type: node type 669 * @len: node length 670 * @lnum: logical eraseblock number 671 * @offs: offset within the logical eraseblock 672 * 673 * This function reads a node of known type and length, checks it and stores 674 * in @buf. If the node partially or fully sits in the write-buffer, this 675 * function takes data from the buffer, otherwise it reads the flash media. 676 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 677 * error code in case of failure. 678 */ 679 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 680 int lnum, int offs) 681 { 682 const struct ubifs_info *c = wbuf->c; 683 int err, rlen, overlap; 684 struct ubifs_ch *ch = buf; 685 686 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 687 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 688 ubifs_assert(!(offs & 7) && offs < c->leb_size); 689 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 690 691 spin_lock(&wbuf->lock); 692 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 693 if (!overlap) { 694 /* We may safely unlock the write-buffer and read the data */ 695 spin_unlock(&wbuf->lock); 696 return ubifs_read_node(c, buf, type, len, lnum, offs); 697 } 698 699 /* Don't read under wbuf */ 700 rlen = wbuf->offs - offs; 701 if (rlen < 0) 702 rlen = 0; 703 704 /* Copy the rest from the write-buffer */ 705 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 706 spin_unlock(&wbuf->lock); 707 708 if (rlen > 0) { 709 /* Read everything that goes before write-buffer */ 710 err = ubi_read(c->ubi, lnum, buf, offs, rlen); 711 if (err && err != -EBADMSG) { 712 ubifs_err("failed to read node %d from LEB %d:%d, " 713 "error %d", type, lnum, offs, err); 714 dbg_dump_stack(); 715 return err; 716 } 717 } 718 719 if (type != ch->node_type) { 720 ubifs_err("bad node type (%d but expected %d)", 721 ch->node_type, type); 722 goto out; 723 } 724 725 err = ubifs_check_node(c, buf, lnum, offs, 0); 726 if (err) { 727 ubifs_err("expected node type %d", type); 728 return err; 729 } 730 731 rlen = le32_to_cpu(ch->len); 732 if (rlen != len) { 733 ubifs_err("bad node length %d, expected %d", rlen, len); 734 goto out; 735 } 736 737 return 0; 738 739 out: 740 ubifs_err("bad node at LEB %d:%d", lnum, offs); 741 dbg_dump_node(c, buf); 742 dbg_dump_stack(); 743 return -EINVAL; 744 } 745 746 /** 747 * ubifs_read_node - read node. 748 * @c: UBIFS file-system description object 749 * @buf: buffer to read to 750 * @type: node type 751 * @len: node length (not aligned) 752 * @lnum: logical eraseblock number 753 * @offs: offset within the logical eraseblock 754 * 755 * This function reads a node of known type and and length, checks it and 756 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 757 * and a negative error code in case of failure. 758 */ 759 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 760 int lnum, int offs) 761 { 762 int err, l; 763 struct ubifs_ch *ch = buf; 764 765 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 766 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 767 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 768 ubifs_assert(!(offs & 7) && offs < c->leb_size); 769 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 770 771 err = ubi_read(c->ubi, lnum, buf, offs, len); 772 if (err && err != -EBADMSG) { 773 ubifs_err("cannot read node %d from LEB %d:%d, error %d", 774 type, lnum, offs, err); 775 return err; 776 } 777 778 if (type != ch->node_type) { 779 ubifs_err("bad node type (%d but expected %d)", 780 ch->node_type, type); 781 goto out; 782 } 783 784 err = ubifs_check_node(c, buf, lnum, offs, 0); 785 if (err) { 786 ubifs_err("expected node type %d", type); 787 return err; 788 } 789 790 l = le32_to_cpu(ch->len); 791 if (l != len) { 792 ubifs_err("bad node length %d, expected %d", l, len); 793 goto out; 794 } 795 796 return 0; 797 798 out: 799 ubifs_err("bad node at LEB %d:%d", lnum, offs); 800 dbg_dump_node(c, buf); 801 dbg_dump_stack(); 802 return -EINVAL; 803 } 804 805 /** 806 * ubifs_wbuf_init - initialize write-buffer. 807 * @c: UBIFS file-system description object 808 * @wbuf: write-buffer to initialize 809 * 810 * This function initializes write buffer. Returns zero in case of success 811 * %-ENOMEM in case of failure. 812 */ 813 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 814 { 815 size_t size; 816 817 wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL); 818 if (!wbuf->buf) 819 return -ENOMEM; 820 821 size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 822 wbuf->inodes = kmalloc(size, GFP_KERNEL); 823 if (!wbuf->inodes) { 824 kfree(wbuf->buf); 825 wbuf->buf = NULL; 826 return -ENOMEM; 827 } 828 829 wbuf->used = 0; 830 wbuf->lnum = wbuf->offs = -1; 831 wbuf->avail = c->min_io_size; 832 wbuf->dtype = UBI_UNKNOWN; 833 wbuf->sync_callback = NULL; 834 mutex_init(&wbuf->io_mutex); 835 spin_lock_init(&wbuf->lock); 836 837 wbuf->c = c; 838 init_timer(&wbuf->timer); 839 wbuf->timer.function = wbuf_timer_callback_nolock; 840 wbuf->timer.data = (unsigned long)wbuf; 841 wbuf->timeout = DEFAULT_WBUF_TIMEOUT; 842 wbuf->next_ino = 0; 843 844 return 0; 845 } 846 847 /** 848 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 849 * @wbuf: the write-buffer whereto add 850 * @inum: the inode number 851 * 852 * This function adds an inode number to the inode array of the write-buffer. 853 */ 854 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 855 { 856 if (!wbuf->buf) 857 /* NOR flash or something similar */ 858 return; 859 860 spin_lock(&wbuf->lock); 861 if (wbuf->used) 862 wbuf->inodes[wbuf->next_ino++] = inum; 863 spin_unlock(&wbuf->lock); 864 } 865 866 /** 867 * wbuf_has_ino - returns if the wbuf contains data from the inode. 868 * @wbuf: the write-buffer 869 * @inum: the inode number 870 * 871 * This function returns with %1 if the write-buffer contains some data from the 872 * given inode otherwise it returns with %0. 873 */ 874 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 875 { 876 int i, ret = 0; 877 878 spin_lock(&wbuf->lock); 879 for (i = 0; i < wbuf->next_ino; i++) 880 if (inum == wbuf->inodes[i]) { 881 ret = 1; 882 break; 883 } 884 spin_unlock(&wbuf->lock); 885 886 return ret; 887 } 888 889 /** 890 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 891 * @c: UBIFS file-system description object 892 * @inode: inode to synchronize 893 * 894 * This function synchronizes write-buffers which contain nodes belonging to 895 * @inode. Returns zero in case of success and a negative error code in case of 896 * failure. 897 */ 898 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 899 { 900 int i, err = 0; 901 902 for (i = 0; i < c->jhead_cnt; i++) { 903 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 904 905 if (i == GCHD) 906 /* 907 * GC head is special, do not look at it. Even if the 908 * head contains something related to this inode, it is 909 * a _copy_ of corresponding on-flash node which sits 910 * somewhere else. 911 */ 912 continue; 913 914 if (!wbuf_has_ino(wbuf, inode->i_ino)) 915 continue; 916 917 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 918 if (wbuf_has_ino(wbuf, inode->i_ino)) 919 err = ubifs_wbuf_sync_nolock(wbuf); 920 mutex_unlock(&wbuf->io_mutex); 921 922 if (err) { 923 ubifs_ro_mode(c, err); 924 return err; 925 } 926 } 927 return 0; 928 } 929