1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct page *page) 100 { 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn; 105 struct inode *inode = page->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, page->index, i_size, page->flags); 111 ubifs_assert(c, !PageChecked(page)); 112 ubifs_assert(c, !PagePrivate(page)); 113 114 addr = kmap(page); 115 116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 SetPageChecked(page); 121 memset(addr, 0, PAGE_SIZE); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto error; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= UBIFS_BLOCKS_PER_PAGE) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 } 158 if (err) { 159 struct ubifs_info *c = inode->i_sb->s_fs_info; 160 if (err == -ENOENT) { 161 /* Not found, so it must be a hole */ 162 SetPageChecked(page); 163 dbg_gen("hole"); 164 goto out_free; 165 } 166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 167 page->index, inode->i_ino, err); 168 goto error; 169 } 170 171 out_free: 172 kfree(dn); 173 out: 174 SetPageUptodate(page); 175 ClearPageError(page); 176 flush_dcache_page(page); 177 kunmap(page); 178 return 0; 179 180 error: 181 kfree(dn); 182 ClearPageUptodate(page); 183 SetPageError(page); 184 flush_dcache_page(page); 185 kunmap(page); 186 return err; 187 } 188 189 /** 190 * release_new_page_budget - release budget of a new page. 191 * @c: UBIFS file-system description object 192 * 193 * This is a helper function which releases budget corresponding to the budget 194 * of one new page of data. 195 */ 196 static void release_new_page_budget(struct ubifs_info *c) 197 { 198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 199 200 ubifs_release_budget(c, &req); 201 } 202 203 /** 204 * release_existing_page_budget - release budget of an existing page. 205 * @c: UBIFS file-system description object 206 * 207 * This is a helper function which releases budget corresponding to the budget 208 * of changing one page of data which already exists on the flash media. 209 */ 210 static void release_existing_page_budget(struct ubifs_info *c) 211 { 212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 213 214 ubifs_release_budget(c, &req); 215 } 216 217 static int write_begin_slow(struct address_space *mapping, 218 loff_t pos, unsigned len, struct page **pagep) 219 { 220 struct inode *inode = mapping->host; 221 struct ubifs_info *c = inode->i_sb->s_fs_info; 222 pgoff_t index = pos >> PAGE_SHIFT; 223 struct ubifs_budget_req req = { .new_page = 1 }; 224 int err, appending = !!(pos + len > inode->i_size); 225 struct page *page; 226 227 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 228 inode->i_ino, pos, len, inode->i_size); 229 230 /* 231 * At the slow path we have to budget before locking the page, because 232 * budgeting may force write-back, which would wait on locked pages and 233 * deadlock if we had the page locked. At this point we do not know 234 * anything about the page, so assume that this is a new page which is 235 * written to a hole. This corresponds to largest budget. Later the 236 * budget will be amended if this is not true. 237 */ 238 if (appending) 239 /* We are appending data, budget for inode change */ 240 req.dirtied_ino = 1; 241 242 err = ubifs_budget_space(c, &req); 243 if (unlikely(err)) 244 return err; 245 246 page = grab_cache_page_write_begin(mapping, index); 247 if (unlikely(!page)) { 248 ubifs_release_budget(c, &req); 249 return -ENOMEM; 250 } 251 252 if (!PageUptodate(page)) { 253 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) 254 SetPageChecked(page); 255 else { 256 err = do_readpage(page); 257 if (err) { 258 unlock_page(page); 259 put_page(page); 260 ubifs_release_budget(c, &req); 261 return err; 262 } 263 } 264 265 SetPageUptodate(page); 266 ClearPageError(page); 267 } 268 269 if (PagePrivate(page)) 270 /* 271 * The page is dirty, which means it was budgeted twice: 272 * o first time the budget was allocated by the task which 273 * made the page dirty and set the PG_private flag; 274 * o and then we budgeted for it for the second time at the 275 * very beginning of this function. 276 * 277 * So what we have to do is to release the page budget we 278 * allocated. 279 */ 280 release_new_page_budget(c); 281 else if (!PageChecked(page)) 282 /* 283 * We are changing a page which already exists on the media. 284 * This means that changing the page does not make the amount 285 * of indexing information larger, and this part of the budget 286 * which we have already acquired may be released. 287 */ 288 ubifs_convert_page_budget(c); 289 290 if (appending) { 291 struct ubifs_inode *ui = ubifs_inode(inode); 292 293 /* 294 * 'ubifs_write_end()' is optimized from the fast-path part of 295 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 296 * if data is appended. 297 */ 298 mutex_lock(&ui->ui_mutex); 299 if (ui->dirty) 300 /* 301 * The inode is dirty already, so we may free the 302 * budget we allocated. 303 */ 304 ubifs_release_dirty_inode_budget(c, ui); 305 } 306 307 *pagep = page; 308 return 0; 309 } 310 311 /** 312 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 313 * @c: UBIFS file-system description object 314 * @page: page to allocate budget for 315 * @ui: UBIFS inode object the page belongs to 316 * @appending: non-zero if the page is appended 317 * 318 * This is a helper function for 'ubifs_write_begin()' which allocates budget 319 * for the operation. The budget is allocated differently depending on whether 320 * this is appending, whether the page is dirty or not, and so on. This 321 * function leaves the @ui->ui_mutex locked in case of appending. 322 * 323 * Returns: %0 in case of success and %-ENOSPC in case of failure. 324 */ 325 static int allocate_budget(struct ubifs_info *c, struct page *page, 326 struct ubifs_inode *ui, int appending) 327 { 328 struct ubifs_budget_req req = { .fast = 1 }; 329 330 if (PagePrivate(page)) { 331 if (!appending) 332 /* 333 * The page is dirty and we are not appending, which 334 * means no budget is needed at all. 335 */ 336 return 0; 337 338 mutex_lock(&ui->ui_mutex); 339 if (ui->dirty) 340 /* 341 * The page is dirty and we are appending, so the inode 342 * has to be marked as dirty. However, it is already 343 * dirty, so we do not need any budget. We may return, 344 * but @ui->ui_mutex hast to be left locked because we 345 * should prevent write-back from flushing the inode 346 * and freeing the budget. The lock will be released in 347 * 'ubifs_write_end()'. 348 */ 349 return 0; 350 351 /* 352 * The page is dirty, we are appending, the inode is clean, so 353 * we need to budget the inode change. 354 */ 355 req.dirtied_ino = 1; 356 } else { 357 if (PageChecked(page)) 358 /* 359 * The page corresponds to a hole and does not 360 * exist on the media. So changing it makes 361 * make the amount of indexing information 362 * larger, and we have to budget for a new 363 * page. 364 */ 365 req.new_page = 1; 366 else 367 /* 368 * Not a hole, the change will not add any new 369 * indexing information, budget for page 370 * change. 371 */ 372 req.dirtied_page = 1; 373 374 if (appending) { 375 mutex_lock(&ui->ui_mutex); 376 if (!ui->dirty) 377 /* 378 * The inode is clean but we will have to mark 379 * it as dirty because we are appending. This 380 * needs a budget. 381 */ 382 req.dirtied_ino = 1; 383 } 384 } 385 386 return ubifs_budget_space(c, &req); 387 } 388 389 /* 390 * This function is called when a page of data is going to be written. Since 391 * the page of data will not necessarily go to the flash straight away, UBIFS 392 * has to reserve space on the media for it, which is done by means of 393 * budgeting. 394 * 395 * This is the hot-path of the file-system and we are trying to optimize it as 396 * much as possible. For this reasons it is split on 2 parts - slow and fast. 397 * 398 * There many budgeting cases: 399 * o a new page is appended - we have to budget for a new page and for 400 * changing the inode; however, if the inode is already dirty, there is 401 * no need to budget for it; 402 * o an existing clean page is changed - we have budget for it; if the page 403 * does not exist on the media (a hole), we have to budget for a new 404 * page; otherwise, we may budget for changing an existing page; the 405 * difference between these cases is that changing an existing page does 406 * not introduce anything new to the FS indexing information, so it does 407 * not grow, and smaller budget is acquired in this case; 408 * o an existing dirty page is changed - no need to budget at all, because 409 * the page budget has been acquired by earlier, when the page has been 410 * marked dirty. 411 * 412 * UBIFS budgeting sub-system may force write-back if it thinks there is no 413 * space to reserve. This imposes some locking restrictions and makes it 414 * impossible to take into account the above cases, and makes it impossible to 415 * optimize budgeting. 416 * 417 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 418 * there is a plenty of flash space and the budget will be acquired quickly, 419 * without forcing write-back. The slow path does not make this assumption. 420 */ 421 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 422 loff_t pos, unsigned len, 423 struct page **pagep, void **fsdata) 424 { 425 struct inode *inode = mapping->host; 426 struct ubifs_info *c = inode->i_sb->s_fs_info; 427 struct ubifs_inode *ui = ubifs_inode(inode); 428 pgoff_t index = pos >> PAGE_SHIFT; 429 int err, appending = !!(pos + len > inode->i_size); 430 int skipped_read = 0; 431 struct page *page; 432 433 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 434 ubifs_assert(c, !c->ro_media && !c->ro_mount); 435 436 if (unlikely(c->ro_error)) 437 return -EROFS; 438 439 /* Try out the fast-path part first */ 440 page = grab_cache_page_write_begin(mapping, index); 441 if (unlikely(!page)) 442 return -ENOMEM; 443 444 if (!PageUptodate(page)) { 445 /* The page is not loaded from the flash */ 446 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) { 447 /* 448 * We change whole page so no need to load it. But we 449 * do not know whether this page exists on the media or 450 * not, so we assume the latter because it requires 451 * larger budget. The assumption is that it is better 452 * to budget a bit more than to read the page from the 453 * media. Thus, we are setting the @PG_checked flag 454 * here. 455 */ 456 SetPageChecked(page); 457 skipped_read = 1; 458 } else { 459 err = do_readpage(page); 460 if (err) { 461 unlock_page(page); 462 put_page(page); 463 return err; 464 } 465 } 466 467 SetPageUptodate(page); 468 ClearPageError(page); 469 } 470 471 err = allocate_budget(c, page, ui, appending); 472 if (unlikely(err)) { 473 ubifs_assert(c, err == -ENOSPC); 474 /* 475 * If we skipped reading the page because we were going to 476 * write all of it, then it is not up to date. 477 */ 478 if (skipped_read) { 479 ClearPageChecked(page); 480 ClearPageUptodate(page); 481 } 482 /* 483 * Budgeting failed which means it would have to force 484 * write-back but didn't, because we set the @fast flag in the 485 * request. Write-back cannot be done now, while we have the 486 * page locked, because it would deadlock. Unlock and free 487 * everything and fall-back to slow-path. 488 */ 489 if (appending) { 490 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 491 mutex_unlock(&ui->ui_mutex); 492 } 493 unlock_page(page); 494 put_page(page); 495 496 return write_begin_slow(mapping, pos, len, pagep); 497 } 498 499 /* 500 * Whee, we acquired budgeting quickly - without involving 501 * garbage-collection, committing or forcing write-back. We return 502 * with @ui->ui_mutex locked if we are appending pages, and unlocked 503 * otherwise. This is an optimization (slightly hacky though). 504 */ 505 *pagep = page; 506 return 0; 507 508 } 509 510 /** 511 * cancel_budget - cancel budget. 512 * @c: UBIFS file-system description object 513 * @page: page to cancel budget for 514 * @ui: UBIFS inode object the page belongs to 515 * @appending: non-zero if the page is appended 516 * 517 * This is a helper function for a page write operation. It unlocks the 518 * @ui->ui_mutex in case of appending. 519 */ 520 static void cancel_budget(struct ubifs_info *c, struct page *page, 521 struct ubifs_inode *ui, int appending) 522 { 523 if (appending) { 524 if (!ui->dirty) 525 ubifs_release_dirty_inode_budget(c, ui); 526 mutex_unlock(&ui->ui_mutex); 527 } 528 if (!PagePrivate(page)) { 529 if (PageChecked(page)) 530 release_new_page_budget(c); 531 else 532 release_existing_page_budget(c); 533 } 534 } 535 536 static int ubifs_write_end(struct file *file, struct address_space *mapping, 537 loff_t pos, unsigned len, unsigned copied, 538 struct page *page, void *fsdata) 539 { 540 struct inode *inode = mapping->host; 541 struct ubifs_inode *ui = ubifs_inode(inode); 542 struct ubifs_info *c = inode->i_sb->s_fs_info; 543 loff_t end_pos = pos + len; 544 int appending = !!(end_pos > inode->i_size); 545 546 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 547 inode->i_ino, pos, page->index, len, copied, inode->i_size); 548 549 if (unlikely(copied < len && len == PAGE_SIZE)) { 550 /* 551 * VFS copied less data to the page that it intended and 552 * declared in its '->write_begin()' call via the @len 553 * argument. If the page was not up-to-date, and @len was 554 * @PAGE_SIZE, the 'ubifs_write_begin()' function did 555 * not load it from the media (for optimization reasons). This 556 * means that part of the page contains garbage. So read the 557 * page now. 558 */ 559 dbg_gen("copied %d instead of %d, read page and repeat", 560 copied, len); 561 cancel_budget(c, page, ui, appending); 562 ClearPageChecked(page); 563 564 /* 565 * Return 0 to force VFS to repeat the whole operation, or the 566 * error code if 'do_readpage()' fails. 567 */ 568 copied = do_readpage(page); 569 goto out; 570 } 571 572 if (!PagePrivate(page)) { 573 attach_page_private(page, (void *)1); 574 atomic_long_inc(&c->dirty_pg_cnt); 575 __set_page_dirty_nobuffers(page); 576 } 577 578 if (appending) { 579 i_size_write(inode, end_pos); 580 ui->ui_size = end_pos; 581 /* 582 * Note, we do not set @I_DIRTY_PAGES (which means that the 583 * inode has dirty pages), this has been done in 584 * '__set_page_dirty_nobuffers()'. 585 */ 586 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 587 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 588 mutex_unlock(&ui->ui_mutex); 589 } 590 591 out: 592 unlock_page(page); 593 put_page(page); 594 return copied; 595 } 596 597 /** 598 * populate_page - copy data nodes into a page for bulk-read. 599 * @c: UBIFS file-system description object 600 * @page: page 601 * @bu: bulk-read information 602 * @n: next zbranch slot 603 * 604 * Returns: %0 on success and a negative error code on failure. 605 */ 606 static int populate_page(struct ubifs_info *c, struct page *page, 607 struct bu_info *bu, int *n) 608 { 609 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 610 struct inode *inode = page->mapping->host; 611 loff_t i_size = i_size_read(inode); 612 unsigned int page_block; 613 void *addr, *zaddr; 614 pgoff_t end_index; 615 616 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 617 inode->i_ino, page->index, i_size, page->flags); 618 619 addr = zaddr = kmap(page); 620 621 end_index = (i_size - 1) >> PAGE_SHIFT; 622 if (!i_size || page->index > end_index) { 623 hole = 1; 624 memset(addr, 0, PAGE_SIZE); 625 goto out_hole; 626 } 627 628 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 629 while (1) { 630 int err, len, out_len, dlen; 631 632 if (nn >= bu->cnt) { 633 hole = 1; 634 memset(addr, 0, UBIFS_BLOCK_SIZE); 635 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 636 struct ubifs_data_node *dn; 637 638 dn = bu->buf + (bu->zbranch[nn].offs - offs); 639 640 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 641 ubifs_inode(inode)->creat_sqnum); 642 643 len = le32_to_cpu(dn->size); 644 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 645 goto out_err; 646 647 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 648 out_len = UBIFS_BLOCK_SIZE; 649 650 if (IS_ENCRYPTED(inode)) { 651 err = ubifs_decrypt(inode, dn, &dlen, page_block); 652 if (err) 653 goto out_err; 654 } 655 656 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 657 le16_to_cpu(dn->compr_type)); 658 if (err || len != out_len) 659 goto out_err; 660 661 if (len < UBIFS_BLOCK_SIZE) 662 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 663 664 nn += 1; 665 read = (i << UBIFS_BLOCK_SHIFT) + len; 666 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 667 nn += 1; 668 continue; 669 } else { 670 hole = 1; 671 memset(addr, 0, UBIFS_BLOCK_SIZE); 672 } 673 if (++i >= UBIFS_BLOCKS_PER_PAGE) 674 break; 675 addr += UBIFS_BLOCK_SIZE; 676 page_block += 1; 677 } 678 679 if (end_index == page->index) { 680 int len = i_size & (PAGE_SIZE - 1); 681 682 if (len && len < read) 683 memset(zaddr + len, 0, read - len); 684 } 685 686 out_hole: 687 if (hole) { 688 SetPageChecked(page); 689 dbg_gen("hole"); 690 } 691 692 SetPageUptodate(page); 693 ClearPageError(page); 694 flush_dcache_page(page); 695 kunmap(page); 696 *n = nn; 697 return 0; 698 699 out_err: 700 ClearPageUptodate(page); 701 SetPageError(page); 702 flush_dcache_page(page); 703 kunmap(page); 704 ubifs_err(c, "bad data node (block %u, inode %lu)", 705 page_block, inode->i_ino); 706 return -EINVAL; 707 } 708 709 /** 710 * ubifs_do_bulk_read - do bulk-read. 711 * @c: UBIFS file-system description object 712 * @bu: bulk-read information 713 * @page1: first page to read 714 * 715 * Returns: %1 if the bulk-read is done, otherwise %0 is returned. 716 */ 717 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 718 struct page *page1) 719 { 720 pgoff_t offset = page1->index, end_index; 721 struct address_space *mapping = page1->mapping; 722 struct inode *inode = mapping->host; 723 struct ubifs_inode *ui = ubifs_inode(inode); 724 int err, page_idx, page_cnt, ret = 0, n = 0; 725 int allocate = bu->buf ? 0 : 1; 726 loff_t isize; 727 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 728 729 err = ubifs_tnc_get_bu_keys(c, bu); 730 if (err) 731 goto out_warn; 732 733 if (bu->eof) { 734 /* Turn off bulk-read at the end of the file */ 735 ui->read_in_a_row = 1; 736 ui->bulk_read = 0; 737 } 738 739 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 740 if (!page_cnt) { 741 /* 742 * This happens when there are multiple blocks per page and the 743 * blocks for the first page we are looking for, are not 744 * together. If all the pages were like this, bulk-read would 745 * reduce performance, so we turn it off for a while. 746 */ 747 goto out_bu_off; 748 } 749 750 if (bu->cnt) { 751 if (allocate) { 752 /* 753 * Allocate bulk-read buffer depending on how many data 754 * nodes we are going to read. 755 */ 756 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 757 bu->zbranch[bu->cnt - 1].len - 758 bu->zbranch[0].offs; 759 ubifs_assert(c, bu->buf_len > 0); 760 ubifs_assert(c, bu->buf_len <= c->leb_size); 761 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 762 if (!bu->buf) 763 goto out_bu_off; 764 } 765 766 err = ubifs_tnc_bulk_read(c, bu); 767 if (err) 768 goto out_warn; 769 } 770 771 err = populate_page(c, page1, bu, &n); 772 if (err) 773 goto out_warn; 774 775 unlock_page(page1); 776 ret = 1; 777 778 isize = i_size_read(inode); 779 if (isize == 0) 780 goto out_free; 781 end_index = ((isize - 1) >> PAGE_SHIFT); 782 783 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 784 pgoff_t page_offset = offset + page_idx; 785 struct page *page; 786 787 if (page_offset > end_index) 788 break; 789 page = pagecache_get_page(mapping, page_offset, 790 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 791 ra_gfp_mask); 792 if (!page) 793 break; 794 if (!PageUptodate(page)) 795 err = populate_page(c, page, bu, &n); 796 unlock_page(page); 797 put_page(page); 798 if (err) 799 break; 800 } 801 802 ui->last_page_read = offset + page_idx - 1; 803 804 out_free: 805 if (allocate) 806 kfree(bu->buf); 807 return ret; 808 809 out_warn: 810 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 811 goto out_free; 812 813 out_bu_off: 814 ui->read_in_a_row = ui->bulk_read = 0; 815 goto out_free; 816 } 817 818 /** 819 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 820 * @page: page from which to start bulk-read. 821 * 822 * Some flash media are capable of reading sequentially at faster rates. UBIFS 823 * bulk-read facility is designed to take advantage of that, by reading in one 824 * go consecutive data nodes that are also located consecutively in the same 825 * LEB. 826 * 827 * Returns: %1 if a bulk-read is done and %0 otherwise. 828 */ 829 static int ubifs_bulk_read(struct page *page) 830 { 831 struct inode *inode = page->mapping->host; 832 struct ubifs_info *c = inode->i_sb->s_fs_info; 833 struct ubifs_inode *ui = ubifs_inode(inode); 834 pgoff_t index = page->index, last_page_read = ui->last_page_read; 835 struct bu_info *bu; 836 int err = 0, allocated = 0; 837 838 ui->last_page_read = index; 839 if (!c->bulk_read) 840 return 0; 841 842 /* 843 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 844 * so don't bother if we cannot lock the mutex. 845 */ 846 if (!mutex_trylock(&ui->ui_mutex)) 847 return 0; 848 849 if (index != last_page_read + 1) { 850 /* Turn off bulk-read if we stop reading sequentially */ 851 ui->read_in_a_row = 1; 852 if (ui->bulk_read) 853 ui->bulk_read = 0; 854 goto out_unlock; 855 } 856 857 if (!ui->bulk_read) { 858 ui->read_in_a_row += 1; 859 if (ui->read_in_a_row < 3) 860 goto out_unlock; 861 /* Three reads in a row, so switch on bulk-read */ 862 ui->bulk_read = 1; 863 } 864 865 /* 866 * If possible, try to use pre-allocated bulk-read information, which 867 * is protected by @c->bu_mutex. 868 */ 869 if (mutex_trylock(&c->bu_mutex)) 870 bu = &c->bu; 871 else { 872 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 873 if (!bu) 874 goto out_unlock; 875 876 bu->buf = NULL; 877 allocated = 1; 878 } 879 880 bu->buf_len = c->max_bu_buf_len; 881 data_key_init(c, &bu->key, inode->i_ino, 882 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 883 err = ubifs_do_bulk_read(c, bu, page); 884 885 if (!allocated) 886 mutex_unlock(&c->bu_mutex); 887 else 888 kfree(bu); 889 890 out_unlock: 891 mutex_unlock(&ui->ui_mutex); 892 return err; 893 } 894 895 static int ubifs_read_folio(struct file *file, struct folio *folio) 896 { 897 struct page *page = &folio->page; 898 899 if (ubifs_bulk_read(page)) 900 return 0; 901 do_readpage(page); 902 folio_unlock(folio); 903 return 0; 904 } 905 906 static int do_writepage(struct page *page, int len) 907 { 908 int err = 0, i, blen; 909 unsigned int block; 910 void *addr; 911 union ubifs_key key; 912 struct inode *inode = page->mapping->host; 913 struct ubifs_info *c = inode->i_sb->s_fs_info; 914 915 #ifdef UBIFS_DEBUG 916 struct ubifs_inode *ui = ubifs_inode(inode); 917 spin_lock(&ui->ui_lock); 918 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT); 919 spin_unlock(&ui->ui_lock); 920 #endif 921 922 /* Update radix tree tags */ 923 set_page_writeback(page); 924 925 addr = kmap(page); 926 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 927 i = 0; 928 while (len) { 929 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 930 data_key_init(c, &key, inode->i_ino, block); 931 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 932 if (err) 933 break; 934 if (++i >= UBIFS_BLOCKS_PER_PAGE) 935 break; 936 block += 1; 937 addr += blen; 938 len -= blen; 939 } 940 if (err) { 941 SetPageError(page); 942 ubifs_err(c, "cannot write page %lu of inode %lu, error %d", 943 page->index, inode->i_ino, err); 944 ubifs_ro_mode(c, err); 945 } 946 947 ubifs_assert(c, PagePrivate(page)); 948 if (PageChecked(page)) 949 release_new_page_budget(c); 950 else 951 release_existing_page_budget(c); 952 953 atomic_long_dec(&c->dirty_pg_cnt); 954 detach_page_private(page); 955 ClearPageChecked(page); 956 957 kunmap(page); 958 unlock_page(page); 959 end_page_writeback(page); 960 return err; 961 } 962 963 /* 964 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 965 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 966 * situation when a we have an inode with size 0, then a megabyte of data is 967 * appended to the inode, then write-back starts and flushes some amount of the 968 * dirty pages, the journal becomes full, commit happens and finishes, and then 969 * an unclean reboot happens. When the file system is mounted next time, the 970 * inode size would still be 0, but there would be many pages which are beyond 971 * the inode size, they would be indexed and consume flash space. Because the 972 * journal has been committed, the replay would not be able to detect this 973 * situation and correct the inode size. This means UBIFS would have to scan 974 * whole index and correct all inode sizes, which is long an unacceptable. 975 * 976 * To prevent situations like this, UBIFS writes pages back only if they are 977 * within the last synchronized inode size, i.e. the size which has been 978 * written to the flash media last time. Otherwise, UBIFS forces inode 979 * write-back, thus making sure the on-flash inode contains current inode size, 980 * and then keeps writing pages back. 981 * 982 * Some locking issues explanation. 'ubifs_writepage()' first is called with 983 * the page locked, and it locks @ui_mutex. However, write-back does take inode 984 * @i_mutex, which means other VFS operations may be run on this inode at the 985 * same time. And the problematic one is truncation to smaller size, from where 986 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 987 * then drops the truncated pages. And while dropping the pages, it takes the 988 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 989 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 990 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 991 * 992 * XXX(truncate): with the new truncate sequence this is not true anymore, 993 * and the calls to truncate_setsize can be move around freely. They should 994 * be moved to the very end of the truncate sequence. 995 * 996 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 997 * inode size. How do we do this if @inode->i_size may became smaller while we 998 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 999 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 1000 * internally and updates it under @ui_mutex. 1001 * 1002 * Q: why we do not worry that if we race with truncation, we may end up with a 1003 * situation when the inode is truncated while we are in the middle of 1004 * 'do_writepage()', so we do write beyond inode size? 1005 * A: If we are in the middle of 'do_writepage()', truncation would be locked 1006 * on the page lock and it would not write the truncated inode node to the 1007 * journal before we have finished. 1008 */ 1009 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1010 { 1011 struct inode *inode = page->mapping->host; 1012 struct ubifs_info *c = inode->i_sb->s_fs_info; 1013 struct ubifs_inode *ui = ubifs_inode(inode); 1014 loff_t i_size = i_size_read(inode), synced_i_size; 1015 pgoff_t end_index = i_size >> PAGE_SHIFT; 1016 int err, len = i_size & (PAGE_SIZE - 1); 1017 void *kaddr; 1018 1019 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1020 inode->i_ino, page->index, page->flags); 1021 ubifs_assert(c, PagePrivate(page)); 1022 1023 /* Is the page fully outside @i_size? (truncate in progress) */ 1024 if (page->index > end_index || (page->index == end_index && !len)) { 1025 err = 0; 1026 goto out_unlock; 1027 } 1028 1029 spin_lock(&ui->ui_lock); 1030 synced_i_size = ui->synced_i_size; 1031 spin_unlock(&ui->ui_lock); 1032 1033 /* Is the page fully inside @i_size? */ 1034 if (page->index < end_index) { 1035 if (page->index >= synced_i_size >> PAGE_SHIFT) { 1036 err = inode->i_sb->s_op->write_inode(inode, NULL); 1037 if (err) 1038 goto out_redirty; 1039 /* 1040 * The inode has been written, but the write-buffer has 1041 * not been synchronized, so in case of an unclean 1042 * reboot we may end up with some pages beyond inode 1043 * size, but they would be in the journal (because 1044 * commit flushes write buffers) and recovery would deal 1045 * with this. 1046 */ 1047 } 1048 return do_writepage(page, PAGE_SIZE); 1049 } 1050 1051 /* 1052 * The page straddles @i_size. It must be zeroed out on each and every 1053 * writepage invocation because it may be mmapped. "A file is mapped 1054 * in multiples of the page size. For a file that is not a multiple of 1055 * the page size, the remaining memory is zeroed when mapped, and 1056 * writes to that region are not written out to the file." 1057 */ 1058 kaddr = kmap_atomic(page); 1059 memset(kaddr + len, 0, PAGE_SIZE - len); 1060 flush_dcache_page(page); 1061 kunmap_atomic(kaddr); 1062 1063 if (i_size > synced_i_size) { 1064 err = inode->i_sb->s_op->write_inode(inode, NULL); 1065 if (err) 1066 goto out_redirty; 1067 } 1068 1069 return do_writepage(page, len); 1070 out_redirty: 1071 /* 1072 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because 1073 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1074 * there is no need to do space budget for dirty inode. 1075 */ 1076 redirty_page_for_writepage(wbc, page); 1077 out_unlock: 1078 unlock_page(page); 1079 return err; 1080 } 1081 1082 /** 1083 * do_attr_changes - change inode attributes. 1084 * @inode: inode to change attributes for 1085 * @attr: describes attributes to change 1086 */ 1087 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1088 { 1089 if (attr->ia_valid & ATTR_UID) 1090 inode->i_uid = attr->ia_uid; 1091 if (attr->ia_valid & ATTR_GID) 1092 inode->i_gid = attr->ia_gid; 1093 if (attr->ia_valid & ATTR_ATIME) 1094 inode_set_atime_to_ts(inode, attr->ia_atime); 1095 if (attr->ia_valid & ATTR_MTIME) 1096 inode_set_mtime_to_ts(inode, attr->ia_mtime); 1097 if (attr->ia_valid & ATTR_CTIME) 1098 inode_set_ctime_to_ts(inode, attr->ia_ctime); 1099 if (attr->ia_valid & ATTR_MODE) { 1100 umode_t mode = attr->ia_mode; 1101 1102 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1103 mode &= ~S_ISGID; 1104 inode->i_mode = mode; 1105 } 1106 } 1107 1108 /** 1109 * do_truncation - truncate an inode. 1110 * @c: UBIFS file-system description object 1111 * @inode: inode to truncate 1112 * @attr: inode attribute changes description 1113 * 1114 * This function implements VFS '->setattr()' call when the inode is truncated 1115 * to a smaller size. 1116 * 1117 * Returns: %0 in case of success and a negative error code 1118 * in case of failure. 1119 */ 1120 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1121 const struct iattr *attr) 1122 { 1123 int err; 1124 struct ubifs_budget_req req; 1125 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1126 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1127 struct ubifs_inode *ui = ubifs_inode(inode); 1128 1129 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1130 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1131 1132 /* 1133 * If this is truncation to a smaller size, and we do not truncate on a 1134 * block boundary, budget for changing one data block, because the last 1135 * block will be re-written. 1136 */ 1137 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1138 req.dirtied_page = 1; 1139 1140 req.dirtied_ino = 1; 1141 /* A funny way to budget for truncation node */ 1142 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1143 err = ubifs_budget_space(c, &req); 1144 if (err) { 1145 /* 1146 * Treat truncations to zero as deletion and always allow them, 1147 * just like we do for '->unlink()'. 1148 */ 1149 if (new_size || err != -ENOSPC) 1150 return err; 1151 budgeted = 0; 1152 } 1153 1154 truncate_setsize(inode, new_size); 1155 1156 if (offset) { 1157 pgoff_t index = new_size >> PAGE_SHIFT; 1158 struct page *page; 1159 1160 page = find_lock_page(inode->i_mapping, index); 1161 if (page) { 1162 if (PageDirty(page)) { 1163 /* 1164 * 'ubifs_jnl_truncate()' will try to truncate 1165 * the last data node, but it contains 1166 * out-of-date data because the page is dirty. 1167 * Write the page now, so that 1168 * 'ubifs_jnl_truncate()' will see an already 1169 * truncated (and up to date) data node. 1170 */ 1171 ubifs_assert(c, PagePrivate(page)); 1172 1173 clear_page_dirty_for_io(page); 1174 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1175 offset = new_size & 1176 (PAGE_SIZE - 1); 1177 err = do_writepage(page, offset); 1178 put_page(page); 1179 if (err) 1180 goto out_budg; 1181 /* 1182 * We could now tell 'ubifs_jnl_truncate()' not 1183 * to read the last block. 1184 */ 1185 } else { 1186 /* 1187 * We could 'kmap()' the page and pass the data 1188 * to 'ubifs_jnl_truncate()' to save it from 1189 * having to read it. 1190 */ 1191 unlock_page(page); 1192 put_page(page); 1193 } 1194 } 1195 } 1196 1197 mutex_lock(&ui->ui_mutex); 1198 ui->ui_size = inode->i_size; 1199 /* Truncation changes inode [mc]time */ 1200 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1201 /* Other attributes may be changed at the same time as well */ 1202 do_attr_changes(inode, attr); 1203 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1204 mutex_unlock(&ui->ui_mutex); 1205 1206 out_budg: 1207 if (budgeted) 1208 ubifs_release_budget(c, &req); 1209 else { 1210 c->bi.nospace = c->bi.nospace_rp = 0; 1211 smp_wmb(); 1212 } 1213 return err; 1214 } 1215 1216 /** 1217 * do_setattr - change inode attributes. 1218 * @c: UBIFS file-system description object 1219 * @inode: inode to change attributes for 1220 * @attr: inode attribute changes description 1221 * 1222 * This function implements VFS '->setattr()' call for all cases except 1223 * truncations to smaller size. 1224 * 1225 * Returns: %0 in case of success and a negative 1226 * error code in case of failure. 1227 */ 1228 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1229 const struct iattr *attr) 1230 { 1231 int err, release; 1232 loff_t new_size = attr->ia_size; 1233 struct ubifs_inode *ui = ubifs_inode(inode); 1234 struct ubifs_budget_req req = { .dirtied_ino = 1, 1235 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1236 1237 err = ubifs_budget_space(c, &req); 1238 if (err) 1239 return err; 1240 1241 if (attr->ia_valid & ATTR_SIZE) { 1242 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1243 truncate_setsize(inode, new_size); 1244 } 1245 1246 mutex_lock(&ui->ui_mutex); 1247 if (attr->ia_valid & ATTR_SIZE) { 1248 /* Truncation changes inode [mc]time */ 1249 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1250 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1251 ui->ui_size = inode->i_size; 1252 } 1253 1254 do_attr_changes(inode, attr); 1255 1256 release = ui->dirty; 1257 if (attr->ia_valid & ATTR_SIZE) 1258 /* 1259 * Inode length changed, so we have to make sure 1260 * @I_DIRTY_DATASYNC is set. 1261 */ 1262 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1263 else 1264 mark_inode_dirty_sync(inode); 1265 mutex_unlock(&ui->ui_mutex); 1266 1267 if (release) 1268 ubifs_release_budget(c, &req); 1269 if (IS_SYNC(inode)) 1270 err = inode->i_sb->s_op->write_inode(inode, NULL); 1271 return err; 1272 } 1273 1274 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1275 struct iattr *attr) 1276 { 1277 int err; 1278 struct inode *inode = d_inode(dentry); 1279 struct ubifs_info *c = inode->i_sb->s_fs_info; 1280 1281 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1282 inode->i_ino, inode->i_mode, attr->ia_valid); 1283 err = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1284 if (err) 1285 return err; 1286 1287 err = dbg_check_synced_i_size(c, inode); 1288 if (err) 1289 return err; 1290 1291 err = fscrypt_prepare_setattr(dentry, attr); 1292 if (err) 1293 return err; 1294 1295 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1296 /* Truncation to a smaller size */ 1297 err = do_truncation(c, inode, attr); 1298 else 1299 err = do_setattr(c, inode, attr); 1300 1301 return err; 1302 } 1303 1304 static void ubifs_invalidate_folio(struct folio *folio, size_t offset, 1305 size_t length) 1306 { 1307 struct inode *inode = folio->mapping->host; 1308 struct ubifs_info *c = inode->i_sb->s_fs_info; 1309 1310 ubifs_assert(c, folio_test_private(folio)); 1311 if (offset || length < folio_size(folio)) 1312 /* Partial folio remains dirty */ 1313 return; 1314 1315 if (folio_test_checked(folio)) 1316 release_new_page_budget(c); 1317 else 1318 release_existing_page_budget(c); 1319 1320 atomic_long_dec(&c->dirty_pg_cnt); 1321 folio_detach_private(folio); 1322 folio_clear_checked(folio); 1323 } 1324 1325 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1326 { 1327 struct inode *inode = file->f_mapping->host; 1328 struct ubifs_info *c = inode->i_sb->s_fs_info; 1329 int err; 1330 1331 dbg_gen("syncing inode %lu", inode->i_ino); 1332 1333 if (c->ro_mount) 1334 /* 1335 * For some really strange reasons VFS does not filter out 1336 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1337 */ 1338 return 0; 1339 1340 err = file_write_and_wait_range(file, start, end); 1341 if (err) 1342 return err; 1343 inode_lock(inode); 1344 1345 /* Synchronize the inode unless this is a 'datasync()' call. */ 1346 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1347 err = inode->i_sb->s_op->write_inode(inode, NULL); 1348 if (err) 1349 goto out; 1350 } 1351 1352 /* 1353 * Nodes related to this inode may still sit in a write-buffer. Flush 1354 * them. 1355 */ 1356 err = ubifs_sync_wbufs_by_inode(c, inode); 1357 out: 1358 inode_unlock(inode); 1359 return err; 1360 } 1361 1362 /** 1363 * mctime_update_needed - check if mtime or ctime update is needed. 1364 * @inode: the inode to do the check for 1365 * @now: current time 1366 * 1367 * This helper function checks if the inode mtime/ctime should be updated or 1368 * not. If current values of the time-stamps are within the UBIFS inode time 1369 * granularity, they are not updated. This is an optimization. 1370 * 1371 * Returns: %1 if time update is needed, %0 if not 1372 */ 1373 static inline int mctime_update_needed(const struct inode *inode, 1374 const struct timespec64 *now) 1375 { 1376 struct timespec64 ctime = inode_get_ctime(inode); 1377 struct timespec64 mtime = inode_get_mtime(inode); 1378 1379 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now)) 1380 return 1; 1381 return 0; 1382 } 1383 1384 /** 1385 * ubifs_update_time - update time of inode. 1386 * @inode: inode to update 1387 * @flags: time updating control flag determines updating 1388 * which time fields of @inode 1389 * 1390 * This function updates time of the inode. 1391 * 1392 * Returns: %0 for success or a negative error code otherwise. 1393 */ 1394 int ubifs_update_time(struct inode *inode, int flags) 1395 { 1396 struct ubifs_inode *ui = ubifs_inode(inode); 1397 struct ubifs_info *c = inode->i_sb->s_fs_info; 1398 struct ubifs_budget_req req = { .dirtied_ino = 1, 1399 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1400 int err, release; 1401 1402 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) { 1403 generic_update_time(inode, flags); 1404 return 0; 1405 } 1406 1407 err = ubifs_budget_space(c, &req); 1408 if (err) 1409 return err; 1410 1411 mutex_lock(&ui->ui_mutex); 1412 inode_update_timestamps(inode, flags); 1413 release = ui->dirty; 1414 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1415 mutex_unlock(&ui->ui_mutex); 1416 if (release) 1417 ubifs_release_budget(c, &req); 1418 return 0; 1419 } 1420 1421 /** 1422 * update_mctime - update mtime and ctime of an inode. 1423 * @inode: inode to update 1424 * 1425 * This function updates mtime and ctime of the inode if it is not equivalent to 1426 * current time. 1427 * 1428 * Returns: %0 in case of success and a negative error code in 1429 * case of failure. 1430 */ 1431 static int update_mctime(struct inode *inode) 1432 { 1433 struct timespec64 now = current_time(inode); 1434 struct ubifs_inode *ui = ubifs_inode(inode); 1435 struct ubifs_info *c = inode->i_sb->s_fs_info; 1436 1437 if (mctime_update_needed(inode, &now)) { 1438 int err, release; 1439 struct ubifs_budget_req req = { .dirtied_ino = 1, 1440 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1441 1442 err = ubifs_budget_space(c, &req); 1443 if (err) 1444 return err; 1445 1446 mutex_lock(&ui->ui_mutex); 1447 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1448 release = ui->dirty; 1449 mark_inode_dirty_sync(inode); 1450 mutex_unlock(&ui->ui_mutex); 1451 if (release) 1452 ubifs_release_budget(c, &req); 1453 } 1454 1455 return 0; 1456 } 1457 1458 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1459 { 1460 int err = update_mctime(file_inode(iocb->ki_filp)); 1461 if (err) 1462 return err; 1463 1464 return generic_file_write_iter(iocb, from); 1465 } 1466 1467 static bool ubifs_dirty_folio(struct address_space *mapping, 1468 struct folio *folio) 1469 { 1470 bool ret; 1471 struct ubifs_info *c = mapping->host->i_sb->s_fs_info; 1472 1473 ret = filemap_dirty_folio(mapping, folio); 1474 /* 1475 * An attempt to dirty a page without budgeting for it - should not 1476 * happen. 1477 */ 1478 ubifs_assert(c, ret == false); 1479 return ret; 1480 } 1481 1482 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 1483 { 1484 struct inode *inode = folio->mapping->host; 1485 struct ubifs_info *c = inode->i_sb->s_fs_info; 1486 1487 if (folio_test_writeback(folio)) 1488 return false; 1489 1490 /* 1491 * Page is private but not dirty, weird? There is one condition 1492 * making it happened. ubifs_writepage skipped the page because 1493 * page index beyonds isize (for example. truncated by other 1494 * process named A), then the page is invalidated by fadvise64 1495 * syscall before being truncated by process A. 1496 */ 1497 ubifs_assert(c, folio_test_private(folio)); 1498 if (folio_test_checked(folio)) 1499 release_new_page_budget(c); 1500 else 1501 release_existing_page_budget(c); 1502 1503 atomic_long_dec(&c->dirty_pg_cnt); 1504 folio_detach_private(folio); 1505 folio_clear_checked(folio); 1506 return true; 1507 } 1508 1509 /* 1510 * mmap()d file has taken write protection fault and is being made writable. 1511 * UBIFS must ensure page is budgeted for. 1512 */ 1513 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1514 { 1515 struct page *page = vmf->page; 1516 struct inode *inode = file_inode(vmf->vma->vm_file); 1517 struct ubifs_info *c = inode->i_sb->s_fs_info; 1518 struct timespec64 now = current_time(inode); 1519 struct ubifs_budget_req req = { .new_page = 1 }; 1520 int err, update_time; 1521 1522 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1523 i_size_read(inode)); 1524 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1525 1526 if (unlikely(c->ro_error)) 1527 return VM_FAULT_SIGBUS; /* -EROFS */ 1528 1529 /* 1530 * We have not locked @page so far so we may budget for changing the 1531 * page. Note, we cannot do this after we locked the page, because 1532 * budgeting may cause write-back which would cause deadlock. 1533 * 1534 * At the moment we do not know whether the page is dirty or not, so we 1535 * assume that it is not and budget for a new page. We could look at 1536 * the @PG_private flag and figure this out, but we may race with write 1537 * back and the page state may change by the time we lock it, so this 1538 * would need additional care. We do not bother with this at the 1539 * moment, although it might be good idea to do. Instead, we allocate 1540 * budget for a new page and amend it later on if the page was in fact 1541 * dirty. 1542 * 1543 * The budgeting-related logic of this function is similar to what we 1544 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1545 * for more comments. 1546 */ 1547 update_time = mctime_update_needed(inode, &now); 1548 if (update_time) 1549 /* 1550 * We have to change inode time stamp which requires extra 1551 * budgeting. 1552 */ 1553 req.dirtied_ino = 1; 1554 1555 err = ubifs_budget_space(c, &req); 1556 if (unlikely(err)) { 1557 if (err == -ENOSPC) 1558 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1559 inode->i_ino); 1560 return VM_FAULT_SIGBUS; 1561 } 1562 1563 lock_page(page); 1564 if (unlikely(page->mapping != inode->i_mapping || 1565 page_offset(page) > i_size_read(inode))) { 1566 /* Page got truncated out from underneath us */ 1567 goto sigbus; 1568 } 1569 1570 if (PagePrivate(page)) 1571 release_new_page_budget(c); 1572 else { 1573 if (!PageChecked(page)) 1574 ubifs_convert_page_budget(c); 1575 attach_page_private(page, (void *)1); 1576 atomic_long_inc(&c->dirty_pg_cnt); 1577 __set_page_dirty_nobuffers(page); 1578 } 1579 1580 if (update_time) { 1581 int release; 1582 struct ubifs_inode *ui = ubifs_inode(inode); 1583 1584 mutex_lock(&ui->ui_mutex); 1585 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1586 release = ui->dirty; 1587 mark_inode_dirty_sync(inode); 1588 mutex_unlock(&ui->ui_mutex); 1589 if (release) 1590 ubifs_release_dirty_inode_budget(c, ui); 1591 } 1592 1593 wait_for_stable_page(page); 1594 return VM_FAULT_LOCKED; 1595 1596 sigbus: 1597 unlock_page(page); 1598 ubifs_release_budget(c, &req); 1599 return VM_FAULT_SIGBUS; 1600 } 1601 1602 static const struct vm_operations_struct ubifs_file_vm_ops = { 1603 .fault = filemap_fault, 1604 .map_pages = filemap_map_pages, 1605 .page_mkwrite = ubifs_vm_page_mkwrite, 1606 }; 1607 1608 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1609 { 1610 int err; 1611 1612 err = generic_file_mmap(file, vma); 1613 if (err) 1614 return err; 1615 vma->vm_ops = &ubifs_file_vm_ops; 1616 1617 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1618 file_accessed(file); 1619 1620 return 0; 1621 } 1622 1623 static const char *ubifs_get_link(struct dentry *dentry, 1624 struct inode *inode, 1625 struct delayed_call *done) 1626 { 1627 struct ubifs_inode *ui = ubifs_inode(inode); 1628 1629 if (!IS_ENCRYPTED(inode)) 1630 return ui->data; 1631 1632 if (!dentry) 1633 return ERR_PTR(-ECHILD); 1634 1635 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1636 } 1637 1638 static int ubifs_symlink_getattr(struct mnt_idmap *idmap, 1639 const struct path *path, struct kstat *stat, 1640 u32 request_mask, unsigned int query_flags) 1641 { 1642 ubifs_getattr(idmap, path, stat, request_mask, query_flags); 1643 1644 if (IS_ENCRYPTED(d_inode(path->dentry))) 1645 return fscrypt_symlink_getattr(path, stat); 1646 return 0; 1647 } 1648 1649 const struct address_space_operations ubifs_file_address_operations = { 1650 .read_folio = ubifs_read_folio, 1651 .writepage = ubifs_writepage, 1652 .write_begin = ubifs_write_begin, 1653 .write_end = ubifs_write_end, 1654 .invalidate_folio = ubifs_invalidate_folio, 1655 .dirty_folio = ubifs_dirty_folio, 1656 .migrate_folio = filemap_migrate_folio, 1657 .release_folio = ubifs_release_folio, 1658 }; 1659 1660 const struct inode_operations ubifs_file_inode_operations = { 1661 .setattr = ubifs_setattr, 1662 .getattr = ubifs_getattr, 1663 .listxattr = ubifs_listxattr, 1664 .update_time = ubifs_update_time, 1665 .fileattr_get = ubifs_fileattr_get, 1666 .fileattr_set = ubifs_fileattr_set, 1667 }; 1668 1669 const struct inode_operations ubifs_symlink_inode_operations = { 1670 .get_link = ubifs_get_link, 1671 .setattr = ubifs_setattr, 1672 .getattr = ubifs_symlink_getattr, 1673 .listxattr = ubifs_listxattr, 1674 .update_time = ubifs_update_time, 1675 }; 1676 1677 const struct file_operations ubifs_file_operations = { 1678 .llseek = generic_file_llseek, 1679 .read_iter = generic_file_read_iter, 1680 .write_iter = ubifs_write_iter, 1681 .mmap = ubifs_file_mmap, 1682 .fsync = ubifs_fsync, 1683 .unlocked_ioctl = ubifs_ioctl, 1684 .splice_read = filemap_splice_read, 1685 .splice_write = iter_file_splice_write, 1686 .open = fscrypt_file_open, 1687 #ifdef CONFIG_COMPAT 1688 .compat_ioctl = ubifs_compat_ioctl, 1689 #endif 1690 }; 1691