1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40 #include "ubifs.h" 41 #include <linux/mount.h> 42 #include <linux/slab.h> 43 #include <linux/migrate.h> 44 45 static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47 { 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92 dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97 } 98 99 static int do_readpage(struct folio *folio) 100 { 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn = NULL; 105 struct inode *inode = folio->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, folio->index, i_size, folio->flags); 111 ubifs_assert(c, !folio_test_checked(folio)); 112 ubifs_assert(c, !folio->private); 113 114 addr = kmap_local_folio(folio, 0); 115 116 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 folio_set_checked(folio); 121 addr = folio_zero_tail(folio, 0, addr); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto out; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= (UBIFS_BLOCKS_PER_PAGE << folio_order(folio))) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) { 158 kunmap_local(addr - UBIFS_BLOCK_SIZE); 159 addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE); 160 } 161 } 162 163 if (err) { 164 struct ubifs_info *c = inode->i_sb->s_fs_info; 165 if (err == -ENOENT) { 166 /* Not found, so it must be a hole */ 167 folio_set_checked(folio); 168 dbg_gen("hole"); 169 err = 0; 170 } else { 171 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 172 folio->index, inode->i_ino, err); 173 } 174 } 175 176 out: 177 kfree(dn); 178 if (!err) 179 folio_mark_uptodate(folio); 180 flush_dcache_folio(folio); 181 kunmap_local(addr); 182 return err; 183 } 184 185 /** 186 * release_new_page_budget - release budget of a new page. 187 * @c: UBIFS file-system description object 188 * 189 * This is a helper function which releases budget corresponding to the budget 190 * of one new page of data. 191 */ 192 static void release_new_page_budget(struct ubifs_info *c) 193 { 194 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 195 196 ubifs_release_budget(c, &req); 197 } 198 199 /** 200 * release_existing_page_budget - release budget of an existing page. 201 * @c: UBIFS file-system description object 202 * 203 * This is a helper function which releases budget corresponding to the budget 204 * of changing one page of data which already exists on the flash media. 205 */ 206 static void release_existing_page_budget(struct ubifs_info *c) 207 { 208 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 209 210 ubifs_release_budget(c, &req); 211 } 212 213 static int write_begin_slow(struct address_space *mapping, 214 loff_t pos, unsigned len, struct folio **foliop) 215 { 216 struct inode *inode = mapping->host; 217 struct ubifs_info *c = inode->i_sb->s_fs_info; 218 pgoff_t index = pos >> PAGE_SHIFT; 219 struct ubifs_budget_req req = { .new_page = 1 }; 220 int err, appending = !!(pos + len > inode->i_size); 221 struct folio *folio; 222 223 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 224 inode->i_ino, pos, len, inode->i_size); 225 226 /* 227 * At the slow path we have to budget before locking the folio, because 228 * budgeting may force write-back, which would wait on locked folios and 229 * deadlock if we had the folio locked. At this point we do not know 230 * anything about the folio, so assume that this is a new folio which is 231 * written to a hole. This corresponds to largest budget. Later the 232 * budget will be amended if this is not true. 233 */ 234 if (appending) 235 /* We are appending data, budget for inode change */ 236 req.dirtied_ino = 1; 237 238 err = ubifs_budget_space(c, &req); 239 if (unlikely(err)) 240 return err; 241 242 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 243 mapping_gfp_mask(mapping)); 244 if (IS_ERR(folio)) { 245 ubifs_release_budget(c, &req); 246 return PTR_ERR(folio); 247 } 248 249 if (!folio_test_uptodate(folio)) { 250 if (pos == folio_pos(folio) && len >= folio_size(folio)) 251 folio_set_checked(folio); 252 else { 253 err = do_readpage(folio); 254 if (err) { 255 folio_unlock(folio); 256 folio_put(folio); 257 ubifs_release_budget(c, &req); 258 return err; 259 } 260 } 261 } 262 263 if (folio->private) 264 /* 265 * The folio is dirty, which means it was budgeted twice: 266 * o first time the budget was allocated by the task which 267 * made the folio dirty and set the private field; 268 * o and then we budgeted for it for the second time at the 269 * very beginning of this function. 270 * 271 * So what we have to do is to release the folio budget we 272 * allocated. 273 */ 274 release_new_page_budget(c); 275 else if (!folio_test_checked(folio)) 276 /* 277 * We are changing a folio which already exists on the media. 278 * This means that changing the folio does not make the amount 279 * of indexing information larger, and this part of the budget 280 * which we have already acquired may be released. 281 */ 282 ubifs_convert_page_budget(c); 283 284 if (appending) { 285 struct ubifs_inode *ui = ubifs_inode(inode); 286 287 /* 288 * 'ubifs_write_end()' is optimized from the fast-path part of 289 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 290 * if data is appended. 291 */ 292 mutex_lock(&ui->ui_mutex); 293 if (ui->dirty) 294 /* 295 * The inode is dirty already, so we may free the 296 * budget we allocated. 297 */ 298 ubifs_release_dirty_inode_budget(c, ui); 299 } 300 301 *foliop = folio; 302 return 0; 303 } 304 305 /** 306 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 307 * @c: UBIFS file-system description object 308 * @folio: folio to allocate budget for 309 * @ui: UBIFS inode object the page belongs to 310 * @appending: non-zero if the page is appended 311 * 312 * This is a helper function for 'ubifs_write_begin()' which allocates budget 313 * for the operation. The budget is allocated differently depending on whether 314 * this is appending, whether the page is dirty or not, and so on. This 315 * function leaves the @ui->ui_mutex locked in case of appending. 316 * 317 * Returns: %0 in case of success and %-ENOSPC in case of failure. 318 */ 319 static int allocate_budget(struct ubifs_info *c, struct folio *folio, 320 struct ubifs_inode *ui, int appending) 321 { 322 struct ubifs_budget_req req = { .fast = 1 }; 323 324 if (folio->private) { 325 if (!appending) 326 /* 327 * The folio is dirty and we are not appending, which 328 * means no budget is needed at all. 329 */ 330 return 0; 331 332 mutex_lock(&ui->ui_mutex); 333 if (ui->dirty) 334 /* 335 * The page is dirty and we are appending, so the inode 336 * has to be marked as dirty. However, it is already 337 * dirty, so we do not need any budget. We may return, 338 * but @ui->ui_mutex hast to be left locked because we 339 * should prevent write-back from flushing the inode 340 * and freeing the budget. The lock will be released in 341 * 'ubifs_write_end()'. 342 */ 343 return 0; 344 345 /* 346 * The page is dirty, we are appending, the inode is clean, so 347 * we need to budget the inode change. 348 */ 349 req.dirtied_ino = 1; 350 } else { 351 if (folio_test_checked(folio)) 352 /* 353 * The page corresponds to a hole and does not 354 * exist on the media. So changing it makes 355 * the amount of indexing information 356 * larger, and we have to budget for a new 357 * page. 358 */ 359 req.new_page = 1; 360 else 361 /* 362 * Not a hole, the change will not add any new 363 * indexing information, budget for page 364 * change. 365 */ 366 req.dirtied_page = 1; 367 368 if (appending) { 369 mutex_lock(&ui->ui_mutex); 370 if (!ui->dirty) 371 /* 372 * The inode is clean but we will have to mark 373 * it as dirty because we are appending. This 374 * needs a budget. 375 */ 376 req.dirtied_ino = 1; 377 } 378 } 379 380 return ubifs_budget_space(c, &req); 381 } 382 383 /* 384 * This function is called when a page of data is going to be written. Since 385 * the page of data will not necessarily go to the flash straight away, UBIFS 386 * has to reserve space on the media for it, which is done by means of 387 * budgeting. 388 * 389 * This is the hot-path of the file-system and we are trying to optimize it as 390 * much as possible. For this reasons it is split on 2 parts - slow and fast. 391 * 392 * There many budgeting cases: 393 * o a new page is appended - we have to budget for a new page and for 394 * changing the inode; however, if the inode is already dirty, there is 395 * no need to budget for it; 396 * o an existing clean page is changed - we have budget for it; if the page 397 * does not exist on the media (a hole), we have to budget for a new 398 * page; otherwise, we may budget for changing an existing page; the 399 * difference between these cases is that changing an existing page does 400 * not introduce anything new to the FS indexing information, so it does 401 * not grow, and smaller budget is acquired in this case; 402 * o an existing dirty page is changed - no need to budget at all, because 403 * the page budget has been acquired by earlier, when the page has been 404 * marked dirty. 405 * 406 * UBIFS budgeting sub-system may force write-back if it thinks there is no 407 * space to reserve. This imposes some locking restrictions and makes it 408 * impossible to take into account the above cases, and makes it impossible to 409 * optimize budgeting. 410 * 411 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 412 * there is a plenty of flash space and the budget will be acquired quickly, 413 * without forcing write-back. The slow path does not make this assumption. 414 */ 415 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 416 loff_t pos, unsigned len, 417 struct folio **foliop, void **fsdata) 418 { 419 struct inode *inode = mapping->host; 420 struct ubifs_info *c = inode->i_sb->s_fs_info; 421 struct ubifs_inode *ui = ubifs_inode(inode); 422 pgoff_t index = pos >> PAGE_SHIFT; 423 int err, appending = !!(pos + len > inode->i_size); 424 int skipped_read = 0; 425 struct folio *folio; 426 427 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 428 ubifs_assert(c, !c->ro_media && !c->ro_mount); 429 430 if (unlikely(c->ro_error)) 431 return -EROFS; 432 433 /* Try out the fast-path part first */ 434 folio = __filemap_get_folio(mapping, index, FGP_WRITEBEGIN, 435 mapping_gfp_mask(mapping)); 436 if (IS_ERR(folio)) 437 return PTR_ERR(folio); 438 439 if (!folio_test_uptodate(folio)) { 440 /* The page is not loaded from the flash */ 441 if (pos == folio_pos(folio) && len >= folio_size(folio)) { 442 /* 443 * We change whole page so no need to load it. But we 444 * do not know whether this page exists on the media or 445 * not, so we assume the latter because it requires 446 * larger budget. The assumption is that it is better 447 * to budget a bit more than to read the page from the 448 * media. Thus, we are setting the @PG_checked flag 449 * here. 450 */ 451 folio_set_checked(folio); 452 skipped_read = 1; 453 } else { 454 err = do_readpage(folio); 455 if (err) { 456 folio_unlock(folio); 457 folio_put(folio); 458 return err; 459 } 460 } 461 } 462 463 err = allocate_budget(c, folio, ui, appending); 464 if (unlikely(err)) { 465 ubifs_assert(c, err == -ENOSPC); 466 /* 467 * If we skipped reading the page because we were going to 468 * write all of it, then it is not up to date. 469 */ 470 if (skipped_read) 471 folio_clear_checked(folio); 472 /* 473 * Budgeting failed which means it would have to force 474 * write-back but didn't, because we set the @fast flag in the 475 * request. Write-back cannot be done now, while we have the 476 * page locked, because it would deadlock. Unlock and free 477 * everything and fall-back to slow-path. 478 */ 479 if (appending) { 480 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 481 mutex_unlock(&ui->ui_mutex); 482 } 483 folio_unlock(folio); 484 folio_put(folio); 485 486 return write_begin_slow(mapping, pos, len, foliop); 487 } 488 489 /* 490 * Whee, we acquired budgeting quickly - without involving 491 * garbage-collection, committing or forcing write-back. We return 492 * with @ui->ui_mutex locked if we are appending pages, and unlocked 493 * otherwise. This is an optimization (slightly hacky though). 494 */ 495 *foliop = folio; 496 return 0; 497 } 498 499 /** 500 * cancel_budget - cancel budget. 501 * @c: UBIFS file-system description object 502 * @folio: folio to cancel budget for 503 * @ui: UBIFS inode object the page belongs to 504 * @appending: non-zero if the page is appended 505 * 506 * This is a helper function for a page write operation. It unlocks the 507 * @ui->ui_mutex in case of appending. 508 */ 509 static void cancel_budget(struct ubifs_info *c, struct folio *folio, 510 struct ubifs_inode *ui, int appending) 511 { 512 if (appending) { 513 if (!ui->dirty) 514 ubifs_release_dirty_inode_budget(c, ui); 515 mutex_unlock(&ui->ui_mutex); 516 } 517 if (!folio->private) { 518 if (folio_test_checked(folio)) 519 release_new_page_budget(c); 520 else 521 release_existing_page_budget(c); 522 } 523 } 524 525 static int ubifs_write_end(struct file *file, struct address_space *mapping, 526 loff_t pos, unsigned len, unsigned copied, 527 struct folio *folio, void *fsdata) 528 { 529 struct inode *inode = mapping->host; 530 struct ubifs_inode *ui = ubifs_inode(inode); 531 struct ubifs_info *c = inode->i_sb->s_fs_info; 532 loff_t end_pos = pos + len; 533 int appending = !!(end_pos > inode->i_size); 534 535 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 536 inode->i_ino, pos, folio->index, len, copied, inode->i_size); 537 538 if (unlikely(copied < len && !folio_test_uptodate(folio))) { 539 /* 540 * VFS copied less data to the folio than it intended and 541 * declared in its '->write_begin()' call via the @len 542 * argument. If the folio was not up-to-date, 543 * the 'ubifs_write_begin()' function did 544 * not load it from the media (for optimization reasons). This 545 * means that part of the folio contains garbage. So read the 546 * folio now. 547 */ 548 dbg_gen("copied %d instead of %d, read page and repeat", 549 copied, len); 550 cancel_budget(c, folio, ui, appending); 551 folio_clear_checked(folio); 552 553 /* 554 * Return 0 to force VFS to repeat the whole operation, or the 555 * error code if 'do_readpage()' fails. 556 */ 557 copied = do_readpage(folio); 558 goto out; 559 } 560 561 if (len == folio_size(folio)) 562 folio_mark_uptodate(folio); 563 564 if (!folio->private) { 565 folio_attach_private(folio, (void *)1); 566 atomic_long_inc(&c->dirty_pg_cnt); 567 filemap_dirty_folio(mapping, folio); 568 } 569 570 if (appending) { 571 i_size_write(inode, end_pos); 572 ui->ui_size = end_pos; 573 /* 574 * We do not set @I_DIRTY_PAGES (which means that 575 * the inode has dirty pages), this was done in 576 * filemap_dirty_folio(). 577 */ 578 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 579 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 580 mutex_unlock(&ui->ui_mutex); 581 } 582 583 out: 584 folio_unlock(folio); 585 folio_put(folio); 586 return copied; 587 } 588 589 /** 590 * populate_page - copy data nodes into a page for bulk-read. 591 * @c: UBIFS file-system description object 592 * @folio: folio 593 * @bu: bulk-read information 594 * @n: next zbranch slot 595 * 596 * Returns: %0 on success and a negative error code on failure. 597 */ 598 static int populate_page(struct ubifs_info *c, struct folio *folio, 599 struct bu_info *bu, int *n) 600 { 601 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 602 struct inode *inode = folio->mapping->host; 603 loff_t i_size = i_size_read(inode); 604 unsigned int page_block; 605 void *addr, *zaddr; 606 pgoff_t end_index; 607 608 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 609 inode->i_ino, folio->index, i_size, folio->flags); 610 611 addr = zaddr = kmap_local_folio(folio, 0); 612 613 end_index = (i_size - 1) >> PAGE_SHIFT; 614 if (!i_size || folio->index > end_index) { 615 hole = 1; 616 addr = folio_zero_tail(folio, 0, addr); 617 goto out_hole; 618 } 619 620 page_block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 621 while (1) { 622 int err, len, out_len, dlen; 623 624 if (nn >= bu->cnt) { 625 hole = 1; 626 memset(addr, 0, UBIFS_BLOCK_SIZE); 627 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 628 struct ubifs_data_node *dn; 629 630 dn = bu->buf + (bu->zbranch[nn].offs - offs); 631 632 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 633 ubifs_inode(inode)->creat_sqnum); 634 635 len = le32_to_cpu(dn->size); 636 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 637 goto out_err; 638 639 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 640 out_len = UBIFS_BLOCK_SIZE; 641 642 if (IS_ENCRYPTED(inode)) { 643 err = ubifs_decrypt(inode, dn, &dlen, page_block); 644 if (err) 645 goto out_err; 646 } 647 648 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 649 le16_to_cpu(dn->compr_type)); 650 if (err || len != out_len) 651 goto out_err; 652 653 if (len < UBIFS_BLOCK_SIZE) 654 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 655 656 nn += 1; 657 read = (i << UBIFS_BLOCK_SHIFT) + len; 658 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 659 nn += 1; 660 continue; 661 } else { 662 hole = 1; 663 memset(addr, 0, UBIFS_BLOCK_SIZE); 664 } 665 if (++i >= UBIFS_BLOCKS_PER_PAGE) 666 break; 667 addr += UBIFS_BLOCK_SIZE; 668 page_block += 1; 669 if (folio_test_highmem(folio) && (offset_in_page(addr) == 0)) { 670 kunmap_local(addr - UBIFS_BLOCK_SIZE); 671 addr = kmap_local_folio(folio, i * UBIFS_BLOCK_SIZE); 672 } 673 } 674 675 if (end_index == folio->index) { 676 int len = i_size & (PAGE_SIZE - 1); 677 678 if (len && len < read) 679 memset(zaddr + len, 0, read - len); 680 } 681 682 out_hole: 683 if (hole) { 684 folio_set_checked(folio); 685 dbg_gen("hole"); 686 } 687 688 folio_mark_uptodate(folio); 689 flush_dcache_folio(folio); 690 kunmap_local(addr); 691 *n = nn; 692 return 0; 693 694 out_err: 695 flush_dcache_folio(folio); 696 kunmap_local(addr); 697 ubifs_err(c, "bad data node (block %u, inode %lu)", 698 page_block, inode->i_ino); 699 return -EINVAL; 700 } 701 702 /** 703 * ubifs_do_bulk_read - do bulk-read. 704 * @c: UBIFS file-system description object 705 * @bu: bulk-read information 706 * @folio1: first folio to read 707 * 708 * Returns: %1 if the bulk-read is done, otherwise %0 is returned. 709 */ 710 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 711 struct folio *folio1) 712 { 713 pgoff_t offset = folio1->index, end_index; 714 struct address_space *mapping = folio1->mapping; 715 struct inode *inode = mapping->host; 716 struct ubifs_inode *ui = ubifs_inode(inode); 717 int err, page_idx, page_cnt, ret = 0, n = 0; 718 int allocate = bu->buf ? 0 : 1; 719 loff_t isize; 720 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 721 722 err = ubifs_tnc_get_bu_keys(c, bu); 723 if (err) 724 goto out_warn; 725 726 if (bu->eof) { 727 /* Turn off bulk-read at the end of the file */ 728 ui->read_in_a_row = 1; 729 ui->bulk_read = 0; 730 } 731 732 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 733 if (!page_cnt) { 734 /* 735 * This happens when there are multiple blocks per page and the 736 * blocks for the first page we are looking for, are not 737 * together. If all the pages were like this, bulk-read would 738 * reduce performance, so we turn it off for a while. 739 */ 740 goto out_bu_off; 741 } 742 743 if (bu->cnt) { 744 if (allocate) { 745 /* 746 * Allocate bulk-read buffer depending on how many data 747 * nodes we are going to read. 748 */ 749 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 750 bu->zbranch[bu->cnt - 1].len - 751 bu->zbranch[0].offs; 752 ubifs_assert(c, bu->buf_len > 0); 753 ubifs_assert(c, bu->buf_len <= c->leb_size); 754 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 755 if (!bu->buf) 756 goto out_bu_off; 757 } 758 759 err = ubifs_tnc_bulk_read(c, bu); 760 if (err) 761 goto out_warn; 762 } 763 764 err = populate_page(c, folio1, bu, &n); 765 if (err) 766 goto out_warn; 767 768 folio_unlock(folio1); 769 ret = 1; 770 771 isize = i_size_read(inode); 772 if (isize == 0) 773 goto out_free; 774 end_index = ((isize - 1) >> PAGE_SHIFT); 775 776 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 777 pgoff_t page_offset = offset + page_idx; 778 struct folio *folio; 779 780 if (page_offset > end_index) 781 break; 782 folio = __filemap_get_folio(mapping, page_offset, 783 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 784 ra_gfp_mask); 785 if (IS_ERR(folio)) 786 break; 787 if (!folio_test_uptodate(folio)) 788 err = populate_page(c, folio, bu, &n); 789 folio_unlock(folio); 790 folio_put(folio); 791 if (err) 792 break; 793 } 794 795 ui->last_page_read = offset + page_idx - 1; 796 797 out_free: 798 if (allocate) 799 kfree(bu->buf); 800 return ret; 801 802 out_warn: 803 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 804 goto out_free; 805 806 out_bu_off: 807 ui->read_in_a_row = ui->bulk_read = 0; 808 goto out_free; 809 } 810 811 /** 812 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 813 * @folio: folio from which to start bulk-read. 814 * 815 * Some flash media are capable of reading sequentially at faster rates. UBIFS 816 * bulk-read facility is designed to take advantage of that, by reading in one 817 * go consecutive data nodes that are also located consecutively in the same 818 * LEB. 819 * 820 * Returns: %1 if a bulk-read is done and %0 otherwise. 821 */ 822 static int ubifs_bulk_read(struct folio *folio) 823 { 824 struct inode *inode = folio->mapping->host; 825 struct ubifs_info *c = inode->i_sb->s_fs_info; 826 struct ubifs_inode *ui = ubifs_inode(inode); 827 pgoff_t index = folio->index, last_page_read = ui->last_page_read; 828 struct bu_info *bu; 829 int err = 0, allocated = 0; 830 831 ui->last_page_read = index; 832 if (!c->bulk_read) 833 return 0; 834 835 /* 836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 837 * so don't bother if we cannot lock the mutex. 838 */ 839 if (!mutex_trylock(&ui->ui_mutex)) 840 return 0; 841 842 if (index != last_page_read + 1) { 843 /* Turn off bulk-read if we stop reading sequentially */ 844 ui->read_in_a_row = 1; 845 if (ui->bulk_read) 846 ui->bulk_read = 0; 847 goto out_unlock; 848 } 849 850 if (!ui->bulk_read) { 851 ui->read_in_a_row += 1; 852 if (ui->read_in_a_row < 3) 853 goto out_unlock; 854 /* Three reads in a row, so switch on bulk-read */ 855 ui->bulk_read = 1; 856 } 857 858 /* 859 * If possible, try to use pre-allocated bulk-read information, which 860 * is protected by @c->bu_mutex. 861 */ 862 if (mutex_trylock(&c->bu_mutex)) 863 bu = &c->bu; 864 else { 865 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 866 if (!bu) 867 goto out_unlock; 868 869 bu->buf = NULL; 870 allocated = 1; 871 } 872 873 bu->buf_len = c->max_bu_buf_len; 874 data_key_init(c, &bu->key, inode->i_ino, 875 folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 876 err = ubifs_do_bulk_read(c, bu, folio); 877 878 if (!allocated) 879 mutex_unlock(&c->bu_mutex); 880 else 881 kfree(bu); 882 883 out_unlock: 884 mutex_unlock(&ui->ui_mutex); 885 return err; 886 } 887 888 static int ubifs_read_folio(struct file *file, struct folio *folio) 889 { 890 if (ubifs_bulk_read(folio)) 891 return 0; 892 do_readpage(folio); 893 folio_unlock(folio); 894 return 0; 895 } 896 897 static int do_writepage(struct folio *folio, size_t len) 898 { 899 int err = 0, blen; 900 unsigned int block; 901 void *addr; 902 size_t offset = 0; 903 union ubifs_key key; 904 struct inode *inode = folio->mapping->host; 905 struct ubifs_info *c = inode->i_sb->s_fs_info; 906 907 #ifdef UBIFS_DEBUG 908 struct ubifs_inode *ui = ubifs_inode(inode); 909 spin_lock(&ui->ui_lock); 910 ubifs_assert(c, folio->index <= ui->synced_i_size >> PAGE_SHIFT); 911 spin_unlock(&ui->ui_lock); 912 #endif 913 914 folio_start_writeback(folio); 915 916 addr = kmap_local_folio(folio, offset); 917 block = folio->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 918 for (;;) { 919 blen = min_t(size_t, len, UBIFS_BLOCK_SIZE); 920 data_key_init(c, &key, inode->i_ino, block); 921 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 922 if (err) 923 break; 924 len -= blen; 925 if (!len) 926 break; 927 block += 1; 928 addr += blen; 929 if (folio_test_highmem(folio) && !offset_in_page(addr)) { 930 kunmap_local(addr - blen); 931 offset += PAGE_SIZE; 932 addr = kmap_local_folio(folio, offset); 933 } 934 } 935 kunmap_local(addr); 936 if (err) { 937 mapping_set_error(folio->mapping, err); 938 ubifs_err(c, "cannot write folio %lu of inode %lu, error %d", 939 folio->index, inode->i_ino, err); 940 ubifs_ro_mode(c, err); 941 } 942 943 ubifs_assert(c, folio->private != NULL); 944 if (folio_test_checked(folio)) 945 release_new_page_budget(c); 946 else 947 release_existing_page_budget(c); 948 949 atomic_long_dec(&c->dirty_pg_cnt); 950 folio_detach_private(folio); 951 folio_clear_checked(folio); 952 953 folio_unlock(folio); 954 folio_end_writeback(folio); 955 return err; 956 } 957 958 /* 959 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 960 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 961 * situation when a we have an inode with size 0, then a megabyte of data is 962 * appended to the inode, then write-back starts and flushes some amount of the 963 * dirty pages, the journal becomes full, commit happens and finishes, and then 964 * an unclean reboot happens. When the file system is mounted next time, the 965 * inode size would still be 0, but there would be many pages which are beyond 966 * the inode size, they would be indexed and consume flash space. Because the 967 * journal has been committed, the replay would not be able to detect this 968 * situation and correct the inode size. This means UBIFS would have to scan 969 * whole index and correct all inode sizes, which is long an unacceptable. 970 * 971 * To prevent situations like this, UBIFS writes pages back only if they are 972 * within the last synchronized inode size, i.e. the size which has been 973 * written to the flash media last time. Otherwise, UBIFS forces inode 974 * write-back, thus making sure the on-flash inode contains current inode size, 975 * and then keeps writing pages back. 976 * 977 * Some locking issues explanation. 'ubifs_writepage()' first is called with 978 * the page locked, and it locks @ui_mutex. However, write-back does take inode 979 * @i_mutex, which means other VFS operations may be run on this inode at the 980 * same time. And the problematic one is truncation to smaller size, from where 981 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 982 * then drops the truncated pages. And while dropping the pages, it takes the 983 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 984 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 985 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 986 * 987 * XXX(truncate): with the new truncate sequence this is not true anymore, 988 * and the calls to truncate_setsize can be move around freely. They should 989 * be moved to the very end of the truncate sequence. 990 * 991 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 992 * inode size. How do we do this if @inode->i_size may became smaller while we 993 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 994 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 995 * internally and updates it under @ui_mutex. 996 * 997 * Q: why we do not worry that if we race with truncation, we may end up with a 998 * situation when the inode is truncated while we are in the middle of 999 * 'do_writepage()', so we do write beyond inode size? 1000 * A: If we are in the middle of 'do_writepage()', truncation would be locked 1001 * on the page lock and it would not write the truncated inode node to the 1002 * journal before we have finished. 1003 */ 1004 static int ubifs_writepage(struct folio *folio, struct writeback_control *wbc, 1005 void *data) 1006 { 1007 struct inode *inode = folio->mapping->host; 1008 struct ubifs_info *c = inode->i_sb->s_fs_info; 1009 struct ubifs_inode *ui = ubifs_inode(inode); 1010 loff_t i_size = i_size_read(inode), synced_i_size; 1011 int err, len = folio_size(folio); 1012 1013 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1014 inode->i_ino, folio->index, folio->flags); 1015 ubifs_assert(c, folio->private != NULL); 1016 1017 /* Is the folio fully outside @i_size? (truncate in progress) */ 1018 if (folio_pos(folio) >= i_size) { 1019 err = 0; 1020 goto out_unlock; 1021 } 1022 1023 spin_lock(&ui->ui_lock); 1024 synced_i_size = ui->synced_i_size; 1025 spin_unlock(&ui->ui_lock); 1026 1027 /* Is the folio fully inside i_size? */ 1028 if (folio_pos(folio) + len <= i_size) { 1029 if (folio_pos(folio) + len > synced_i_size) { 1030 err = inode->i_sb->s_op->write_inode(inode, NULL); 1031 if (err) 1032 goto out_redirty; 1033 /* 1034 * The inode has been written, but the write-buffer has 1035 * not been synchronized, so in case of an unclean 1036 * reboot we may end up with some pages beyond inode 1037 * size, but they would be in the journal (because 1038 * commit flushes write buffers) and recovery would deal 1039 * with this. 1040 */ 1041 } 1042 return do_writepage(folio, len); 1043 } 1044 1045 /* 1046 * The folio straddles @i_size. It must be zeroed out on each and every 1047 * writepage invocation because it may be mmapped. "A file is mapped 1048 * in multiples of the page size. For a file that is not a multiple of 1049 * the page size, the remaining memory is zeroed when mapped, and 1050 * writes to that region are not written out to the file." 1051 */ 1052 len = i_size - folio_pos(folio); 1053 folio_zero_segment(folio, len, folio_size(folio)); 1054 1055 if (i_size > synced_i_size) { 1056 err = inode->i_sb->s_op->write_inode(inode, NULL); 1057 if (err) 1058 goto out_redirty; 1059 } 1060 1061 return do_writepage(folio, len); 1062 out_redirty: 1063 /* 1064 * folio_redirty_for_writepage() won't call ubifs_dirty_inode() because 1065 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1066 * there is no need to do space budget for dirty inode. 1067 */ 1068 folio_redirty_for_writepage(wbc, folio); 1069 out_unlock: 1070 folio_unlock(folio); 1071 return err; 1072 } 1073 1074 static int ubifs_writepages(struct address_space *mapping, 1075 struct writeback_control *wbc) 1076 { 1077 return write_cache_pages(mapping, wbc, ubifs_writepage, NULL); 1078 } 1079 1080 /** 1081 * do_attr_changes - change inode attributes. 1082 * @inode: inode to change attributes for 1083 * @attr: describes attributes to change 1084 */ 1085 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1086 { 1087 if (attr->ia_valid & ATTR_UID) 1088 inode->i_uid = attr->ia_uid; 1089 if (attr->ia_valid & ATTR_GID) 1090 inode->i_gid = attr->ia_gid; 1091 if (attr->ia_valid & ATTR_ATIME) 1092 inode_set_atime_to_ts(inode, attr->ia_atime); 1093 if (attr->ia_valid & ATTR_MTIME) 1094 inode_set_mtime_to_ts(inode, attr->ia_mtime); 1095 if (attr->ia_valid & ATTR_CTIME) 1096 inode_set_ctime_to_ts(inode, attr->ia_ctime); 1097 if (attr->ia_valid & ATTR_MODE) { 1098 umode_t mode = attr->ia_mode; 1099 1100 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1101 mode &= ~S_ISGID; 1102 inode->i_mode = mode; 1103 } 1104 } 1105 1106 /** 1107 * do_truncation - truncate an inode. 1108 * @c: UBIFS file-system description object 1109 * @inode: inode to truncate 1110 * @attr: inode attribute changes description 1111 * 1112 * This function implements VFS '->setattr()' call when the inode is truncated 1113 * to a smaller size. 1114 * 1115 * Returns: %0 in case of success and a negative error code 1116 * in case of failure. 1117 */ 1118 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1119 const struct iattr *attr) 1120 { 1121 int err; 1122 struct ubifs_budget_req req; 1123 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1124 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1125 struct ubifs_inode *ui = ubifs_inode(inode); 1126 1127 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1128 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1129 1130 /* 1131 * If this is truncation to a smaller size, and we do not truncate on a 1132 * block boundary, budget for changing one data block, because the last 1133 * block will be re-written. 1134 */ 1135 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1136 req.dirtied_page = 1; 1137 1138 req.dirtied_ino = 1; 1139 /* A funny way to budget for truncation node */ 1140 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1141 err = ubifs_budget_space(c, &req); 1142 if (err) { 1143 /* 1144 * Treat truncations to zero as deletion and always allow them, 1145 * just like we do for '->unlink()'. 1146 */ 1147 if (new_size || err != -ENOSPC) 1148 return err; 1149 budgeted = 0; 1150 } 1151 1152 truncate_setsize(inode, new_size); 1153 1154 if (offset) { 1155 pgoff_t index = new_size >> PAGE_SHIFT; 1156 struct folio *folio; 1157 1158 folio = filemap_lock_folio(inode->i_mapping, index); 1159 if (!IS_ERR(folio)) { 1160 if (folio_test_dirty(folio)) { 1161 /* 1162 * 'ubifs_jnl_truncate()' will try to truncate 1163 * the last data node, but it contains 1164 * out-of-date data because the page is dirty. 1165 * Write the page now, so that 1166 * 'ubifs_jnl_truncate()' will see an already 1167 * truncated (and up to date) data node. 1168 */ 1169 ubifs_assert(c, folio->private != NULL); 1170 1171 folio_clear_dirty_for_io(folio); 1172 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1173 offset = offset_in_folio(folio, 1174 new_size); 1175 err = do_writepage(folio, offset); 1176 folio_put(folio); 1177 if (err) 1178 goto out_budg; 1179 /* 1180 * We could now tell 'ubifs_jnl_truncate()' not 1181 * to read the last block. 1182 */ 1183 } else { 1184 /* 1185 * We could 'kmap()' the page and pass the data 1186 * to 'ubifs_jnl_truncate()' to save it from 1187 * having to read it. 1188 */ 1189 folio_unlock(folio); 1190 folio_put(folio); 1191 } 1192 } 1193 } 1194 1195 mutex_lock(&ui->ui_mutex); 1196 ui->ui_size = inode->i_size; 1197 /* Truncation changes inode [mc]time */ 1198 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1199 /* Other attributes may be changed at the same time as well */ 1200 do_attr_changes(inode, attr); 1201 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1202 mutex_unlock(&ui->ui_mutex); 1203 1204 out_budg: 1205 if (budgeted) 1206 ubifs_release_budget(c, &req); 1207 else { 1208 c->bi.nospace = c->bi.nospace_rp = 0; 1209 smp_wmb(); 1210 } 1211 return err; 1212 } 1213 1214 /** 1215 * do_setattr - change inode attributes. 1216 * @c: UBIFS file-system description object 1217 * @inode: inode to change attributes for 1218 * @attr: inode attribute changes description 1219 * 1220 * This function implements VFS '->setattr()' call for all cases except 1221 * truncations to smaller size. 1222 * 1223 * Returns: %0 in case of success and a negative 1224 * error code in case of failure. 1225 */ 1226 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1227 const struct iattr *attr) 1228 { 1229 int err, release; 1230 loff_t new_size = attr->ia_size; 1231 struct ubifs_inode *ui = ubifs_inode(inode); 1232 struct ubifs_budget_req req = { .dirtied_ino = 1, 1233 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1234 1235 err = ubifs_budget_space(c, &req); 1236 if (err) 1237 return err; 1238 1239 if (attr->ia_valid & ATTR_SIZE) { 1240 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1241 truncate_setsize(inode, new_size); 1242 } 1243 1244 mutex_lock(&ui->ui_mutex); 1245 if (attr->ia_valid & ATTR_SIZE) { 1246 /* Truncation changes inode [mc]time */ 1247 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1248 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1249 ui->ui_size = inode->i_size; 1250 } 1251 1252 do_attr_changes(inode, attr); 1253 1254 release = ui->dirty; 1255 if (attr->ia_valid & ATTR_SIZE) 1256 /* 1257 * Inode length changed, so we have to make sure 1258 * @I_DIRTY_DATASYNC is set. 1259 */ 1260 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1261 else 1262 mark_inode_dirty_sync(inode); 1263 mutex_unlock(&ui->ui_mutex); 1264 1265 if (release) 1266 ubifs_release_budget(c, &req); 1267 if (IS_SYNC(inode)) 1268 err = inode->i_sb->s_op->write_inode(inode, NULL); 1269 return err; 1270 } 1271 1272 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry, 1273 struct iattr *attr) 1274 { 1275 int err; 1276 struct inode *inode = d_inode(dentry); 1277 struct ubifs_info *c = inode->i_sb->s_fs_info; 1278 1279 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1280 inode->i_ino, inode->i_mode, attr->ia_valid); 1281 err = setattr_prepare(&nop_mnt_idmap, dentry, attr); 1282 if (err) 1283 return err; 1284 1285 err = dbg_check_synced_i_size(c, inode); 1286 if (err) 1287 return err; 1288 1289 err = fscrypt_prepare_setattr(dentry, attr); 1290 if (err) 1291 return err; 1292 1293 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1294 /* Truncation to a smaller size */ 1295 err = do_truncation(c, inode, attr); 1296 else 1297 err = do_setattr(c, inode, attr); 1298 1299 return err; 1300 } 1301 1302 static void ubifs_invalidate_folio(struct folio *folio, size_t offset, 1303 size_t length) 1304 { 1305 struct inode *inode = folio->mapping->host; 1306 struct ubifs_info *c = inode->i_sb->s_fs_info; 1307 1308 ubifs_assert(c, folio_test_private(folio)); 1309 if (offset || length < folio_size(folio)) 1310 /* Partial folio remains dirty */ 1311 return; 1312 1313 if (folio_test_checked(folio)) 1314 release_new_page_budget(c); 1315 else 1316 release_existing_page_budget(c); 1317 1318 atomic_long_dec(&c->dirty_pg_cnt); 1319 folio_detach_private(folio); 1320 folio_clear_checked(folio); 1321 } 1322 1323 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1324 { 1325 struct inode *inode = file->f_mapping->host; 1326 struct ubifs_info *c = inode->i_sb->s_fs_info; 1327 int err; 1328 1329 dbg_gen("syncing inode %lu", inode->i_ino); 1330 1331 if (c->ro_mount) 1332 /* 1333 * For some really strange reasons VFS does not filter out 1334 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1335 */ 1336 return 0; 1337 1338 err = file_write_and_wait_range(file, start, end); 1339 if (err) 1340 return err; 1341 inode_lock(inode); 1342 1343 /* Synchronize the inode unless this is a 'datasync()' call. */ 1344 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1345 err = inode->i_sb->s_op->write_inode(inode, NULL); 1346 if (err) 1347 goto out; 1348 } 1349 1350 /* 1351 * Nodes related to this inode may still sit in a write-buffer. Flush 1352 * them. 1353 */ 1354 err = ubifs_sync_wbufs_by_inode(c, inode); 1355 out: 1356 inode_unlock(inode); 1357 return err; 1358 } 1359 1360 /** 1361 * mctime_update_needed - check if mtime or ctime update is needed. 1362 * @inode: the inode to do the check for 1363 * @now: current time 1364 * 1365 * This helper function checks if the inode mtime/ctime should be updated or 1366 * not. If current values of the time-stamps are within the UBIFS inode time 1367 * granularity, they are not updated. This is an optimization. 1368 * 1369 * Returns: %1 if time update is needed, %0 if not 1370 */ 1371 static inline int mctime_update_needed(const struct inode *inode, 1372 const struct timespec64 *now) 1373 { 1374 struct timespec64 ctime = inode_get_ctime(inode); 1375 struct timespec64 mtime = inode_get_mtime(inode); 1376 1377 if (!timespec64_equal(&mtime, now) || !timespec64_equal(&ctime, now)) 1378 return 1; 1379 return 0; 1380 } 1381 1382 /** 1383 * ubifs_update_time - update time of inode. 1384 * @inode: inode to update 1385 * @flags: time updating control flag determines updating 1386 * which time fields of @inode 1387 * 1388 * This function updates time of the inode. 1389 * 1390 * Returns: %0 for success or a negative error code otherwise. 1391 */ 1392 int ubifs_update_time(struct inode *inode, int flags) 1393 { 1394 struct ubifs_inode *ui = ubifs_inode(inode); 1395 struct ubifs_info *c = inode->i_sb->s_fs_info; 1396 struct ubifs_budget_req req = { .dirtied_ino = 1, 1397 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1398 int err, release; 1399 1400 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) { 1401 generic_update_time(inode, flags); 1402 return 0; 1403 } 1404 1405 err = ubifs_budget_space(c, &req); 1406 if (err) 1407 return err; 1408 1409 mutex_lock(&ui->ui_mutex); 1410 inode_update_timestamps(inode, flags); 1411 release = ui->dirty; 1412 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1413 mutex_unlock(&ui->ui_mutex); 1414 if (release) 1415 ubifs_release_budget(c, &req); 1416 return 0; 1417 } 1418 1419 /** 1420 * update_mctime - update mtime and ctime of an inode. 1421 * @inode: inode to update 1422 * 1423 * This function updates mtime and ctime of the inode if it is not equivalent to 1424 * current time. 1425 * 1426 * Returns: %0 in case of success and a negative error code in 1427 * case of failure. 1428 */ 1429 static int update_mctime(struct inode *inode) 1430 { 1431 struct timespec64 now = current_time(inode); 1432 struct ubifs_inode *ui = ubifs_inode(inode); 1433 struct ubifs_info *c = inode->i_sb->s_fs_info; 1434 1435 if (mctime_update_needed(inode, &now)) { 1436 int err, release; 1437 struct ubifs_budget_req req = { .dirtied_ino = 1, 1438 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1439 1440 err = ubifs_budget_space(c, &req); 1441 if (err) 1442 return err; 1443 1444 mutex_lock(&ui->ui_mutex); 1445 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1446 release = ui->dirty; 1447 mark_inode_dirty_sync(inode); 1448 mutex_unlock(&ui->ui_mutex); 1449 if (release) 1450 ubifs_release_budget(c, &req); 1451 } 1452 1453 return 0; 1454 } 1455 1456 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1457 { 1458 int err = update_mctime(file_inode(iocb->ki_filp)); 1459 if (err) 1460 return err; 1461 1462 return generic_file_write_iter(iocb, from); 1463 } 1464 1465 static bool ubifs_dirty_folio(struct address_space *mapping, 1466 struct folio *folio) 1467 { 1468 bool ret; 1469 struct ubifs_info *c = mapping->host->i_sb->s_fs_info; 1470 1471 ret = filemap_dirty_folio(mapping, folio); 1472 /* 1473 * An attempt to dirty a page without budgeting for it - should not 1474 * happen. 1475 */ 1476 ubifs_assert(c, ret == false); 1477 return ret; 1478 } 1479 1480 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags) 1481 { 1482 struct inode *inode = folio->mapping->host; 1483 struct ubifs_info *c = inode->i_sb->s_fs_info; 1484 1485 if (folio_test_writeback(folio)) 1486 return false; 1487 1488 /* 1489 * Page is private but not dirty, weird? There is one condition 1490 * making it happened. ubifs_writepage skipped the page because 1491 * page index beyonds isize (for example. truncated by other 1492 * process named A), then the page is invalidated by fadvise64 1493 * syscall before being truncated by process A. 1494 */ 1495 ubifs_assert(c, folio_test_private(folio)); 1496 if (folio_test_checked(folio)) 1497 release_new_page_budget(c); 1498 else 1499 release_existing_page_budget(c); 1500 1501 atomic_long_dec(&c->dirty_pg_cnt); 1502 folio_detach_private(folio); 1503 folio_clear_checked(folio); 1504 return true; 1505 } 1506 1507 /* 1508 * mmap()d file has taken write protection fault and is being made writable. 1509 * UBIFS must ensure page is budgeted for. 1510 */ 1511 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1512 { 1513 struct folio *folio = page_folio(vmf->page); 1514 struct inode *inode = file_inode(vmf->vma->vm_file); 1515 struct ubifs_info *c = inode->i_sb->s_fs_info; 1516 struct timespec64 now = current_time(inode); 1517 struct ubifs_budget_req req = { .new_page = 1 }; 1518 int err, update_time; 1519 1520 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, folio->index, 1521 i_size_read(inode)); 1522 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1523 1524 if (unlikely(c->ro_error)) 1525 return VM_FAULT_SIGBUS; /* -EROFS */ 1526 1527 /* 1528 * We have not locked @folio so far so we may budget for changing the 1529 * folio. Note, we cannot do this after we locked the folio, because 1530 * budgeting may cause write-back which would cause deadlock. 1531 * 1532 * At the moment we do not know whether the folio is dirty or not, so we 1533 * assume that it is not and budget for a new folio. We could look at 1534 * the @PG_private flag and figure this out, but we may race with write 1535 * back and the folio state may change by the time we lock it, so this 1536 * would need additional care. We do not bother with this at the 1537 * moment, although it might be good idea to do. Instead, we allocate 1538 * budget for a new folio and amend it later on if the folio was in fact 1539 * dirty. 1540 * 1541 * The budgeting-related logic of this function is similar to what we 1542 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1543 * for more comments. 1544 */ 1545 update_time = mctime_update_needed(inode, &now); 1546 if (update_time) 1547 /* 1548 * We have to change inode time stamp which requires extra 1549 * budgeting. 1550 */ 1551 req.dirtied_ino = 1; 1552 1553 err = ubifs_budget_space(c, &req); 1554 if (unlikely(err)) { 1555 if (err == -ENOSPC) 1556 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1557 inode->i_ino); 1558 return VM_FAULT_SIGBUS; 1559 } 1560 1561 folio_lock(folio); 1562 if (unlikely(folio->mapping != inode->i_mapping || 1563 folio_pos(folio) >= i_size_read(inode))) { 1564 /* Folio got truncated out from underneath us */ 1565 goto sigbus; 1566 } 1567 1568 if (folio->private) 1569 release_new_page_budget(c); 1570 else { 1571 if (!folio_test_checked(folio)) 1572 ubifs_convert_page_budget(c); 1573 folio_attach_private(folio, (void *)1); 1574 atomic_long_inc(&c->dirty_pg_cnt); 1575 filemap_dirty_folio(folio->mapping, folio); 1576 } 1577 1578 if (update_time) { 1579 int release; 1580 struct ubifs_inode *ui = ubifs_inode(inode); 1581 1582 mutex_lock(&ui->ui_mutex); 1583 inode_set_mtime_to_ts(inode, inode_set_ctime_current(inode)); 1584 release = ui->dirty; 1585 mark_inode_dirty_sync(inode); 1586 mutex_unlock(&ui->ui_mutex); 1587 if (release) 1588 ubifs_release_dirty_inode_budget(c, ui); 1589 } 1590 1591 folio_wait_stable(folio); 1592 return VM_FAULT_LOCKED; 1593 1594 sigbus: 1595 folio_unlock(folio); 1596 ubifs_release_budget(c, &req); 1597 return VM_FAULT_SIGBUS; 1598 } 1599 1600 static const struct vm_operations_struct ubifs_file_vm_ops = { 1601 .fault = filemap_fault, 1602 .map_pages = filemap_map_pages, 1603 .page_mkwrite = ubifs_vm_page_mkwrite, 1604 }; 1605 1606 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1607 { 1608 int err; 1609 1610 err = generic_file_mmap(file, vma); 1611 if (err) 1612 return err; 1613 vma->vm_ops = &ubifs_file_vm_ops; 1614 1615 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1616 file_accessed(file); 1617 1618 return 0; 1619 } 1620 1621 static const char *ubifs_get_link(struct dentry *dentry, 1622 struct inode *inode, 1623 struct delayed_call *done) 1624 { 1625 struct ubifs_inode *ui = ubifs_inode(inode); 1626 1627 if (!IS_ENCRYPTED(inode)) 1628 return ui->data; 1629 1630 if (!dentry) 1631 return ERR_PTR(-ECHILD); 1632 1633 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1634 } 1635 1636 static int ubifs_symlink_getattr(struct mnt_idmap *idmap, 1637 const struct path *path, struct kstat *stat, 1638 u32 request_mask, unsigned int query_flags) 1639 { 1640 ubifs_getattr(idmap, path, stat, request_mask, query_flags); 1641 1642 if (IS_ENCRYPTED(d_inode(path->dentry))) 1643 return fscrypt_symlink_getattr(path, stat); 1644 return 0; 1645 } 1646 1647 const struct address_space_operations ubifs_file_address_operations = { 1648 .read_folio = ubifs_read_folio, 1649 .writepages = ubifs_writepages, 1650 .write_begin = ubifs_write_begin, 1651 .write_end = ubifs_write_end, 1652 .invalidate_folio = ubifs_invalidate_folio, 1653 .dirty_folio = ubifs_dirty_folio, 1654 .migrate_folio = filemap_migrate_folio, 1655 .release_folio = ubifs_release_folio, 1656 }; 1657 1658 const struct inode_operations ubifs_file_inode_operations = { 1659 .setattr = ubifs_setattr, 1660 .getattr = ubifs_getattr, 1661 .listxattr = ubifs_listxattr, 1662 .update_time = ubifs_update_time, 1663 .fileattr_get = ubifs_fileattr_get, 1664 .fileattr_set = ubifs_fileattr_set, 1665 }; 1666 1667 const struct inode_operations ubifs_symlink_inode_operations = { 1668 .get_link = ubifs_get_link, 1669 .setattr = ubifs_setattr, 1670 .getattr = ubifs_symlink_getattr, 1671 .listxattr = ubifs_listxattr, 1672 .update_time = ubifs_update_time, 1673 }; 1674 1675 const struct file_operations ubifs_file_operations = { 1676 .llseek = generic_file_llseek, 1677 .read_iter = generic_file_read_iter, 1678 .write_iter = ubifs_write_iter, 1679 .mmap = ubifs_file_mmap, 1680 .fsync = ubifs_fsync, 1681 .unlocked_ioctl = ubifs_ioctl, 1682 .splice_read = filemap_splice_read, 1683 .splice_write = iter_file_splice_write, 1684 .open = fscrypt_file_open, 1685 #ifdef CONFIG_COMPAT 1686 .compat_ioctl = ubifs_compat_ioctl, 1687 #endif 1688 }; 1689