1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements garbage collection. The procedure for garbage collection 25 * is different depending on whether a LEB as an index LEB (contains index 26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 28 * nodes to the journal, at which point the garbage-collected LEB is free to be 29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 31 * to be reused. Garbage collection will cause the number of dirty index nodes 32 * to grow, however sufficient space is reserved for the index to ensure the 33 * commit will never run out of space. 34 * 35 * Notes about dead watermark. At current UBIFS implementation we assume that 36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 39 * Garbage Collector has to synchronize the GC head's write buffer before 40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 41 * actually reclaim even very small pieces of dirty space by garbage collecting 42 * enough dirty LEBs, but we do not bother doing this at this implementation. 43 * 44 * Notes about dark watermark. The results of GC work depends on how big are 45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 47 * have to waste large pieces of free space at the end of LEB B, because nodes 48 * from LEB A would not fit. And the worst situation is when all nodes are of 49 * maximum size. So dark watermark is the amount of free + dirty space in LEB 50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 52 * watermark are "good" LEBs from GC's point of few. The other LEBs are not so 53 * good, and GC takes extra care when moving them. 54 */ 55 56 #include <linux/slab.h> 57 #include <linux/pagemap.h> 58 #include <linux/list_sort.h> 59 #include "ubifs.h" 60 61 /* 62 * GC may need to move more than one LEB to make progress. The below constants 63 * define "soft" and "hard" limits on the number of LEBs the garbage collector 64 * may move. 65 */ 66 #define SOFT_LEBS_LIMIT 4 67 #define HARD_LEBS_LIMIT 32 68 69 /** 70 * switch_gc_head - switch the garbage collection journal head. 71 * @c: UBIFS file-system description object 72 * @buf: buffer to write 73 * @len: length of the buffer to write 74 * @lnum: LEB number written is returned here 75 * @offs: offset written is returned here 76 * 77 * This function switch the GC head to the next LEB which is reserved in 78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 79 * and other negative error code in case of failures. 80 */ 81 static int switch_gc_head(struct ubifs_info *c) 82 { 83 int err, gc_lnum = c->gc_lnum; 84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 85 86 ubifs_assert(gc_lnum != -1); 87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 89 c->leb_size - wbuf->offs - wbuf->used); 90 91 err = ubifs_wbuf_sync_nolock(wbuf); 92 if (err) 93 return err; 94 95 /* 96 * The GC write-buffer was synchronized, we may safely unmap 97 * 'c->gc_lnum'. 98 */ 99 err = ubifs_leb_unmap(c, gc_lnum); 100 if (err) 101 return err; 102 103 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 104 if (err) 105 return err; 106 107 c->gc_lnum = -1; 108 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 109 return err; 110 } 111 112 /** 113 * data_nodes_cmp - compare 2 data nodes. 114 * @priv: UBIFS file-system description object 115 * @a: first data node 116 * @b: second data node 117 * 118 * This function compares data nodes @a and @b. Returns %1 if @a has greater 119 * inode or block number, and %-1 otherwise. 120 */ 121 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 122 { 123 ino_t inuma, inumb; 124 struct ubifs_info *c = priv; 125 struct ubifs_scan_node *sa, *sb; 126 127 cond_resched(); 128 if (a == b) 129 return 0; 130 131 sa = list_entry(a, struct ubifs_scan_node, list); 132 sb = list_entry(b, struct ubifs_scan_node, list); 133 134 ubifs_assert(key_type(c, &sa->key) == UBIFS_DATA_KEY); 135 ubifs_assert(key_type(c, &sb->key) == UBIFS_DATA_KEY); 136 ubifs_assert(sa->type == UBIFS_DATA_NODE); 137 ubifs_assert(sb->type == UBIFS_DATA_NODE); 138 139 inuma = key_inum(c, &sa->key); 140 inumb = key_inum(c, &sb->key); 141 142 if (inuma == inumb) { 143 unsigned int blka = key_block(c, &sa->key); 144 unsigned int blkb = key_block(c, &sb->key); 145 146 if (blka <= blkb) 147 return -1; 148 } else if (inuma <= inumb) 149 return -1; 150 151 return 1; 152 } 153 154 /* 155 * nondata_nodes_cmp - compare 2 non-data nodes. 156 * @priv: UBIFS file-system description object 157 * @a: first node 158 * @a: second node 159 * 160 * This function compares nodes @a and @b. It makes sure that inode nodes go 161 * first and sorted by length in descending order. Directory entry nodes go 162 * after inode nodes and are sorted in ascending hash valuer order. 163 */ 164 static int nondata_nodes_cmp(void *priv, struct list_head *a, 165 struct list_head *b) 166 { 167 ino_t inuma, inumb; 168 struct ubifs_info *c = priv; 169 struct ubifs_scan_node *sa, *sb; 170 171 cond_resched(); 172 if (a == b) 173 return 0; 174 175 sa = list_entry(a, struct ubifs_scan_node, list); 176 sb = list_entry(b, struct ubifs_scan_node, list); 177 178 ubifs_assert(key_type(c, &sa->key) != UBIFS_DATA_KEY && 179 key_type(c, &sb->key) != UBIFS_DATA_KEY); 180 ubifs_assert(sa->type != UBIFS_DATA_NODE && 181 sb->type != UBIFS_DATA_NODE); 182 183 /* Inodes go before directory entries */ 184 if (sa->type == UBIFS_INO_NODE) { 185 if (sb->type == UBIFS_INO_NODE) 186 return sb->len - sa->len; 187 return -1; 188 } 189 if (sb->type == UBIFS_INO_NODE) 190 return 1; 191 192 ubifs_assert(key_type(c, &sa->key) == UBIFS_DENT_KEY || 193 key_type(c, &sa->key) == UBIFS_XENT_KEY); 194 ubifs_assert(key_type(c, &sb->key) == UBIFS_DENT_KEY || 195 key_type(c, &sb->key) == UBIFS_XENT_KEY); 196 ubifs_assert(sa->type == UBIFS_DENT_NODE || 197 sa->type == UBIFS_XENT_NODE); 198 ubifs_assert(sb->type == UBIFS_DENT_NODE || 199 sb->type == UBIFS_XENT_NODE); 200 201 inuma = key_inum(c, &sa->key); 202 inumb = key_inum(c, &sb->key); 203 204 if (inuma == inumb) { 205 uint32_t hasha = key_hash(c, &sa->key); 206 uint32_t hashb = key_hash(c, &sb->key); 207 208 if (hasha <= hashb) 209 return -1; 210 } else if (inuma <= inumb) 211 return -1; 212 213 return 1; 214 } 215 216 /** 217 * sort_nodes - sort nodes for GC. 218 * @c: UBIFS file-system description object 219 * @sleb: describes nodes to sort and contains the result on exit 220 * @nondata: contains non-data nodes on exit 221 * @min: minimum node size is returned here 222 * 223 * This function sorts the list of inodes to garbage collect. First of all, it 224 * kills obsolete nodes and separates data and non-data nodes to the 225 * @sleb->nodes and @nondata lists correspondingly. 226 * 227 * Data nodes are then sorted in block number order - this is important for 228 * bulk-read; data nodes with lower inode number go before data nodes with 229 * higher inode number, and data nodes with lower block number go before data 230 * nodes with higher block number; 231 * 232 * Non-data nodes are sorted as follows. 233 * o First go inode nodes - they are sorted in descending length order. 234 * o Then go directory entry nodes - they are sorted in hash order, which 235 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 236 * inode number go before direntry nodes with higher parent inode number, 237 * and direntry nodes with lower name hash values go before direntry nodes 238 * with higher name hash values. 239 * 240 * This function returns zero in case of success and a negative error code in 241 * case of failure. 242 */ 243 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 244 struct list_head *nondata, int *min) 245 { 246 int err; 247 struct ubifs_scan_node *snod, *tmp; 248 249 *min = INT_MAX; 250 251 /* Separate data nodes and non-data nodes */ 252 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 253 ubifs_assert(snod->type == UBIFS_INO_NODE || 254 snod->type == UBIFS_DATA_NODE || 255 snod->type == UBIFS_DENT_NODE || 256 snod->type == UBIFS_XENT_NODE || 257 snod->type == UBIFS_TRUN_NODE); 258 259 if (snod->type != UBIFS_INO_NODE && 260 snod->type != UBIFS_DATA_NODE && 261 snod->type != UBIFS_DENT_NODE && 262 snod->type != UBIFS_XENT_NODE) { 263 /* Probably truncation node, zap it */ 264 list_del(&snod->list); 265 kfree(snod); 266 continue; 267 } 268 269 ubifs_assert(key_type(c, &snod->key) == UBIFS_DATA_KEY || 270 key_type(c, &snod->key) == UBIFS_INO_KEY || 271 key_type(c, &snod->key) == UBIFS_DENT_KEY || 272 key_type(c, &snod->key) == UBIFS_XENT_KEY); 273 274 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 275 snod->offs, 0); 276 if (err < 0) 277 return err; 278 279 if (!err) { 280 /* The node is obsolete, remove it from the list */ 281 list_del(&snod->list); 282 kfree(snod); 283 continue; 284 } 285 286 if (snod->len < *min) 287 *min = snod->len; 288 289 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 290 list_move_tail(&snod->list, nondata); 291 } 292 293 /* Sort data and non-data nodes */ 294 list_sort(c, &sleb->nodes, &data_nodes_cmp); 295 list_sort(c, nondata, &nondata_nodes_cmp); 296 297 err = dbg_check_data_nodes_order(c, &sleb->nodes); 298 if (err) 299 return err; 300 err = dbg_check_nondata_nodes_order(c, nondata); 301 if (err) 302 return err; 303 return 0; 304 } 305 306 /** 307 * move_node - move a node. 308 * @c: UBIFS file-system description object 309 * @sleb: describes the LEB to move nodes from 310 * @snod: the mode to move 311 * @wbuf: write-buffer to move node to 312 * 313 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 314 * destroys @snod. Returns zero in case of success and a negative error code in 315 * case of failure. 316 */ 317 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 318 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 319 { 320 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 321 322 cond_resched(); 323 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 324 if (err) 325 return err; 326 327 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 328 snod->offs, new_lnum, new_offs, 329 snod->len); 330 list_del(&snod->list); 331 kfree(snod); 332 return err; 333 } 334 335 /** 336 * move_nodes - move nodes. 337 * @c: UBIFS file-system description object 338 * @sleb: describes the LEB to move nodes from 339 * 340 * This function moves valid nodes from data LEB described by @sleb to the GC 341 * journal head. This function returns zero in case of success, %-EAGAIN if 342 * commit is required, and other negative error codes in case of other 343 * failures. 344 */ 345 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 346 { 347 int err, min; 348 LIST_HEAD(nondata); 349 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 350 351 if (wbuf->lnum == -1) { 352 /* 353 * The GC journal head is not set, because it is the first GC 354 * invocation since mount. 355 */ 356 err = switch_gc_head(c); 357 if (err) 358 return err; 359 } 360 361 err = sort_nodes(c, sleb, &nondata, &min); 362 if (err) 363 goto out; 364 365 /* Write nodes to their new location. Use the first-fit strategy */ 366 while (1) { 367 int avail; 368 struct ubifs_scan_node *snod, *tmp; 369 370 /* Move data nodes */ 371 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 372 avail = c->leb_size - wbuf->offs - wbuf->used; 373 if (snod->len > avail) 374 /* 375 * Do not skip data nodes in order to optimize 376 * bulk-read. 377 */ 378 break; 379 380 err = move_node(c, sleb, snod, wbuf); 381 if (err) 382 goto out; 383 } 384 385 /* Move non-data nodes */ 386 list_for_each_entry_safe(snod, tmp, &nondata, list) { 387 avail = c->leb_size - wbuf->offs - wbuf->used; 388 if (avail < min) 389 break; 390 391 if (snod->len > avail) { 392 /* 393 * Keep going only if this is an inode with 394 * some data. Otherwise stop and switch the GC 395 * head. IOW, we assume that data-less inode 396 * nodes and direntry nodes are roughly of the 397 * same size. 398 */ 399 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 400 snod->len == UBIFS_INO_NODE_SZ) 401 break; 402 continue; 403 } 404 405 err = move_node(c, sleb, snod, wbuf); 406 if (err) 407 goto out; 408 } 409 410 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 411 break; 412 413 /* 414 * Waste the rest of the space in the LEB and switch to the 415 * next LEB. 416 */ 417 err = switch_gc_head(c); 418 if (err) 419 goto out; 420 } 421 422 return 0; 423 424 out: 425 list_splice_tail(&nondata, &sleb->nodes); 426 return err; 427 } 428 429 /** 430 * gc_sync_wbufs - sync write-buffers for GC. 431 * @c: UBIFS file-system description object 432 * 433 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 434 * be in a write-buffer instead. That is, a node could be written to a 435 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 436 * erased before the write-buffer is sync'd and then there is an unclean 437 * unmount, then an existing node is lost. To avoid this, we sync all 438 * write-buffers. 439 * 440 * This function returns %0 on success or a negative error code on failure. 441 */ 442 static int gc_sync_wbufs(struct ubifs_info *c) 443 { 444 int err, i; 445 446 for (i = 0; i < c->jhead_cnt; i++) { 447 if (i == GCHD) 448 continue; 449 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 450 if (err) 451 return err; 452 } 453 return 0; 454 } 455 456 /** 457 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 458 * @c: UBIFS file-system description object 459 * @lp: describes the LEB to garbage collect 460 * 461 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 462 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 463 * required, and other negative error codes in case of failures. 464 */ 465 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 466 { 467 struct ubifs_scan_leb *sleb; 468 struct ubifs_scan_node *snod; 469 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 470 int err = 0, lnum = lp->lnum; 471 472 ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 473 c->need_recovery); 474 ubifs_assert(c->gc_lnum != lnum); 475 ubifs_assert(wbuf->lnum != lnum); 476 477 if (lp->free + lp->dirty == c->leb_size) { 478 /* Special case - a free LEB */ 479 dbg_gc("LEB %d is free, return it", lp->lnum); 480 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 481 482 if (lp->free != c->leb_size) { 483 /* 484 * Write buffers must be sync'd before unmapping 485 * freeable LEBs, because one of them may contain data 486 * which obsoletes something in 'lp->pnum'. 487 */ 488 err = gc_sync_wbufs(c); 489 if (err) 490 return err; 491 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 492 0, 0, 0, 0); 493 if (err) 494 return err; 495 } 496 err = ubifs_leb_unmap(c, lp->lnum); 497 if (err) 498 return err; 499 500 if (c->gc_lnum == -1) { 501 c->gc_lnum = lnum; 502 return LEB_RETAINED; 503 } 504 505 return LEB_FREED; 506 } 507 508 /* 509 * We scan the entire LEB even though we only really need to scan up to 510 * (c->leb_size - lp->free). 511 */ 512 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 513 if (IS_ERR(sleb)) 514 return PTR_ERR(sleb); 515 516 ubifs_assert(!list_empty(&sleb->nodes)); 517 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 518 519 if (snod->type == UBIFS_IDX_NODE) { 520 struct ubifs_gced_idx_leb *idx_gc; 521 522 dbg_gc("indexing LEB %d (free %d, dirty %d)", 523 lnum, lp->free, lp->dirty); 524 list_for_each_entry(snod, &sleb->nodes, list) { 525 struct ubifs_idx_node *idx = snod->node; 526 int level = le16_to_cpu(idx->level); 527 528 ubifs_assert(snod->type == UBIFS_IDX_NODE); 529 key_read(c, ubifs_idx_key(c, idx), &snod->key); 530 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 531 snod->offs); 532 if (err) 533 goto out; 534 } 535 536 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 537 if (!idx_gc) { 538 err = -ENOMEM; 539 goto out; 540 } 541 542 idx_gc->lnum = lnum; 543 idx_gc->unmap = 0; 544 list_add(&idx_gc->list, &c->idx_gc); 545 546 /* 547 * Don't release the LEB until after the next commit, because 548 * it may contain data which is needed for recovery. So 549 * although we freed this LEB, it will become usable only after 550 * the commit. 551 */ 552 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 553 LPROPS_INDEX, 1); 554 if (err) 555 goto out; 556 err = LEB_FREED_IDX; 557 } else { 558 dbg_gc("data LEB %d (free %d, dirty %d)", 559 lnum, lp->free, lp->dirty); 560 561 err = move_nodes(c, sleb); 562 if (err) 563 goto out_inc_seq; 564 565 err = gc_sync_wbufs(c); 566 if (err) 567 goto out_inc_seq; 568 569 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 570 if (err) 571 goto out_inc_seq; 572 573 /* Allow for races with TNC */ 574 c->gced_lnum = lnum; 575 smp_wmb(); 576 c->gc_seq += 1; 577 smp_wmb(); 578 579 if (c->gc_lnum == -1) { 580 c->gc_lnum = lnum; 581 err = LEB_RETAINED; 582 } else { 583 err = ubifs_wbuf_sync_nolock(wbuf); 584 if (err) 585 goto out; 586 587 err = ubifs_leb_unmap(c, lnum); 588 if (err) 589 goto out; 590 591 err = LEB_FREED; 592 } 593 } 594 595 out: 596 ubifs_scan_destroy(sleb); 597 return err; 598 599 out_inc_seq: 600 /* We may have moved at least some nodes so allow for races with TNC */ 601 c->gced_lnum = lnum; 602 smp_wmb(); 603 c->gc_seq += 1; 604 smp_wmb(); 605 goto out; 606 } 607 608 /** 609 * ubifs_garbage_collect - UBIFS garbage collector. 610 * @c: UBIFS file-system description object 611 * @anyway: do GC even if there are free LEBs 612 * 613 * This function does out-of-place garbage collection. The return codes are: 614 * o positive LEB number if the LEB has been freed and may be used; 615 * o %-EAGAIN if the caller has to run commit; 616 * o %-ENOSPC if GC failed to make any progress; 617 * o other negative error codes in case of other errors. 618 * 619 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 620 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 621 * commit may be required. But commit cannot be run from inside GC, because the 622 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 623 * And this error code means that the caller has to run commit, and re-run GC 624 * if there is still no free space. 625 * 626 * There are many reasons why this function may return %-EAGAIN: 627 * o the log is full and there is no space to write an LEB reference for 628 * @c->gc_lnum; 629 * o the journal is too large and exceeds size limitations; 630 * o GC moved indexing LEBs, but they can be used only after the commit; 631 * o the shrinker fails to find clean znodes to free and requests the commit; 632 * o etc. 633 * 634 * Note, if the file-system is close to be full, this function may return 635 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 636 * the function. E.g., this happens if the limits on the journal size are too 637 * tough and GC writes too much to the journal before an LEB is freed. This 638 * might also mean that the journal is too large, and the TNC becomes to big, 639 * so that the shrinker is constantly called, finds not clean znodes to free, 640 * and requests commit. Well, this may also happen if the journal is all right, 641 * but another kernel process consumes too much memory. Anyway, infinite 642 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 643 */ 644 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 645 { 646 int i, err, ret, min_space = c->dead_wm; 647 struct ubifs_lprops lp; 648 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 649 650 ubifs_assert_cmt_locked(c); 651 ubifs_assert(!c->ro_media && !c->ro_mount); 652 653 if (ubifs_gc_should_commit(c)) 654 return -EAGAIN; 655 656 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 657 658 if (c->ro_error) { 659 ret = -EROFS; 660 goto out_unlock; 661 } 662 663 /* We expect the write-buffer to be empty on entry */ 664 ubifs_assert(!wbuf->used); 665 666 for (i = 0; ; i++) { 667 int space_before, space_after; 668 669 cond_resched(); 670 671 /* Give the commit an opportunity to run */ 672 if (ubifs_gc_should_commit(c)) { 673 ret = -EAGAIN; 674 break; 675 } 676 677 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 678 /* 679 * We've done enough iterations. Indexing LEBs were 680 * moved and will be available after the commit. 681 */ 682 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 683 ubifs_commit_required(c); 684 ret = -EAGAIN; 685 break; 686 } 687 688 if (i > HARD_LEBS_LIMIT) { 689 /* 690 * We've moved too many LEBs and have not made 691 * progress, give up. 692 */ 693 dbg_gc("hard limit, -ENOSPC"); 694 ret = -ENOSPC; 695 break; 696 } 697 698 /* 699 * Empty and freeable LEBs can turn up while we waited for 700 * the wbuf lock, or while we have been running GC. In that 701 * case, we should just return one of those instead of 702 * continuing to GC dirty LEBs. Hence we request 703 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 704 */ 705 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 706 if (ret) { 707 if (ret == -ENOSPC) 708 dbg_gc("no more dirty LEBs"); 709 break; 710 } 711 712 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 713 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 714 min_space); 715 716 space_before = c->leb_size - wbuf->offs - wbuf->used; 717 if (wbuf->lnum == -1) 718 space_before = 0; 719 720 ret = ubifs_garbage_collect_leb(c, &lp); 721 if (ret < 0) { 722 if (ret == -EAGAIN) { 723 /* 724 * This is not error, so we have to return the 725 * LEB to lprops. But if 'ubifs_return_leb()' 726 * fails, its failure code is propagated to the 727 * caller instead of the original '-EAGAIN'. 728 */ 729 err = ubifs_return_leb(c, lp.lnum); 730 if (err) 731 ret = err; 732 break; 733 } 734 goto out; 735 } 736 737 if (ret == LEB_FREED) { 738 /* An LEB has been freed and is ready for use */ 739 dbg_gc("LEB %d freed, return", lp.lnum); 740 ret = lp.lnum; 741 break; 742 } 743 744 if (ret == LEB_FREED_IDX) { 745 /* 746 * This was an indexing LEB and it cannot be 747 * immediately used. And instead of requesting the 748 * commit straight away, we try to garbage collect some 749 * more. 750 */ 751 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 752 continue; 753 } 754 755 ubifs_assert(ret == LEB_RETAINED); 756 space_after = c->leb_size - wbuf->offs - wbuf->used; 757 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 758 space_after - space_before); 759 760 if (space_after > space_before) { 761 /* GC makes progress, keep working */ 762 min_space >>= 1; 763 if (min_space < c->dead_wm) 764 min_space = c->dead_wm; 765 continue; 766 } 767 768 dbg_gc("did not make progress"); 769 770 /* 771 * GC moved an LEB bud have not done any progress. This means 772 * that the previous GC head LEB contained too few free space 773 * and the LEB which was GC'ed contained only large nodes which 774 * did not fit that space. 775 * 776 * We can do 2 things: 777 * 1. pick another LEB in a hope it'll contain a small node 778 * which will fit the space we have at the end of current GC 779 * head LEB, but there is no guarantee, so we try this out 780 * unless we have already been working for too long; 781 * 2. request an LEB with more dirty space, which will force 782 * 'ubifs_find_dirty_leb()' to start scanning the lprops 783 * table, instead of just picking one from the heap 784 * (previously it already picked the dirtiest LEB). 785 */ 786 if (i < SOFT_LEBS_LIMIT) { 787 dbg_gc("try again"); 788 continue; 789 } 790 791 min_space <<= 1; 792 if (min_space > c->dark_wm) 793 min_space = c->dark_wm; 794 dbg_gc("set min. space to %d", min_space); 795 } 796 797 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 798 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 799 ubifs_commit_required(c); 800 ret = -EAGAIN; 801 } 802 803 err = ubifs_wbuf_sync_nolock(wbuf); 804 if (!err) 805 err = ubifs_leb_unmap(c, c->gc_lnum); 806 if (err) { 807 ret = err; 808 goto out; 809 } 810 out_unlock: 811 mutex_unlock(&wbuf->io_mutex); 812 return ret; 813 814 out: 815 ubifs_assert(ret < 0); 816 ubifs_assert(ret != -ENOSPC && ret != -EAGAIN); 817 ubifs_wbuf_sync_nolock(wbuf); 818 ubifs_ro_mode(c, ret); 819 mutex_unlock(&wbuf->io_mutex); 820 ubifs_return_leb(c, lp.lnum); 821 return ret; 822 } 823 824 /** 825 * ubifs_gc_start_commit - garbage collection at start of commit. 826 * @c: UBIFS file-system description object 827 * 828 * If a LEB has only dirty and free space, then we may safely unmap it and make 829 * it free. Note, we cannot do this with indexing LEBs because dirty space may 830 * correspond index nodes that are required for recovery. In that case, the 831 * LEB cannot be unmapped until after the next commit. 832 * 833 * This function returns %0 upon success and a negative error code upon failure. 834 */ 835 int ubifs_gc_start_commit(struct ubifs_info *c) 836 { 837 struct ubifs_gced_idx_leb *idx_gc; 838 const struct ubifs_lprops *lp; 839 int err = 0, flags; 840 841 ubifs_get_lprops(c); 842 843 /* 844 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 845 * wbufs are sync'd before this, which is done in 'do_commit()'. 846 */ 847 while (1) { 848 lp = ubifs_fast_find_freeable(c); 849 if (IS_ERR(lp)) { 850 err = PTR_ERR(lp); 851 goto out; 852 } 853 if (!lp) 854 break; 855 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 856 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 857 err = ubifs_leb_unmap(c, lp->lnum); 858 if (err) 859 goto out; 860 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 861 if (IS_ERR(lp)) { 862 err = PTR_ERR(lp); 863 goto out; 864 } 865 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 866 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 867 } 868 869 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 870 list_for_each_entry(idx_gc, &c->idx_gc, list) 871 idx_gc->unmap = 1; 872 873 /* Record index freeable LEBs for unmapping after commit */ 874 while (1) { 875 lp = ubifs_fast_find_frdi_idx(c); 876 if (IS_ERR(lp)) { 877 err = PTR_ERR(lp); 878 goto out; 879 } 880 if (!lp) 881 break; 882 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 883 if (!idx_gc) { 884 err = -ENOMEM; 885 goto out; 886 } 887 ubifs_assert(!(lp->flags & LPROPS_TAKEN)); 888 ubifs_assert(lp->flags & LPROPS_INDEX); 889 /* Don't release the LEB until after the next commit */ 890 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 891 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 892 if (IS_ERR(lp)) { 893 err = PTR_ERR(lp); 894 kfree(idx_gc); 895 goto out; 896 } 897 ubifs_assert(lp->flags & LPROPS_TAKEN); 898 ubifs_assert(!(lp->flags & LPROPS_INDEX)); 899 idx_gc->lnum = lp->lnum; 900 idx_gc->unmap = 1; 901 list_add(&idx_gc->list, &c->idx_gc); 902 } 903 out: 904 ubifs_release_lprops(c); 905 return err; 906 } 907 908 /** 909 * ubifs_gc_end_commit - garbage collection at end of commit. 910 * @c: UBIFS file-system description object 911 * 912 * This function completes out-of-place garbage collection of index LEBs. 913 */ 914 int ubifs_gc_end_commit(struct ubifs_info *c) 915 { 916 struct ubifs_gced_idx_leb *idx_gc, *tmp; 917 struct ubifs_wbuf *wbuf; 918 int err = 0; 919 920 wbuf = &c->jheads[GCHD].wbuf; 921 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 922 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 923 if (idx_gc->unmap) { 924 dbg_gc("LEB %d", idx_gc->lnum); 925 err = ubifs_leb_unmap(c, idx_gc->lnum); 926 if (err) 927 goto out; 928 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 929 LPROPS_NC, 0, LPROPS_TAKEN, -1); 930 if (err) 931 goto out; 932 list_del(&idx_gc->list); 933 kfree(idx_gc); 934 } 935 out: 936 mutex_unlock(&wbuf->io_mutex); 937 return err; 938 } 939 940 /** 941 * ubifs_destroy_idx_gc - destroy idx_gc list. 942 * @c: UBIFS file-system description object 943 * 944 * This function destroys the @c->idx_gc list. It is called when unmounting 945 * so locks are not needed. Returns zero in case of success and a negative 946 * error code in case of failure. 947 */ 948 void ubifs_destroy_idx_gc(struct ubifs_info *c) 949 { 950 while (!list_empty(&c->idx_gc)) { 951 struct ubifs_gced_idx_leb *idx_gc; 952 953 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 954 list); 955 c->idx_gc_cnt -= 1; 956 list_del(&idx_gc->list); 957 kfree(idx_gc); 958 } 959 } 960 961 /** 962 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 963 * @c: UBIFS file-system description object 964 * 965 * Called during start commit so locks are not needed. 966 */ 967 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 968 { 969 struct ubifs_gced_idx_leb *idx_gc; 970 int lnum; 971 972 if (list_empty(&c->idx_gc)) 973 return -ENOSPC; 974 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 975 lnum = idx_gc->lnum; 976 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 977 list_del(&idx_gc->list); 978 kfree(idx_gc); 979 return lnum; 980 } 981