1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Adrian Hunter 20 * Artem Bityutskiy (Битюцкий Артём) 21 */ 22 23 /* 24 * This file implements garbage collection. The procedure for garbage collection 25 * is different depending on whether a LEB as an index LEB (contains index 26 * nodes) or not. For non-index LEBs, garbage collection finds a LEB which 27 * contains a lot of dirty space (obsolete nodes), and copies the non-obsolete 28 * nodes to the journal, at which point the garbage-collected LEB is free to be 29 * reused. For index LEBs, garbage collection marks the non-obsolete index nodes 30 * dirty in the TNC, and after the next commit, the garbage-collected LEB is 31 * to be reused. Garbage collection will cause the number of dirty index nodes 32 * to grow, however sufficient space is reserved for the index to ensure the 33 * commit will never run out of space. 34 * 35 * Notes about dead watermark. At current UBIFS implementation we assume that 36 * LEBs which have less than @c->dead_wm bytes of free + dirty space are full 37 * and not worth garbage-collecting. The dead watermark is one min. I/O unit 38 * size, or min. UBIFS node size, depending on what is greater. Indeed, UBIFS 39 * Garbage Collector has to synchronize the GC head's write buffer before 40 * returning, so this is about wasting one min. I/O unit. However, UBIFS GC can 41 * actually reclaim even very small pieces of dirty space by garbage collecting 42 * enough dirty LEBs, but we do not bother doing this at this implementation. 43 * 44 * Notes about dark watermark. The results of GC work depends on how big are 45 * the UBIFS nodes GC deals with. Large nodes make GC waste more space. Indeed, 46 * if GC move data from LEB A to LEB B and nodes in LEB A are large, GC would 47 * have to waste large pieces of free space at the end of LEB B, because nodes 48 * from LEB A would not fit. And the worst situation is when all nodes are of 49 * maximum size. So dark watermark is the amount of free + dirty space in LEB 50 * which are guaranteed to be reclaimable. If LEB has less space, the GC might 51 * be unable to reclaim it. So, LEBs with free + dirty greater than dark 52 * watermark are "good" LEBs from GC's point of view. The other LEBs are not so 53 * good, and GC takes extra care when moving them. 54 */ 55 56 #include <linux/slab.h> 57 #include <linux/pagemap.h> 58 #include <linux/list_sort.h> 59 #include "ubifs.h" 60 61 /* 62 * GC may need to move more than one LEB to make progress. The below constants 63 * define "soft" and "hard" limits on the number of LEBs the garbage collector 64 * may move. 65 */ 66 #define SOFT_LEBS_LIMIT 4 67 #define HARD_LEBS_LIMIT 32 68 69 /** 70 * switch_gc_head - switch the garbage collection journal head. 71 * @c: UBIFS file-system description object 72 * @buf: buffer to write 73 * @len: length of the buffer to write 74 * @lnum: LEB number written is returned here 75 * @offs: offset written is returned here 76 * 77 * This function switch the GC head to the next LEB which is reserved in 78 * @c->gc_lnum. Returns %0 in case of success, %-EAGAIN if commit is required, 79 * and other negative error code in case of failures. 80 */ 81 static int switch_gc_head(struct ubifs_info *c) 82 { 83 int err, gc_lnum = c->gc_lnum; 84 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 85 86 ubifs_assert(c, gc_lnum != -1); 87 dbg_gc("switch GC head from LEB %d:%d to LEB %d (waste %d bytes)", 88 wbuf->lnum, wbuf->offs + wbuf->used, gc_lnum, 89 c->leb_size - wbuf->offs - wbuf->used); 90 91 err = ubifs_wbuf_sync_nolock(wbuf); 92 if (err) 93 return err; 94 95 /* 96 * The GC write-buffer was synchronized, we may safely unmap 97 * 'c->gc_lnum'. 98 */ 99 err = ubifs_leb_unmap(c, gc_lnum); 100 if (err) 101 return err; 102 103 err = ubifs_add_bud_to_log(c, GCHD, gc_lnum, 0); 104 if (err) 105 return err; 106 107 c->gc_lnum = -1; 108 err = ubifs_wbuf_seek_nolock(wbuf, gc_lnum, 0); 109 return err; 110 } 111 112 /** 113 * data_nodes_cmp - compare 2 data nodes. 114 * @priv: UBIFS file-system description object 115 * @a: first data node 116 * @b: second data node 117 * 118 * This function compares data nodes @a and @b. Returns %1 if @a has greater 119 * inode or block number, and %-1 otherwise. 120 */ 121 static int data_nodes_cmp(void *priv, struct list_head *a, struct list_head *b) 122 { 123 ino_t inuma, inumb; 124 struct ubifs_info *c = priv; 125 struct ubifs_scan_node *sa, *sb; 126 127 cond_resched(); 128 if (a == b) 129 return 0; 130 131 sa = list_entry(a, struct ubifs_scan_node, list); 132 sb = list_entry(b, struct ubifs_scan_node, list); 133 134 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DATA_KEY); 135 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DATA_KEY); 136 ubifs_assert(c, sa->type == UBIFS_DATA_NODE); 137 ubifs_assert(c, sb->type == UBIFS_DATA_NODE); 138 139 inuma = key_inum(c, &sa->key); 140 inumb = key_inum(c, &sb->key); 141 142 if (inuma == inumb) { 143 unsigned int blka = key_block(c, &sa->key); 144 unsigned int blkb = key_block(c, &sb->key); 145 146 if (blka <= blkb) 147 return -1; 148 } else if (inuma <= inumb) 149 return -1; 150 151 return 1; 152 } 153 154 /* 155 * nondata_nodes_cmp - compare 2 non-data nodes. 156 * @priv: UBIFS file-system description object 157 * @a: first node 158 * @a: second node 159 * 160 * This function compares nodes @a and @b. It makes sure that inode nodes go 161 * first and sorted by length in descending order. Directory entry nodes go 162 * after inode nodes and are sorted in ascending hash valuer order. 163 */ 164 static int nondata_nodes_cmp(void *priv, struct list_head *a, 165 struct list_head *b) 166 { 167 ino_t inuma, inumb; 168 struct ubifs_info *c = priv; 169 struct ubifs_scan_node *sa, *sb; 170 171 cond_resched(); 172 if (a == b) 173 return 0; 174 175 sa = list_entry(a, struct ubifs_scan_node, list); 176 sb = list_entry(b, struct ubifs_scan_node, list); 177 178 ubifs_assert(c, key_type(c, &sa->key) != UBIFS_DATA_KEY && 179 key_type(c, &sb->key) != UBIFS_DATA_KEY); 180 ubifs_assert(c, sa->type != UBIFS_DATA_NODE && 181 sb->type != UBIFS_DATA_NODE); 182 183 /* Inodes go before directory entries */ 184 if (sa->type == UBIFS_INO_NODE) { 185 if (sb->type == UBIFS_INO_NODE) 186 return sb->len - sa->len; 187 return -1; 188 } 189 if (sb->type == UBIFS_INO_NODE) 190 return 1; 191 192 ubifs_assert(c, key_type(c, &sa->key) == UBIFS_DENT_KEY || 193 key_type(c, &sa->key) == UBIFS_XENT_KEY); 194 ubifs_assert(c, key_type(c, &sb->key) == UBIFS_DENT_KEY || 195 key_type(c, &sb->key) == UBIFS_XENT_KEY); 196 ubifs_assert(c, sa->type == UBIFS_DENT_NODE || 197 sa->type == UBIFS_XENT_NODE); 198 ubifs_assert(c, sb->type == UBIFS_DENT_NODE || 199 sb->type == UBIFS_XENT_NODE); 200 201 inuma = key_inum(c, &sa->key); 202 inumb = key_inum(c, &sb->key); 203 204 if (inuma == inumb) { 205 uint32_t hasha = key_hash(c, &sa->key); 206 uint32_t hashb = key_hash(c, &sb->key); 207 208 if (hasha <= hashb) 209 return -1; 210 } else if (inuma <= inumb) 211 return -1; 212 213 return 1; 214 } 215 216 /** 217 * sort_nodes - sort nodes for GC. 218 * @c: UBIFS file-system description object 219 * @sleb: describes nodes to sort and contains the result on exit 220 * @nondata: contains non-data nodes on exit 221 * @min: minimum node size is returned here 222 * 223 * This function sorts the list of inodes to garbage collect. First of all, it 224 * kills obsolete nodes and separates data and non-data nodes to the 225 * @sleb->nodes and @nondata lists correspondingly. 226 * 227 * Data nodes are then sorted in block number order - this is important for 228 * bulk-read; data nodes with lower inode number go before data nodes with 229 * higher inode number, and data nodes with lower block number go before data 230 * nodes with higher block number; 231 * 232 * Non-data nodes are sorted as follows. 233 * o First go inode nodes - they are sorted in descending length order. 234 * o Then go directory entry nodes - they are sorted in hash order, which 235 * should supposedly optimize 'readdir()'. Direntry nodes with lower parent 236 * inode number go before direntry nodes with higher parent inode number, 237 * and direntry nodes with lower name hash values go before direntry nodes 238 * with higher name hash values. 239 * 240 * This function returns zero in case of success and a negative error code in 241 * case of failure. 242 */ 243 static int sort_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 244 struct list_head *nondata, int *min) 245 { 246 int err; 247 struct ubifs_scan_node *snod, *tmp; 248 249 *min = INT_MAX; 250 251 /* Separate data nodes and non-data nodes */ 252 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 253 ubifs_assert(c, snod->type == UBIFS_INO_NODE || 254 snod->type == UBIFS_DATA_NODE || 255 snod->type == UBIFS_DENT_NODE || 256 snod->type == UBIFS_XENT_NODE || 257 snod->type == UBIFS_TRUN_NODE || 258 snod->type == UBIFS_AUTH_NODE); 259 260 if (snod->type != UBIFS_INO_NODE && 261 snod->type != UBIFS_DATA_NODE && 262 snod->type != UBIFS_DENT_NODE && 263 snod->type != UBIFS_XENT_NODE) { 264 /* Probably truncation node, zap it */ 265 list_del(&snod->list); 266 kfree(snod); 267 continue; 268 } 269 270 ubifs_assert(c, key_type(c, &snod->key) == UBIFS_DATA_KEY || 271 key_type(c, &snod->key) == UBIFS_INO_KEY || 272 key_type(c, &snod->key) == UBIFS_DENT_KEY || 273 key_type(c, &snod->key) == UBIFS_XENT_KEY); 274 275 err = ubifs_tnc_has_node(c, &snod->key, 0, sleb->lnum, 276 snod->offs, 0); 277 if (err < 0) 278 return err; 279 280 if (!err) { 281 /* The node is obsolete, remove it from the list */ 282 list_del(&snod->list); 283 kfree(snod); 284 continue; 285 } 286 287 if (snod->len < *min) 288 *min = snod->len; 289 290 if (key_type(c, &snod->key) != UBIFS_DATA_KEY) 291 list_move_tail(&snod->list, nondata); 292 } 293 294 /* Sort data and non-data nodes */ 295 list_sort(c, &sleb->nodes, &data_nodes_cmp); 296 list_sort(c, nondata, &nondata_nodes_cmp); 297 298 err = dbg_check_data_nodes_order(c, &sleb->nodes); 299 if (err) 300 return err; 301 err = dbg_check_nondata_nodes_order(c, nondata); 302 if (err) 303 return err; 304 return 0; 305 } 306 307 /** 308 * move_node - move a node. 309 * @c: UBIFS file-system description object 310 * @sleb: describes the LEB to move nodes from 311 * @snod: the mode to move 312 * @wbuf: write-buffer to move node to 313 * 314 * This function moves node @snod to @wbuf, changes TNC correspondingly, and 315 * destroys @snod. Returns zero in case of success and a negative error code in 316 * case of failure. 317 */ 318 static int move_node(struct ubifs_info *c, struct ubifs_scan_leb *sleb, 319 struct ubifs_scan_node *snod, struct ubifs_wbuf *wbuf) 320 { 321 int err, new_lnum = wbuf->lnum, new_offs = wbuf->offs + wbuf->used; 322 323 cond_resched(); 324 err = ubifs_wbuf_write_nolock(wbuf, snod->node, snod->len); 325 if (err) 326 return err; 327 328 err = ubifs_tnc_replace(c, &snod->key, sleb->lnum, 329 snod->offs, new_lnum, new_offs, 330 snod->len); 331 list_del(&snod->list); 332 kfree(snod); 333 return err; 334 } 335 336 /** 337 * move_nodes - move nodes. 338 * @c: UBIFS file-system description object 339 * @sleb: describes the LEB to move nodes from 340 * 341 * This function moves valid nodes from data LEB described by @sleb to the GC 342 * journal head. This function returns zero in case of success, %-EAGAIN if 343 * commit is required, and other negative error codes in case of other 344 * failures. 345 */ 346 static int move_nodes(struct ubifs_info *c, struct ubifs_scan_leb *sleb) 347 { 348 int err, min; 349 LIST_HEAD(nondata); 350 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 351 352 if (wbuf->lnum == -1) { 353 /* 354 * The GC journal head is not set, because it is the first GC 355 * invocation since mount. 356 */ 357 err = switch_gc_head(c); 358 if (err) 359 return err; 360 } 361 362 err = sort_nodes(c, sleb, &nondata, &min); 363 if (err) 364 goto out; 365 366 /* Write nodes to their new location. Use the first-fit strategy */ 367 while (1) { 368 int avail, moved = 0; 369 struct ubifs_scan_node *snod, *tmp; 370 371 /* Move data nodes */ 372 list_for_each_entry_safe(snod, tmp, &sleb->nodes, list) { 373 avail = c->leb_size - wbuf->offs - wbuf->used - 374 ubifs_auth_node_sz(c); 375 if (snod->len > avail) 376 /* 377 * Do not skip data nodes in order to optimize 378 * bulk-read. 379 */ 380 break; 381 382 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, 383 snod->node, snod->len); 384 if (err) 385 goto out; 386 387 err = move_node(c, sleb, snod, wbuf); 388 if (err) 389 goto out; 390 moved = 1; 391 } 392 393 /* Move non-data nodes */ 394 list_for_each_entry_safe(snod, tmp, &nondata, list) { 395 avail = c->leb_size - wbuf->offs - wbuf->used - 396 ubifs_auth_node_sz(c); 397 if (avail < min) 398 break; 399 400 if (snod->len > avail) { 401 /* 402 * Keep going only if this is an inode with 403 * some data. Otherwise stop and switch the GC 404 * head. IOW, we assume that data-less inode 405 * nodes and direntry nodes are roughly of the 406 * same size. 407 */ 408 if (key_type(c, &snod->key) == UBIFS_DENT_KEY || 409 snod->len == UBIFS_INO_NODE_SZ) 410 break; 411 continue; 412 } 413 414 err = ubifs_shash_update(c, c->jheads[GCHD].log_hash, 415 snod->node, snod->len); 416 if (err) 417 goto out; 418 419 err = move_node(c, sleb, snod, wbuf); 420 if (err) 421 goto out; 422 moved = 1; 423 } 424 425 if (ubifs_authenticated(c) && moved) { 426 struct ubifs_auth_node *auth; 427 428 auth = kmalloc(ubifs_auth_node_sz(c), GFP_NOFS); 429 if (!auth) { 430 err = -ENOMEM; 431 goto out; 432 } 433 434 err = ubifs_prepare_auth_node(c, auth, 435 c->jheads[GCHD].log_hash); 436 if (err) { 437 kfree(auth); 438 goto out; 439 } 440 441 err = ubifs_wbuf_write_nolock(wbuf, auth, 442 ubifs_auth_node_sz(c)); 443 if (err) { 444 kfree(auth); 445 goto out; 446 } 447 448 ubifs_add_dirt(c, wbuf->lnum, ubifs_auth_node_sz(c)); 449 } 450 451 if (list_empty(&sleb->nodes) && list_empty(&nondata)) 452 break; 453 454 /* 455 * Waste the rest of the space in the LEB and switch to the 456 * next LEB. 457 */ 458 err = switch_gc_head(c); 459 if (err) 460 goto out; 461 } 462 463 return 0; 464 465 out: 466 list_splice_tail(&nondata, &sleb->nodes); 467 return err; 468 } 469 470 /** 471 * gc_sync_wbufs - sync write-buffers for GC. 472 * @c: UBIFS file-system description object 473 * 474 * We must guarantee that obsoleting nodes are on flash. Unfortunately they may 475 * be in a write-buffer instead. That is, a node could be written to a 476 * write-buffer, obsoleting another node in a LEB that is GC'd. If that LEB is 477 * erased before the write-buffer is sync'd and then there is an unclean 478 * unmount, then an existing node is lost. To avoid this, we sync all 479 * write-buffers. 480 * 481 * This function returns %0 on success or a negative error code on failure. 482 */ 483 static int gc_sync_wbufs(struct ubifs_info *c) 484 { 485 int err, i; 486 487 for (i = 0; i < c->jhead_cnt; i++) { 488 if (i == GCHD) 489 continue; 490 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 491 if (err) 492 return err; 493 } 494 return 0; 495 } 496 497 /** 498 * ubifs_garbage_collect_leb - garbage-collect a logical eraseblock. 499 * @c: UBIFS file-system description object 500 * @lp: describes the LEB to garbage collect 501 * 502 * This function garbage-collects an LEB and returns one of the @LEB_FREED, 503 * @LEB_RETAINED, etc positive codes in case of success, %-EAGAIN if commit is 504 * required, and other negative error codes in case of failures. 505 */ 506 int ubifs_garbage_collect_leb(struct ubifs_info *c, struct ubifs_lprops *lp) 507 { 508 struct ubifs_scan_leb *sleb; 509 struct ubifs_scan_node *snod; 510 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 511 int err = 0, lnum = lp->lnum; 512 513 ubifs_assert(c, c->gc_lnum != -1 || wbuf->offs + wbuf->used == 0 || 514 c->need_recovery); 515 ubifs_assert(c, c->gc_lnum != lnum); 516 ubifs_assert(c, wbuf->lnum != lnum); 517 518 if (lp->free + lp->dirty == c->leb_size) { 519 /* Special case - a free LEB */ 520 dbg_gc("LEB %d is free, return it", lp->lnum); 521 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 522 523 if (lp->free != c->leb_size) { 524 /* 525 * Write buffers must be sync'd before unmapping 526 * freeable LEBs, because one of them may contain data 527 * which obsoletes something in 'lp->lnum'. 528 */ 529 err = gc_sync_wbufs(c); 530 if (err) 531 return err; 532 err = ubifs_change_one_lp(c, lp->lnum, c->leb_size, 533 0, 0, 0, 0); 534 if (err) 535 return err; 536 } 537 err = ubifs_leb_unmap(c, lp->lnum); 538 if (err) 539 return err; 540 541 if (c->gc_lnum == -1) { 542 c->gc_lnum = lnum; 543 return LEB_RETAINED; 544 } 545 546 return LEB_FREED; 547 } 548 549 /* 550 * We scan the entire LEB even though we only really need to scan up to 551 * (c->leb_size - lp->free). 552 */ 553 sleb = ubifs_scan(c, lnum, 0, c->sbuf, 0); 554 if (IS_ERR(sleb)) 555 return PTR_ERR(sleb); 556 557 ubifs_assert(c, !list_empty(&sleb->nodes)); 558 snod = list_entry(sleb->nodes.next, struct ubifs_scan_node, list); 559 560 if (snod->type == UBIFS_IDX_NODE) { 561 struct ubifs_gced_idx_leb *idx_gc; 562 563 dbg_gc("indexing LEB %d (free %d, dirty %d)", 564 lnum, lp->free, lp->dirty); 565 list_for_each_entry(snod, &sleb->nodes, list) { 566 struct ubifs_idx_node *idx = snod->node; 567 int level = le16_to_cpu(idx->level); 568 569 ubifs_assert(c, snod->type == UBIFS_IDX_NODE); 570 key_read(c, ubifs_idx_key(c, idx), &snod->key); 571 err = ubifs_dirty_idx_node(c, &snod->key, level, lnum, 572 snod->offs); 573 if (err) 574 goto out; 575 } 576 577 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 578 if (!idx_gc) { 579 err = -ENOMEM; 580 goto out; 581 } 582 583 idx_gc->lnum = lnum; 584 idx_gc->unmap = 0; 585 list_add(&idx_gc->list, &c->idx_gc); 586 587 /* 588 * Don't release the LEB until after the next commit, because 589 * it may contain data which is needed for recovery. So 590 * although we freed this LEB, it will become usable only after 591 * the commit. 592 */ 593 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 594 LPROPS_INDEX, 1); 595 if (err) 596 goto out; 597 err = LEB_FREED_IDX; 598 } else { 599 dbg_gc("data LEB %d (free %d, dirty %d)", 600 lnum, lp->free, lp->dirty); 601 602 err = move_nodes(c, sleb); 603 if (err) 604 goto out_inc_seq; 605 606 err = gc_sync_wbufs(c); 607 if (err) 608 goto out_inc_seq; 609 610 err = ubifs_change_one_lp(c, lnum, c->leb_size, 0, 0, 0, 0); 611 if (err) 612 goto out_inc_seq; 613 614 /* Allow for races with TNC */ 615 c->gced_lnum = lnum; 616 smp_wmb(); 617 c->gc_seq += 1; 618 smp_wmb(); 619 620 if (c->gc_lnum == -1) { 621 c->gc_lnum = lnum; 622 err = LEB_RETAINED; 623 } else { 624 err = ubifs_wbuf_sync_nolock(wbuf); 625 if (err) 626 goto out; 627 628 err = ubifs_leb_unmap(c, lnum); 629 if (err) 630 goto out; 631 632 err = LEB_FREED; 633 } 634 } 635 636 out: 637 ubifs_scan_destroy(sleb); 638 return err; 639 640 out_inc_seq: 641 /* We may have moved at least some nodes so allow for races with TNC */ 642 c->gced_lnum = lnum; 643 smp_wmb(); 644 c->gc_seq += 1; 645 smp_wmb(); 646 goto out; 647 } 648 649 /** 650 * ubifs_garbage_collect - UBIFS garbage collector. 651 * @c: UBIFS file-system description object 652 * @anyway: do GC even if there are free LEBs 653 * 654 * This function does out-of-place garbage collection. The return codes are: 655 * o positive LEB number if the LEB has been freed and may be used; 656 * o %-EAGAIN if the caller has to run commit; 657 * o %-ENOSPC if GC failed to make any progress; 658 * o other negative error codes in case of other errors. 659 * 660 * Garbage collector writes data to the journal when GC'ing data LEBs, and just 661 * marking indexing nodes dirty when GC'ing indexing LEBs. Thus, at some point 662 * commit may be required. But commit cannot be run from inside GC, because the 663 * caller might be holding the commit lock, so %-EAGAIN is returned instead; 664 * And this error code means that the caller has to run commit, and re-run GC 665 * if there is still no free space. 666 * 667 * There are many reasons why this function may return %-EAGAIN: 668 * o the log is full and there is no space to write an LEB reference for 669 * @c->gc_lnum; 670 * o the journal is too large and exceeds size limitations; 671 * o GC moved indexing LEBs, but they can be used only after the commit; 672 * o the shrinker fails to find clean znodes to free and requests the commit; 673 * o etc. 674 * 675 * Note, if the file-system is close to be full, this function may return 676 * %-EAGAIN infinitely, so the caller has to limit amount of re-invocations of 677 * the function. E.g., this happens if the limits on the journal size are too 678 * tough and GC writes too much to the journal before an LEB is freed. This 679 * might also mean that the journal is too large, and the TNC becomes to big, 680 * so that the shrinker is constantly called, finds not clean znodes to free, 681 * and requests commit. Well, this may also happen if the journal is all right, 682 * but another kernel process consumes too much memory. Anyway, infinite 683 * %-EAGAIN may happen, but in some extreme/misconfiguration cases. 684 */ 685 int ubifs_garbage_collect(struct ubifs_info *c, int anyway) 686 { 687 int i, err, ret, min_space = c->dead_wm; 688 struct ubifs_lprops lp; 689 struct ubifs_wbuf *wbuf = &c->jheads[GCHD].wbuf; 690 691 ubifs_assert_cmt_locked(c); 692 ubifs_assert(c, !c->ro_media && !c->ro_mount); 693 694 if (ubifs_gc_should_commit(c)) 695 return -EAGAIN; 696 697 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 698 699 if (c->ro_error) { 700 ret = -EROFS; 701 goto out_unlock; 702 } 703 704 /* We expect the write-buffer to be empty on entry */ 705 ubifs_assert(c, !wbuf->used); 706 707 for (i = 0; ; i++) { 708 int space_before, space_after; 709 710 cond_resched(); 711 712 /* Give the commit an opportunity to run */ 713 if (ubifs_gc_should_commit(c)) { 714 ret = -EAGAIN; 715 break; 716 } 717 718 if (i > SOFT_LEBS_LIMIT && !list_empty(&c->idx_gc)) { 719 /* 720 * We've done enough iterations. Indexing LEBs were 721 * moved and will be available after the commit. 722 */ 723 dbg_gc("soft limit, some index LEBs GC'ed, -EAGAIN"); 724 ubifs_commit_required(c); 725 ret = -EAGAIN; 726 break; 727 } 728 729 if (i > HARD_LEBS_LIMIT) { 730 /* 731 * We've moved too many LEBs and have not made 732 * progress, give up. 733 */ 734 dbg_gc("hard limit, -ENOSPC"); 735 ret = -ENOSPC; 736 break; 737 } 738 739 /* 740 * Empty and freeable LEBs can turn up while we waited for 741 * the wbuf lock, or while we have been running GC. In that 742 * case, we should just return one of those instead of 743 * continuing to GC dirty LEBs. Hence we request 744 * 'ubifs_find_dirty_leb()' to return an empty LEB if it can. 745 */ 746 ret = ubifs_find_dirty_leb(c, &lp, min_space, anyway ? 0 : 1); 747 if (ret) { 748 if (ret == -ENOSPC) 749 dbg_gc("no more dirty LEBs"); 750 break; 751 } 752 753 dbg_gc("found LEB %d: free %d, dirty %d, sum %d (min. space %d)", 754 lp.lnum, lp.free, lp.dirty, lp.free + lp.dirty, 755 min_space); 756 757 space_before = c->leb_size - wbuf->offs - wbuf->used; 758 if (wbuf->lnum == -1) 759 space_before = 0; 760 761 ret = ubifs_garbage_collect_leb(c, &lp); 762 if (ret < 0) { 763 if (ret == -EAGAIN) { 764 /* 765 * This is not error, so we have to return the 766 * LEB to lprops. But if 'ubifs_return_leb()' 767 * fails, its failure code is propagated to the 768 * caller instead of the original '-EAGAIN'. 769 */ 770 err = ubifs_return_leb(c, lp.lnum); 771 if (err) 772 ret = err; 773 break; 774 } 775 goto out; 776 } 777 778 if (ret == LEB_FREED) { 779 /* An LEB has been freed and is ready for use */ 780 dbg_gc("LEB %d freed, return", lp.lnum); 781 ret = lp.lnum; 782 break; 783 } 784 785 if (ret == LEB_FREED_IDX) { 786 /* 787 * This was an indexing LEB and it cannot be 788 * immediately used. And instead of requesting the 789 * commit straight away, we try to garbage collect some 790 * more. 791 */ 792 dbg_gc("indexing LEB %d freed, continue", lp.lnum); 793 continue; 794 } 795 796 ubifs_assert(c, ret == LEB_RETAINED); 797 space_after = c->leb_size - wbuf->offs - wbuf->used; 798 dbg_gc("LEB %d retained, freed %d bytes", lp.lnum, 799 space_after - space_before); 800 801 if (space_after > space_before) { 802 /* GC makes progress, keep working */ 803 min_space >>= 1; 804 if (min_space < c->dead_wm) 805 min_space = c->dead_wm; 806 continue; 807 } 808 809 dbg_gc("did not make progress"); 810 811 /* 812 * GC moved an LEB bud have not done any progress. This means 813 * that the previous GC head LEB contained too few free space 814 * and the LEB which was GC'ed contained only large nodes which 815 * did not fit that space. 816 * 817 * We can do 2 things: 818 * 1. pick another LEB in a hope it'll contain a small node 819 * which will fit the space we have at the end of current GC 820 * head LEB, but there is no guarantee, so we try this out 821 * unless we have already been working for too long; 822 * 2. request an LEB with more dirty space, which will force 823 * 'ubifs_find_dirty_leb()' to start scanning the lprops 824 * table, instead of just picking one from the heap 825 * (previously it already picked the dirtiest LEB). 826 */ 827 if (i < SOFT_LEBS_LIMIT) { 828 dbg_gc("try again"); 829 continue; 830 } 831 832 min_space <<= 1; 833 if (min_space > c->dark_wm) 834 min_space = c->dark_wm; 835 dbg_gc("set min. space to %d", min_space); 836 } 837 838 if (ret == -ENOSPC && !list_empty(&c->idx_gc)) { 839 dbg_gc("no space, some index LEBs GC'ed, -EAGAIN"); 840 ubifs_commit_required(c); 841 ret = -EAGAIN; 842 } 843 844 err = ubifs_wbuf_sync_nolock(wbuf); 845 if (!err) 846 err = ubifs_leb_unmap(c, c->gc_lnum); 847 if (err) { 848 ret = err; 849 goto out; 850 } 851 out_unlock: 852 mutex_unlock(&wbuf->io_mutex); 853 return ret; 854 855 out: 856 ubifs_assert(c, ret < 0); 857 ubifs_assert(c, ret != -ENOSPC && ret != -EAGAIN); 858 ubifs_wbuf_sync_nolock(wbuf); 859 ubifs_ro_mode(c, ret); 860 mutex_unlock(&wbuf->io_mutex); 861 ubifs_return_leb(c, lp.lnum); 862 return ret; 863 } 864 865 /** 866 * ubifs_gc_start_commit - garbage collection at start of commit. 867 * @c: UBIFS file-system description object 868 * 869 * If a LEB has only dirty and free space, then we may safely unmap it and make 870 * it free. Note, we cannot do this with indexing LEBs because dirty space may 871 * correspond index nodes that are required for recovery. In that case, the 872 * LEB cannot be unmapped until after the next commit. 873 * 874 * This function returns %0 upon success and a negative error code upon failure. 875 */ 876 int ubifs_gc_start_commit(struct ubifs_info *c) 877 { 878 struct ubifs_gced_idx_leb *idx_gc; 879 const struct ubifs_lprops *lp; 880 int err = 0, flags; 881 882 ubifs_get_lprops(c); 883 884 /* 885 * Unmap (non-index) freeable LEBs. Note that recovery requires that all 886 * wbufs are sync'd before this, which is done in 'do_commit()'. 887 */ 888 while (1) { 889 lp = ubifs_fast_find_freeable(c); 890 if (!lp) 891 break; 892 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 893 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 894 err = ubifs_leb_unmap(c, lp->lnum); 895 if (err) 896 goto out; 897 lp = ubifs_change_lp(c, lp, c->leb_size, 0, lp->flags, 0); 898 if (IS_ERR(lp)) { 899 err = PTR_ERR(lp); 900 goto out; 901 } 902 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 903 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 904 } 905 906 /* Mark GC'd index LEBs OK to unmap after this commit finishes */ 907 list_for_each_entry(idx_gc, &c->idx_gc, list) 908 idx_gc->unmap = 1; 909 910 /* Record index freeable LEBs for unmapping after commit */ 911 while (1) { 912 lp = ubifs_fast_find_frdi_idx(c); 913 if (IS_ERR(lp)) { 914 err = PTR_ERR(lp); 915 goto out; 916 } 917 if (!lp) 918 break; 919 idx_gc = kmalloc(sizeof(struct ubifs_gced_idx_leb), GFP_NOFS); 920 if (!idx_gc) { 921 err = -ENOMEM; 922 goto out; 923 } 924 ubifs_assert(c, !(lp->flags & LPROPS_TAKEN)); 925 ubifs_assert(c, lp->flags & LPROPS_INDEX); 926 /* Don't release the LEB until after the next commit */ 927 flags = (lp->flags | LPROPS_TAKEN) ^ LPROPS_INDEX; 928 lp = ubifs_change_lp(c, lp, c->leb_size, 0, flags, 1); 929 if (IS_ERR(lp)) { 930 err = PTR_ERR(lp); 931 kfree(idx_gc); 932 goto out; 933 } 934 ubifs_assert(c, lp->flags & LPROPS_TAKEN); 935 ubifs_assert(c, !(lp->flags & LPROPS_INDEX)); 936 idx_gc->lnum = lp->lnum; 937 idx_gc->unmap = 1; 938 list_add(&idx_gc->list, &c->idx_gc); 939 } 940 out: 941 ubifs_release_lprops(c); 942 return err; 943 } 944 945 /** 946 * ubifs_gc_end_commit - garbage collection at end of commit. 947 * @c: UBIFS file-system description object 948 * 949 * This function completes out-of-place garbage collection of index LEBs. 950 */ 951 int ubifs_gc_end_commit(struct ubifs_info *c) 952 { 953 struct ubifs_gced_idx_leb *idx_gc, *tmp; 954 struct ubifs_wbuf *wbuf; 955 int err = 0; 956 957 wbuf = &c->jheads[GCHD].wbuf; 958 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 959 list_for_each_entry_safe(idx_gc, tmp, &c->idx_gc, list) 960 if (idx_gc->unmap) { 961 dbg_gc("LEB %d", idx_gc->lnum); 962 err = ubifs_leb_unmap(c, idx_gc->lnum); 963 if (err) 964 goto out; 965 err = ubifs_change_one_lp(c, idx_gc->lnum, LPROPS_NC, 966 LPROPS_NC, 0, LPROPS_TAKEN, -1); 967 if (err) 968 goto out; 969 list_del(&idx_gc->list); 970 kfree(idx_gc); 971 } 972 out: 973 mutex_unlock(&wbuf->io_mutex); 974 return err; 975 } 976 977 /** 978 * ubifs_destroy_idx_gc - destroy idx_gc list. 979 * @c: UBIFS file-system description object 980 * 981 * This function destroys the @c->idx_gc list. It is called when unmounting 982 * so locks are not needed. Returns zero in case of success and a negative 983 * error code in case of failure. 984 */ 985 void ubifs_destroy_idx_gc(struct ubifs_info *c) 986 { 987 while (!list_empty(&c->idx_gc)) { 988 struct ubifs_gced_idx_leb *idx_gc; 989 990 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, 991 list); 992 c->idx_gc_cnt -= 1; 993 list_del(&idx_gc->list); 994 kfree(idx_gc); 995 } 996 } 997 998 /** 999 * ubifs_get_idx_gc_leb - get a LEB from GC'd index LEB list. 1000 * @c: UBIFS file-system description object 1001 * 1002 * Called during start commit so locks are not needed. 1003 */ 1004 int ubifs_get_idx_gc_leb(struct ubifs_info *c) 1005 { 1006 struct ubifs_gced_idx_leb *idx_gc; 1007 int lnum; 1008 1009 if (list_empty(&c->idx_gc)) 1010 return -ENOSPC; 1011 idx_gc = list_entry(c->idx_gc.next, struct ubifs_gced_idx_leb, list); 1012 lnum = idx_gc->lnum; 1013 /* c->idx_gc_cnt is updated by the caller when lprops are updated */ 1014 list_del(&idx_gc->list); 1015 kfree(idx_gc); 1016 return lnum; 1017 } 1018