xref: /linux/fs/ubifs/gc.c (revision b8bb76713ec50df2f11efee386e16f93d51e1076)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements garbage collection. The procedure for garbage collection
25  * is different depending on whether a LEB as an index LEB (contains index
26  * nodes) or not. For non-index LEBs, garbage collection finds a LEB which
27  * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete
28  * nodes to the journal, at which point the garbage-collected LEB is free to be
29  * reused. For index LEBs, garbage collection marks the non-obsolete index nodes
30  * dirty in the TNC, and after the next commit, the garbage-collected LEB is
31  * to be reused. Garbage collection will cause the number of dirty index nodes
32  * to grow, however sufficient space is reserved for the index to ensure the
33  * commit will never run out of space.
34  *
35  * Notes about dead watermark. At current UBIFS implementation we assume that
36  * LEBs which have less than @c->dead_wm bytes of free + dirty space are full
37  * and not worth garbage-collecting. The dead watermark is one min. I/O unit
38  * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS
39  * Garbage Collector has to synchronize the GC head's write buffer before
40  * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can
41  * actually reclaim even very small pieces of dirty space by garbage collecting
42  * enough dirty LEBs, but we do not bother doing this at this implementation.
43  *
44  * Notes about dark watermark. The results of GC work depends on how big are
45  * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed,
46  * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would
47  * have to waste large pieces of free space at the end of LEB B, because nodes
48  * from LEB A would not fit. And the worst situation is when all nodes are of
49  * maximum size. So dark watermark is the amount of free + dirty space in LEB
50  * which are guaranteed to be reclaimable. If LEB has less space, the GC migh
51  * be unable to reclaim it. So, LEBs with free + dirty greater than dark
52  * watermark are "good" LEBs from GC's point of few. The other LEBs are not so
53  * good, and GC takes extra care when moving them.
54  */
55 
56 #include <linux/pagemap.h>
57 #include "ubifs.h"
58 
59 /*
60  * GC tries to optimize the way it fit nodes to available space, and it sorts
61  * nodes a little. The below constants are watermarks which define "large",
62  * "medium", and "small" nodes.
63  */
64 #define MEDIUM_NODE_WM (UBIFS_BLOCK_SIZE / 4)
65 #define SMALL_NODE_WM  UBIFS_MAX_DENT_NODE_SZ
66 
67 /*
68  * GC may need to move more than one LEB to make progress. The below constants
69  * define "soft" and "hard" limits on the number of LEBs the garbage collector
70  * may move.
71  */
72 #define SOFT_LEBS_LIMIT 4
73 #define HARD_LEBS_LIMIT 32
74 
75 /**
76  * switch_gc_head - switch the garbage collection journal head.
77  * @c: UBIFS file-system description object
78  * @buf: buffer to write
79  * @len: length of the buffer to write
80  * @lnum: LEB number written is returned here
81  * @offs: offset written is returned here
82  *
83  * This function switch the GC head to the next LEB which is reserved in
84  * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required,
85  * and other negative error code in case of failures.
86  */
87 static int switch_gc_head(struct ubifs_info *c)
88 {
89 	int err, gc_lnum = c->gc_lnum;
90 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
91 
92 	ubifs_assert(gc_lnum != -1);
93 	dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)",
94 	       wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum,
95 	       c->leb_size - wbuf->offs - wbuf->used);
96 
97 	err = ubifs_wbuf_sync_nolock(wbuf);
98 	if (err)
99 		return err;
100 
101 	/*
102 	 * The GC write-buffer was synchronized, we may safely unmap
103 	 * 'c->gc_lnum'.
104 	 */
105 	err = ubifs_leb_unmap(c, gc_lnum);
106 	if (err)
107 		return err;
108 
109 	err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0);
110 	if (err)
111 		return err;
112 
113 	c->gc_lnum = -1;
114 	err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0, UBI_LONGTERM);
115 	return err;
116 }
117 
118 /**
119  * joinup - bring data nodes for an inode together.
120  * @c: UBIFS file-system description object
121  * @sleb: describes scanned LEB
122  * @inum: inode number
123  * @blk: block number
124  * @data: list to which to add data nodes
125  *
126  * This function looks at the first few nodes in the scanned LEB @sleb and adds
127  * them to @data if they are data nodes from @inum and have a larger block
128  * number than @blk. This function returns %0 on success and a negative error
129  * code on failure.
130  */
131 static int joinup(struct ubifs_info *c, struct ubifs_scan_leb *sleb, ino_t inum,
132 		  unsigned int blk, struct list_head *data)
133 {
134 	int err, cnt = 6, lnum = sleb->lnum, offs;
135 	struct ubifs_scan_node *snod, *tmp;
136 	union ubifs_key *key;
137 
138 	list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) {
139 		key = &snod->key;
140 		if (key_inum(c, key) == inum &&
141 		    key_type(c, key) == UBIFS_DATA_KEY &&
142 		    key_block(c, key) > blk) {
143 			offs = snod->offs;
144 			err = ubifs_tnc_has_node(c, key, 0, lnum, offs, 0);
145 			if (err < 0)
146 				return err;
147 			list_del(&snod->list);
148 			if (err) {
149 				list_add_tail(&snod->list, data);
150 				blk = key_block(c, key);
151 			} else
152 				kfree(snod);
153 			cnt = 6;
154 		} else if (--cnt == 0)
155 			break;
156 	}
157 	return 0;
158 }
159 
160 /**
161  * move_nodes - move nodes.
162  * @c: UBIFS file-system description object
163  * @sleb: describes nodes to move
164  *
165  * This function moves valid nodes from data LEB described by @sleb to the GC
166  * journal head. The obsolete nodes are dropped.
167  *
168  * When moving nodes we have to deal with classical bin-packing problem: the
169  * space in the current GC journal head LEB and in @c->gc_lnum are the "bins",
170  * where the nodes in the @sleb->nodes list are the elements which should be
171  * fit optimally to the bins. This function uses the "first fit decreasing"
172  * strategy, although it does not really sort the nodes but just split them on
173  * 3 classes - large, medium, and small, so they are roughly sorted.
174  *
175  * This function returns zero in case of success, %-EAGAIN if commit is
176  * required, and other negative error codes in case of other failures.
177  */
178 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb)
179 {
180 	struct ubifs_scan_node *snod, *tmp;
181 	struct list_head data, large, medium, small;
182 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
183 	int avail, err, min = INT_MAX;
184 	unsigned int blk = 0;
185 	ino_t inum = 0;
186 
187 	INIT_LIST_HEAD(&data);
188 	INIT_LIST_HEAD(&large);
189 	INIT_LIST_HEAD(&medium);
190 	INIT_LIST_HEAD(&small);
191 
192 	while (!list_empty(&sleb->nodes)) {
193 		struct list_head *lst = sleb->nodes.next;
194 
195 		snod = list_entry(lst, struct ubifs_scan_node, list);
196 
197 		ubifs_assert(snod->type != UBIFS_IDX_NODE);
198 		ubifs_assert(snod->type != UBIFS_REF_NODE);
199 		ubifs_assert(snod->type != UBIFS_CS_NODE);
200 
201 		err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum,
202 					 snod->offs, 0);
203 		if (err < 0)
204 			goto out;
205 
206 		list_del(lst);
207 		if (!err) {
208 			/* The node is obsolete, remove it from the list */
209 			kfree(snod);
210 			continue;
211 		}
212 
213 		/*
214 		 * Sort the list of nodes so that data nodes go first, large
215 		 * nodes go second, and small nodes go last.
216 		 */
217 		if (key_type(c, &snod->key) == UBIFS_DATA_KEY) {
218 			if (inum != key_inum(c, &snod->key)) {
219 				if (inum) {
220 					/*
221 					 * Try to move data nodes from the same
222 					 * inode together.
223 					 */
224 					err = joinup(c, sleb, inum, blk, &data);
225 					if (err)
226 						goto out;
227 				}
228 				inum = key_inum(c, &snod->key);
229 				blk = key_block(c, &snod->key);
230 			}
231 			list_add_tail(lst, &data);
232 		} else if (snod->len > MEDIUM_NODE_WM)
233 			list_add_tail(lst, &large);
234 		else if (snod->len > SMALL_NODE_WM)
235 			list_add_tail(lst, &medium);
236 		else
237 			list_add_tail(lst, &small);
238 
239 		/* And find the smallest node */
240 		if (snod->len < min)
241 			min = snod->len;
242 	}
243 
244 	/*
245 	 * Join the tree lists so that we'd have one roughly sorted list
246 	 * ('large' will be the head of the joined list).
247 	 */
248 	list_splice(&data, &large);
249 	list_splice(&medium, large.prev);
250 	list_splice(&small, large.prev);
251 
252 	if (wbuf->lnum == -1) {
253 		/*
254 		 * The GC journal head is not set, because it is the first GC
255 		 * invocation since mount.
256 		 */
257 		err = switch_gc_head(c);
258 		if (err)
259 			goto out;
260 	}
261 
262 	/* Write nodes to their new location. Use the first-fit strategy */
263 	while (1) {
264 		avail = c->leb_size - wbuf->offs - wbuf->used;
265 		list_for_each_entry_safe(snod, tmp, &large, list) {
266 			int new_lnum, new_offs;
267 
268 			if (avail < min)
269 				break;
270 
271 			if (snod->len > avail)
272 				/* This node does not fit */
273 				continue;
274 
275 			cond_resched();
276 
277 			new_lnum = wbuf->lnum;
278 			new_offs = wbuf->offs + wbuf->used;
279 			err = ubifs_wbuf_write_nolock(wbuf, snod->node,
280 						      snod->len);
281 			if (err)
282 				goto out;
283 			err = ubifs_tnc_replace(c, &snod->key, sleb->lnum,
284 						snod->offs, new_lnum, new_offs,
285 						snod->len);
286 			if (err)
287 				goto out;
288 
289 			avail = c->leb_size - wbuf->offs - wbuf->used;
290 			list_del(&snod->list);
291 			kfree(snod);
292 		}
293 
294 		if (list_empty(&large))
295 			break;
296 
297 		/*
298 		 * Waste the rest of the space in the LEB and switch to the
299 		 * next LEB.
300 		 */
301 		err = switch_gc_head(c);
302 		if (err)
303 			goto out;
304 	}
305 
306 	return 0;
307 
308 out:
309 	list_for_each_entry_safe(snod, tmp, &large, list) {
310 		list_del(&snod->list);
311 		kfree(snod);
312 	}
313 	return err;
314 }
315 
316 /**
317  * gc_sync_wbufs - sync write-buffers for GC.
318  * @c: UBIFS file-system description object
319  *
320  * We must guarantee that obsoleting nodes are on flash. Unfortunately they may
321  * be in a write-buffer instead. That is, a node could be written to a
322  * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is
323  * erased before the write-buffer is sync'd and then there is an unclean
324  * unmount, then an existing node is lost. To avoid this, we sync all
325  * write-buffers.
326  *
327  * This function returns %0 on success or a negative error code on failure.
328  */
329 static int gc_sync_wbufs(struct ubifs_info *c)
330 {
331 	int err, i;
332 
333 	for (i = 0; i < c->jhead_cnt; i++) {
334 		if (i == GCHD)
335 			continue;
336 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
337 		if (err)
338 			return err;
339 	}
340 	return 0;
341 }
342 
343 /**
344  * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock.
345  * @c: UBIFS file-system description object
346  * @lp: describes the LEB to garbage collect
347  *
348  * This function garbage-collects an LEB and returns one of the @LEB_FREED,
349  * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is
350  * required, and other negative error codes in case of failures.
351  */
352 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp)
353 {
354 	struct ubifs_scan_leb *sleb;
355 	struct ubifs_scan_node *snod;
356 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
357 	int err = 0, lnum = lp->lnum;
358 
359 	ubifs_assert(c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 ||
360 		     c->need_recovery);
361 	ubifs_assert(c->gc_lnum != lnum);
362 	ubifs_assert(wbuf->lnum != lnum);
363 
364 	/*
365 	 * We scan the entire LEB even though we only really need to scan up to
366 	 * (c->leb_size - lp->free).
367 	 */
368 	sleb = ubifs_scan(c, lnum, 0, c->sbuf);
369 	if (IS_ERR(sleb))
370 		return PTR_ERR(sleb);
371 
372 	ubifs_assert(!list_empty(&sleb->nodes));
373 	snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list);
374 
375 	if (snod->type == UBIFS_IDX_NODE) {
376 		struct ubifs_gced_idx_leb *idx_gc;
377 
378 		dbg_gc("indexing LEB %d (free %d, dirty %d)",
379 		       lnum, lp->free, lp->dirty);
380 		list_for_each_entry(snod, &sleb->nodes, list) {
381 			struct ubifs_idx_node *idx = snod->node;
382 			int level = le16_to_cpu(idx->level);
383 
384 			ubifs_assert(snod->type == UBIFS_IDX_NODE);
385 			key_read(c, ubifs_idx_key(c, idx), &snod->key);
386 			err = ubifs_dirty_idx_node(c, &snod->key, level, lnum,
387 						   snod->offs);
388 			if (err)
389 				goto out;
390 		}
391 
392 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
393 		if (!idx_gc) {
394 			err = -ENOMEM;
395 			goto out;
396 		}
397 
398 		idx_gc->lnum = lnum;
399 		idx_gc->unmap = 0;
400 		list_add(&idx_gc->list, &c->idx_gc);
401 
402 		/*
403 		 * Don't release the LEB until after the next commit, because
404 		 * it may contain data which is needed for recovery. So
405 		 * although we freed this LEB, it will become usable only after
406 		 * the commit.
407 		 */
408 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0,
409 					  LPROPS_INDEX, 1);
410 		if (err)
411 			goto out;
412 		err = LEB_FREED_IDX;
413 	} else {
414 		dbg_gc("data LEB %d (free %d, dirty %d)",
415 		       lnum, lp->free, lp->dirty);
416 
417 		err = move_nodes(c, sleb);
418 		if (err)
419 			goto out_inc_seq;
420 
421 		err = gc_sync_wbufs(c);
422 		if (err)
423 			goto out_inc_seq;
424 
425 		err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0);
426 		if (err)
427 			goto out_inc_seq;
428 
429 		/* Allow for races with TNC */
430 		c->gced_lnum = lnum;
431 		smp_wmb();
432 		c->gc_seq += 1;
433 		smp_wmb();
434 
435 		if (c->gc_lnum == -1) {
436 			c->gc_lnum = lnum;
437 			err = LEB_RETAINED;
438 		} else {
439 			err = ubifs_wbuf_sync_nolock(wbuf);
440 			if (err)
441 				goto out;
442 
443 			err = ubifs_leb_unmap(c, lnum);
444 			if (err)
445 				goto out;
446 
447 			err = LEB_FREED;
448 		}
449 	}
450 
451 out:
452 	ubifs_scan_destroy(sleb);
453 	return err;
454 
455 out_inc_seq:
456 	/* We may have moved at least some nodes so allow for races with TNC */
457 	c->gced_lnum = lnum;
458 	smp_wmb();
459 	c->gc_seq += 1;
460 	smp_wmb();
461 	goto out;
462 }
463 
464 /**
465  * ubifs_garbage_collect - UBIFS garbage collector.
466  * @c: UBIFS file-system description object
467  * @anyway: do GC even if there are free LEBs
468  *
469  * This function does out-of-place garbage collection. The return codes are:
470  *   o positive LEB number if the LEB has been freed and may be used;
471  *   o %-EAGAIN if the caller has to run commit;
472  *   o %-ENOSPC if GC failed to make any progress;
473  *   o other negative error codes in case of other errors.
474  *
475  * Garbage collector writes data to the journal when GC'ing data LEBs, and just
476  * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point
477  * commit may be required. But commit cannot be run from inside GC, because the
478  * caller might be holding the commit lock, so %-EAGAIN is returned instead;
479  * And this error code means that the caller has to run commit, and re-run GC
480  * if there is still no free space.
481  *
482  * There are many reasons why this function may return %-EAGAIN:
483  * o the log is full and there is no space to write an LEB reference for
484  *   @c->gc_lnum;
485  * o the journal is too large and exceeds size limitations;
486  * o GC moved indexing LEBs, but they can be used only after the commit;
487  * o the shrinker fails to find clean znodes to free and requests the commit;
488  * o etc.
489  *
490  * Note, if the file-system is close to be full, this function may return
491  * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of
492  * the function. E.g., this happens if the limits on the journal size are too
493  * tough and GC writes too much to the journal before an LEB is freed. This
494  * might also mean that the journal is too large, and the TNC becomes to big,
495  * so that the shrinker is constantly called, finds not clean znodes to free,
496  * and requests commit. Well, this may also happen if the journal is all right,
497  * but another kernel process consumes too much memory. Anyway, infinite
498  * %-EAGAIN may happen, but in some extreme/misconfiguration cases.
499  */
500 int ubifs_garbage_collect(struct ubifs_info *c, int anyway)
501 {
502 	int i, err, ret, min_space = c->dead_wm;
503 	struct ubifs_lprops lp;
504 	struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf;
505 
506 	ubifs_assert_cmt_locked(c);
507 
508 	if (ubifs_gc_should_commit(c))
509 		return -EAGAIN;
510 
511 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
512 
513 	if (c->ro_media) {
514 		ret = -EROFS;
515 		goto out_unlock;
516 	}
517 
518 	/* We expect the write-buffer to be empty on entry */
519 	ubifs_assert(!wbuf->used);
520 
521 	for (i = 0; ; i++) {
522 		int space_before = c->leb_size - wbuf->offs - wbuf->used;
523 		int space_after;
524 
525 		cond_resched();
526 
527 		/* Give the commit an opportunity to run */
528 		if (ubifs_gc_should_commit(c)) {
529 			ret = -EAGAIN;
530 			break;
531 		}
532 
533 		if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) {
534 			/*
535 			 * We've done enough iterations. Indexing LEBs were
536 			 * moved and will be available after the commit.
537 			 */
538 			dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN");
539 			ubifs_commit_required(c);
540 			ret = -EAGAIN;
541 			break;
542 		}
543 
544 		if (i > HARD_LEBS_LIMIT) {
545 			/*
546 			 * We've moved too many LEBs and have not made
547 			 * progress, give up.
548 			 */
549 			dbg_gc("hard limit, -ENOSPC");
550 			ret = -ENOSPC;
551 			break;
552 		}
553 
554 		/*
555 		 * Empty and freeable LEBs can turn up while we waited for
556 		 * the wbuf lock, or while we have been running GC. In that
557 		 * case, we should just return one of those instead of
558 		 * continuing to GC dirty LEBs. Hence we request
559 		 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can.
560 		 */
561 		ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1);
562 		if (ret) {
563 			if (ret == -ENOSPC)
564 				dbg_gc("no more dirty LEBs");
565 			break;
566 		}
567 
568 		dbg_gc("found LEB %d: free %d, dirty %d, sum %d "
569 		       "(min. space %d)", lp.lnum, lp.free, lp.dirty,
570 		       lp.free + lp.dirty, min_space);
571 
572 		if (lp.free + lp.dirty == c->leb_size) {
573 			/* An empty LEB was returned */
574 			dbg_gc("LEB %d is free, return it", lp.lnum);
575 			/*
576 			 * ubifs_find_dirty_leb() doesn't return freeable index
577 			 * LEBs.
578 			 */
579 			ubifs_assert(!(lp.flags & LPROPS_INDEX));
580 			if (lp.free != c->leb_size) {
581 				/*
582 				 * Write buffers must be sync'd before
583 				 * unmapping freeable LEBs, because one of them
584 				 * may contain data which obsoletes something
585 				 * in 'lp.pnum'.
586 				 */
587 				ret = gc_sync_wbufs(c);
588 				if (ret)
589 					goto out;
590 				ret = ubifs_change_one_lp(c, lp.lnum,
591 							  c->leb_size, 0, 0, 0,
592 							  0);
593 				if (ret)
594 					goto out;
595 			}
596 			ret = ubifs_leb_unmap(c, lp.lnum);
597 			if (ret)
598 				goto out;
599 			ret = lp.lnum;
600 			break;
601 		}
602 
603 		space_before = c->leb_size - wbuf->offs - wbuf->used;
604 		if (wbuf->lnum == -1)
605 			space_before = 0;
606 
607 		ret = ubifs_garbage_collect_leb(c, &lp);
608 		if (ret < 0) {
609 			if (ret == -EAGAIN || ret == -ENOSPC) {
610 				/*
611 				 * These codes are not errors, so we have to
612 				 * return the LEB to lprops. But if the
613 				 * 'ubifs_return_leb()' function fails, its
614 				 * failure code is propagated to the caller
615 				 * instead of the original '-EAGAIN' or
616 				 * '-ENOSPC'.
617 				 */
618 				err = ubifs_return_leb(c, lp.lnum);
619 				if (err)
620 					ret = err;
621 				break;
622 			}
623 			goto out;
624 		}
625 
626 		if (ret == LEB_FREED) {
627 			/* An LEB has been freed and is ready for use */
628 			dbg_gc("LEB %d freed, return", lp.lnum);
629 			ret = lp.lnum;
630 			break;
631 		}
632 
633 		if (ret == LEB_FREED_IDX) {
634 			/*
635 			 * This was an indexing LEB and it cannot be
636 			 * immediately used. And instead of requesting the
637 			 * commit straight away, we try to garbage collect some
638 			 * more.
639 			 */
640 			dbg_gc("indexing LEB %d freed, continue", lp.lnum);
641 			continue;
642 		}
643 
644 		ubifs_assert(ret == LEB_RETAINED);
645 		space_after = c->leb_size - wbuf->offs - wbuf->used;
646 		dbg_gc("LEB %d retained, freed %d bytes", lp.lnum,
647 		       space_after - space_before);
648 
649 		if (space_after > space_before) {
650 			/* GC makes progress, keep working */
651 			min_space >>= 1;
652 			if (min_space < c->dead_wm)
653 				min_space = c->dead_wm;
654 			continue;
655 		}
656 
657 		dbg_gc("did not make progress");
658 
659 		/*
660 		 * GC moved an LEB bud have not done any progress. This means
661 		 * that the previous GC head LEB contained too few free space
662 		 * and the LEB which was GC'ed contained only large nodes which
663 		 * did not fit that space.
664 		 *
665 		 * We can do 2 things:
666 		 * 1. pick another LEB in a hope it'll contain a small node
667 		 *    which will fit the space we have at the end of current GC
668 		 *    head LEB, but there is no guarantee, so we try this out
669 		 *    unless we have already been working for too long;
670 		 * 2. request an LEB with more dirty space, which will force
671 		 *    'ubifs_find_dirty_leb()' to start scanning the lprops
672 		 *    table, instead of just picking one from the heap
673 		 *    (previously it already picked the dirtiest LEB).
674 		 */
675 		if (i < SOFT_LEBS_LIMIT) {
676 			dbg_gc("try again");
677 			continue;
678 		}
679 
680 		min_space <<= 1;
681 		if (min_space > c->dark_wm)
682 			min_space = c->dark_wm;
683 		dbg_gc("set min. space to %d", min_space);
684 	}
685 
686 	if (ret == -ENOSPC && !list_empty(&c->idx_gc)) {
687 		dbg_gc("no space, some index LEBs GC'ed, -EAGAIN");
688 		ubifs_commit_required(c);
689 		ret = -EAGAIN;
690 	}
691 
692 	err = ubifs_wbuf_sync_nolock(wbuf);
693 	if (!err)
694 		err = ubifs_leb_unmap(c, c->gc_lnum);
695 	if (err) {
696 		ret = err;
697 		goto out;
698 	}
699 out_unlock:
700 	mutex_unlock(&wbuf->io_mutex);
701 	return ret;
702 
703 out:
704 	ubifs_assert(ret < 0);
705 	ubifs_assert(ret != -ENOSPC && ret != -EAGAIN);
706 	ubifs_ro_mode(c, ret);
707 	ubifs_wbuf_sync_nolock(wbuf);
708 	mutex_unlock(&wbuf->io_mutex);
709 	ubifs_return_leb(c, lp.lnum);
710 	return ret;
711 }
712 
713 /**
714  * ubifs_gc_start_commit - garbage collection at start of commit.
715  * @c: UBIFS file-system description object
716  *
717  * If a LEB has only dirty and free space, then we may safely unmap it and make
718  * it free.  Note, we cannot do this with indexing LEBs because dirty space may
719  * correspond index nodes that are required for recovery.  In that case, the
720  * LEB cannot be unmapped until after the next commit.
721  *
722  * This function returns %0 upon success and a negative error code upon failure.
723  */
724 int ubifs_gc_start_commit(struct ubifs_info *c)
725 {
726 	struct ubifs_gced_idx_leb *idx_gc;
727 	const struct ubifs_lprops *lp;
728 	int err = 0, flags;
729 
730 	ubifs_get_lprops(c);
731 
732 	/*
733 	 * Unmap (non-index) freeable LEBs. Note that recovery requires that all
734 	 * wbufs are sync'd before this, which is done in 'do_commit()'.
735 	 */
736 	while (1) {
737 		lp = ubifs_fast_find_freeable(c);
738 		if (IS_ERR(lp)) {
739 			err = PTR_ERR(lp);
740 			goto out;
741 		}
742 		if (!lp)
743 			break;
744 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
745 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
746 		err = ubifs_leb_unmap(c, lp->lnum);
747 		if (err)
748 			goto out;
749 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0);
750 		if (IS_ERR(lp)) {
751 			err = PTR_ERR(lp);
752 			goto out;
753 		}
754 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
755 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
756 	}
757 
758 	/* Mark GC'd index LEBs OK to unmap after this commit finishes */
759 	list_for_each_entry(idx_gc, &c->idx_gc, list)
760 		idx_gc->unmap = 1;
761 
762 	/* Record index freeable LEBs for unmapping after commit */
763 	while (1) {
764 		lp = ubifs_fast_find_frdi_idx(c);
765 		if (IS_ERR(lp)) {
766 			err = PTR_ERR(lp);
767 			goto out;
768 		}
769 		if (!lp)
770 			break;
771 		idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS);
772 		if (!idx_gc) {
773 			err = -ENOMEM;
774 			goto out;
775 		}
776 		ubifs_assert(!(lp->flags & LPROPS_TAKEN));
777 		ubifs_assert(lp->flags & LPROPS_INDEX);
778 		/* Don't release the LEB until after the next commit */
779 		flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX;
780 		lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1);
781 		if (IS_ERR(lp)) {
782 			err = PTR_ERR(lp);
783 			kfree(idx_gc);
784 			goto out;
785 		}
786 		ubifs_assert(lp->flags & LPROPS_TAKEN);
787 		ubifs_assert(!(lp->flags & LPROPS_INDEX));
788 		idx_gc->lnum = lp->lnum;
789 		idx_gc->unmap = 1;
790 		list_add(&idx_gc->list, &c->idx_gc);
791 	}
792 out:
793 	ubifs_release_lprops(c);
794 	return err;
795 }
796 
797 /**
798  * ubifs_gc_end_commit - garbage collection at end of commit.
799  * @c: UBIFS file-system description object
800  *
801  * This function completes out-of-place garbage collection of index LEBs.
802  */
803 int ubifs_gc_end_commit(struct ubifs_info *c)
804 {
805 	struct ubifs_gced_idx_leb *idx_gc, *tmp;
806 	struct ubifs_wbuf *wbuf;
807 	int err = 0;
808 
809 	wbuf = &c->jheads[GCHD].wbuf;
810 	mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
811 	list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list)
812 		if (idx_gc->unmap) {
813 			dbg_gc("LEB %d", idx_gc->lnum);
814 			err = ubifs_leb_unmap(c, idx_gc->lnum);
815 			if (err)
816 				goto out;
817 			err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC,
818 					  LPROPS_NC, 0, LPROPS_TAKEN, -1);
819 			if (err)
820 				goto out;
821 			list_del(&idx_gc->list);
822 			kfree(idx_gc);
823 		}
824 out:
825 	mutex_unlock(&wbuf->io_mutex);
826 	return err;
827 }
828 
829 /**
830  * ubifs_destroy_idx_gc - destroy idx_gc list.
831  * @c: UBIFS file-system description object
832  *
833  * This function destroys the @c->idx_gc list. It is called when unmounting
834  * so locks are not needed. Returns zero in case of success and a negative
835  * error code in case of failure.
836  */
837 void ubifs_destroy_idx_gc(struct ubifs_info *c)
838 {
839 	while (!list_empty(&c->idx_gc)) {
840 		struct ubifs_gced_idx_leb *idx_gc;
841 
842 		idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb,
843 				    list);
844 		c->idx_gc_cnt -= 1;
845 		list_del(&idx_gc->list);
846 		kfree(idx_gc);
847 	}
848 }
849 
850 /**
851  * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list.
852  * @c: UBIFS file-system description object
853  *
854  * Called during start commit so locks are not needed.
855  */
856 int ubifs_get_idx_gc_leb(struct ubifs_info *c)
857 {
858 	struct ubifs_gced_idx_leb *idx_gc;
859 	int lnum;
860 
861 	if (list_empty(&c->idx_gc))
862 		return -ENOSPC;
863 	idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list);
864 	lnum = idx_gc->lnum;
865 	/* c->idx_gc_cnt is updated by the caller when lprops are updated */
866 	list_del(&idx_gc->list);
867 	kfree(idx_gc);
868 	return lnum;
869 }
870