1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements VFS file and inode operations for regular files, device 25 * nodes and symlinks as well as address space operations. 26 * 27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 28 * the page is dirty and is used for optimization purposes - dirty pages are 29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 30 * the budget for this page. The @PG_checked flag is set if full budgeting is 31 * required for the page e.g., when it corresponds to a file hole or it is 32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 33 * it is OK to fail in this function, and the budget is released in 34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 35 * information about how the page was budgeted, to make it possible to release 36 * the budget properly. 37 * 38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 39 * implement. However, this is not true for 'ubifs_writepage()', which may be 40 * called with @i_mutex unlocked. For example, when flusher thread is doing 41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 44 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 45 * 46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the 47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not 49 * set as well. However, UBIFS disables readahead. 50 */ 51 52 #include "ubifs.h" 53 #include <linux/aio.h> 54 #include <linux/mount.h> 55 #include <linux/namei.h> 56 #include <linux/slab.h> 57 58 static int read_block(struct inode *inode, void *addr, unsigned int block, 59 struct ubifs_data_node *dn) 60 { 61 struct ubifs_info *c = inode->i_sb->s_fs_info; 62 int err, len, out_len; 63 union ubifs_key key; 64 unsigned int dlen; 65 66 data_key_init(c, &key, inode->i_ino, block); 67 err = ubifs_tnc_lookup(c, &key, dn); 68 if (err) { 69 if (err == -ENOENT) 70 /* Not found, so it must be a hole */ 71 memset(addr, 0, UBIFS_BLOCK_SIZE); 72 return err; 73 } 74 75 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 76 ubifs_inode(inode)->creat_sqnum); 77 len = le32_to_cpu(dn->size); 78 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 79 goto dump; 80 81 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 82 out_len = UBIFS_BLOCK_SIZE; 83 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 84 le16_to_cpu(dn->compr_type)); 85 if (err || len != out_len) 86 goto dump; 87 88 /* 89 * Data length can be less than a full block, even for blocks that are 90 * not the last in the file (e.g., as a result of making a hole and 91 * appending data). Ensure that the remainder is zeroed out. 92 */ 93 if (len < UBIFS_BLOCK_SIZE) 94 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 95 96 return 0; 97 98 dump: 99 ubifs_err("bad data node (block %u, inode %lu)", 100 block, inode->i_ino); 101 ubifs_dump_node(c, dn); 102 return -EINVAL; 103 } 104 105 static int do_readpage(struct page *page) 106 { 107 void *addr; 108 int err = 0, i; 109 unsigned int block, beyond; 110 struct ubifs_data_node *dn; 111 struct inode *inode = page->mapping->host; 112 loff_t i_size = i_size_read(inode); 113 114 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 115 inode->i_ino, page->index, i_size, page->flags); 116 ubifs_assert(!PageChecked(page)); 117 ubifs_assert(!PagePrivate(page)); 118 119 addr = kmap(page); 120 121 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 122 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 123 if (block >= beyond) { 124 /* Reading beyond inode */ 125 SetPageChecked(page); 126 memset(addr, 0, PAGE_CACHE_SIZE); 127 goto out; 128 } 129 130 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 131 if (!dn) { 132 err = -ENOMEM; 133 goto error; 134 } 135 136 i = 0; 137 while (1) { 138 int ret; 139 140 if (block >= beyond) { 141 /* Reading beyond inode */ 142 err = -ENOENT; 143 memset(addr, 0, UBIFS_BLOCK_SIZE); 144 } else { 145 ret = read_block(inode, addr, block, dn); 146 if (ret) { 147 err = ret; 148 if (err != -ENOENT) 149 break; 150 } else if (block + 1 == beyond) { 151 int dlen = le32_to_cpu(dn->size); 152 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 153 154 if (ilen && ilen < dlen) 155 memset(addr + ilen, 0, dlen - ilen); 156 } 157 } 158 if (++i >= UBIFS_BLOCKS_PER_PAGE) 159 break; 160 block += 1; 161 addr += UBIFS_BLOCK_SIZE; 162 } 163 if (err) { 164 if (err == -ENOENT) { 165 /* Not found, so it must be a hole */ 166 SetPageChecked(page); 167 dbg_gen("hole"); 168 goto out_free; 169 } 170 ubifs_err("cannot read page %lu of inode %lu, error %d", 171 page->index, inode->i_ino, err); 172 goto error; 173 } 174 175 out_free: 176 kfree(dn); 177 out: 178 SetPageUptodate(page); 179 ClearPageError(page); 180 flush_dcache_page(page); 181 kunmap(page); 182 return 0; 183 184 error: 185 kfree(dn); 186 ClearPageUptodate(page); 187 SetPageError(page); 188 flush_dcache_page(page); 189 kunmap(page); 190 return err; 191 } 192 193 /** 194 * release_new_page_budget - release budget of a new page. 195 * @c: UBIFS file-system description object 196 * 197 * This is a helper function which releases budget corresponding to the budget 198 * of one new page of data. 199 */ 200 static void release_new_page_budget(struct ubifs_info *c) 201 { 202 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 203 204 ubifs_release_budget(c, &req); 205 } 206 207 /** 208 * release_existing_page_budget - release budget of an existing page. 209 * @c: UBIFS file-system description object 210 * 211 * This is a helper function which releases budget corresponding to the budget 212 * of changing one one page of data which already exists on the flash media. 213 */ 214 static void release_existing_page_budget(struct ubifs_info *c) 215 { 216 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 217 218 ubifs_release_budget(c, &req); 219 } 220 221 static int write_begin_slow(struct address_space *mapping, 222 loff_t pos, unsigned len, struct page **pagep, 223 unsigned flags) 224 { 225 struct inode *inode = mapping->host; 226 struct ubifs_info *c = inode->i_sb->s_fs_info; 227 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 228 struct ubifs_budget_req req = { .new_page = 1 }; 229 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 230 struct page *page; 231 232 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 233 inode->i_ino, pos, len, inode->i_size); 234 235 /* 236 * At the slow path we have to budget before locking the page, because 237 * budgeting may force write-back, which would wait on locked pages and 238 * deadlock if we had the page locked. At this point we do not know 239 * anything about the page, so assume that this is a new page which is 240 * written to a hole. This corresponds to largest budget. Later the 241 * budget will be amended if this is not true. 242 */ 243 if (appending) 244 /* We are appending data, budget for inode change */ 245 req.dirtied_ino = 1; 246 247 err = ubifs_budget_space(c, &req); 248 if (unlikely(err)) 249 return err; 250 251 page = grab_cache_page_write_begin(mapping, index, flags); 252 if (unlikely(!page)) { 253 ubifs_release_budget(c, &req); 254 return -ENOMEM; 255 } 256 257 if (!PageUptodate(page)) { 258 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) 259 SetPageChecked(page); 260 else { 261 err = do_readpage(page); 262 if (err) { 263 unlock_page(page); 264 page_cache_release(page); 265 ubifs_release_budget(c, &req); 266 return err; 267 } 268 } 269 270 SetPageUptodate(page); 271 ClearPageError(page); 272 } 273 274 if (PagePrivate(page)) 275 /* 276 * The page is dirty, which means it was budgeted twice: 277 * o first time the budget was allocated by the task which 278 * made the page dirty and set the PG_private flag; 279 * o and then we budgeted for it for the second time at the 280 * very beginning of this function. 281 * 282 * So what we have to do is to release the page budget we 283 * allocated. 284 */ 285 release_new_page_budget(c); 286 else if (!PageChecked(page)) 287 /* 288 * We are changing a page which already exists on the media. 289 * This means that changing the page does not make the amount 290 * of indexing information larger, and this part of the budget 291 * which we have already acquired may be released. 292 */ 293 ubifs_convert_page_budget(c); 294 295 if (appending) { 296 struct ubifs_inode *ui = ubifs_inode(inode); 297 298 /* 299 * 'ubifs_write_end()' is optimized from the fast-path part of 300 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 301 * if data is appended. 302 */ 303 mutex_lock(&ui->ui_mutex); 304 if (ui->dirty) 305 /* 306 * The inode is dirty already, so we may free the 307 * budget we allocated. 308 */ 309 ubifs_release_dirty_inode_budget(c, ui); 310 } 311 312 *pagep = page; 313 return 0; 314 } 315 316 /** 317 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 318 * @c: UBIFS file-system description object 319 * @page: page to allocate budget for 320 * @ui: UBIFS inode object the page belongs to 321 * @appending: non-zero if the page is appended 322 * 323 * This is a helper function for 'ubifs_write_begin()' which allocates budget 324 * for the operation. The budget is allocated differently depending on whether 325 * this is appending, whether the page is dirty or not, and so on. This 326 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 327 * in case of success and %-ENOSPC in case of failure. 328 */ 329 static int allocate_budget(struct ubifs_info *c, struct page *page, 330 struct ubifs_inode *ui, int appending) 331 { 332 struct ubifs_budget_req req = { .fast = 1 }; 333 334 if (PagePrivate(page)) { 335 if (!appending) 336 /* 337 * The page is dirty and we are not appending, which 338 * means no budget is needed at all. 339 */ 340 return 0; 341 342 mutex_lock(&ui->ui_mutex); 343 if (ui->dirty) 344 /* 345 * The page is dirty and we are appending, so the inode 346 * has to be marked as dirty. However, it is already 347 * dirty, so we do not need any budget. We may return, 348 * but @ui->ui_mutex hast to be left locked because we 349 * should prevent write-back from flushing the inode 350 * and freeing the budget. The lock will be released in 351 * 'ubifs_write_end()'. 352 */ 353 return 0; 354 355 /* 356 * The page is dirty, we are appending, the inode is clean, so 357 * we need to budget the inode change. 358 */ 359 req.dirtied_ino = 1; 360 } else { 361 if (PageChecked(page)) 362 /* 363 * The page corresponds to a hole and does not 364 * exist on the media. So changing it makes 365 * make the amount of indexing information 366 * larger, and we have to budget for a new 367 * page. 368 */ 369 req.new_page = 1; 370 else 371 /* 372 * Not a hole, the change will not add any new 373 * indexing information, budget for page 374 * change. 375 */ 376 req.dirtied_page = 1; 377 378 if (appending) { 379 mutex_lock(&ui->ui_mutex); 380 if (!ui->dirty) 381 /* 382 * The inode is clean but we will have to mark 383 * it as dirty because we are appending. This 384 * needs a budget. 385 */ 386 req.dirtied_ino = 1; 387 } 388 } 389 390 return ubifs_budget_space(c, &req); 391 } 392 393 /* 394 * This function is called when a page of data is going to be written. Since 395 * the page of data will not necessarily go to the flash straight away, UBIFS 396 * has to reserve space on the media for it, which is done by means of 397 * budgeting. 398 * 399 * This is the hot-path of the file-system and we are trying to optimize it as 400 * much as possible. For this reasons it is split on 2 parts - slow and fast. 401 * 402 * There many budgeting cases: 403 * o a new page is appended - we have to budget for a new page and for 404 * changing the inode; however, if the inode is already dirty, there is 405 * no need to budget for it; 406 * o an existing clean page is changed - we have budget for it; if the page 407 * does not exist on the media (a hole), we have to budget for a new 408 * page; otherwise, we may budget for changing an existing page; the 409 * difference between these cases is that changing an existing page does 410 * not introduce anything new to the FS indexing information, so it does 411 * not grow, and smaller budget is acquired in this case; 412 * o an existing dirty page is changed - no need to budget at all, because 413 * the page budget has been acquired by earlier, when the page has been 414 * marked dirty. 415 * 416 * UBIFS budgeting sub-system may force write-back if it thinks there is no 417 * space to reserve. This imposes some locking restrictions and makes it 418 * impossible to take into account the above cases, and makes it impossible to 419 * optimize budgeting. 420 * 421 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 422 * there is a plenty of flash space and the budget will be acquired quickly, 423 * without forcing write-back. The slow path does not make this assumption. 424 */ 425 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 426 loff_t pos, unsigned len, unsigned flags, 427 struct page **pagep, void **fsdata) 428 { 429 struct inode *inode = mapping->host; 430 struct ubifs_info *c = inode->i_sb->s_fs_info; 431 struct ubifs_inode *ui = ubifs_inode(inode); 432 pgoff_t index = pos >> PAGE_CACHE_SHIFT; 433 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 434 int skipped_read = 0; 435 struct page *page; 436 437 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size); 438 ubifs_assert(!c->ro_media && !c->ro_mount); 439 440 if (unlikely(c->ro_error)) 441 return -EROFS; 442 443 /* Try out the fast-path part first */ 444 page = grab_cache_page_write_begin(mapping, index, flags); 445 if (unlikely(!page)) 446 return -ENOMEM; 447 448 if (!PageUptodate(page)) { 449 /* The page is not loaded from the flash */ 450 if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) { 451 /* 452 * We change whole page so no need to load it. But we 453 * do not know whether this page exists on the media or 454 * not, so we assume the latter because it requires 455 * larger budget. The assumption is that it is better 456 * to budget a bit more than to read the page from the 457 * media. Thus, we are setting the @PG_checked flag 458 * here. 459 */ 460 SetPageChecked(page); 461 skipped_read = 1; 462 } else { 463 err = do_readpage(page); 464 if (err) { 465 unlock_page(page); 466 page_cache_release(page); 467 return err; 468 } 469 } 470 471 SetPageUptodate(page); 472 ClearPageError(page); 473 } 474 475 err = allocate_budget(c, page, ui, appending); 476 if (unlikely(err)) { 477 ubifs_assert(err == -ENOSPC); 478 /* 479 * If we skipped reading the page because we were going to 480 * write all of it, then it is not up to date. 481 */ 482 if (skipped_read) { 483 ClearPageChecked(page); 484 ClearPageUptodate(page); 485 } 486 /* 487 * Budgeting failed which means it would have to force 488 * write-back but didn't, because we set the @fast flag in the 489 * request. Write-back cannot be done now, while we have the 490 * page locked, because it would deadlock. Unlock and free 491 * everything and fall-back to slow-path. 492 */ 493 if (appending) { 494 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 495 mutex_unlock(&ui->ui_mutex); 496 } 497 unlock_page(page); 498 page_cache_release(page); 499 500 return write_begin_slow(mapping, pos, len, pagep, flags); 501 } 502 503 /* 504 * Whee, we acquired budgeting quickly - without involving 505 * garbage-collection, committing or forcing write-back. We return 506 * with @ui->ui_mutex locked if we are appending pages, and unlocked 507 * otherwise. This is an optimization (slightly hacky though). 508 */ 509 *pagep = page; 510 return 0; 511 512 } 513 514 /** 515 * cancel_budget - cancel budget. 516 * @c: UBIFS file-system description object 517 * @page: page to cancel budget for 518 * @ui: UBIFS inode object the page belongs to 519 * @appending: non-zero if the page is appended 520 * 521 * This is a helper function for a page write operation. It unlocks the 522 * @ui->ui_mutex in case of appending. 523 */ 524 static void cancel_budget(struct ubifs_info *c, struct page *page, 525 struct ubifs_inode *ui, int appending) 526 { 527 if (appending) { 528 if (!ui->dirty) 529 ubifs_release_dirty_inode_budget(c, ui); 530 mutex_unlock(&ui->ui_mutex); 531 } 532 if (!PagePrivate(page)) { 533 if (PageChecked(page)) 534 release_new_page_budget(c); 535 else 536 release_existing_page_budget(c); 537 } 538 } 539 540 static int ubifs_write_end(struct file *file, struct address_space *mapping, 541 loff_t pos, unsigned len, unsigned copied, 542 struct page *page, void *fsdata) 543 { 544 struct inode *inode = mapping->host; 545 struct ubifs_inode *ui = ubifs_inode(inode); 546 struct ubifs_info *c = inode->i_sb->s_fs_info; 547 loff_t end_pos = pos + len; 548 int appending = !!(end_pos > inode->i_size); 549 550 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 551 inode->i_ino, pos, page->index, len, copied, inode->i_size); 552 553 if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) { 554 /* 555 * VFS copied less data to the page that it intended and 556 * declared in its '->write_begin()' call via the @len 557 * argument. If the page was not up-to-date, and @len was 558 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did 559 * not load it from the media (for optimization reasons). This 560 * means that part of the page contains garbage. So read the 561 * page now. 562 */ 563 dbg_gen("copied %d instead of %d, read page and repeat", 564 copied, len); 565 cancel_budget(c, page, ui, appending); 566 ClearPageChecked(page); 567 568 /* 569 * Return 0 to force VFS to repeat the whole operation, or the 570 * error code if 'do_readpage()' fails. 571 */ 572 copied = do_readpage(page); 573 goto out; 574 } 575 576 if (!PagePrivate(page)) { 577 SetPagePrivate(page); 578 atomic_long_inc(&c->dirty_pg_cnt); 579 __set_page_dirty_nobuffers(page); 580 } 581 582 if (appending) { 583 i_size_write(inode, end_pos); 584 ui->ui_size = end_pos; 585 /* 586 * Note, we do not set @I_DIRTY_PAGES (which means that the 587 * inode has dirty pages), this has been done in 588 * '__set_page_dirty_nobuffers()'. 589 */ 590 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 591 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 592 mutex_unlock(&ui->ui_mutex); 593 } 594 595 out: 596 unlock_page(page); 597 page_cache_release(page); 598 return copied; 599 } 600 601 /** 602 * populate_page - copy data nodes into a page for bulk-read. 603 * @c: UBIFS file-system description object 604 * @page: page 605 * @bu: bulk-read information 606 * @n: next zbranch slot 607 * 608 * This function returns %0 on success and a negative error code on failure. 609 */ 610 static int populate_page(struct ubifs_info *c, struct page *page, 611 struct bu_info *bu, int *n) 612 { 613 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 614 struct inode *inode = page->mapping->host; 615 loff_t i_size = i_size_read(inode); 616 unsigned int page_block; 617 void *addr, *zaddr; 618 pgoff_t end_index; 619 620 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 621 inode->i_ino, page->index, i_size, page->flags); 622 623 addr = zaddr = kmap(page); 624 625 end_index = (i_size - 1) >> PAGE_CACHE_SHIFT; 626 if (!i_size || page->index > end_index) { 627 hole = 1; 628 memset(addr, 0, PAGE_CACHE_SIZE); 629 goto out_hole; 630 } 631 632 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 633 while (1) { 634 int err, len, out_len, dlen; 635 636 if (nn >= bu->cnt) { 637 hole = 1; 638 memset(addr, 0, UBIFS_BLOCK_SIZE); 639 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 640 struct ubifs_data_node *dn; 641 642 dn = bu->buf + (bu->zbranch[nn].offs - offs); 643 644 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 645 ubifs_inode(inode)->creat_sqnum); 646 647 len = le32_to_cpu(dn->size); 648 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 649 goto out_err; 650 651 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 652 out_len = UBIFS_BLOCK_SIZE; 653 err = ubifs_decompress(&dn->data, dlen, addr, &out_len, 654 le16_to_cpu(dn->compr_type)); 655 if (err || len != out_len) 656 goto out_err; 657 658 if (len < UBIFS_BLOCK_SIZE) 659 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 660 661 nn += 1; 662 read = (i << UBIFS_BLOCK_SHIFT) + len; 663 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 664 nn += 1; 665 continue; 666 } else { 667 hole = 1; 668 memset(addr, 0, UBIFS_BLOCK_SIZE); 669 } 670 if (++i >= UBIFS_BLOCKS_PER_PAGE) 671 break; 672 addr += UBIFS_BLOCK_SIZE; 673 page_block += 1; 674 } 675 676 if (end_index == page->index) { 677 int len = i_size & (PAGE_CACHE_SIZE - 1); 678 679 if (len && len < read) 680 memset(zaddr + len, 0, read - len); 681 } 682 683 out_hole: 684 if (hole) { 685 SetPageChecked(page); 686 dbg_gen("hole"); 687 } 688 689 SetPageUptodate(page); 690 ClearPageError(page); 691 flush_dcache_page(page); 692 kunmap(page); 693 *n = nn; 694 return 0; 695 696 out_err: 697 ClearPageUptodate(page); 698 SetPageError(page); 699 flush_dcache_page(page); 700 kunmap(page); 701 ubifs_err("bad data node (block %u, inode %lu)", 702 page_block, inode->i_ino); 703 return -EINVAL; 704 } 705 706 /** 707 * ubifs_do_bulk_read - do bulk-read. 708 * @c: UBIFS file-system description object 709 * @bu: bulk-read information 710 * @page1: first page to read 711 * 712 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 713 */ 714 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 715 struct page *page1) 716 { 717 pgoff_t offset = page1->index, end_index; 718 struct address_space *mapping = page1->mapping; 719 struct inode *inode = mapping->host; 720 struct ubifs_inode *ui = ubifs_inode(inode); 721 int err, page_idx, page_cnt, ret = 0, n = 0; 722 int allocate = bu->buf ? 0 : 1; 723 loff_t isize; 724 725 err = ubifs_tnc_get_bu_keys(c, bu); 726 if (err) 727 goto out_warn; 728 729 if (bu->eof) { 730 /* Turn off bulk-read at the end of the file */ 731 ui->read_in_a_row = 1; 732 ui->bulk_read = 0; 733 } 734 735 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 736 if (!page_cnt) { 737 /* 738 * This happens when there are multiple blocks per page and the 739 * blocks for the first page we are looking for, are not 740 * together. If all the pages were like this, bulk-read would 741 * reduce performance, so we turn it off for a while. 742 */ 743 goto out_bu_off; 744 } 745 746 if (bu->cnt) { 747 if (allocate) { 748 /* 749 * Allocate bulk-read buffer depending on how many data 750 * nodes we are going to read. 751 */ 752 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 753 bu->zbranch[bu->cnt - 1].len - 754 bu->zbranch[0].offs; 755 ubifs_assert(bu->buf_len > 0); 756 ubifs_assert(bu->buf_len <= c->leb_size); 757 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 758 if (!bu->buf) 759 goto out_bu_off; 760 } 761 762 err = ubifs_tnc_bulk_read(c, bu); 763 if (err) 764 goto out_warn; 765 } 766 767 err = populate_page(c, page1, bu, &n); 768 if (err) 769 goto out_warn; 770 771 unlock_page(page1); 772 ret = 1; 773 774 isize = i_size_read(inode); 775 if (isize == 0) 776 goto out_free; 777 end_index = ((isize - 1) >> PAGE_CACHE_SHIFT); 778 779 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 780 pgoff_t page_offset = offset + page_idx; 781 struct page *page; 782 783 if (page_offset > end_index) 784 break; 785 page = find_or_create_page(mapping, page_offset, 786 GFP_NOFS | __GFP_COLD); 787 if (!page) 788 break; 789 if (!PageUptodate(page)) 790 err = populate_page(c, page, bu, &n); 791 unlock_page(page); 792 page_cache_release(page); 793 if (err) 794 break; 795 } 796 797 ui->last_page_read = offset + page_idx - 1; 798 799 out_free: 800 if (allocate) 801 kfree(bu->buf); 802 return ret; 803 804 out_warn: 805 ubifs_warn("ignoring error %d and skipping bulk-read", err); 806 goto out_free; 807 808 out_bu_off: 809 ui->read_in_a_row = ui->bulk_read = 0; 810 goto out_free; 811 } 812 813 /** 814 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 815 * @page: page from which to start bulk-read. 816 * 817 * Some flash media are capable of reading sequentially at faster rates. UBIFS 818 * bulk-read facility is designed to take advantage of that, by reading in one 819 * go consecutive data nodes that are also located consecutively in the same 820 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 821 */ 822 static int ubifs_bulk_read(struct page *page) 823 { 824 struct inode *inode = page->mapping->host; 825 struct ubifs_info *c = inode->i_sb->s_fs_info; 826 struct ubifs_inode *ui = ubifs_inode(inode); 827 pgoff_t index = page->index, last_page_read = ui->last_page_read; 828 struct bu_info *bu; 829 int err = 0, allocated = 0; 830 831 ui->last_page_read = index; 832 if (!c->bulk_read) 833 return 0; 834 835 /* 836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 837 * so don't bother if we cannot lock the mutex. 838 */ 839 if (!mutex_trylock(&ui->ui_mutex)) 840 return 0; 841 842 if (index != last_page_read + 1) { 843 /* Turn off bulk-read if we stop reading sequentially */ 844 ui->read_in_a_row = 1; 845 if (ui->bulk_read) 846 ui->bulk_read = 0; 847 goto out_unlock; 848 } 849 850 if (!ui->bulk_read) { 851 ui->read_in_a_row += 1; 852 if (ui->read_in_a_row < 3) 853 goto out_unlock; 854 /* Three reads in a row, so switch on bulk-read */ 855 ui->bulk_read = 1; 856 } 857 858 /* 859 * If possible, try to use pre-allocated bulk-read information, which 860 * is protected by @c->bu_mutex. 861 */ 862 if (mutex_trylock(&c->bu_mutex)) 863 bu = &c->bu; 864 else { 865 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 866 if (!bu) 867 goto out_unlock; 868 869 bu->buf = NULL; 870 allocated = 1; 871 } 872 873 bu->buf_len = c->max_bu_buf_len; 874 data_key_init(c, &bu->key, inode->i_ino, 875 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 876 err = ubifs_do_bulk_read(c, bu, page); 877 878 if (!allocated) 879 mutex_unlock(&c->bu_mutex); 880 else 881 kfree(bu); 882 883 out_unlock: 884 mutex_unlock(&ui->ui_mutex); 885 return err; 886 } 887 888 static int ubifs_readpage(struct file *file, struct page *page) 889 { 890 if (ubifs_bulk_read(page)) 891 return 0; 892 do_readpage(page); 893 unlock_page(page); 894 return 0; 895 } 896 897 static int do_writepage(struct page *page, int len) 898 { 899 int err = 0, i, blen; 900 unsigned int block; 901 void *addr; 902 union ubifs_key key; 903 struct inode *inode = page->mapping->host; 904 struct ubifs_info *c = inode->i_sb->s_fs_info; 905 906 #ifdef UBIFS_DEBUG 907 struct ubifs_inode *ui = ubifs_inode(inode); 908 spin_lock(&ui->ui_lock); 909 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT); 910 spin_unlock(&ui->ui_lock); 911 #endif 912 913 /* Update radix tree tags */ 914 set_page_writeback(page); 915 916 addr = kmap(page); 917 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 918 i = 0; 919 while (len) { 920 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 921 data_key_init(c, &key, inode->i_ino, block); 922 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 923 if (err) 924 break; 925 if (++i >= UBIFS_BLOCKS_PER_PAGE) 926 break; 927 block += 1; 928 addr += blen; 929 len -= blen; 930 } 931 if (err) { 932 SetPageError(page); 933 ubifs_err("cannot write page %lu of inode %lu, error %d", 934 page->index, inode->i_ino, err); 935 ubifs_ro_mode(c, err); 936 } 937 938 ubifs_assert(PagePrivate(page)); 939 if (PageChecked(page)) 940 release_new_page_budget(c); 941 else 942 release_existing_page_budget(c); 943 944 atomic_long_dec(&c->dirty_pg_cnt); 945 ClearPagePrivate(page); 946 ClearPageChecked(page); 947 948 kunmap(page); 949 unlock_page(page); 950 end_page_writeback(page); 951 return err; 952 } 953 954 /* 955 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 956 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 957 * situation when a we have an inode with size 0, then a megabyte of data is 958 * appended to the inode, then write-back starts and flushes some amount of the 959 * dirty pages, the journal becomes full, commit happens and finishes, and then 960 * an unclean reboot happens. When the file system is mounted next time, the 961 * inode size would still be 0, but there would be many pages which are beyond 962 * the inode size, they would be indexed and consume flash space. Because the 963 * journal has been committed, the replay would not be able to detect this 964 * situation and correct the inode size. This means UBIFS would have to scan 965 * whole index and correct all inode sizes, which is long an unacceptable. 966 * 967 * To prevent situations like this, UBIFS writes pages back only if they are 968 * within the last synchronized inode size, i.e. the size which has been 969 * written to the flash media last time. Otherwise, UBIFS forces inode 970 * write-back, thus making sure the on-flash inode contains current inode size, 971 * and then keeps writing pages back. 972 * 973 * Some locking issues explanation. 'ubifs_writepage()' first is called with 974 * the page locked, and it locks @ui_mutex. However, write-back does take inode 975 * @i_mutex, which means other VFS operations may be run on this inode at the 976 * same time. And the problematic one is truncation to smaller size, from where 977 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 978 * then drops the truncated pages. And while dropping the pages, it takes the 979 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 980 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 981 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 982 * 983 * XXX(truncate): with the new truncate sequence this is not true anymore, 984 * and the calls to truncate_setsize can be move around freely. They should 985 * be moved to the very end of the truncate sequence. 986 * 987 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 988 * inode size. How do we do this if @inode->i_size may became smaller while we 989 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 990 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 991 * internally and updates it under @ui_mutex. 992 * 993 * Q: why we do not worry that if we race with truncation, we may end up with a 994 * situation when the inode is truncated while we are in the middle of 995 * 'do_writepage()', so we do write beyond inode size? 996 * A: If we are in the middle of 'do_writepage()', truncation would be locked 997 * on the page lock and it would not write the truncated inode node to the 998 * journal before we have finished. 999 */ 1000 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1001 { 1002 struct inode *inode = page->mapping->host; 1003 struct ubifs_inode *ui = ubifs_inode(inode); 1004 loff_t i_size = i_size_read(inode), synced_i_size; 1005 pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT; 1006 int err, len = i_size & (PAGE_CACHE_SIZE - 1); 1007 void *kaddr; 1008 1009 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1010 inode->i_ino, page->index, page->flags); 1011 ubifs_assert(PagePrivate(page)); 1012 1013 /* Is the page fully outside @i_size? (truncate in progress) */ 1014 if (page->index > end_index || (page->index == end_index && !len)) { 1015 err = 0; 1016 goto out_unlock; 1017 } 1018 1019 spin_lock(&ui->ui_lock); 1020 synced_i_size = ui->synced_i_size; 1021 spin_unlock(&ui->ui_lock); 1022 1023 /* Is the page fully inside @i_size? */ 1024 if (page->index < end_index) { 1025 if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) { 1026 err = inode->i_sb->s_op->write_inode(inode, NULL); 1027 if (err) 1028 goto out_unlock; 1029 /* 1030 * The inode has been written, but the write-buffer has 1031 * not been synchronized, so in case of an unclean 1032 * reboot we may end up with some pages beyond inode 1033 * size, but they would be in the journal (because 1034 * commit flushes write buffers) and recovery would deal 1035 * with this. 1036 */ 1037 } 1038 return do_writepage(page, PAGE_CACHE_SIZE); 1039 } 1040 1041 /* 1042 * The page straddles @i_size. It must be zeroed out on each and every 1043 * writepage invocation because it may be mmapped. "A file is mapped 1044 * in multiples of the page size. For a file that is not a multiple of 1045 * the page size, the remaining memory is zeroed when mapped, and 1046 * writes to that region are not written out to the file." 1047 */ 1048 kaddr = kmap_atomic(page); 1049 memset(kaddr + len, 0, PAGE_CACHE_SIZE - len); 1050 flush_dcache_page(page); 1051 kunmap_atomic(kaddr); 1052 1053 if (i_size > synced_i_size) { 1054 err = inode->i_sb->s_op->write_inode(inode, NULL); 1055 if (err) 1056 goto out_unlock; 1057 } 1058 1059 return do_writepage(page, len); 1060 1061 out_unlock: 1062 unlock_page(page); 1063 return err; 1064 } 1065 1066 /** 1067 * do_attr_changes - change inode attributes. 1068 * @inode: inode to change attributes for 1069 * @attr: describes attributes to change 1070 */ 1071 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1072 { 1073 if (attr->ia_valid & ATTR_UID) 1074 inode->i_uid = attr->ia_uid; 1075 if (attr->ia_valid & ATTR_GID) 1076 inode->i_gid = attr->ia_gid; 1077 if (attr->ia_valid & ATTR_ATIME) 1078 inode->i_atime = timespec_trunc(attr->ia_atime, 1079 inode->i_sb->s_time_gran); 1080 if (attr->ia_valid & ATTR_MTIME) 1081 inode->i_mtime = timespec_trunc(attr->ia_mtime, 1082 inode->i_sb->s_time_gran); 1083 if (attr->ia_valid & ATTR_CTIME) 1084 inode->i_ctime = timespec_trunc(attr->ia_ctime, 1085 inode->i_sb->s_time_gran); 1086 if (attr->ia_valid & ATTR_MODE) { 1087 umode_t mode = attr->ia_mode; 1088 1089 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1090 mode &= ~S_ISGID; 1091 inode->i_mode = mode; 1092 } 1093 } 1094 1095 /** 1096 * do_truncation - truncate an inode. 1097 * @c: UBIFS file-system description object 1098 * @inode: inode to truncate 1099 * @attr: inode attribute changes description 1100 * 1101 * This function implements VFS '->setattr()' call when the inode is truncated 1102 * to a smaller size. Returns zero in case of success and a negative error code 1103 * in case of failure. 1104 */ 1105 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1106 const struct iattr *attr) 1107 { 1108 int err; 1109 struct ubifs_budget_req req; 1110 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1111 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1112 struct ubifs_inode *ui = ubifs_inode(inode); 1113 1114 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1115 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1116 1117 /* 1118 * If this is truncation to a smaller size, and we do not truncate on a 1119 * block boundary, budget for changing one data block, because the last 1120 * block will be re-written. 1121 */ 1122 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1123 req.dirtied_page = 1; 1124 1125 req.dirtied_ino = 1; 1126 /* A funny way to budget for truncation node */ 1127 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1128 err = ubifs_budget_space(c, &req); 1129 if (err) { 1130 /* 1131 * Treat truncations to zero as deletion and always allow them, 1132 * just like we do for '->unlink()'. 1133 */ 1134 if (new_size || err != -ENOSPC) 1135 return err; 1136 budgeted = 0; 1137 } 1138 1139 truncate_setsize(inode, new_size); 1140 1141 if (offset) { 1142 pgoff_t index = new_size >> PAGE_CACHE_SHIFT; 1143 struct page *page; 1144 1145 page = find_lock_page(inode->i_mapping, index); 1146 if (page) { 1147 if (PageDirty(page)) { 1148 /* 1149 * 'ubifs_jnl_truncate()' will try to truncate 1150 * the last data node, but it contains 1151 * out-of-date data because the page is dirty. 1152 * Write the page now, so that 1153 * 'ubifs_jnl_truncate()' will see an already 1154 * truncated (and up to date) data node. 1155 */ 1156 ubifs_assert(PagePrivate(page)); 1157 1158 clear_page_dirty_for_io(page); 1159 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1160 offset = new_size & 1161 (PAGE_CACHE_SIZE - 1); 1162 err = do_writepage(page, offset); 1163 page_cache_release(page); 1164 if (err) 1165 goto out_budg; 1166 /* 1167 * We could now tell 'ubifs_jnl_truncate()' not 1168 * to read the last block. 1169 */ 1170 } else { 1171 /* 1172 * We could 'kmap()' the page and pass the data 1173 * to 'ubifs_jnl_truncate()' to save it from 1174 * having to read it. 1175 */ 1176 unlock_page(page); 1177 page_cache_release(page); 1178 } 1179 } 1180 } 1181 1182 mutex_lock(&ui->ui_mutex); 1183 ui->ui_size = inode->i_size; 1184 /* Truncation changes inode [mc]time */ 1185 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1186 /* Other attributes may be changed at the same time as well */ 1187 do_attr_changes(inode, attr); 1188 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1189 mutex_unlock(&ui->ui_mutex); 1190 1191 out_budg: 1192 if (budgeted) 1193 ubifs_release_budget(c, &req); 1194 else { 1195 c->bi.nospace = c->bi.nospace_rp = 0; 1196 smp_wmb(); 1197 } 1198 return err; 1199 } 1200 1201 /** 1202 * do_setattr - change inode attributes. 1203 * @c: UBIFS file-system description object 1204 * @inode: inode to change attributes for 1205 * @attr: inode attribute changes description 1206 * 1207 * This function implements VFS '->setattr()' call for all cases except 1208 * truncations to smaller size. Returns zero in case of success and a negative 1209 * error code in case of failure. 1210 */ 1211 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1212 const struct iattr *attr) 1213 { 1214 int err, release; 1215 loff_t new_size = attr->ia_size; 1216 struct ubifs_inode *ui = ubifs_inode(inode); 1217 struct ubifs_budget_req req = { .dirtied_ino = 1, 1218 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1219 1220 err = ubifs_budget_space(c, &req); 1221 if (err) 1222 return err; 1223 1224 if (attr->ia_valid & ATTR_SIZE) { 1225 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1226 truncate_setsize(inode, new_size); 1227 } 1228 1229 mutex_lock(&ui->ui_mutex); 1230 if (attr->ia_valid & ATTR_SIZE) { 1231 /* Truncation changes inode [mc]time */ 1232 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1233 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1234 ui->ui_size = inode->i_size; 1235 } 1236 1237 do_attr_changes(inode, attr); 1238 1239 release = ui->dirty; 1240 if (attr->ia_valid & ATTR_SIZE) 1241 /* 1242 * Inode length changed, so we have to make sure 1243 * @I_DIRTY_DATASYNC is set. 1244 */ 1245 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC); 1246 else 1247 mark_inode_dirty_sync(inode); 1248 mutex_unlock(&ui->ui_mutex); 1249 1250 if (release) 1251 ubifs_release_budget(c, &req); 1252 if (IS_SYNC(inode)) 1253 err = inode->i_sb->s_op->write_inode(inode, NULL); 1254 return err; 1255 } 1256 1257 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1258 { 1259 int err; 1260 struct inode *inode = dentry->d_inode; 1261 struct ubifs_info *c = inode->i_sb->s_fs_info; 1262 1263 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1264 inode->i_ino, inode->i_mode, attr->ia_valid); 1265 err = inode_change_ok(inode, attr); 1266 if (err) 1267 return err; 1268 1269 err = dbg_check_synced_i_size(c, inode); 1270 if (err) 1271 return err; 1272 1273 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1274 /* Truncation to a smaller size */ 1275 err = do_truncation(c, inode, attr); 1276 else 1277 err = do_setattr(c, inode, attr); 1278 1279 return err; 1280 } 1281 1282 static void ubifs_invalidatepage(struct page *page, unsigned int offset, 1283 unsigned int length) 1284 { 1285 struct inode *inode = page->mapping->host; 1286 struct ubifs_info *c = inode->i_sb->s_fs_info; 1287 1288 ubifs_assert(PagePrivate(page)); 1289 if (offset || length < PAGE_CACHE_SIZE) 1290 /* Partial page remains dirty */ 1291 return; 1292 1293 if (PageChecked(page)) 1294 release_new_page_budget(c); 1295 else 1296 release_existing_page_budget(c); 1297 1298 atomic_long_dec(&c->dirty_pg_cnt); 1299 ClearPagePrivate(page); 1300 ClearPageChecked(page); 1301 } 1302 1303 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd) 1304 { 1305 struct ubifs_inode *ui = ubifs_inode(dentry->d_inode); 1306 1307 nd_set_link(nd, ui->data); 1308 return NULL; 1309 } 1310 1311 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1312 { 1313 struct inode *inode = file->f_mapping->host; 1314 struct ubifs_info *c = inode->i_sb->s_fs_info; 1315 int err; 1316 1317 dbg_gen("syncing inode %lu", inode->i_ino); 1318 1319 if (c->ro_mount) 1320 /* 1321 * For some really strange reasons VFS does not filter out 1322 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1323 */ 1324 return 0; 1325 1326 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 1327 if (err) 1328 return err; 1329 mutex_lock(&inode->i_mutex); 1330 1331 /* Synchronize the inode unless this is a 'datasync()' call. */ 1332 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1333 err = inode->i_sb->s_op->write_inode(inode, NULL); 1334 if (err) 1335 goto out; 1336 } 1337 1338 /* 1339 * Nodes related to this inode may still sit in a write-buffer. Flush 1340 * them. 1341 */ 1342 err = ubifs_sync_wbufs_by_inode(c, inode); 1343 out: 1344 mutex_unlock(&inode->i_mutex); 1345 return err; 1346 } 1347 1348 /** 1349 * mctime_update_needed - check if mtime or ctime update is needed. 1350 * @inode: the inode to do the check for 1351 * @now: current time 1352 * 1353 * This helper function checks if the inode mtime/ctime should be updated or 1354 * not. If current values of the time-stamps are within the UBIFS inode time 1355 * granularity, they are not updated. This is an optimization. 1356 */ 1357 static inline int mctime_update_needed(const struct inode *inode, 1358 const struct timespec *now) 1359 { 1360 if (!timespec_equal(&inode->i_mtime, now) || 1361 !timespec_equal(&inode->i_ctime, now)) 1362 return 1; 1363 return 0; 1364 } 1365 1366 /** 1367 * update_ctime - update mtime and ctime of an inode. 1368 * @inode: inode to update 1369 * 1370 * This function updates mtime and ctime of the inode if it is not equivalent to 1371 * current time. Returns zero in case of success and a negative error code in 1372 * case of failure. 1373 */ 1374 static int update_mctime(struct inode *inode) 1375 { 1376 struct timespec now = ubifs_current_time(inode); 1377 struct ubifs_inode *ui = ubifs_inode(inode); 1378 struct ubifs_info *c = inode->i_sb->s_fs_info; 1379 1380 if (mctime_update_needed(inode, &now)) { 1381 int err, release; 1382 struct ubifs_budget_req req = { .dirtied_ino = 1, 1383 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1384 1385 err = ubifs_budget_space(c, &req); 1386 if (err) 1387 return err; 1388 1389 mutex_lock(&ui->ui_mutex); 1390 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1391 release = ui->dirty; 1392 mark_inode_dirty_sync(inode); 1393 mutex_unlock(&ui->ui_mutex); 1394 if (release) 1395 ubifs_release_budget(c, &req); 1396 } 1397 1398 return 0; 1399 } 1400 1401 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1402 { 1403 int err = update_mctime(file_inode(iocb->ki_filp)); 1404 if (err) 1405 return err; 1406 1407 return generic_file_write_iter(iocb, from); 1408 } 1409 1410 static int ubifs_set_page_dirty(struct page *page) 1411 { 1412 int ret; 1413 1414 ret = __set_page_dirty_nobuffers(page); 1415 /* 1416 * An attempt to dirty a page without budgeting for it - should not 1417 * happen. 1418 */ 1419 ubifs_assert(ret == 0); 1420 return ret; 1421 } 1422 1423 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1424 { 1425 /* 1426 * An attempt to release a dirty page without budgeting for it - should 1427 * not happen. 1428 */ 1429 if (PageWriteback(page)) 1430 return 0; 1431 ubifs_assert(PagePrivate(page)); 1432 ubifs_assert(0); 1433 ClearPagePrivate(page); 1434 ClearPageChecked(page); 1435 return 1; 1436 } 1437 1438 /* 1439 * mmap()d file has taken write protection fault and is being made writable. 1440 * UBIFS must ensure page is budgeted for. 1441 */ 1442 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, 1443 struct vm_fault *vmf) 1444 { 1445 struct page *page = vmf->page; 1446 struct inode *inode = file_inode(vma->vm_file); 1447 struct ubifs_info *c = inode->i_sb->s_fs_info; 1448 struct timespec now = ubifs_current_time(inode); 1449 struct ubifs_budget_req req = { .new_page = 1 }; 1450 int err, update_time; 1451 1452 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1453 i_size_read(inode)); 1454 ubifs_assert(!c->ro_media && !c->ro_mount); 1455 1456 if (unlikely(c->ro_error)) 1457 return VM_FAULT_SIGBUS; /* -EROFS */ 1458 1459 /* 1460 * We have not locked @page so far so we may budget for changing the 1461 * page. Note, we cannot do this after we locked the page, because 1462 * budgeting may cause write-back which would cause deadlock. 1463 * 1464 * At the moment we do not know whether the page is dirty or not, so we 1465 * assume that it is not and budget for a new page. We could look at 1466 * the @PG_private flag and figure this out, but we may race with write 1467 * back and the page state may change by the time we lock it, so this 1468 * would need additional care. We do not bother with this at the 1469 * moment, although it might be good idea to do. Instead, we allocate 1470 * budget for a new page and amend it later on if the page was in fact 1471 * dirty. 1472 * 1473 * The budgeting-related logic of this function is similar to what we 1474 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1475 * for more comments. 1476 */ 1477 update_time = mctime_update_needed(inode, &now); 1478 if (update_time) 1479 /* 1480 * We have to change inode time stamp which requires extra 1481 * budgeting. 1482 */ 1483 req.dirtied_ino = 1; 1484 1485 err = ubifs_budget_space(c, &req); 1486 if (unlikely(err)) { 1487 if (err == -ENOSPC) 1488 ubifs_warn("out of space for mmapped file (inode number %lu)", 1489 inode->i_ino); 1490 return VM_FAULT_SIGBUS; 1491 } 1492 1493 lock_page(page); 1494 if (unlikely(page->mapping != inode->i_mapping || 1495 page_offset(page) > i_size_read(inode))) { 1496 /* Page got truncated out from underneath us */ 1497 err = -EINVAL; 1498 goto out_unlock; 1499 } 1500 1501 if (PagePrivate(page)) 1502 release_new_page_budget(c); 1503 else { 1504 if (!PageChecked(page)) 1505 ubifs_convert_page_budget(c); 1506 SetPagePrivate(page); 1507 atomic_long_inc(&c->dirty_pg_cnt); 1508 __set_page_dirty_nobuffers(page); 1509 } 1510 1511 if (update_time) { 1512 int release; 1513 struct ubifs_inode *ui = ubifs_inode(inode); 1514 1515 mutex_lock(&ui->ui_mutex); 1516 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1517 release = ui->dirty; 1518 mark_inode_dirty_sync(inode); 1519 mutex_unlock(&ui->ui_mutex); 1520 if (release) 1521 ubifs_release_dirty_inode_budget(c, ui); 1522 } 1523 1524 wait_for_stable_page(page); 1525 return VM_FAULT_LOCKED; 1526 1527 out_unlock: 1528 unlock_page(page); 1529 ubifs_release_budget(c, &req); 1530 if (err) 1531 err = VM_FAULT_SIGBUS; 1532 return err; 1533 } 1534 1535 static const struct vm_operations_struct ubifs_file_vm_ops = { 1536 .fault = filemap_fault, 1537 .map_pages = filemap_map_pages, 1538 .page_mkwrite = ubifs_vm_page_mkwrite, 1539 .remap_pages = generic_file_remap_pages, 1540 }; 1541 1542 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1543 { 1544 int err; 1545 1546 err = generic_file_mmap(file, vma); 1547 if (err) 1548 return err; 1549 vma->vm_ops = &ubifs_file_vm_ops; 1550 return 0; 1551 } 1552 1553 const struct address_space_operations ubifs_file_address_operations = { 1554 .readpage = ubifs_readpage, 1555 .writepage = ubifs_writepage, 1556 .write_begin = ubifs_write_begin, 1557 .write_end = ubifs_write_end, 1558 .invalidatepage = ubifs_invalidatepage, 1559 .set_page_dirty = ubifs_set_page_dirty, 1560 .releasepage = ubifs_releasepage, 1561 }; 1562 1563 const struct inode_operations ubifs_file_inode_operations = { 1564 .setattr = ubifs_setattr, 1565 .getattr = ubifs_getattr, 1566 .setxattr = ubifs_setxattr, 1567 .getxattr = ubifs_getxattr, 1568 .listxattr = ubifs_listxattr, 1569 .removexattr = ubifs_removexattr, 1570 }; 1571 1572 const struct inode_operations ubifs_symlink_inode_operations = { 1573 .readlink = generic_readlink, 1574 .follow_link = ubifs_follow_link, 1575 .setattr = ubifs_setattr, 1576 .getattr = ubifs_getattr, 1577 }; 1578 1579 const struct file_operations ubifs_file_operations = { 1580 .llseek = generic_file_llseek, 1581 .read = new_sync_read, 1582 .write = new_sync_write, 1583 .read_iter = generic_file_read_iter, 1584 .write_iter = ubifs_write_iter, 1585 .mmap = ubifs_file_mmap, 1586 .fsync = ubifs_fsync, 1587 .unlocked_ioctl = ubifs_ioctl, 1588 .splice_read = generic_file_splice_read, 1589 .splice_write = iter_file_splice_write, 1590 #ifdef CONFIG_COMPAT 1591 .compat_ioctl = ubifs_compat_ioctl, 1592 #endif 1593 }; 1594