1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * Copyright (C) 2006, 2007 University of Szeged, Hungary 6 * 7 * This program is free software; you can redistribute it and/or modify it 8 * under the terms of the GNU General Public License version 2 as published by 9 * the Free Software Foundation. 10 * 11 * This program is distributed in the hope that it will be useful, but WITHOUT 12 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 13 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 14 * more details. 15 * 16 * You should have received a copy of the GNU General Public License along with 17 * this program; if not, write to the Free Software Foundation, Inc., 51 18 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 19 * 20 * Authors: Artem Bityutskiy (Битюцкий Артём) 21 * Adrian Hunter 22 * Zoltan Sogor 23 */ 24 25 /* 26 * This file implements UBIFS I/O subsystem which provides various I/O-related 27 * helper functions (reading/writing/checking/validating nodes) and implements 28 * write-buffering support. Write buffers help to save space which otherwise 29 * would have been wasted for padding to the nearest minimal I/O unit boundary. 30 * Instead, data first goes to the write-buffer and is flushed when the 31 * buffer is full or when it is not used for some time (by timer). This is 32 * similar to the mechanism is used by JFFS2. 33 * 34 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 35 * mutexes defined inside these objects. Since sometimes upper-level code 36 * has to lock the write-buffer (e.g. journal space reservation code), many 37 * functions related to write-buffers have "nolock" suffix which means that the 38 * caller has to lock the write-buffer before calling this function. 39 * 40 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 41 * aligned, UBIFS starts the next node from the aligned address, and the padded 42 * bytes may contain any rubbish. In other words, UBIFS does not put padding 43 * bytes in those small gaps. Common headers of nodes store real node lengths, 44 * not aligned lengths. Indexing nodes also store real lengths in branches. 45 * 46 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 47 * uses padding nodes or padding bytes, if the padding node does not fit. 48 * 49 * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes 50 * every time they are read from the flash media. 51 */ 52 53 #include <linux/crc32.h> 54 #include "ubifs.h" 55 56 /** 57 * ubifs_ro_mode - switch UBIFS to read read-only mode. 58 * @c: UBIFS file-system description object 59 * @err: error code which is the reason of switching to R/O mode 60 */ 61 void ubifs_ro_mode(struct ubifs_info *c, int err) 62 { 63 if (!c->ro_media) { 64 c->ro_media = 1; 65 c->no_chk_data_crc = 0; 66 ubifs_warn("switched to read-only mode, error %d", err); 67 dbg_dump_stack(); 68 } 69 } 70 71 /** 72 * ubifs_check_node - check node. 73 * @c: UBIFS file-system description object 74 * @buf: node to check 75 * @lnum: logical eraseblock number 76 * @offs: offset within the logical eraseblock 77 * @quiet: print no messages 78 * @must_chk_crc: indicates whether to always check the CRC 79 * 80 * This function checks node magic number and CRC checksum. This function also 81 * validates node length to prevent UBIFS from becoming crazy when an attacker 82 * feeds it a file-system image with incorrect nodes. For example, too large 83 * node length in the common header could cause UBIFS to read memory outside of 84 * allocated buffer when checking the CRC checksum. 85 * 86 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 87 * true, which is controlled by corresponding UBIFS mount option. However, if 88 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 89 * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is 90 * ignored and CRC is checked. 91 * 92 * This function returns zero in case of success and %-EUCLEAN in case of bad 93 * CRC or magic. 94 */ 95 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum, 96 int offs, int quiet, int must_chk_crc) 97 { 98 int err = -EINVAL, type, node_len; 99 uint32_t crc, node_crc, magic; 100 const struct ubifs_ch *ch = buf; 101 102 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 103 ubifs_assert(!(offs & 7) && offs < c->leb_size); 104 105 magic = le32_to_cpu(ch->magic); 106 if (magic != UBIFS_NODE_MAGIC) { 107 if (!quiet) 108 ubifs_err("bad magic %#08x, expected %#08x", 109 magic, UBIFS_NODE_MAGIC); 110 err = -EUCLEAN; 111 goto out; 112 } 113 114 type = ch->node_type; 115 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 116 if (!quiet) 117 ubifs_err("bad node type %d", type); 118 goto out; 119 } 120 121 node_len = le32_to_cpu(ch->len); 122 if (node_len + offs > c->leb_size) 123 goto out_len; 124 125 if (c->ranges[type].max_len == 0) { 126 if (node_len != c->ranges[type].len) 127 goto out_len; 128 } else if (node_len < c->ranges[type].min_len || 129 node_len > c->ranges[type].max_len) 130 goto out_len; 131 132 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc && 133 c->no_chk_data_crc) 134 return 0; 135 136 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 137 node_crc = le32_to_cpu(ch->crc); 138 if (crc != node_crc) { 139 if (!quiet) 140 ubifs_err("bad CRC: calculated %#08x, read %#08x", 141 crc, node_crc); 142 err = -EUCLEAN; 143 goto out; 144 } 145 146 return 0; 147 148 out_len: 149 if (!quiet) 150 ubifs_err("bad node length %d", node_len); 151 out: 152 if (!quiet) { 153 ubifs_err("bad node at LEB %d:%d", lnum, offs); 154 dbg_dump_node(c, buf); 155 dbg_dump_stack(); 156 } 157 return err; 158 } 159 160 /** 161 * ubifs_pad - pad flash space. 162 * @c: UBIFS file-system description object 163 * @buf: buffer to put padding to 164 * @pad: how many bytes to pad 165 * 166 * The flash media obliges us to write only in chunks of %c->min_io_size and 167 * when we have to write less data we add padding node to the write-buffer and 168 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 169 * media is being scanned. If the amount of wasted space is not enough to fit a 170 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 171 * pattern (%UBIFS_PADDING_BYTE). 172 * 173 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 174 * used. 175 */ 176 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 177 { 178 uint32_t crc; 179 180 ubifs_assert(pad >= 0 && !(pad & 7)); 181 182 if (pad >= UBIFS_PAD_NODE_SZ) { 183 struct ubifs_ch *ch = buf; 184 struct ubifs_pad_node *pad_node = buf; 185 186 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 187 ch->node_type = UBIFS_PAD_NODE; 188 ch->group_type = UBIFS_NO_NODE_GROUP; 189 ch->padding[0] = ch->padding[1] = 0; 190 ch->sqnum = 0; 191 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 192 pad -= UBIFS_PAD_NODE_SZ; 193 pad_node->pad_len = cpu_to_le32(pad); 194 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 195 ch->crc = cpu_to_le32(crc); 196 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 197 } else if (pad > 0) 198 /* Too little space, padding node won't fit */ 199 memset(buf, UBIFS_PADDING_BYTE, pad); 200 } 201 202 /** 203 * next_sqnum - get next sequence number. 204 * @c: UBIFS file-system description object 205 */ 206 static unsigned long long next_sqnum(struct ubifs_info *c) 207 { 208 unsigned long long sqnum; 209 210 spin_lock(&c->cnt_lock); 211 sqnum = ++c->max_sqnum; 212 spin_unlock(&c->cnt_lock); 213 214 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 215 if (sqnum >= SQNUM_WATERMARK) { 216 ubifs_err("sequence number overflow %llu, end of life", 217 sqnum); 218 ubifs_ro_mode(c, -EINVAL); 219 } 220 ubifs_warn("running out of sequence numbers, end of life soon"); 221 } 222 223 return sqnum; 224 } 225 226 /** 227 * ubifs_prepare_node - prepare node to be written to flash. 228 * @c: UBIFS file-system description object 229 * @node: the node to pad 230 * @len: node length 231 * @pad: if the buffer has to be padded 232 * 233 * This function prepares node at @node to be written to the media - it 234 * calculates node CRC, fills the common header, and adds proper padding up to 235 * the next minimum I/O unit if @pad is not zero. 236 */ 237 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 238 { 239 uint32_t crc; 240 struct ubifs_ch *ch = node; 241 unsigned long long sqnum = next_sqnum(c); 242 243 ubifs_assert(len >= UBIFS_CH_SZ); 244 245 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 246 ch->len = cpu_to_le32(len); 247 ch->group_type = UBIFS_NO_NODE_GROUP; 248 ch->sqnum = cpu_to_le64(sqnum); 249 ch->padding[0] = ch->padding[1] = 0; 250 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 251 ch->crc = cpu_to_le32(crc); 252 253 if (pad) { 254 len = ALIGN(len, 8); 255 pad = ALIGN(len, c->min_io_size) - len; 256 ubifs_pad(c, node + len, pad); 257 } 258 } 259 260 /** 261 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 262 * @c: UBIFS file-system description object 263 * @node: the node to pad 264 * @len: node length 265 * @last: indicates the last node of the group 266 * 267 * This function prepares node at @node to be written to the media - it 268 * calculates node CRC and fills the common header. 269 */ 270 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 271 { 272 uint32_t crc; 273 struct ubifs_ch *ch = node; 274 unsigned long long sqnum = next_sqnum(c); 275 276 ubifs_assert(len >= UBIFS_CH_SZ); 277 278 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 279 ch->len = cpu_to_le32(len); 280 if (last) 281 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 282 else 283 ch->group_type = UBIFS_IN_NODE_GROUP; 284 ch->sqnum = cpu_to_le64(sqnum); 285 ch->padding[0] = ch->padding[1] = 0; 286 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 287 ch->crc = cpu_to_le32(crc); 288 } 289 290 /** 291 * wbuf_timer_callback - write-buffer timer callback function. 292 * @data: timer data (write-buffer descriptor) 293 * 294 * This function is called when the write-buffer timer expires. 295 */ 296 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 297 { 298 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 299 300 dbg_io("jhead %d", wbuf->jhead); 301 wbuf->need_sync = 1; 302 wbuf->c->need_wbuf_sync = 1; 303 ubifs_wake_up_bgt(wbuf->c); 304 return HRTIMER_NORESTART; 305 } 306 307 /** 308 * new_wbuf_timer - start new write-buffer timer. 309 * @wbuf: write-buffer descriptor 310 */ 311 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 312 { 313 ubifs_assert(!hrtimer_active(&wbuf->timer)); 314 315 if (wbuf->no_timer) 316 return; 317 dbg_io("set timer for jhead %d, %llu-%llu millisecs", wbuf->jhead, 318 div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC), 319 div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta, 320 USEC_PER_SEC)); 321 hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta, 322 HRTIMER_MODE_REL); 323 } 324 325 /** 326 * cancel_wbuf_timer - cancel write-buffer timer. 327 * @wbuf: write-buffer descriptor 328 */ 329 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 330 { 331 if (wbuf->no_timer) 332 return; 333 wbuf->need_sync = 0; 334 hrtimer_cancel(&wbuf->timer); 335 } 336 337 /** 338 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 339 * @wbuf: write-buffer to synchronize 340 * 341 * This function synchronizes write-buffer @buf and returns zero in case of 342 * success or a negative error code in case of failure. 343 */ 344 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 345 { 346 struct ubifs_info *c = wbuf->c; 347 int err, dirt; 348 349 cancel_wbuf_timer_nolock(wbuf); 350 if (!wbuf->used || wbuf->lnum == -1) 351 /* Write-buffer is empty or not seeked */ 352 return 0; 353 354 dbg_io("LEB %d:%d, %d bytes, jhead %d", 355 wbuf->lnum, wbuf->offs, wbuf->used, wbuf->jhead); 356 ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY)); 357 ubifs_assert(!(wbuf->avail & 7)); 358 ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size); 359 360 if (c->ro_media) 361 return -EROFS; 362 363 ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail); 364 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 365 c->min_io_size, wbuf->dtype); 366 if (err) { 367 ubifs_err("cannot write %d bytes to LEB %d:%d", 368 c->min_io_size, wbuf->lnum, wbuf->offs); 369 dbg_dump_stack(); 370 return err; 371 } 372 373 dirt = wbuf->avail; 374 375 spin_lock(&wbuf->lock); 376 wbuf->offs += c->min_io_size; 377 wbuf->avail = c->min_io_size; 378 wbuf->used = 0; 379 wbuf->next_ino = 0; 380 spin_unlock(&wbuf->lock); 381 382 if (wbuf->sync_callback) 383 err = wbuf->sync_callback(c, wbuf->lnum, 384 c->leb_size - wbuf->offs, dirt); 385 return err; 386 } 387 388 /** 389 * ubifs_wbuf_seek_nolock - seek write-buffer. 390 * @wbuf: write-buffer 391 * @lnum: logical eraseblock number to seek to 392 * @offs: logical eraseblock offset to seek to 393 * @dtype: data type 394 * 395 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 396 * The write-buffer is synchronized if it is not empty. Returns zero in case of 397 * success and a negative error code in case of failure. 398 */ 399 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs, 400 int dtype) 401 { 402 const struct ubifs_info *c = wbuf->c; 403 404 dbg_io("LEB %d:%d, jhead %d", lnum, offs, wbuf->jhead); 405 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt); 406 ubifs_assert(offs >= 0 && offs <= c->leb_size); 407 ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7)); 408 ubifs_assert(lnum != wbuf->lnum); 409 410 if (wbuf->used > 0) { 411 int err = ubifs_wbuf_sync_nolock(wbuf); 412 413 if (err) 414 return err; 415 } 416 417 spin_lock(&wbuf->lock); 418 wbuf->lnum = lnum; 419 wbuf->offs = offs; 420 wbuf->avail = c->min_io_size; 421 wbuf->used = 0; 422 spin_unlock(&wbuf->lock); 423 wbuf->dtype = dtype; 424 425 return 0; 426 } 427 428 /** 429 * ubifs_bg_wbufs_sync - synchronize write-buffers. 430 * @c: UBIFS file-system description object 431 * 432 * This function is called by background thread to synchronize write-buffers. 433 * Returns zero in case of success and a negative error code in case of 434 * failure. 435 */ 436 int ubifs_bg_wbufs_sync(struct ubifs_info *c) 437 { 438 int err, i; 439 440 if (!c->need_wbuf_sync) 441 return 0; 442 c->need_wbuf_sync = 0; 443 444 if (c->ro_media) { 445 err = -EROFS; 446 goto out_timers; 447 } 448 449 dbg_io("synchronize"); 450 for (i = 0; i < c->jhead_cnt; i++) { 451 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 452 453 cond_resched(); 454 455 /* 456 * If the mutex is locked then wbuf is being changed, so 457 * synchronization is not necessary. 458 */ 459 if (mutex_is_locked(&wbuf->io_mutex)) 460 continue; 461 462 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 463 if (!wbuf->need_sync) { 464 mutex_unlock(&wbuf->io_mutex); 465 continue; 466 } 467 468 err = ubifs_wbuf_sync_nolock(wbuf); 469 mutex_unlock(&wbuf->io_mutex); 470 if (err) { 471 ubifs_err("cannot sync write-buffer, error %d", err); 472 ubifs_ro_mode(c, err); 473 goto out_timers; 474 } 475 } 476 477 return 0; 478 479 out_timers: 480 /* Cancel all timers to prevent repeated errors */ 481 for (i = 0; i < c->jhead_cnt; i++) { 482 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 483 484 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 485 cancel_wbuf_timer_nolock(wbuf); 486 mutex_unlock(&wbuf->io_mutex); 487 } 488 return err; 489 } 490 491 /** 492 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 493 * @wbuf: write-buffer 494 * @buf: node to write 495 * @len: node length 496 * 497 * This function writes data to flash via write-buffer @wbuf. This means that 498 * the last piece of the node won't reach the flash media immediately if it 499 * does not take whole minimal I/O unit. Instead, the node will sit in RAM 500 * until the write-buffer is synchronized (e.g., by timer). 501 * 502 * This function returns zero in case of success and a negative error code in 503 * case of failure. If the node cannot be written because there is no more 504 * space in this logical eraseblock, %-ENOSPC is returned. 505 */ 506 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 507 { 508 struct ubifs_info *c = wbuf->c; 509 int err, written, n, aligned_len = ALIGN(len, 8), offs; 510 511 dbg_io("%d bytes (%s) to jhead %d wbuf at LEB %d:%d", len, 512 dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->jhead, 513 wbuf->lnum, wbuf->offs + wbuf->used); 514 ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 515 ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 516 ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 517 ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size); 518 ubifs_assert(mutex_is_locked(&wbuf->io_mutex)); 519 520 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 521 err = -ENOSPC; 522 goto out; 523 } 524 525 cancel_wbuf_timer_nolock(wbuf); 526 527 if (c->ro_media) 528 return -EROFS; 529 530 if (aligned_len <= wbuf->avail) { 531 /* 532 * The node is not very large and fits entirely within 533 * write-buffer. 534 */ 535 memcpy(wbuf->buf + wbuf->used, buf, len); 536 537 if (aligned_len == wbuf->avail) { 538 dbg_io("flush jhead %d wbuf to LEB %d:%d", 539 wbuf->jhead, wbuf->lnum, wbuf->offs); 540 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, 541 wbuf->offs, c->min_io_size, 542 wbuf->dtype); 543 if (err) 544 goto out; 545 546 spin_lock(&wbuf->lock); 547 wbuf->offs += c->min_io_size; 548 wbuf->avail = c->min_io_size; 549 wbuf->used = 0; 550 wbuf->next_ino = 0; 551 spin_unlock(&wbuf->lock); 552 } else { 553 spin_lock(&wbuf->lock); 554 wbuf->avail -= aligned_len; 555 wbuf->used += aligned_len; 556 spin_unlock(&wbuf->lock); 557 } 558 559 goto exit; 560 } 561 562 /* 563 * The node is large enough and does not fit entirely within current 564 * minimal I/O unit. We have to fill and flush write-buffer and switch 565 * to the next min. I/O unit. 566 */ 567 dbg_io("flush jhead %d wbuf to LEB %d:%d", 568 wbuf->jhead, wbuf->lnum, wbuf->offs); 569 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 570 err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs, 571 c->min_io_size, wbuf->dtype); 572 if (err) 573 goto out; 574 575 offs = wbuf->offs + c->min_io_size; 576 len -= wbuf->avail; 577 aligned_len -= wbuf->avail; 578 written = wbuf->avail; 579 580 /* 581 * The remaining data may take more whole min. I/O units, so write the 582 * remains multiple to min. I/O unit size directly to the flash media. 583 * We align node length to 8-byte boundary because we anyway flash wbuf 584 * if the remaining space is less than 8 bytes. 585 */ 586 n = aligned_len >> c->min_io_shift; 587 if (n) { 588 n <<= c->min_io_shift; 589 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs); 590 err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n, 591 wbuf->dtype); 592 if (err) 593 goto out; 594 offs += n; 595 aligned_len -= n; 596 len -= n; 597 written += n; 598 } 599 600 spin_lock(&wbuf->lock); 601 if (aligned_len) 602 /* 603 * And now we have what's left and what does not take whole 604 * min. I/O unit, so write it to the write-buffer and we are 605 * done. 606 */ 607 memcpy(wbuf->buf, buf + written, len); 608 609 wbuf->offs = offs; 610 wbuf->used = aligned_len; 611 wbuf->avail = c->min_io_size - aligned_len; 612 wbuf->next_ino = 0; 613 spin_unlock(&wbuf->lock); 614 615 exit: 616 if (wbuf->sync_callback) { 617 int free = c->leb_size - wbuf->offs - wbuf->used; 618 619 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 620 if (err) 621 goto out; 622 } 623 624 if (wbuf->used) 625 new_wbuf_timer_nolock(wbuf); 626 627 return 0; 628 629 out: 630 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 631 len, wbuf->lnum, wbuf->offs, err); 632 dbg_dump_node(c, buf); 633 dbg_dump_stack(); 634 dbg_dump_leb(c, wbuf->lnum); 635 return err; 636 } 637 638 /** 639 * ubifs_write_node - write node to the media. 640 * @c: UBIFS file-system description object 641 * @buf: the node to write 642 * @len: node length 643 * @lnum: logical eraseblock number 644 * @offs: offset within the logical eraseblock 645 * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN) 646 * 647 * This function automatically fills node magic number, assigns sequence 648 * number, and calculates node CRC checksum. The length of the @buf buffer has 649 * to be aligned to the minimal I/O unit size. This function automatically 650 * appends padding node and padding bytes if needed. Returns zero in case of 651 * success and a negative error code in case of failure. 652 */ 653 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 654 int offs, int dtype) 655 { 656 int err, buf_len = ALIGN(len, c->min_io_size); 657 658 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 659 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 660 buf_len); 661 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 662 ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size); 663 664 if (c->ro_media) 665 return -EROFS; 666 667 ubifs_prepare_node(c, buf, len, 1); 668 err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype); 669 if (err) { 670 ubifs_err("cannot write %d bytes to LEB %d:%d, error %d", 671 buf_len, lnum, offs, err); 672 dbg_dump_node(c, buf); 673 dbg_dump_stack(); 674 } 675 676 return err; 677 } 678 679 /** 680 * ubifs_read_node_wbuf - read node from the media or write-buffer. 681 * @wbuf: wbuf to check for un-written data 682 * @buf: buffer to read to 683 * @type: node type 684 * @len: node length 685 * @lnum: logical eraseblock number 686 * @offs: offset within the logical eraseblock 687 * 688 * This function reads a node of known type and length, checks it and stores 689 * in @buf. If the node partially or fully sits in the write-buffer, this 690 * function takes data from the buffer, otherwise it reads the flash media. 691 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 692 * error code in case of failure. 693 */ 694 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 695 int lnum, int offs) 696 { 697 const struct ubifs_info *c = wbuf->c; 698 int err, rlen, overlap; 699 struct ubifs_ch *ch = buf; 700 701 dbg_io("LEB %d:%d, %s, length %d, jhead %d", lnum, offs, 702 dbg_ntype(type), len, wbuf->jhead); 703 ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 704 ubifs_assert(!(offs & 7) && offs < c->leb_size); 705 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 706 707 spin_lock(&wbuf->lock); 708 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 709 if (!overlap) { 710 /* We may safely unlock the write-buffer and read the data */ 711 spin_unlock(&wbuf->lock); 712 return ubifs_read_node(c, buf, type, len, lnum, offs); 713 } 714 715 /* Don't read under wbuf */ 716 rlen = wbuf->offs - offs; 717 if (rlen < 0) 718 rlen = 0; 719 720 /* Copy the rest from the write-buffer */ 721 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 722 spin_unlock(&wbuf->lock); 723 724 if (rlen > 0) { 725 /* Read everything that goes before write-buffer */ 726 err = ubi_read(c->ubi, lnum, buf, offs, rlen); 727 if (err && err != -EBADMSG) { 728 ubifs_err("failed to read node %d from LEB %d:%d, " 729 "error %d", type, lnum, offs, err); 730 dbg_dump_stack(); 731 return err; 732 } 733 } 734 735 if (type != ch->node_type) { 736 ubifs_err("bad node type (%d but expected %d)", 737 ch->node_type, type); 738 goto out; 739 } 740 741 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 742 if (err) { 743 ubifs_err("expected node type %d", type); 744 return err; 745 } 746 747 rlen = le32_to_cpu(ch->len); 748 if (rlen != len) { 749 ubifs_err("bad node length %d, expected %d", rlen, len); 750 goto out; 751 } 752 753 return 0; 754 755 out: 756 ubifs_err("bad node at LEB %d:%d", lnum, offs); 757 dbg_dump_node(c, buf); 758 dbg_dump_stack(); 759 return -EINVAL; 760 } 761 762 /** 763 * ubifs_read_node - read node. 764 * @c: UBIFS file-system description object 765 * @buf: buffer to read to 766 * @type: node type 767 * @len: node length (not aligned) 768 * @lnum: logical eraseblock number 769 * @offs: offset within the logical eraseblock 770 * 771 * This function reads a node of known type and and length, checks it and 772 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 773 * and a negative error code in case of failure. 774 */ 775 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 776 int lnum, int offs) 777 { 778 int err, l; 779 struct ubifs_ch *ch = buf; 780 781 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 782 ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 783 ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 784 ubifs_assert(!(offs & 7) && offs < c->leb_size); 785 ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT); 786 787 err = ubi_read(c->ubi, lnum, buf, offs, len); 788 if (err && err != -EBADMSG) { 789 ubifs_err("cannot read node %d from LEB %d:%d, error %d", 790 type, lnum, offs, err); 791 return err; 792 } 793 794 if (type != ch->node_type) { 795 ubifs_err("bad node type (%d but expected %d)", 796 ch->node_type, type); 797 goto out; 798 } 799 800 err = ubifs_check_node(c, buf, lnum, offs, 0, 0); 801 if (err) { 802 ubifs_err("expected node type %d", type); 803 return err; 804 } 805 806 l = le32_to_cpu(ch->len); 807 if (l != len) { 808 ubifs_err("bad node length %d, expected %d", l, len); 809 goto out; 810 } 811 812 return 0; 813 814 out: 815 ubifs_err("bad node at LEB %d:%d", lnum, offs); 816 dbg_dump_node(c, buf); 817 dbg_dump_stack(); 818 return -EINVAL; 819 } 820 821 /** 822 * ubifs_wbuf_init - initialize write-buffer. 823 * @c: UBIFS file-system description object 824 * @wbuf: write-buffer to initialize 825 * 826 * This function initializes write-buffer. Returns zero in case of success 827 * %-ENOMEM in case of failure. 828 */ 829 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 830 { 831 size_t size; 832 833 wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL); 834 if (!wbuf->buf) 835 return -ENOMEM; 836 837 size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 838 wbuf->inodes = kmalloc(size, GFP_KERNEL); 839 if (!wbuf->inodes) { 840 kfree(wbuf->buf); 841 wbuf->buf = NULL; 842 return -ENOMEM; 843 } 844 845 wbuf->used = 0; 846 wbuf->lnum = wbuf->offs = -1; 847 wbuf->avail = c->min_io_size; 848 wbuf->dtype = UBI_UNKNOWN; 849 wbuf->sync_callback = NULL; 850 mutex_init(&wbuf->io_mutex); 851 spin_lock_init(&wbuf->lock); 852 wbuf->c = c; 853 wbuf->next_ino = 0; 854 855 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 856 wbuf->timer.function = wbuf_timer_callback_nolock; 857 wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0); 858 wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT; 859 wbuf->delta *= 1000000000ULL; 860 ubifs_assert(wbuf->delta <= ULONG_MAX); 861 return 0; 862 } 863 864 /** 865 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 866 * @wbuf: the write-buffer where to add 867 * @inum: the inode number 868 * 869 * This function adds an inode number to the inode array of the write-buffer. 870 */ 871 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 872 { 873 if (!wbuf->buf) 874 /* NOR flash or something similar */ 875 return; 876 877 spin_lock(&wbuf->lock); 878 if (wbuf->used) 879 wbuf->inodes[wbuf->next_ino++] = inum; 880 spin_unlock(&wbuf->lock); 881 } 882 883 /** 884 * wbuf_has_ino - returns if the wbuf contains data from the inode. 885 * @wbuf: the write-buffer 886 * @inum: the inode number 887 * 888 * This function returns with %1 if the write-buffer contains some data from the 889 * given inode otherwise it returns with %0. 890 */ 891 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 892 { 893 int i, ret = 0; 894 895 spin_lock(&wbuf->lock); 896 for (i = 0; i < wbuf->next_ino; i++) 897 if (inum == wbuf->inodes[i]) { 898 ret = 1; 899 break; 900 } 901 spin_unlock(&wbuf->lock); 902 903 return ret; 904 } 905 906 /** 907 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 908 * @c: UBIFS file-system description object 909 * @inode: inode to synchronize 910 * 911 * This function synchronizes write-buffers which contain nodes belonging to 912 * @inode. Returns zero in case of success and a negative error code in case of 913 * failure. 914 */ 915 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 916 { 917 int i, err = 0; 918 919 for (i = 0; i < c->jhead_cnt; i++) { 920 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 921 922 if (i == GCHD) 923 /* 924 * GC head is special, do not look at it. Even if the 925 * head contains something related to this inode, it is 926 * a _copy_ of corresponding on-flash node which sits 927 * somewhere else. 928 */ 929 continue; 930 931 if (!wbuf_has_ino(wbuf, inode->i_ino)) 932 continue; 933 934 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 935 if (wbuf_has_ino(wbuf, inode->i_ino)) 936 err = ubifs_wbuf_sync_nolock(wbuf); 937 mutex_unlock(&wbuf->io_mutex); 938 939 if (err) { 940 ubifs_ro_mode(c, err); 941 return err; 942 } 943 } 944 return 0; 945 } 946