xref: /linux/fs/ubifs/io.c (revision 2277ab4a1df50e05bc732fe9488d4e902bb8399a)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  * Copyright (C) 2006, 2007 University of Szeged, Hungary
6  *
7  * This program is free software; you can redistribute it and/or modify it
8  * under the terms of the GNU General Public License version 2 as published by
9  * the Free Software Foundation.
10  *
11  * This program is distributed in the hope that it will be useful, but WITHOUT
12  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
13  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
14  * more details.
15  *
16  * You should have received a copy of the GNU General Public License along with
17  * this program; if not, write to the Free Software Foundation, Inc., 51
18  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
19  *
20  * Authors: Artem Bityutskiy (Битюцкий Артём)
21  *          Adrian Hunter
22  *          Zoltan Sogor
23  */
24 
25 /*
26  * This file implements UBIFS I/O subsystem which provides various I/O-related
27  * helper functions (reading/writing/checking/validating nodes) and implements
28  * write-buffering support. Write buffers help to save space which otherwise
29  * would have been wasted for padding to the nearest minimal I/O unit boundary.
30  * Instead, data first goes to the write-buffer and is flushed when the
31  * buffer is full or when it is not used for some time (by timer). This is
32  * similar to the mechanism is used by JFFS2.
33  *
34  * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
35  * mutexes defined inside these objects. Since sometimes upper-level code
36  * has to lock the write-buffer (e.g. journal space reservation code), many
37  * functions related to write-buffers have "nolock" suffix which means that the
38  * caller has to lock the write-buffer before calling this function.
39  *
40  * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
41  * aligned, UBIFS starts the next node from the aligned address, and the padded
42  * bytes may contain any rubbish. In other words, UBIFS does not put padding
43  * bytes in those small gaps. Common headers of nodes store real node lengths,
44  * not aligned lengths. Indexing nodes also store real lengths in branches.
45  *
46  * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
47  * uses padding nodes or padding bytes, if the padding node does not fit.
48  *
49  * All UBIFS nodes are protected by CRC checksums and UBIFS checks all nodes
50  * every time they are read from the flash media.
51  */
52 
53 #include <linux/crc32.h>
54 #include "ubifs.h"
55 
56 /**
57  * ubifs_ro_mode - switch UBIFS to read read-only mode.
58  * @c: UBIFS file-system description object
59  * @err: error code which is the reason of switching to R/O mode
60  */
61 void ubifs_ro_mode(struct ubifs_info *c, int err)
62 {
63 	if (!c->ro_media) {
64 		c->ro_media = 1;
65 		c->no_chk_data_crc = 0;
66 		ubifs_warn("switched to read-only mode, error %d", err);
67 		dbg_dump_stack();
68 	}
69 }
70 
71 /**
72  * ubifs_check_node - check node.
73  * @c: UBIFS file-system description object
74  * @buf: node to check
75  * @lnum: logical eraseblock number
76  * @offs: offset within the logical eraseblock
77  * @quiet: print no messages
78  * @must_chk_crc: indicates whether to always check the CRC
79  *
80  * This function checks node magic number and CRC checksum. This function also
81  * validates node length to prevent UBIFS from becoming crazy when an attacker
82  * feeds it a file-system image with incorrect nodes. For example, too large
83  * node length in the common header could cause UBIFS to read memory outside of
84  * allocated buffer when checking the CRC checksum.
85  *
86  * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
87  * true, which is controlled by corresponding UBIFS mount option. However, if
88  * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
89  * checked. Similarly, if @c->always_chk_crc is true, @c->no_chk_data_crc is
90  * ignored and CRC is checked.
91  *
92  * This function returns zero in case of success and %-EUCLEAN in case of bad
93  * CRC or magic.
94  */
95 int ubifs_check_node(const struct ubifs_info *c, const void *buf, int lnum,
96 		     int offs, int quiet, int must_chk_crc)
97 {
98 	int err = -EINVAL, type, node_len;
99 	uint32_t crc, node_crc, magic;
100 	const struct ubifs_ch *ch = buf;
101 
102 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
103 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
104 
105 	magic = le32_to_cpu(ch->magic);
106 	if (magic != UBIFS_NODE_MAGIC) {
107 		if (!quiet)
108 			ubifs_err("bad magic %#08x, expected %#08x",
109 				  magic, UBIFS_NODE_MAGIC);
110 		err = -EUCLEAN;
111 		goto out;
112 	}
113 
114 	type = ch->node_type;
115 	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
116 		if (!quiet)
117 			ubifs_err("bad node type %d", type);
118 		goto out;
119 	}
120 
121 	node_len = le32_to_cpu(ch->len);
122 	if (node_len + offs > c->leb_size)
123 		goto out_len;
124 
125 	if (c->ranges[type].max_len == 0) {
126 		if (node_len != c->ranges[type].len)
127 			goto out_len;
128 	} else if (node_len < c->ranges[type].min_len ||
129 		   node_len > c->ranges[type].max_len)
130 		goto out_len;
131 
132 	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->always_chk_crc &&
133 	     c->no_chk_data_crc)
134 		return 0;
135 
136 	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
137 	node_crc = le32_to_cpu(ch->crc);
138 	if (crc != node_crc) {
139 		if (!quiet)
140 			ubifs_err("bad CRC: calculated %#08x, read %#08x",
141 				  crc, node_crc);
142 		err = -EUCLEAN;
143 		goto out;
144 	}
145 
146 	return 0;
147 
148 out_len:
149 	if (!quiet)
150 		ubifs_err("bad node length %d", node_len);
151 out:
152 	if (!quiet) {
153 		ubifs_err("bad node at LEB %d:%d", lnum, offs);
154 		dbg_dump_node(c, buf);
155 		dbg_dump_stack();
156 	}
157 	return err;
158 }
159 
160 /**
161  * ubifs_pad - pad flash space.
162  * @c: UBIFS file-system description object
163  * @buf: buffer to put padding to
164  * @pad: how many bytes to pad
165  *
166  * The flash media obliges us to write only in chunks of %c->min_io_size and
167  * when we have to write less data we add padding node to the write-buffer and
168  * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
169  * media is being scanned. If the amount of wasted space is not enough to fit a
170  * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
171  * pattern (%UBIFS_PADDING_BYTE).
172  *
173  * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
174  * used.
175  */
176 void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
177 {
178 	uint32_t crc;
179 
180 	ubifs_assert(pad >= 0 && !(pad & 7));
181 
182 	if (pad >= UBIFS_PAD_NODE_SZ) {
183 		struct ubifs_ch *ch = buf;
184 		struct ubifs_pad_node *pad_node = buf;
185 
186 		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
187 		ch->node_type = UBIFS_PAD_NODE;
188 		ch->group_type = UBIFS_NO_NODE_GROUP;
189 		ch->padding[0] = ch->padding[1] = 0;
190 		ch->sqnum = 0;
191 		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
192 		pad -= UBIFS_PAD_NODE_SZ;
193 		pad_node->pad_len = cpu_to_le32(pad);
194 		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
195 		ch->crc = cpu_to_le32(crc);
196 		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
197 	} else if (pad > 0)
198 		/* Too little space, padding node won't fit */
199 		memset(buf, UBIFS_PADDING_BYTE, pad);
200 }
201 
202 /**
203  * next_sqnum - get next sequence number.
204  * @c: UBIFS file-system description object
205  */
206 static unsigned long long next_sqnum(struct ubifs_info *c)
207 {
208 	unsigned long long sqnum;
209 
210 	spin_lock(&c->cnt_lock);
211 	sqnum = ++c->max_sqnum;
212 	spin_unlock(&c->cnt_lock);
213 
214 	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
215 		if (sqnum >= SQNUM_WATERMARK) {
216 			ubifs_err("sequence number overflow %llu, end of life",
217 				  sqnum);
218 			ubifs_ro_mode(c, -EINVAL);
219 		}
220 		ubifs_warn("running out of sequence numbers, end of life soon");
221 	}
222 
223 	return sqnum;
224 }
225 
226 /**
227  * ubifs_prepare_node - prepare node to be written to flash.
228  * @c: UBIFS file-system description object
229  * @node: the node to pad
230  * @len: node length
231  * @pad: if the buffer has to be padded
232  *
233  * This function prepares node at @node to be written to the media - it
234  * calculates node CRC, fills the common header, and adds proper padding up to
235  * the next minimum I/O unit if @pad is not zero.
236  */
237 void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
238 {
239 	uint32_t crc;
240 	struct ubifs_ch *ch = node;
241 	unsigned long long sqnum = next_sqnum(c);
242 
243 	ubifs_assert(len >= UBIFS_CH_SZ);
244 
245 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
246 	ch->len = cpu_to_le32(len);
247 	ch->group_type = UBIFS_NO_NODE_GROUP;
248 	ch->sqnum = cpu_to_le64(sqnum);
249 	ch->padding[0] = ch->padding[1] = 0;
250 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
251 	ch->crc = cpu_to_le32(crc);
252 
253 	if (pad) {
254 		len = ALIGN(len, 8);
255 		pad = ALIGN(len, c->min_io_size) - len;
256 		ubifs_pad(c, node + len, pad);
257 	}
258 }
259 
260 /**
261  * ubifs_prep_grp_node - prepare node of a group to be written to flash.
262  * @c: UBIFS file-system description object
263  * @node: the node to pad
264  * @len: node length
265  * @last: indicates the last node of the group
266  *
267  * This function prepares node at @node to be written to the media - it
268  * calculates node CRC and fills the common header.
269  */
270 void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
271 {
272 	uint32_t crc;
273 	struct ubifs_ch *ch = node;
274 	unsigned long long sqnum = next_sqnum(c);
275 
276 	ubifs_assert(len >= UBIFS_CH_SZ);
277 
278 	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
279 	ch->len = cpu_to_le32(len);
280 	if (last)
281 		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
282 	else
283 		ch->group_type = UBIFS_IN_NODE_GROUP;
284 	ch->sqnum = cpu_to_le64(sqnum);
285 	ch->padding[0] = ch->padding[1] = 0;
286 	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
287 	ch->crc = cpu_to_le32(crc);
288 }
289 
290 /**
291  * wbuf_timer_callback - write-buffer timer callback function.
292  * @data: timer data (write-buffer descriptor)
293  *
294  * This function is called when the write-buffer timer expires.
295  */
296 static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
297 {
298 	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
299 
300 	dbg_io("jhead %d", wbuf->jhead);
301 	wbuf->need_sync = 1;
302 	wbuf->c->need_wbuf_sync = 1;
303 	ubifs_wake_up_bgt(wbuf->c);
304 	return HRTIMER_NORESTART;
305 }
306 
307 /**
308  * new_wbuf_timer - start new write-buffer timer.
309  * @wbuf: write-buffer descriptor
310  */
311 static void new_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
312 {
313 	ubifs_assert(!hrtimer_active(&wbuf->timer));
314 
315 	if (wbuf->no_timer)
316 		return;
317 	dbg_io("set timer for jhead %d, %llu-%llu millisecs", wbuf->jhead,
318 	       div_u64(ktime_to_ns(wbuf->softlimit), USEC_PER_SEC),
319 	       div_u64(ktime_to_ns(wbuf->softlimit) + wbuf->delta,
320 		       USEC_PER_SEC));
321 	hrtimer_start_range_ns(&wbuf->timer, wbuf->softlimit, wbuf->delta,
322 			       HRTIMER_MODE_REL);
323 }
324 
325 /**
326  * cancel_wbuf_timer - cancel write-buffer timer.
327  * @wbuf: write-buffer descriptor
328  */
329 static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
330 {
331 	if (wbuf->no_timer)
332 		return;
333 	wbuf->need_sync = 0;
334 	hrtimer_cancel(&wbuf->timer);
335 }
336 
337 /**
338  * ubifs_wbuf_sync_nolock - synchronize write-buffer.
339  * @wbuf: write-buffer to synchronize
340  *
341  * This function synchronizes write-buffer @buf and returns zero in case of
342  * success or a negative error code in case of failure.
343  */
344 int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
345 {
346 	struct ubifs_info *c = wbuf->c;
347 	int err, dirt;
348 
349 	cancel_wbuf_timer_nolock(wbuf);
350 	if (!wbuf->used || wbuf->lnum == -1)
351 		/* Write-buffer is empty or not seeked */
352 		return 0;
353 
354 	dbg_io("LEB %d:%d, %d bytes, jhead %d",
355 	       wbuf->lnum, wbuf->offs, wbuf->used, wbuf->jhead);
356 	ubifs_assert(!(c->vfs_sb->s_flags & MS_RDONLY));
357 	ubifs_assert(!(wbuf->avail & 7));
358 	ubifs_assert(wbuf->offs + c->min_io_size <= c->leb_size);
359 
360 	if (c->ro_media)
361 		return -EROFS;
362 
363 	ubifs_pad(c, wbuf->buf + wbuf->used, wbuf->avail);
364 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
365 			    c->min_io_size, wbuf->dtype);
366 	if (err) {
367 		ubifs_err("cannot write %d bytes to LEB %d:%d",
368 			  c->min_io_size, wbuf->lnum, wbuf->offs);
369 		dbg_dump_stack();
370 		return err;
371 	}
372 
373 	dirt = wbuf->avail;
374 
375 	spin_lock(&wbuf->lock);
376 	wbuf->offs += c->min_io_size;
377 	wbuf->avail = c->min_io_size;
378 	wbuf->used = 0;
379 	wbuf->next_ino = 0;
380 	spin_unlock(&wbuf->lock);
381 
382 	if (wbuf->sync_callback)
383 		err = wbuf->sync_callback(c, wbuf->lnum,
384 					  c->leb_size - wbuf->offs, dirt);
385 	return err;
386 }
387 
388 /**
389  * ubifs_wbuf_seek_nolock - seek write-buffer.
390  * @wbuf: write-buffer
391  * @lnum: logical eraseblock number to seek to
392  * @offs: logical eraseblock offset to seek to
393  * @dtype: data type
394  *
395  * This function targets the write-buffer to logical eraseblock @lnum:@offs.
396  * The write-buffer is synchronized if it is not empty. Returns zero in case of
397  * success and a negative error code in case of failure.
398  */
399 int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs,
400 			   int dtype)
401 {
402 	const struct ubifs_info *c = wbuf->c;
403 
404 	dbg_io("LEB %d:%d, jhead %d", lnum, offs, wbuf->jhead);
405 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt);
406 	ubifs_assert(offs >= 0 && offs <= c->leb_size);
407 	ubifs_assert(offs % c->min_io_size == 0 && !(offs & 7));
408 	ubifs_assert(lnum != wbuf->lnum);
409 
410 	if (wbuf->used > 0) {
411 		int err = ubifs_wbuf_sync_nolock(wbuf);
412 
413 		if (err)
414 			return err;
415 	}
416 
417 	spin_lock(&wbuf->lock);
418 	wbuf->lnum = lnum;
419 	wbuf->offs = offs;
420 	wbuf->avail = c->min_io_size;
421 	wbuf->used = 0;
422 	spin_unlock(&wbuf->lock);
423 	wbuf->dtype = dtype;
424 
425 	return 0;
426 }
427 
428 /**
429  * ubifs_bg_wbufs_sync - synchronize write-buffers.
430  * @c: UBIFS file-system description object
431  *
432  * This function is called by background thread to synchronize write-buffers.
433  * Returns zero in case of success and a negative error code in case of
434  * failure.
435  */
436 int ubifs_bg_wbufs_sync(struct ubifs_info *c)
437 {
438 	int err, i;
439 
440 	if (!c->need_wbuf_sync)
441 		return 0;
442 	c->need_wbuf_sync = 0;
443 
444 	if (c->ro_media) {
445 		err = -EROFS;
446 		goto out_timers;
447 	}
448 
449 	dbg_io("synchronize");
450 	for (i = 0; i < c->jhead_cnt; i++) {
451 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
452 
453 		cond_resched();
454 
455 		/*
456 		 * If the mutex is locked then wbuf is being changed, so
457 		 * synchronization is not necessary.
458 		 */
459 		if (mutex_is_locked(&wbuf->io_mutex))
460 			continue;
461 
462 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
463 		if (!wbuf->need_sync) {
464 			mutex_unlock(&wbuf->io_mutex);
465 			continue;
466 		}
467 
468 		err = ubifs_wbuf_sync_nolock(wbuf);
469 		mutex_unlock(&wbuf->io_mutex);
470 		if (err) {
471 			ubifs_err("cannot sync write-buffer, error %d", err);
472 			ubifs_ro_mode(c, err);
473 			goto out_timers;
474 		}
475 	}
476 
477 	return 0;
478 
479 out_timers:
480 	/* Cancel all timers to prevent repeated errors */
481 	for (i = 0; i < c->jhead_cnt; i++) {
482 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
483 
484 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
485 		cancel_wbuf_timer_nolock(wbuf);
486 		mutex_unlock(&wbuf->io_mutex);
487 	}
488 	return err;
489 }
490 
491 /**
492  * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
493  * @wbuf: write-buffer
494  * @buf: node to write
495  * @len: node length
496  *
497  * This function writes data to flash via write-buffer @wbuf. This means that
498  * the last piece of the node won't reach the flash media immediately if it
499  * does not take whole minimal I/O unit. Instead, the node will sit in RAM
500  * until the write-buffer is synchronized (e.g., by timer).
501  *
502  * This function returns zero in case of success and a negative error code in
503  * case of failure. If the node cannot be written because there is no more
504  * space in this logical eraseblock, %-ENOSPC is returned.
505  */
506 int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
507 {
508 	struct ubifs_info *c = wbuf->c;
509 	int err, written, n, aligned_len = ALIGN(len, 8), offs;
510 
511 	dbg_io("%d bytes (%s) to jhead %d wbuf at LEB %d:%d", len,
512 	       dbg_ntype(((struct ubifs_ch *)buf)->node_type), wbuf->jhead,
513 	       wbuf->lnum, wbuf->offs + wbuf->used);
514 	ubifs_assert(len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
515 	ubifs_assert(wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
516 	ubifs_assert(!(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
517 	ubifs_assert(wbuf->avail > 0 && wbuf->avail <= c->min_io_size);
518 	ubifs_assert(mutex_is_locked(&wbuf->io_mutex));
519 
520 	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
521 		err = -ENOSPC;
522 		goto out;
523 	}
524 
525 	cancel_wbuf_timer_nolock(wbuf);
526 
527 	if (c->ro_media)
528 		return -EROFS;
529 
530 	if (aligned_len <= wbuf->avail) {
531 		/*
532 		 * The node is not very large and fits entirely within
533 		 * write-buffer.
534 		 */
535 		memcpy(wbuf->buf + wbuf->used, buf, len);
536 
537 		if (aligned_len == wbuf->avail) {
538 			dbg_io("flush jhead %d wbuf to LEB %d:%d",
539 			       wbuf->jhead, wbuf->lnum, wbuf->offs);
540 			err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf,
541 					    wbuf->offs, c->min_io_size,
542 					    wbuf->dtype);
543 			if (err)
544 				goto out;
545 
546 			spin_lock(&wbuf->lock);
547 			wbuf->offs += c->min_io_size;
548 			wbuf->avail = c->min_io_size;
549 			wbuf->used = 0;
550 			wbuf->next_ino = 0;
551 			spin_unlock(&wbuf->lock);
552 		} else {
553 			spin_lock(&wbuf->lock);
554 			wbuf->avail -= aligned_len;
555 			wbuf->used += aligned_len;
556 			spin_unlock(&wbuf->lock);
557 		}
558 
559 		goto exit;
560 	}
561 
562 	/*
563 	 * The node is large enough and does not fit entirely within current
564 	 * minimal I/O unit. We have to fill and flush write-buffer and switch
565 	 * to the next min. I/O unit.
566 	 */
567 	dbg_io("flush jhead %d wbuf to LEB %d:%d",
568 	       wbuf->jhead, wbuf->lnum, wbuf->offs);
569 	memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
570 	err = ubi_leb_write(c->ubi, wbuf->lnum, wbuf->buf, wbuf->offs,
571 			    c->min_io_size, wbuf->dtype);
572 	if (err)
573 		goto out;
574 
575 	offs = wbuf->offs + c->min_io_size;
576 	len -= wbuf->avail;
577 	aligned_len -= wbuf->avail;
578 	written = wbuf->avail;
579 
580 	/*
581 	 * The remaining data may take more whole min. I/O units, so write the
582 	 * remains multiple to min. I/O unit size directly to the flash media.
583 	 * We align node length to 8-byte boundary because we anyway flash wbuf
584 	 * if the remaining space is less than 8 bytes.
585 	 */
586 	n = aligned_len >> c->min_io_shift;
587 	if (n) {
588 		n <<= c->min_io_shift;
589 		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, offs);
590 		err = ubi_leb_write(c->ubi, wbuf->lnum, buf + written, offs, n,
591 				    wbuf->dtype);
592 		if (err)
593 			goto out;
594 		offs += n;
595 		aligned_len -= n;
596 		len -= n;
597 		written += n;
598 	}
599 
600 	spin_lock(&wbuf->lock);
601 	if (aligned_len)
602 		/*
603 		 * And now we have what's left and what does not take whole
604 		 * min. I/O unit, so write it to the write-buffer and we are
605 		 * done.
606 		 */
607 		memcpy(wbuf->buf, buf + written, len);
608 
609 	wbuf->offs = offs;
610 	wbuf->used = aligned_len;
611 	wbuf->avail = c->min_io_size - aligned_len;
612 	wbuf->next_ino = 0;
613 	spin_unlock(&wbuf->lock);
614 
615 exit:
616 	if (wbuf->sync_callback) {
617 		int free = c->leb_size - wbuf->offs - wbuf->used;
618 
619 		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
620 		if (err)
621 			goto out;
622 	}
623 
624 	if (wbuf->used)
625 		new_wbuf_timer_nolock(wbuf);
626 
627 	return 0;
628 
629 out:
630 	ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
631 		  len, wbuf->lnum, wbuf->offs, err);
632 	dbg_dump_node(c, buf);
633 	dbg_dump_stack();
634 	dbg_dump_leb(c, wbuf->lnum);
635 	return err;
636 }
637 
638 /**
639  * ubifs_write_node - write node to the media.
640  * @c: UBIFS file-system description object
641  * @buf: the node to write
642  * @len: node length
643  * @lnum: logical eraseblock number
644  * @offs: offset within the logical eraseblock
645  * @dtype: node life-time hint (%UBI_LONGTERM, %UBI_SHORTTERM, %UBI_UNKNOWN)
646  *
647  * This function automatically fills node magic number, assigns sequence
648  * number, and calculates node CRC checksum. The length of the @buf buffer has
649  * to be aligned to the minimal I/O unit size. This function automatically
650  * appends padding node and padding bytes if needed. Returns zero in case of
651  * success and a negative error code in case of failure.
652  */
653 int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
654 		     int offs, int dtype)
655 {
656 	int err, buf_len = ALIGN(len, c->min_io_size);
657 
658 	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
659 	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
660 	       buf_len);
661 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
662 	ubifs_assert(offs % c->min_io_size == 0 && offs < c->leb_size);
663 
664 	if (c->ro_media)
665 		return -EROFS;
666 
667 	ubifs_prepare_node(c, buf, len, 1);
668 	err = ubi_leb_write(c->ubi, lnum, buf, offs, buf_len, dtype);
669 	if (err) {
670 		ubifs_err("cannot write %d bytes to LEB %d:%d, error %d",
671 			  buf_len, lnum, offs, err);
672 		dbg_dump_node(c, buf);
673 		dbg_dump_stack();
674 	}
675 
676 	return err;
677 }
678 
679 /**
680  * ubifs_read_node_wbuf - read node from the media or write-buffer.
681  * @wbuf: wbuf to check for un-written data
682  * @buf: buffer to read to
683  * @type: node type
684  * @len: node length
685  * @lnum: logical eraseblock number
686  * @offs: offset within the logical eraseblock
687  *
688  * This function reads a node of known type and length, checks it and stores
689  * in @buf. If the node partially or fully sits in the write-buffer, this
690  * function takes data from the buffer, otherwise it reads the flash media.
691  * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
692  * error code in case of failure.
693  */
694 int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
695 			 int lnum, int offs)
696 {
697 	const struct ubifs_info *c = wbuf->c;
698 	int err, rlen, overlap;
699 	struct ubifs_ch *ch = buf;
700 
701 	dbg_io("LEB %d:%d, %s, length %d, jhead %d", lnum, offs,
702 	       dbg_ntype(type), len, wbuf->jhead);
703 	ubifs_assert(wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
704 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
705 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
706 
707 	spin_lock(&wbuf->lock);
708 	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
709 	if (!overlap) {
710 		/* We may safely unlock the write-buffer and read the data */
711 		spin_unlock(&wbuf->lock);
712 		return ubifs_read_node(c, buf, type, len, lnum, offs);
713 	}
714 
715 	/* Don't read under wbuf */
716 	rlen = wbuf->offs - offs;
717 	if (rlen < 0)
718 		rlen = 0;
719 
720 	/* Copy the rest from the write-buffer */
721 	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
722 	spin_unlock(&wbuf->lock);
723 
724 	if (rlen > 0) {
725 		/* Read everything that goes before write-buffer */
726 		err = ubi_read(c->ubi, lnum, buf, offs, rlen);
727 		if (err && err != -EBADMSG) {
728 			ubifs_err("failed to read node %d from LEB %d:%d, "
729 				  "error %d", type, lnum, offs, err);
730 			dbg_dump_stack();
731 			return err;
732 		}
733 	}
734 
735 	if (type != ch->node_type) {
736 		ubifs_err("bad node type (%d but expected %d)",
737 			  ch->node_type, type);
738 		goto out;
739 	}
740 
741 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
742 	if (err) {
743 		ubifs_err("expected node type %d", type);
744 		return err;
745 	}
746 
747 	rlen = le32_to_cpu(ch->len);
748 	if (rlen != len) {
749 		ubifs_err("bad node length %d, expected %d", rlen, len);
750 		goto out;
751 	}
752 
753 	return 0;
754 
755 out:
756 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
757 	dbg_dump_node(c, buf);
758 	dbg_dump_stack();
759 	return -EINVAL;
760 }
761 
762 /**
763  * ubifs_read_node - read node.
764  * @c: UBIFS file-system description object
765  * @buf: buffer to read to
766  * @type: node type
767  * @len: node length (not aligned)
768  * @lnum: logical eraseblock number
769  * @offs: offset within the logical eraseblock
770  *
771  * This function reads a node of known type and and length, checks it and
772  * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
773  * and a negative error code in case of failure.
774  */
775 int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
776 		    int lnum, int offs)
777 {
778 	int err, l;
779 	struct ubifs_ch *ch = buf;
780 
781 	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
782 	ubifs_assert(lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
783 	ubifs_assert(len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
784 	ubifs_assert(!(offs & 7) && offs < c->leb_size);
785 	ubifs_assert(type >= 0 && type < UBIFS_NODE_TYPES_CNT);
786 
787 	err = ubi_read(c->ubi, lnum, buf, offs, len);
788 	if (err && err != -EBADMSG) {
789 		ubifs_err("cannot read node %d from LEB %d:%d, error %d",
790 			  type, lnum, offs, err);
791 		return err;
792 	}
793 
794 	if (type != ch->node_type) {
795 		ubifs_err("bad node type (%d but expected %d)",
796 			  ch->node_type, type);
797 		goto out;
798 	}
799 
800 	err = ubifs_check_node(c, buf, lnum, offs, 0, 0);
801 	if (err) {
802 		ubifs_err("expected node type %d", type);
803 		return err;
804 	}
805 
806 	l = le32_to_cpu(ch->len);
807 	if (l != len) {
808 		ubifs_err("bad node length %d, expected %d", l, len);
809 		goto out;
810 	}
811 
812 	return 0;
813 
814 out:
815 	ubifs_err("bad node at LEB %d:%d", lnum, offs);
816 	dbg_dump_node(c, buf);
817 	dbg_dump_stack();
818 	return -EINVAL;
819 }
820 
821 /**
822  * ubifs_wbuf_init - initialize write-buffer.
823  * @c: UBIFS file-system description object
824  * @wbuf: write-buffer to initialize
825  *
826  * This function initializes write-buffer. Returns zero in case of success
827  * %-ENOMEM in case of failure.
828  */
829 int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
830 {
831 	size_t size;
832 
833 	wbuf->buf = kmalloc(c->min_io_size, GFP_KERNEL);
834 	if (!wbuf->buf)
835 		return -ENOMEM;
836 
837 	size = (c->min_io_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
838 	wbuf->inodes = kmalloc(size, GFP_KERNEL);
839 	if (!wbuf->inodes) {
840 		kfree(wbuf->buf);
841 		wbuf->buf = NULL;
842 		return -ENOMEM;
843 	}
844 
845 	wbuf->used = 0;
846 	wbuf->lnum = wbuf->offs = -1;
847 	wbuf->avail = c->min_io_size;
848 	wbuf->dtype = UBI_UNKNOWN;
849 	wbuf->sync_callback = NULL;
850 	mutex_init(&wbuf->io_mutex);
851 	spin_lock_init(&wbuf->lock);
852 	wbuf->c = c;
853 	wbuf->next_ino = 0;
854 
855 	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
856 	wbuf->timer.function = wbuf_timer_callback_nolock;
857 	wbuf->softlimit = ktime_set(WBUF_TIMEOUT_SOFTLIMIT, 0);
858 	wbuf->delta = WBUF_TIMEOUT_HARDLIMIT - WBUF_TIMEOUT_SOFTLIMIT;
859 	wbuf->delta *= 1000000000ULL;
860 	ubifs_assert(wbuf->delta <= ULONG_MAX);
861 	return 0;
862 }
863 
864 /**
865  * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
866  * @wbuf: the write-buffer where to add
867  * @inum: the inode number
868  *
869  * This function adds an inode number to the inode array of the write-buffer.
870  */
871 void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
872 {
873 	if (!wbuf->buf)
874 		/* NOR flash or something similar */
875 		return;
876 
877 	spin_lock(&wbuf->lock);
878 	if (wbuf->used)
879 		wbuf->inodes[wbuf->next_ino++] = inum;
880 	spin_unlock(&wbuf->lock);
881 }
882 
883 /**
884  * wbuf_has_ino - returns if the wbuf contains data from the inode.
885  * @wbuf: the write-buffer
886  * @inum: the inode number
887  *
888  * This function returns with %1 if the write-buffer contains some data from the
889  * given inode otherwise it returns with %0.
890  */
891 static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
892 {
893 	int i, ret = 0;
894 
895 	spin_lock(&wbuf->lock);
896 	for (i = 0; i < wbuf->next_ino; i++)
897 		if (inum == wbuf->inodes[i]) {
898 			ret = 1;
899 			break;
900 		}
901 	spin_unlock(&wbuf->lock);
902 
903 	return ret;
904 }
905 
906 /**
907  * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
908  * @c: UBIFS file-system description object
909  * @inode: inode to synchronize
910  *
911  * This function synchronizes write-buffers which contain nodes belonging to
912  * @inode. Returns zero in case of success and a negative error code in case of
913  * failure.
914  */
915 int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
916 {
917 	int i, err = 0;
918 
919 	for (i = 0; i < c->jhead_cnt; i++) {
920 		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
921 
922 		if (i == GCHD)
923 			/*
924 			 * GC head is special, do not look at it. Even if the
925 			 * head contains something related to this inode, it is
926 			 * a _copy_ of corresponding on-flash node which sits
927 			 * somewhere else.
928 			 */
929 			continue;
930 
931 		if (!wbuf_has_ino(wbuf, inode->i_ino))
932 			continue;
933 
934 		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
935 		if (wbuf_has_ino(wbuf, inode->i_ino))
936 			err = ubifs_wbuf_sync_nolock(wbuf);
937 		mutex_unlock(&wbuf->io_mutex);
938 
939 		if (err) {
940 			ubifs_ro_mode(c, err);
941 			return err;
942 		}
943 	}
944 	return 0;
945 }
946