xref: /linux/fs/ubifs/file.c (revision ff9f065318e17a1a97981d9e535fcfc6ce5d5614)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements VFS file and inode operations for regular files, device
13  * nodes and symlinks as well as address space operations.
14  *
15  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16  * the page is dirty and is used for optimization purposes - dirty pages are
17  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18  * the budget for this page. The @PG_checked flag is set if full budgeting is
19  * required for the page e.g., when it corresponds to a file hole or it is
20  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21  * it is OK to fail in this function, and the budget is released in
22  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23  * information about how the page was budgeted, to make it possible to release
24  * the budget properly.
25  *
26  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27  * implement. However, this is not true for 'ubifs_writepage()', which may be
28  * called with @i_mutex unlocked. For example, when flusher thread is doing
29  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33  *
34  * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36  * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37  * set as well. However, UBIFS disables readahead.
38  */
39 
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44 
45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 		      struct ubifs_data_node *dn)
47 {
48 	struct ubifs_info *c = inode->i_sb->s_fs_info;
49 	int err, len, out_len;
50 	union ubifs_key key;
51 	unsigned int dlen;
52 
53 	data_key_init(c, &key, inode->i_ino, block);
54 	err = ubifs_tnc_lookup(c, &key, dn);
55 	if (err) {
56 		if (err == -ENOENT)
57 			/* Not found, so it must be a hole */
58 			memset(addr, 0, UBIFS_BLOCK_SIZE);
59 		return err;
60 	}
61 
62 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 		     ubifs_inode(inode)->creat_sqnum);
64 	len = le32_to_cpu(dn->size);
65 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 		goto dump;
67 
68 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69 
70 	if (IS_ENCRYPTED(inode)) {
71 		err = ubifs_decrypt(inode, dn, &dlen, block);
72 		if (err)
73 			goto dump;
74 	}
75 
76 	out_len = UBIFS_BLOCK_SIZE;
77 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 			       le16_to_cpu(dn->compr_type));
79 	if (err || len != out_len)
80 		goto dump;
81 
82 	/*
83 	 * Data length can be less than a full block, even for blocks that are
84 	 * not the last in the file (e.g., as a result of making a hole and
85 	 * appending data). Ensure that the remainder is zeroed out.
86 	 */
87 	if (len < UBIFS_BLOCK_SIZE)
88 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89 
90 	return 0;
91 
92 dump:
93 	ubifs_err(c, "bad data node (block %u, inode %lu)",
94 		  block, inode->i_ino);
95 	ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
96 	return -EINVAL;
97 }
98 
99 static int do_readpage(struct folio *folio)
100 {
101 	void *addr;
102 	int err = 0, i;
103 	unsigned int block, beyond;
104 	struct ubifs_data_node *dn = NULL;
105 	struct inode *inode = folio->mapping->host;
106 	struct ubifs_info *c = inode->i_sb->s_fs_info;
107 	loff_t i_size = i_size_read(inode);
108 
109 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 		inode->i_ino, folio->index, i_size, folio->flags);
111 	ubifs_assert(c, !folio_test_checked(folio));
112 	ubifs_assert(c, !folio->private);
113 
114 	addr = kmap_local_folio(folio, 0);
115 
116 	block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 	if (block >= beyond) {
119 		/* Reading beyond inode */
120 		folio_set_checked(folio);
121 		addr = folio_zero_tail(folio, 0, addr);
122 		goto out;
123 	}
124 
125 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 	if (!dn) {
127 		err = -ENOMEM;
128 		goto out;
129 	}
130 
131 	i = 0;
132 	while (1) {
133 		int ret;
134 
135 		if (block >= beyond) {
136 			/* Reading beyond inode */
137 			err = -ENOENT;
138 			memset(addr, 0, UBIFS_BLOCK_SIZE);
139 		} else {
140 			ret = read_block(inode, addr, block, dn);
141 			if (ret) {
142 				err = ret;
143 				if (err != -ENOENT)
144 					break;
145 			} else if (block + 1 == beyond) {
146 				int dlen = le32_to_cpu(dn->size);
147 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148 
149 				if (ilen && ilen < dlen)
150 					memset(addr + ilen, 0, dlen - ilen);
151 			}
152 		}
153 		if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio)))
154 			break;
155 		block += 1;
156 		addr += UBIFS_BLOCK_SIZE;
157 		if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
158 			kunmap_local(addr - UBIFS_BLOCK_SIZE);
159 			addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
160 		}
161 	}
162 
163 	if (err) {
164 		struct ubifs_info *c = inode->i_sb->s_fs_info;
165 		if (err == -ENOENT) {
166 			/* Not found, so it must be a hole */
167 			folio_set_checked(folio);
168 			dbg_gen("hole");
169 			err = 0;
170 		} else {
171 			ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
172 				  folio->index, inode->i_ino, err);
173 		}
174 	}
175 
176 out:
177 	kfree(dn);
178 	if (!err)
179 		folio_mark_uptodate(folio);
180 	flush_dcache_folio(folio);
181 	kunmap_local(addr);
182 	return err;
183 }
184 
185 /**
186  * release_new_page_budget - release budget of a new page.
187  * @c: UBIFS file-system description object
188  *
189  * This is a helper function which releases budget corresponding to the budget
190  * of one new page of data.
191  */
192 static void release_new_page_budget(struct ubifs_info *c)
193 {
194 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
195 
196 	ubifs_release_budget(c, &req);
197 }
198 
199 /**
200  * release_existing_page_budget - release budget of an existing page.
201  * @c: UBIFS file-system description object
202  *
203  * This is a helper function which releases budget corresponding to the budget
204  * of changing one page of data which already exists on the flash media.
205  */
206 static void release_existing_page_budget(struct ubifs_info *c)
207 {
208 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
209 
210 	ubifs_release_budget(c, &req);
211 }
212 
213 static int write_begin_slow(struct address_space *mapping,
214 			    loff_t pos, unsigned len, struct page **pagep)
215 {
216 	struct inode *inode = mapping->host;
217 	struct ubifs_info *c = inode->i_sb->s_fs_info;
218 	pgoff_t index = pos >> PAGE_SHIFT;
219 	struct ubifs_budget_req req = { .new_page = 1 };
220 	int err, appending = !!(pos + len > inode->i_size);
221 	struct folio *folio;
222 
223 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
224 		inode->i_ino, pos, len, inode->i_size);
225 
226 	/*
227 	 * At the slow path we have to budget before locking the folio, because
228 	 * budgeting may force write-back, which would wait on locked folios and
229 	 * deadlock if we had the folio locked. At this point we do not know
230 	 * anything about the folio, so assume that this is a new folio which is
231 	 * written to a hole. This corresponds to largest budget. Later the
232 	 * budget will be amended if this is not true.
233 	 */
234 	if (appending)
235 		/* We are appending data, budget for inode change */
236 		req.dirtied_ino = 1;
237 
238 	err = ubifs_budget_space(c, &req);
239 	if (unlikely(err))
240 		return err;
241 
242 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
243 			mapping_gfp_mask(mapping));
244 	if (IS_ERR(folio)) {
245 		ubifs_release_budget(c, &req);
246 		return PTR_ERR(folio);
247 	}
248 
249 	if (!folio_test_uptodate(folio)) {
250 		if (pos == folio_pos(folio) && len >= folio_size(folio))
251 			folio_set_checked(folio);
252 		else {
253 			err = do_readpage(folio);
254 			if (err) {
255 				folio_unlock(folio);
256 				folio_put(folio);
257 				ubifs_release_budget(c, &req);
258 				return err;
259 			}
260 		}
261 	}
262 
263 	if (folio->private)
264 		/*
265 		 * The folio is dirty, which means it was budgeted twice:
266 		 *   o first time the budget was allocated by the task which
267 		 *     made the folio dirty and set the private field;
268 		 *   o and then we budgeted for it for the second time at the
269 		 *     very beginning of this function.
270 		 *
271 		 * So what we have to do is to release the folio budget we
272 		 * allocated.
273 		 */
274 		release_new_page_budget(c);
275 	else if (!folio_test_checked(folio))
276 		/*
277 		 * We are changing a folio which already exists on the media.
278 		 * This means that changing the folio does not make the amount
279 		 * of indexing information larger, and this part of the budget
280 		 * which we have already acquired may be released.
281 		 */
282 		ubifs_convert_page_budget(c);
283 
284 	if (appending) {
285 		struct ubifs_inode *ui = ubifs_inode(inode);
286 
287 		/*
288 		 * 'ubifs_write_end()' is optimized from the fast-path part of
289 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
290 		 * if data is appended.
291 		 */
292 		mutex_lock(&ui->ui_mutex);
293 		if (ui->dirty)
294 			/*
295 			 * The inode is dirty already, so we may free the
296 			 * budget we allocated.
297 			 */
298 			ubifs_release_dirty_inode_budget(c, ui);
299 	}
300 
301 	*pagep = &folio->page;
302 	return 0;
303 }
304 
305 /**
306  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
307  * @c: UBIFS file-system description object
308  * @folio: folio to allocate budget for
309  * @ui: UBIFS inode object the page belongs to
310  * @appending: non-zero if the page is appended
311  *
312  * This is a helper function for 'ubifs_write_begin()' which allocates budget
313  * for the operation. The budget is allocated differently depending on whether
314  * this is appending, whether the page is dirty or not, and so on. This
315  * function leaves the @ui->ui_mutex locked in case of appending.
316  *
317  * Returns: %0 in case of success and %-ENOSPC in case of failure.
318  */
319 static int allocate_budget(struct ubifs_info *c, struct folio *folio,
320 			   struct ubifs_inode *ui, int appending)
321 {
322 	struct ubifs_budget_req req = { .fast = 1 };
323 
324 	if (folio->private) {
325 		if (!appending)
326 			/*
327 			 * The folio is dirty and we are not appending, which
328 			 * means no budget is needed at all.
329 			 */
330 			return 0;
331 
332 		mutex_lock(&ui->ui_mutex);
333 		if (ui->dirty)
334 			/*
335 			 * The page is dirty and we are appending, so the inode
336 			 * has to be marked as dirty. However, it is already
337 			 * dirty, so we do not need any budget. We may return,
338 			 * but @ui->ui_mutex hast to be left locked because we
339 			 * should prevent write-back from flushing the inode
340 			 * and freeing the budget. The lock will be released in
341 			 * 'ubifs_write_end()'.
342 			 */
343 			return 0;
344 
345 		/*
346 		 * The page is dirty, we are appending, the inode is clean, so
347 		 * we need to budget the inode change.
348 		 */
349 		req.dirtied_ino = 1;
350 	} else {
351 		if (folio_test_checked(folio))
352 			/*
353 			 * The page corresponds to a hole and does not
354 			 * exist on the media. So changing it makes
355 			 * the amount of indexing information
356 			 * larger, and we have to budget for a new
357 			 * page.
358 			 */
359 			req.new_page = 1;
360 		else
361 			/*
362 			 * Not a hole, the change will not add any new
363 			 * indexing information, budget for page
364 			 * change.
365 			 */
366 			req.dirtied_page = 1;
367 
368 		if (appending) {
369 			mutex_lock(&ui->ui_mutex);
370 			if (!ui->dirty)
371 				/*
372 				 * The inode is clean but we will have to mark
373 				 * it as dirty because we are appending. This
374 				 * needs a budget.
375 				 */
376 				req.dirtied_ino = 1;
377 		}
378 	}
379 
380 	return ubifs_budget_space(c, &req);
381 }
382 
383 /*
384  * This function is called when a page of data is going to be written. Since
385  * the page of data will not necessarily go to the flash straight away, UBIFS
386  * has to reserve space on the media for it, which is done by means of
387  * budgeting.
388  *
389  * This is the hot-path of the file-system and we are trying to optimize it as
390  * much as possible. For this reasons it is split on 2 parts - slow and fast.
391  *
392  * There many budgeting cases:
393  *     o a new page is appended - we have to budget for a new page and for
394  *       changing the inode; however, if the inode is already dirty, there is
395  *       no need to budget for it;
396  *     o an existing clean page is changed - we have budget for it; if the page
397  *       does not exist on the media (a hole), we have to budget for a new
398  *       page; otherwise, we may budget for changing an existing page; the
399  *       difference between these cases is that changing an existing page does
400  *       not introduce anything new to the FS indexing information, so it does
401  *       not grow, and smaller budget is acquired in this case;
402  *     o an existing dirty page is changed - no need to budget at all, because
403  *       the page budget has been acquired by earlier, when the page has been
404  *       marked dirty.
405  *
406  * UBIFS budgeting sub-system may force write-back if it thinks there is no
407  * space to reserve. This imposes some locking restrictions and makes it
408  * impossible to take into account the above cases, and makes it impossible to
409  * optimize budgeting.
410  *
411  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
412  * there is a plenty of flash space and the budget will be acquired quickly,
413  * without forcing write-back. The slow path does not make this assumption.
414  */
415 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
416 			     loff_t pos, unsigned len,
417 			     struct page **pagep, void **fsdata)
418 {
419 	struct inode *inode = mapping->host;
420 	struct ubifs_info *c = inode->i_sb->s_fs_info;
421 	struct ubifs_inode *ui = ubifs_inode(inode);
422 	pgoff_t index = pos >> PAGE_SHIFT;
423 	int err, appending = !!(pos + len > inode->i_size);
424 	int skipped_read = 0;
425 	struct folio *folio;
426 
427 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
428 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
429 
430 	if (unlikely(c->ro_error))
431 		return -EROFS;
432 
433 	/* Try out the fast-path part first */
434 	folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN,
435 			mapping_gfp_mask(mapping));
436 	if (IS_ERR(folio))
437 		return PTR_ERR(folio);
438 
439 	if (!folio_test_uptodate(folio)) {
440 		/* The page is not loaded from the flash */
441 		if (pos == folio_pos(folio) && len >= folio_size(folio)) {
442 			/*
443 			 * We change whole page so no need to load it. But we
444 			 * do not know whether this page exists on the media or
445 			 * not, so we assume the latter because it requires
446 			 * larger budget. The assumption is that it is better
447 			 * to budget a bit more than to read the page from the
448 			 * media. Thus, we are setting the @PG_checked flag
449 			 * here.
450 			 */
451 			folio_set_checked(folio);
452 			skipped_read = 1;
453 		} else {
454 			err = do_readpage(folio);
455 			if (err) {
456 				folio_unlock(folio);
457 				folio_put(folio);
458 				return err;
459 			}
460 		}
461 	}
462 
463 	err = allocate_budget(c, folio, ui, appending);
464 	if (unlikely(err)) {
465 		ubifs_assert(c, err == -ENOSPC);
466 		/*
467 		 * If we skipped reading the page because we were going to
468 		 * write all of it, then it is not up to date.
469 		 */
470 		if (skipped_read)
471 			folio_clear_checked(folio);
472 		/*
473 		 * Budgeting failed which means it would have to force
474 		 * write-back but didn't, because we set the @fast flag in the
475 		 * request. Write-back cannot be done now, while we have the
476 		 * page locked, because it would deadlock. Unlock and free
477 		 * everything and fall-back to slow-path.
478 		 */
479 		if (appending) {
480 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
481 			mutex_unlock(&ui->ui_mutex);
482 		}
483 		folio_unlock(folio);
484 		folio_put(folio);
485 
486 		return write_begin_slow(mapping, pos, len, pagep);
487 	}
488 
489 	/*
490 	 * Whee, we acquired budgeting quickly - without involving
491 	 * garbage-collection, committing or forcing write-back. We return
492 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
493 	 * otherwise. This is an optimization (slightly hacky though).
494 	 */
495 	*pagep = &folio->page;
496 	return 0;
497 }
498 
499 /**
500  * cancel_budget - cancel budget.
501  * @c: UBIFS file-system description object
502  * @folio: folio to cancel budget for
503  * @ui: UBIFS inode object the page belongs to
504  * @appending: non-zero if the page is appended
505  *
506  * This is a helper function for a page write operation. It unlocks the
507  * @ui->ui_mutex in case of appending.
508  */
509 static void cancel_budget(struct ubifs_info *c, struct folio *folio,
510 			  struct ubifs_inode *ui, int appending)
511 {
512 	if (appending) {
513 		if (!ui->dirty)
514 			ubifs_release_dirty_inode_budget(c, ui);
515 		mutex_unlock(&ui->ui_mutex);
516 	}
517 	if (!folio->private) {
518 		if (folio_test_checked(folio))
519 			release_new_page_budget(c);
520 		else
521 			release_existing_page_budget(c);
522 	}
523 }
524 
525 static int ubifs_write_end(struct file *file, struct address_space *mapping,
526 			   loff_t pos, unsigned len, unsigned copied,
527 			   struct page *page, void *fsdata)
528 {
529 	struct folio *folio = page_folio(page);
530 	struct inode *inode = mapping->host;
531 	struct ubifs_inode *ui = ubifs_inode(inode);
532 	struct ubifs_info *c = inode->i_sb->s_fs_info;
533 	loff_t end_pos = pos + len;
534 	int appending = !!(end_pos > inode->i_size);
535 
536 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
537 		inode->i_ino, pos, folio->index, len, copied, inode->i_size);
538 
539 	if (unlikely(copied < len && !folio_test_uptodate(folio))) {
540 		/*
541 		 * VFS copied less data to the folio than it intended and
542 		 * declared in its '->write_begin()' call via the @len
543 		 * argument. If the folio was not up-to-date,
544 		 * the 'ubifs_write_begin()' function did
545 		 * not load it from the media (for optimization reasons). This
546 		 * means that part of the folio contains garbage. So read the
547 		 * folio now.
548 		 */
549 		dbg_gen("copied %d instead of %d, read page and repeat",
550 			copied, len);
551 		cancel_budget(c, folio, ui, appending);
552 		folio_clear_checked(folio);
553 
554 		/*
555 		 * Return 0 to force VFS to repeat the whole operation, or the
556 		 * error code if 'do_readpage()' fails.
557 		 */
558 		copied = do_readpage(folio);
559 		goto out;
560 	}
561 
562 	if (len == folio_size(folio))
563 		folio_mark_uptodate(folio);
564 
565 	if (!folio->private) {
566 		folio_attach_private(folio, (void *)1);
567 		atomic_long_inc(&c->dirty_pg_cnt);
568 		filemap_dirty_folio(mapping, folio);
569 	}
570 
571 	if (appending) {
572 		i_size_write(inode, end_pos);
573 		ui->ui_size = end_pos;
574 		/*
575 		 * We do not set @I_DIRTY_PAGES (which means that
576 		 * the inode has dirty pages), this was done in
577 		 * filemap_dirty_folio().
578 		 */
579 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
580 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
581 		mutex_unlock(&ui->ui_mutex);
582 	}
583 
584 out:
585 	folio_unlock(folio);
586 	folio_put(folio);
587 	return copied;
588 }
589 
590 /**
591  * populate_page - copy data nodes into a page for bulk-read.
592  * @c: UBIFS file-system description object
593  * @folio: folio
594  * @bu: bulk-read information
595  * @n: next zbranch slot
596  *
597  * Returns: %0 on success and a negative error code on failure.
598  */
599 static int populate_page(struct ubifs_info *c, struct folio *folio,
600 			 struct bu_info *bu, int *n)
601 {
602 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
603 	struct inode *inode = folio->mapping->host;
604 	loff_t i_size = i_size_read(inode);
605 	unsigned int page_block;
606 	void *addr, *zaddr;
607 	pgoff_t end_index;
608 
609 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
610 		inode->i_ino, folio->index, i_size, folio->flags);
611 
612 	addr = zaddr = kmap_local_folio(folio, 0);
613 
614 	end_index = (i_size - 1) >> PAGE_SHIFT;
615 	if (!i_size || folio->index > end_index) {
616 		hole = 1;
617 		addr = folio_zero_tail(folio, 0, addr);
618 		goto out_hole;
619 	}
620 
621 	page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
622 	while (1) {
623 		int err, len, out_len, dlen;
624 
625 		if (nn >= bu->cnt) {
626 			hole = 1;
627 			memset(addr, 0, UBIFS_BLOCK_SIZE);
628 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
629 			struct ubifs_data_node *dn;
630 
631 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
632 
633 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
634 				     ubifs_inode(inode)->creat_sqnum);
635 
636 			len = le32_to_cpu(dn->size);
637 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
638 				goto out_err;
639 
640 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
641 			out_len = UBIFS_BLOCK_SIZE;
642 
643 			if (IS_ENCRYPTED(inode)) {
644 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
645 				if (err)
646 					goto out_err;
647 			}
648 
649 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
650 					       le16_to_cpu(dn->compr_type));
651 			if (err || len != out_len)
652 				goto out_err;
653 
654 			if (len < UBIFS_BLOCK_SIZE)
655 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
656 
657 			nn += 1;
658 			read = (i << UBIFS_BLOCK_SHIFT) + len;
659 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
660 			nn += 1;
661 			continue;
662 		} else {
663 			hole = 1;
664 			memset(addr, 0, UBIFS_BLOCK_SIZE);
665 		}
666 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
667 			break;
668 		addr += UBIFS_BLOCK_SIZE;
669 		page_block += 1;
670 		if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) {
671 			kunmap_local(addr - UBIFS_BLOCK_SIZE);
672 			addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE);
673 		}
674 	}
675 
676 	if (end_index == folio->index) {
677 		int len = i_size & (PAGE_SIZE - 1);
678 
679 		if (len && len < read)
680 			memset(zaddr + len, 0, read - len);
681 	}
682 
683 out_hole:
684 	if (hole) {
685 		folio_set_checked(folio);
686 		dbg_gen("hole");
687 	}
688 
689 	folio_mark_uptodate(folio);
690 	flush_dcache_folio(folio);
691 	kunmap_local(addr);
692 	*n = nn;
693 	return 0;
694 
695 out_err:
696 	flush_dcache_folio(folio);
697 	kunmap_local(addr);
698 	ubifs_err(c, "bad data node (block %u, inode %lu)",
699 		  page_block, inode->i_ino);
700 	return -EINVAL;
701 }
702 
703 /**
704  * ubifs_do_bulk_read - do bulk-read.
705  * @c: UBIFS file-system description object
706  * @bu: bulk-read information
707  * @folio1: first folio to read
708  *
709  * Returns: %1 if the bulk-read is done, otherwise %0 is returned.
710  */
711 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
712 			      struct folio *folio1)
713 {
714 	pgoff_t offset = folio1->index, end_index;
715 	struct address_space *mapping = folio1->mapping;
716 	struct inode *inode = mapping->host;
717 	struct ubifs_inode *ui = ubifs_inode(inode);
718 	int err, page_idx, page_cnt, ret = 0, n = 0;
719 	int allocate = bu->buf ? 0 : 1;
720 	loff_t isize;
721 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
722 
723 	err = ubifs_tnc_get_bu_keys(c, bu);
724 	if (err)
725 		goto out_warn;
726 
727 	if (bu->eof) {
728 		/* Turn off bulk-read at the end of the file */
729 		ui->read_in_a_row = 1;
730 		ui->bulk_read = 0;
731 	}
732 
733 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
734 	if (!page_cnt) {
735 		/*
736 		 * This happens when there are multiple blocks per page and the
737 		 * blocks for the first page we are looking for, are not
738 		 * together. If all the pages were like this, bulk-read would
739 		 * reduce performance, so we turn it off for a while.
740 		 */
741 		goto out_bu_off;
742 	}
743 
744 	if (bu->cnt) {
745 		if (allocate) {
746 			/*
747 			 * Allocate bulk-read buffer depending on how many data
748 			 * nodes we are going to read.
749 			 */
750 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
751 				      bu->zbranch[bu->cnt - 1].len -
752 				      bu->zbranch[0].offs;
753 			ubifs_assert(c, bu->buf_len > 0);
754 			ubifs_assert(c, bu->buf_len <= c->leb_size);
755 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
756 			if (!bu->buf)
757 				goto out_bu_off;
758 		}
759 
760 		err = ubifs_tnc_bulk_read(c, bu);
761 		if (err)
762 			goto out_warn;
763 	}
764 
765 	err = populate_page(c, folio1, bu, &n);
766 	if (err)
767 		goto out_warn;
768 
769 	folio_unlock(folio1);
770 	ret = 1;
771 
772 	isize = i_size_read(inode);
773 	if (isize == 0)
774 		goto out_free;
775 	end_index = ((isize - 1) >> PAGE_SHIFT);
776 
777 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
778 		pgoff_t page_offset = offset + page_idx;
779 		struct folio *folio;
780 
781 		if (page_offset > end_index)
782 			break;
783 		folio = __filemap_get_folio(mapping, page_offset,
784 				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
785 				 ra_gfp_mask);
786 		if (IS_ERR(folio))
787 			break;
788 		if (!folio_test_uptodate(folio))
789 			err = populate_page(c, folio, bu, &n);
790 		folio_unlock(folio);
791 		folio_put(folio);
792 		if (err)
793 			break;
794 	}
795 
796 	ui->last_page_read = offset + page_idx - 1;
797 
798 out_free:
799 	if (allocate)
800 		kfree(bu->buf);
801 	return ret;
802 
803 out_warn:
804 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
805 	goto out_free;
806 
807 out_bu_off:
808 	ui->read_in_a_row = ui->bulk_read = 0;
809 	goto out_free;
810 }
811 
812 /**
813  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
814  * @folio: folio from which to start bulk-read.
815  *
816  * Some flash media are capable of reading sequentially at faster rates. UBIFS
817  * bulk-read facility is designed to take advantage of that, by reading in one
818  * go consecutive data nodes that are also located consecutively in the same
819  * LEB.
820  *
821  * Returns: %1 if a bulk-read is done and %0 otherwise.
822  */
823 static int ubifs_bulk_read(struct folio *folio)
824 {
825 	struct inode *inode = folio->mapping->host;
826 	struct ubifs_info *c = inode->i_sb->s_fs_info;
827 	struct ubifs_inode *ui = ubifs_inode(inode);
828 	pgoff_t index = folio->index, last_page_read = ui->last_page_read;
829 	struct bu_info *bu;
830 	int err = 0, allocated = 0;
831 
832 	ui->last_page_read = index;
833 	if (!c->bulk_read)
834 		return 0;
835 
836 	/*
837 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
838 	 * so don't bother if we cannot lock the mutex.
839 	 */
840 	if (!mutex_trylock(&ui->ui_mutex))
841 		return 0;
842 
843 	if (index != last_page_read + 1) {
844 		/* Turn off bulk-read if we stop reading sequentially */
845 		ui->read_in_a_row = 1;
846 		if (ui->bulk_read)
847 			ui->bulk_read = 0;
848 		goto out_unlock;
849 	}
850 
851 	if (!ui->bulk_read) {
852 		ui->read_in_a_row += 1;
853 		if (ui->read_in_a_row < 3)
854 			goto out_unlock;
855 		/* Three reads in a row, so switch on bulk-read */
856 		ui->bulk_read = 1;
857 	}
858 
859 	/*
860 	 * If possible, try to use pre-allocated bulk-read information, which
861 	 * is protected by @c->bu_mutex.
862 	 */
863 	if (mutex_trylock(&c->bu_mutex))
864 		bu = &c->bu;
865 	else {
866 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
867 		if (!bu)
868 			goto out_unlock;
869 
870 		bu->buf = NULL;
871 		allocated = 1;
872 	}
873 
874 	bu->buf_len = c->max_bu_buf_len;
875 	data_key_init(c, &bu->key, inode->i_ino,
876 		      folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
877 	err = ubifs_do_bulk_read(c, bu, folio);
878 
879 	if (!allocated)
880 		mutex_unlock(&c->bu_mutex);
881 	else
882 		kfree(bu);
883 
884 out_unlock:
885 	mutex_unlock(&ui->ui_mutex);
886 	return err;
887 }
888 
889 static int ubifs_read_folio(struct file *file, struct folio *folio)
890 {
891 	if (ubifs_bulk_read(folio))
892 		return 0;
893 	do_readpage(folio);
894 	folio_unlock(folio);
895 	return 0;
896 }
897 
898 static int do_writepage(struct folio *folio, size_t len)
899 {
900 	int err = 0, blen;
901 	unsigned int block;
902 	void *addr;
903 	size_t offset = 0;
904 	union ubifs_key key;
905 	struct inode *inode = folio->mapping->host;
906 	struct ubifs_info *c = inode->i_sb->s_fs_info;
907 
908 #ifdef UBIFS_DEBUG
909 	struct ubifs_inode *ui = ubifs_inode(inode);
910 	spin_lock(&ui->ui_lock);
911 	ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT);
912 	spin_unlock(&ui->ui_lock);
913 #endif
914 
915 	folio_start_writeback(folio);
916 
917 	addr = kmap_local_folio(folio, offset);
918 	block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
919 	for (;;) {
920 		blen = min_t(size_t, len, UBIFS_BLOCK_SIZE);
921 		data_key_init(c, &key, inode->i_ino, block);
922 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
923 		if (err)
924 			break;
925 		len -= blen;
926 		if (!len)
927 			break;
928 		block += 1;
929 		addr += blen;
930 		if (folio_test_highmem(folio) && !offset_in_page(addr)) {
931 			kunmap_local(addr - blen);
932 			offset += PAGE_SIZE;
933 			addr = kmap_local_folio(folio, offset);
934 		}
935 	}
936 	kunmap_local(addr);
937 	if (err) {
938 		mapping_set_error(folio->mapping, err);
939 		ubifs_err(c, "cannot write folio %lu of inode %lu, error %d",
940 			  folio->index, inode->i_ino, err);
941 		ubifs_ro_mode(c, err);
942 	}
943 
944 	ubifs_assert(c, folio->private != NULL);
945 	if (folio_test_checked(folio))
946 		release_new_page_budget(c);
947 	else
948 		release_existing_page_budget(c);
949 
950 	atomic_long_dec(&c->dirty_pg_cnt);
951 	folio_detach_private(folio);
952 	folio_clear_checked(folio);
953 
954 	folio_unlock(folio);
955 	folio_end_writeback(folio);
956 	return err;
957 }
958 
959 /*
960  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
961  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
962  * situation when a we have an inode with size 0, then a megabyte of data is
963  * appended to the inode, then write-back starts and flushes some amount of the
964  * dirty pages, the journal becomes full, commit happens and finishes, and then
965  * an unclean reboot happens. When the file system is mounted next time, the
966  * inode size would still be 0, but there would be many pages which are beyond
967  * the inode size, they would be indexed and consume flash space. Because the
968  * journal has been committed, the replay would not be able to detect this
969  * situation and correct the inode size. This means UBIFS would have to scan
970  * whole index and correct all inode sizes, which is long an unacceptable.
971  *
972  * To prevent situations like this, UBIFS writes pages back only if they are
973  * within the last synchronized inode size, i.e. the size which has been
974  * written to the flash media last time. Otherwise, UBIFS forces inode
975  * write-back, thus making sure the on-flash inode contains current inode size,
976  * and then keeps writing pages back.
977  *
978  * Some locking issues explanation. 'ubifs_writepage()' first is called with
979  * the page locked, and it locks @ui_mutex. However, write-back does take inode
980  * @i_mutex, which means other VFS operations may be run on this inode at the
981  * same time. And the problematic one is truncation to smaller size, from where
982  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
983  * then drops the truncated pages. And while dropping the pages, it takes the
984  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
985  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
986  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
987  *
988  * XXX(truncate): with the new truncate sequence this is not true anymore,
989  * and the calls to truncate_setsize can be move around freely.  They should
990  * be moved to the very end of the truncate sequence.
991  *
992  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
993  * inode size. How do we do this if @inode->i_size may became smaller while we
994  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
995  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
996  * internally and updates it under @ui_mutex.
997  *
998  * Q: why we do not worry that if we race with truncation, we may end up with a
999  * situation when the inode is truncated while we are in the middle of
1000  * 'do_writepage()', so we do write beyond inode size?
1001  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1002  * on the page lock and it would not write the truncated inode node to the
1003  * journal before we have finished.
1004  */
1005 static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc,
1006 		void *data)
1007 {
1008 	struct inode *inode = folio->mapping->host;
1009 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1010 	struct ubifs_inode *ui = ubifs_inode(inode);
1011 	loff_t i_size =  i_size_read(inode), synced_i_size;
1012 	int err, len = folio_size(folio);
1013 
1014 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1015 		inode->i_ino, folio->index, folio->flags);
1016 	ubifs_assert(c, folio->private != NULL);
1017 
1018 	/* Is the folio fully outside @i_size? (truncate in progress) */
1019 	if (folio_pos(folio) >= i_size) {
1020 		err = 0;
1021 		goto out_unlock;
1022 	}
1023 
1024 	spin_lock(&ui->ui_lock);
1025 	synced_i_size = ui->synced_i_size;
1026 	spin_unlock(&ui->ui_lock);
1027 
1028 	/* Is the folio fully inside i_size? */
1029 	if (folio_pos(folio) + len <= i_size) {
1030 		if (folio_pos(folio) + len > synced_i_size) {
1031 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1032 			if (err)
1033 				goto out_redirty;
1034 			/*
1035 			 * The inode has been written, but the write-buffer has
1036 			 * not been synchronized, so in case of an unclean
1037 			 * reboot we may end up with some pages beyond inode
1038 			 * size, but they would be in the journal (because
1039 			 * commit flushes write buffers) and recovery would deal
1040 			 * with this.
1041 			 */
1042 		}
1043 		return do_writepage(folio, len);
1044 	}
1045 
1046 	/*
1047 	 * The folio straddles @i_size. It must be zeroed out on each and every
1048 	 * writepage invocation because it may be mmapped. "A file is mapped
1049 	 * in multiples of the page size. For a file that is not a multiple of
1050 	 * the page size, the remaining memory is zeroed when mapped, and
1051 	 * writes to that region are not written out to the file."
1052 	 */
1053 	len = i_size - folio_pos(folio);
1054 	folio_zero_segment(folio, len, folio_size(folio));
1055 
1056 	if (i_size > synced_i_size) {
1057 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1058 		if (err)
1059 			goto out_redirty;
1060 	}
1061 
1062 	return do_writepage(folio, len);
1063 out_redirty:
1064 	/*
1065 	 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because
1066 	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1067 	 * there is no need to do space budget for dirty inode.
1068 	 */
1069 	folio_redirty_for_writepage(wbc, folio);
1070 out_unlock:
1071 	folio_unlock(folio);
1072 	return err;
1073 }
1074 
1075 static int ubifs_writepages(struct address_space *mapping,
1076 		struct writeback_control *wbc)
1077 {
1078 	return write_cache_pages(mapping, wbc, ubifs_writepage, NULL);
1079 }
1080 
1081 /**
1082  * do_attr_changes - change inode attributes.
1083  * @inode: inode to change attributes for
1084  * @attr: describes attributes to change
1085  */
1086 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1087 {
1088 	if (attr->ia_valid & ATTR_UID)
1089 		inode->i_uid = attr->ia_uid;
1090 	if (attr->ia_valid & ATTR_GID)
1091 		inode->i_gid = attr->ia_gid;
1092 	if (attr->ia_valid & ATTR_ATIME)
1093 		inode_set_atime_to_ts(inode, attr->ia_atime);
1094 	if (attr->ia_valid & ATTR_MTIME)
1095 		inode_set_mtime_to_ts(inode, attr->ia_mtime);
1096 	if (attr->ia_valid & ATTR_CTIME)
1097 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1098 	if (attr->ia_valid & ATTR_MODE) {
1099 		umode_t mode = attr->ia_mode;
1100 
1101 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1102 			mode &= ~S_ISGID;
1103 		inode->i_mode = mode;
1104 	}
1105 }
1106 
1107 /**
1108  * do_truncation - truncate an inode.
1109  * @c: UBIFS file-system description object
1110  * @inode: inode to truncate
1111  * @attr: inode attribute changes description
1112  *
1113  * This function implements VFS '->setattr()' call when the inode is truncated
1114  * to a smaller size.
1115  *
1116  * Returns: %0 in case of success and a negative error code
1117  * in case of failure.
1118  */
1119 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1120 			 const struct iattr *attr)
1121 {
1122 	int err;
1123 	struct ubifs_budget_req req;
1124 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1125 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1126 	struct ubifs_inode *ui = ubifs_inode(inode);
1127 
1128 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1129 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1130 
1131 	/*
1132 	 * If this is truncation to a smaller size, and we do not truncate on a
1133 	 * block boundary, budget for changing one data block, because the last
1134 	 * block will be re-written.
1135 	 */
1136 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1137 		req.dirtied_page = 1;
1138 
1139 	req.dirtied_ino = 1;
1140 	/* A funny way to budget for truncation node */
1141 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1142 	err = ubifs_budget_space(c, &req);
1143 	if (err) {
1144 		/*
1145 		 * Treat truncations to zero as deletion and always allow them,
1146 		 * just like we do for '->unlink()'.
1147 		 */
1148 		if (new_size || err != -ENOSPC)
1149 			return err;
1150 		budgeted = 0;
1151 	}
1152 
1153 	truncate_setsize(inode, new_size);
1154 
1155 	if (offset) {
1156 		pgoff_t index = new_size >> PAGE_SHIFT;
1157 		struct folio *folio;
1158 
1159 		folio = filemap_lock_folio(inode->i_mapping, index);
1160 		if (!IS_ERR(folio)) {
1161 			if (folio_test_dirty(folio)) {
1162 				/*
1163 				 * 'ubifs_jnl_truncate()' will try to truncate
1164 				 * the last data node, but it contains
1165 				 * out-of-date data because the page is dirty.
1166 				 * Write the page now, so that
1167 				 * 'ubifs_jnl_truncate()' will see an already
1168 				 * truncated (and up to date) data node.
1169 				 */
1170 				ubifs_assert(c, folio->private != NULL);
1171 
1172 				folio_clear_dirty_for_io(folio);
1173 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1174 					offset = offset_in_folio(folio,
1175 							new_size);
1176 				err = do_writepage(folio, offset);
1177 				folio_put(folio);
1178 				if (err)
1179 					goto out_budg;
1180 				/*
1181 				 * We could now tell 'ubifs_jnl_truncate()' not
1182 				 * to read the last block.
1183 				 */
1184 			} else {
1185 				/*
1186 				 * We could 'kmap()' the page and pass the data
1187 				 * to 'ubifs_jnl_truncate()' to save it from
1188 				 * having to read it.
1189 				 */
1190 				folio_unlock(folio);
1191 				folio_put(folio);
1192 			}
1193 		}
1194 	}
1195 
1196 	mutex_lock(&ui->ui_mutex);
1197 	ui->ui_size = inode->i_size;
1198 	/* Truncation changes inode [mc]time */
1199 	inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1200 	/* Other attributes may be changed at the same time as well */
1201 	do_attr_changes(inode, attr);
1202 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1203 	mutex_unlock(&ui->ui_mutex);
1204 
1205 out_budg:
1206 	if (budgeted)
1207 		ubifs_release_budget(c, &req);
1208 	else {
1209 		c->bi.nospace = c->bi.nospace_rp = 0;
1210 		smp_wmb();
1211 	}
1212 	return err;
1213 }
1214 
1215 /**
1216  * do_setattr - change inode attributes.
1217  * @c: UBIFS file-system description object
1218  * @inode: inode to change attributes for
1219  * @attr: inode attribute changes description
1220  *
1221  * This function implements VFS '->setattr()' call for all cases except
1222  * truncations to smaller size.
1223  *
1224  * Returns: %0 in case of success and a negative
1225  * error code in case of failure.
1226  */
1227 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1228 		      const struct iattr *attr)
1229 {
1230 	int err, release;
1231 	loff_t new_size = attr->ia_size;
1232 	struct ubifs_inode *ui = ubifs_inode(inode);
1233 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1234 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1235 
1236 	err = ubifs_budget_space(c, &req);
1237 	if (err)
1238 		return err;
1239 
1240 	if (attr->ia_valid & ATTR_SIZE) {
1241 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1242 		truncate_setsize(inode, new_size);
1243 	}
1244 
1245 	mutex_lock(&ui->ui_mutex);
1246 	if (attr->ia_valid & ATTR_SIZE) {
1247 		/* Truncation changes inode [mc]time */
1248 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1249 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1250 		ui->ui_size = inode->i_size;
1251 	}
1252 
1253 	do_attr_changes(inode, attr);
1254 
1255 	release = ui->dirty;
1256 	if (attr->ia_valid & ATTR_SIZE)
1257 		/*
1258 		 * Inode length changed, so we have to make sure
1259 		 * @I_DIRTY_DATASYNC is set.
1260 		 */
1261 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1262 	else
1263 		mark_inode_dirty_sync(inode);
1264 	mutex_unlock(&ui->ui_mutex);
1265 
1266 	if (release)
1267 		ubifs_release_budget(c, &req);
1268 	if (IS_SYNC(inode))
1269 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1270 	return err;
1271 }
1272 
1273 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1274 		  struct iattr *attr)
1275 {
1276 	int err;
1277 	struct inode *inode = d_inode(dentry);
1278 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1279 
1280 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1281 		inode->i_ino, inode->i_mode, attr->ia_valid);
1282 	err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1283 	if (err)
1284 		return err;
1285 
1286 	err = dbg_check_synced_i_size(c, inode);
1287 	if (err)
1288 		return err;
1289 
1290 	err = fscrypt_prepare_setattr(dentry, attr);
1291 	if (err)
1292 		return err;
1293 
1294 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1295 		/* Truncation to a smaller size */
1296 		err = do_truncation(c, inode, attr);
1297 	else
1298 		err = do_setattr(c, inode, attr);
1299 
1300 	return err;
1301 }
1302 
1303 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1304 				 size_t length)
1305 {
1306 	struct inode *inode = folio->mapping->host;
1307 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1308 
1309 	ubifs_assert(c, folio_test_private(folio));
1310 	if (offset || length < folio_size(folio))
1311 		/* Partial folio remains dirty */
1312 		return;
1313 
1314 	if (folio_test_checked(folio))
1315 		release_new_page_budget(c);
1316 	else
1317 		release_existing_page_budget(c);
1318 
1319 	atomic_long_dec(&c->dirty_pg_cnt);
1320 	folio_detach_private(folio);
1321 	folio_clear_checked(folio);
1322 }
1323 
1324 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1325 {
1326 	struct inode *inode = file->f_mapping->host;
1327 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1328 	int err;
1329 
1330 	dbg_gen("syncing inode %lu", inode->i_ino);
1331 
1332 	if (c->ro_mount)
1333 		/*
1334 		 * For some really strange reasons VFS does not filter out
1335 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1336 		 */
1337 		return 0;
1338 
1339 	err = file_write_and_wait_range(file, start, end);
1340 	if (err)
1341 		return err;
1342 	inode_lock(inode);
1343 
1344 	/* Synchronize the inode unless this is a 'datasync()' call. */
1345 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1346 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1347 		if (err)
1348 			goto out;
1349 	}
1350 
1351 	/*
1352 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1353 	 * them.
1354 	 */
1355 	err = ubifs_sync_wbufs_by_inode(c, inode);
1356 out:
1357 	inode_unlock(inode);
1358 	return err;
1359 }
1360 
1361 /**
1362  * mctime_update_needed - check if mtime or ctime update is needed.
1363  * @inode: the inode to do the check for
1364  * @now: current time
1365  *
1366  * This helper function checks if the inode mtime/ctime should be updated or
1367  * not. If current values of the time-stamps are within the UBIFS inode time
1368  * granularity, they are not updated. This is an optimization.
1369  *
1370  * Returns: %1 if time update is needed, %0 if not
1371  */
1372 static inline int mctime_update_needed(const struct inode *inode,
1373 				       const struct timespec64 *now)
1374 {
1375 	struct timespec64 ctime = inode_get_ctime(inode);
1376 	struct timespec64 mtime = inode_get_mtime(inode);
1377 
1378 	if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now))
1379 		return 1;
1380 	return 0;
1381 }
1382 
1383 /**
1384  * ubifs_update_time - update time of inode.
1385  * @inode: inode to update
1386  * @flags: time updating control flag determines updating
1387  *	    which time fields of @inode
1388  *
1389  * This function updates time of the inode.
1390  *
1391  * Returns: %0 for success or a negative error code otherwise.
1392  */
1393 int ubifs_update_time(struct inode *inode, int flags)
1394 {
1395 	struct ubifs_inode *ui = ubifs_inode(inode);
1396 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1397 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1398 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1399 	int err, release;
1400 
1401 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1402 		generic_update_time(inode, flags);
1403 		return 0;
1404 	}
1405 
1406 	err = ubifs_budget_space(c, &req);
1407 	if (err)
1408 		return err;
1409 
1410 	mutex_lock(&ui->ui_mutex);
1411 	inode_update_timestamps(inode, flags);
1412 	release = ui->dirty;
1413 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1414 	mutex_unlock(&ui->ui_mutex);
1415 	if (release)
1416 		ubifs_release_budget(c, &req);
1417 	return 0;
1418 }
1419 
1420 /**
1421  * update_mctime - update mtime and ctime of an inode.
1422  * @inode: inode to update
1423  *
1424  * This function updates mtime and ctime of the inode if it is not equivalent to
1425  * current time.
1426  *
1427  * Returns: %0 in case of success and a negative error code in
1428  * case of failure.
1429  */
1430 static int update_mctime(struct inode *inode)
1431 {
1432 	struct timespec64 now = current_time(inode);
1433 	struct ubifs_inode *ui = ubifs_inode(inode);
1434 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1435 
1436 	if (mctime_update_needed(inode, &now)) {
1437 		int err, release;
1438 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1439 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1440 
1441 		err = ubifs_budget_space(c, &req);
1442 		if (err)
1443 			return err;
1444 
1445 		mutex_lock(&ui->ui_mutex);
1446 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1447 		release = ui->dirty;
1448 		mark_inode_dirty_sync(inode);
1449 		mutex_unlock(&ui->ui_mutex);
1450 		if (release)
1451 			ubifs_release_budget(c, &req);
1452 	}
1453 
1454 	return 0;
1455 }
1456 
1457 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1458 {
1459 	int err = update_mctime(file_inode(iocb->ki_filp));
1460 	if (err)
1461 		return err;
1462 
1463 	return generic_file_write_iter(iocb, from);
1464 }
1465 
1466 static bool ubifs_dirty_folio(struct address_space *mapping,
1467 		struct folio *folio)
1468 {
1469 	bool ret;
1470 	struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1471 
1472 	ret = filemap_dirty_folio(mapping, folio);
1473 	/*
1474 	 * An attempt to dirty a page without budgeting for it - should not
1475 	 * happen.
1476 	 */
1477 	ubifs_assert(c, ret == false);
1478 	return ret;
1479 }
1480 
1481 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1482 {
1483 	struct inode *inode = folio->mapping->host;
1484 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1485 
1486 	if (folio_test_writeback(folio))
1487 		return false;
1488 
1489 	/*
1490 	 * Page is private but not dirty, weird? There is one condition
1491 	 * making it happened. ubifs_writepage skipped the page because
1492 	 * page index beyonds isize (for example. truncated by other
1493 	 * process named A), then the page is invalidated by fadvise64
1494 	 * syscall before being truncated by process A.
1495 	 */
1496 	ubifs_assert(c, folio_test_private(folio));
1497 	if (folio_test_checked(folio))
1498 		release_new_page_budget(c);
1499 	else
1500 		release_existing_page_budget(c);
1501 
1502 	atomic_long_dec(&c->dirty_pg_cnt);
1503 	folio_detach_private(folio);
1504 	folio_clear_checked(folio);
1505 	return true;
1506 }
1507 
1508 /*
1509  * mmap()d file has taken write protection fault and is being made writable.
1510  * UBIFS must ensure page is budgeted for.
1511  */
1512 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1513 {
1514 	struct folio *folio = page_folio(vmf->page);
1515 	struct inode *inode = file_inode(vmf->vma->vm_file);
1516 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1517 	struct timespec64 now = current_time(inode);
1518 	struct ubifs_budget_req req = { .new_page = 1 };
1519 	int err, update_time;
1520 
1521 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, folio->index,
1522 		i_size_read(inode));
1523 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1524 
1525 	if (unlikely(c->ro_error))
1526 		return VM_FAULT_SIGBUS; /* -EROFS */
1527 
1528 	/*
1529 	 * We have not locked @folio so far so we may budget for changing the
1530 	 * folio. Note, we cannot do this after we locked the folio, because
1531 	 * budgeting may cause write-back which would cause deadlock.
1532 	 *
1533 	 * At the moment we do not know whether the folio is dirty or not, so we
1534 	 * assume that it is not and budget for a new folio. We could look at
1535 	 * the @PG_private flag and figure this out, but we may race with write
1536 	 * back and the folio state may change by the time we lock it, so this
1537 	 * would need additional care. We do not bother with this at the
1538 	 * moment, although it might be good idea to do. Instead, we allocate
1539 	 * budget for a new folio and amend it later on if the folio was in fact
1540 	 * dirty.
1541 	 *
1542 	 * The budgeting-related logic of this function is similar to what we
1543 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1544 	 * for more comments.
1545 	 */
1546 	update_time = mctime_update_needed(inode, &now);
1547 	if (update_time)
1548 		/*
1549 		 * We have to change inode time stamp which requires extra
1550 		 * budgeting.
1551 		 */
1552 		req.dirtied_ino = 1;
1553 
1554 	err = ubifs_budget_space(c, &req);
1555 	if (unlikely(err)) {
1556 		if (err == -ENOSPC)
1557 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1558 				   inode->i_ino);
1559 		return VM_FAULT_SIGBUS;
1560 	}
1561 
1562 	folio_lock(folio);
1563 	if (unlikely(folio->mapping != inode->i_mapping ||
1564 		     folio_pos(folio) >= i_size_read(inode))) {
1565 		/* Folio got truncated out from underneath us */
1566 		goto sigbus;
1567 	}
1568 
1569 	if (folio->private)
1570 		release_new_page_budget(c);
1571 	else {
1572 		if (!folio_test_checked(folio))
1573 			ubifs_convert_page_budget(c);
1574 		folio_attach_private(folio, (void *)1);
1575 		atomic_long_inc(&c->dirty_pg_cnt);
1576 		filemap_dirty_folio(folio->mapping, folio);
1577 	}
1578 
1579 	if (update_time) {
1580 		int release;
1581 		struct ubifs_inode *ui = ubifs_inode(inode);
1582 
1583 		mutex_lock(&ui->ui_mutex);
1584 		inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode));
1585 		release = ui->dirty;
1586 		mark_inode_dirty_sync(inode);
1587 		mutex_unlock(&ui->ui_mutex);
1588 		if (release)
1589 			ubifs_release_dirty_inode_budget(c, ui);
1590 	}
1591 
1592 	folio_wait_stable(folio);
1593 	return VM_FAULT_LOCKED;
1594 
1595 sigbus:
1596 	folio_unlock(folio);
1597 	ubifs_release_budget(c, &req);
1598 	return VM_FAULT_SIGBUS;
1599 }
1600 
1601 static const struct vm_operations_struct ubifs_file_vm_ops = {
1602 	.fault        = filemap_fault,
1603 	.map_pages = filemap_map_pages,
1604 	.page_mkwrite = ubifs_vm_page_mkwrite,
1605 };
1606 
1607 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1608 {
1609 	int err;
1610 
1611 	err = generic_file_mmap(file, vma);
1612 	if (err)
1613 		return err;
1614 	vma->vm_ops = &ubifs_file_vm_ops;
1615 
1616 	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1617 		file_accessed(file);
1618 
1619 	return 0;
1620 }
1621 
1622 static const char *ubifs_get_link(struct dentry *dentry,
1623 					    struct inode *inode,
1624 					    struct delayed_call *done)
1625 {
1626 	struct ubifs_inode *ui = ubifs_inode(inode);
1627 
1628 	if (!IS_ENCRYPTED(inode))
1629 		return ui->data;
1630 
1631 	if (!dentry)
1632 		return ERR_PTR(-ECHILD);
1633 
1634 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1635 }
1636 
1637 static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1638 				 const struct path *path, struct kstat *stat,
1639 				 u32 request_mask, unsigned int query_flags)
1640 {
1641 	ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1642 
1643 	if (IS_ENCRYPTED(d_inode(path->dentry)))
1644 		return fscrypt_symlink_getattr(path, stat);
1645 	return 0;
1646 }
1647 
1648 const struct address_space_operations ubifs_file_address_operations = {
1649 	.read_folio     = ubifs_read_folio,
1650 	.writepages     = ubifs_writepages,
1651 	.write_begin    = ubifs_write_begin,
1652 	.write_end      = ubifs_write_end,
1653 	.invalidate_folio = ubifs_invalidate_folio,
1654 	.dirty_folio	= ubifs_dirty_folio,
1655 	.migrate_folio	= filemap_migrate_folio,
1656 	.release_folio	= ubifs_release_folio,
1657 };
1658 
1659 const struct inode_operations ubifs_file_inode_operations = {
1660 	.setattr     = ubifs_setattr,
1661 	.getattr     = ubifs_getattr,
1662 	.listxattr   = ubifs_listxattr,
1663 	.update_time = ubifs_update_time,
1664 	.fileattr_get = ubifs_fileattr_get,
1665 	.fileattr_set = ubifs_fileattr_set,
1666 };
1667 
1668 const struct inode_operations ubifs_symlink_inode_operations = {
1669 	.get_link    = ubifs_get_link,
1670 	.setattr     = ubifs_setattr,
1671 	.getattr     = ubifs_symlink_getattr,
1672 	.listxattr   = ubifs_listxattr,
1673 	.update_time = ubifs_update_time,
1674 };
1675 
1676 const struct file_operations ubifs_file_operations = {
1677 	.llseek         = generic_file_llseek,
1678 	.read_iter      = generic_file_read_iter,
1679 	.write_iter     = ubifs_write_iter,
1680 	.mmap           = ubifs_file_mmap,
1681 	.fsync          = ubifs_fsync,
1682 	.unlocked_ioctl = ubifs_ioctl,
1683 	.splice_read	= filemap_splice_read,
1684 	.splice_write	= iter_file_splice_write,
1685 	.open		= fscrypt_file_open,
1686 #ifdef CONFIG_COMPAT
1687 	.compat_ioctl   = ubifs_compat_ioctl,
1688 #endif
1689 };
1690