xref: /linux/fs/ubifs/file.c (revision 4949009eb8d40a441dcddcd96e101e77d31cf1b2)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when flusher thread is doing
41  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
42  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
43  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
44  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/aio.h>
54 #include <linux/mount.h>
55 #include <linux/namei.h>
56 #include <linux/slab.h>
57 
58 static int read_block(struct inode *inode, void *addr, unsigned int block,
59 		      struct ubifs_data_node *dn)
60 {
61 	struct ubifs_info *c = inode->i_sb->s_fs_info;
62 	int err, len, out_len;
63 	union ubifs_key key;
64 	unsigned int dlen;
65 
66 	data_key_init(c, &key, inode->i_ino, block);
67 	err = ubifs_tnc_lookup(c, &key, dn);
68 	if (err) {
69 		if (err == -ENOENT)
70 			/* Not found, so it must be a hole */
71 			memset(addr, 0, UBIFS_BLOCK_SIZE);
72 		return err;
73 	}
74 
75 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
76 		     ubifs_inode(inode)->creat_sqnum);
77 	len = le32_to_cpu(dn->size);
78 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
79 		goto dump;
80 
81 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
82 	out_len = UBIFS_BLOCK_SIZE;
83 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
84 			       le16_to_cpu(dn->compr_type));
85 	if (err || len != out_len)
86 		goto dump;
87 
88 	/*
89 	 * Data length can be less than a full block, even for blocks that are
90 	 * not the last in the file (e.g., as a result of making a hole and
91 	 * appending data). Ensure that the remainder is zeroed out.
92 	 */
93 	if (len < UBIFS_BLOCK_SIZE)
94 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
95 
96 	return 0;
97 
98 dump:
99 	ubifs_err("bad data node (block %u, inode %lu)",
100 		  block, inode->i_ino);
101 	ubifs_dump_node(c, dn);
102 	return -EINVAL;
103 }
104 
105 static int do_readpage(struct page *page)
106 {
107 	void *addr;
108 	int err = 0, i;
109 	unsigned int block, beyond;
110 	struct ubifs_data_node *dn;
111 	struct inode *inode = page->mapping->host;
112 	loff_t i_size = i_size_read(inode);
113 
114 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
115 		inode->i_ino, page->index, i_size, page->flags);
116 	ubifs_assert(!PageChecked(page));
117 	ubifs_assert(!PagePrivate(page));
118 
119 	addr = kmap(page);
120 
121 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
122 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
123 	if (block >= beyond) {
124 		/* Reading beyond inode */
125 		SetPageChecked(page);
126 		memset(addr, 0, PAGE_CACHE_SIZE);
127 		goto out;
128 	}
129 
130 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
131 	if (!dn) {
132 		err = -ENOMEM;
133 		goto error;
134 	}
135 
136 	i = 0;
137 	while (1) {
138 		int ret;
139 
140 		if (block >= beyond) {
141 			/* Reading beyond inode */
142 			err = -ENOENT;
143 			memset(addr, 0, UBIFS_BLOCK_SIZE);
144 		} else {
145 			ret = read_block(inode, addr, block, dn);
146 			if (ret) {
147 				err = ret;
148 				if (err != -ENOENT)
149 					break;
150 			} else if (block + 1 == beyond) {
151 				int dlen = le32_to_cpu(dn->size);
152 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
153 
154 				if (ilen && ilen < dlen)
155 					memset(addr + ilen, 0, dlen - ilen);
156 			}
157 		}
158 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
159 			break;
160 		block += 1;
161 		addr += UBIFS_BLOCK_SIZE;
162 	}
163 	if (err) {
164 		if (err == -ENOENT) {
165 			/* Not found, so it must be a hole */
166 			SetPageChecked(page);
167 			dbg_gen("hole");
168 			goto out_free;
169 		}
170 		ubifs_err("cannot read page %lu of inode %lu, error %d",
171 			  page->index, inode->i_ino, err);
172 		goto error;
173 	}
174 
175 out_free:
176 	kfree(dn);
177 out:
178 	SetPageUptodate(page);
179 	ClearPageError(page);
180 	flush_dcache_page(page);
181 	kunmap(page);
182 	return 0;
183 
184 error:
185 	kfree(dn);
186 	ClearPageUptodate(page);
187 	SetPageError(page);
188 	flush_dcache_page(page);
189 	kunmap(page);
190 	return err;
191 }
192 
193 /**
194  * release_new_page_budget - release budget of a new page.
195  * @c: UBIFS file-system description object
196  *
197  * This is a helper function which releases budget corresponding to the budget
198  * of one new page of data.
199  */
200 static void release_new_page_budget(struct ubifs_info *c)
201 {
202 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
203 
204 	ubifs_release_budget(c, &req);
205 }
206 
207 /**
208  * release_existing_page_budget - release budget of an existing page.
209  * @c: UBIFS file-system description object
210  *
211  * This is a helper function which releases budget corresponding to the budget
212  * of changing one one page of data which already exists on the flash media.
213  */
214 static void release_existing_page_budget(struct ubifs_info *c)
215 {
216 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
217 
218 	ubifs_release_budget(c, &req);
219 }
220 
221 static int write_begin_slow(struct address_space *mapping,
222 			    loff_t pos, unsigned len, struct page **pagep,
223 			    unsigned flags)
224 {
225 	struct inode *inode = mapping->host;
226 	struct ubifs_info *c = inode->i_sb->s_fs_info;
227 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
228 	struct ubifs_budget_req req = { .new_page = 1 };
229 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
230 	struct page *page;
231 
232 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
233 		inode->i_ino, pos, len, inode->i_size);
234 
235 	/*
236 	 * At the slow path we have to budget before locking the page, because
237 	 * budgeting may force write-back, which would wait on locked pages and
238 	 * deadlock if we had the page locked. At this point we do not know
239 	 * anything about the page, so assume that this is a new page which is
240 	 * written to a hole. This corresponds to largest budget. Later the
241 	 * budget will be amended if this is not true.
242 	 */
243 	if (appending)
244 		/* We are appending data, budget for inode change */
245 		req.dirtied_ino = 1;
246 
247 	err = ubifs_budget_space(c, &req);
248 	if (unlikely(err))
249 		return err;
250 
251 	page = grab_cache_page_write_begin(mapping, index, flags);
252 	if (unlikely(!page)) {
253 		ubifs_release_budget(c, &req);
254 		return -ENOMEM;
255 	}
256 
257 	if (!PageUptodate(page)) {
258 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
259 			SetPageChecked(page);
260 		else {
261 			err = do_readpage(page);
262 			if (err) {
263 				unlock_page(page);
264 				page_cache_release(page);
265 				ubifs_release_budget(c, &req);
266 				return err;
267 			}
268 		}
269 
270 		SetPageUptodate(page);
271 		ClearPageError(page);
272 	}
273 
274 	if (PagePrivate(page))
275 		/*
276 		 * The page is dirty, which means it was budgeted twice:
277 		 *   o first time the budget was allocated by the task which
278 		 *     made the page dirty and set the PG_private flag;
279 		 *   o and then we budgeted for it for the second time at the
280 		 *     very beginning of this function.
281 		 *
282 		 * So what we have to do is to release the page budget we
283 		 * allocated.
284 		 */
285 		release_new_page_budget(c);
286 	else if (!PageChecked(page))
287 		/*
288 		 * We are changing a page which already exists on the media.
289 		 * This means that changing the page does not make the amount
290 		 * of indexing information larger, and this part of the budget
291 		 * which we have already acquired may be released.
292 		 */
293 		ubifs_convert_page_budget(c);
294 
295 	if (appending) {
296 		struct ubifs_inode *ui = ubifs_inode(inode);
297 
298 		/*
299 		 * 'ubifs_write_end()' is optimized from the fast-path part of
300 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
301 		 * if data is appended.
302 		 */
303 		mutex_lock(&ui->ui_mutex);
304 		if (ui->dirty)
305 			/*
306 			 * The inode is dirty already, so we may free the
307 			 * budget we allocated.
308 			 */
309 			ubifs_release_dirty_inode_budget(c, ui);
310 	}
311 
312 	*pagep = page;
313 	return 0;
314 }
315 
316 /**
317  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
318  * @c: UBIFS file-system description object
319  * @page: page to allocate budget for
320  * @ui: UBIFS inode object the page belongs to
321  * @appending: non-zero if the page is appended
322  *
323  * This is a helper function for 'ubifs_write_begin()' which allocates budget
324  * for the operation. The budget is allocated differently depending on whether
325  * this is appending, whether the page is dirty or not, and so on. This
326  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
327  * in case of success and %-ENOSPC in case of failure.
328  */
329 static int allocate_budget(struct ubifs_info *c, struct page *page,
330 			   struct ubifs_inode *ui, int appending)
331 {
332 	struct ubifs_budget_req req = { .fast = 1 };
333 
334 	if (PagePrivate(page)) {
335 		if (!appending)
336 			/*
337 			 * The page is dirty and we are not appending, which
338 			 * means no budget is needed at all.
339 			 */
340 			return 0;
341 
342 		mutex_lock(&ui->ui_mutex);
343 		if (ui->dirty)
344 			/*
345 			 * The page is dirty and we are appending, so the inode
346 			 * has to be marked as dirty. However, it is already
347 			 * dirty, so we do not need any budget. We may return,
348 			 * but @ui->ui_mutex hast to be left locked because we
349 			 * should prevent write-back from flushing the inode
350 			 * and freeing the budget. The lock will be released in
351 			 * 'ubifs_write_end()'.
352 			 */
353 			return 0;
354 
355 		/*
356 		 * The page is dirty, we are appending, the inode is clean, so
357 		 * we need to budget the inode change.
358 		 */
359 		req.dirtied_ino = 1;
360 	} else {
361 		if (PageChecked(page))
362 			/*
363 			 * The page corresponds to a hole and does not
364 			 * exist on the media. So changing it makes
365 			 * make the amount of indexing information
366 			 * larger, and we have to budget for a new
367 			 * page.
368 			 */
369 			req.new_page = 1;
370 		else
371 			/*
372 			 * Not a hole, the change will not add any new
373 			 * indexing information, budget for page
374 			 * change.
375 			 */
376 			req.dirtied_page = 1;
377 
378 		if (appending) {
379 			mutex_lock(&ui->ui_mutex);
380 			if (!ui->dirty)
381 				/*
382 				 * The inode is clean but we will have to mark
383 				 * it as dirty because we are appending. This
384 				 * needs a budget.
385 				 */
386 				req.dirtied_ino = 1;
387 		}
388 	}
389 
390 	return ubifs_budget_space(c, &req);
391 }
392 
393 /*
394  * This function is called when a page of data is going to be written. Since
395  * the page of data will not necessarily go to the flash straight away, UBIFS
396  * has to reserve space on the media for it, which is done by means of
397  * budgeting.
398  *
399  * This is the hot-path of the file-system and we are trying to optimize it as
400  * much as possible. For this reasons it is split on 2 parts - slow and fast.
401  *
402  * There many budgeting cases:
403  *     o a new page is appended - we have to budget for a new page and for
404  *       changing the inode; however, if the inode is already dirty, there is
405  *       no need to budget for it;
406  *     o an existing clean page is changed - we have budget for it; if the page
407  *       does not exist on the media (a hole), we have to budget for a new
408  *       page; otherwise, we may budget for changing an existing page; the
409  *       difference between these cases is that changing an existing page does
410  *       not introduce anything new to the FS indexing information, so it does
411  *       not grow, and smaller budget is acquired in this case;
412  *     o an existing dirty page is changed - no need to budget at all, because
413  *       the page budget has been acquired by earlier, when the page has been
414  *       marked dirty.
415  *
416  * UBIFS budgeting sub-system may force write-back if it thinks there is no
417  * space to reserve. This imposes some locking restrictions and makes it
418  * impossible to take into account the above cases, and makes it impossible to
419  * optimize budgeting.
420  *
421  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
422  * there is a plenty of flash space and the budget will be acquired quickly,
423  * without forcing write-back. The slow path does not make this assumption.
424  */
425 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
426 			     loff_t pos, unsigned len, unsigned flags,
427 			     struct page **pagep, void **fsdata)
428 {
429 	struct inode *inode = mapping->host;
430 	struct ubifs_info *c = inode->i_sb->s_fs_info;
431 	struct ubifs_inode *ui = ubifs_inode(inode);
432 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
433 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
434 	int skipped_read = 0;
435 	struct page *page;
436 
437 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
438 	ubifs_assert(!c->ro_media && !c->ro_mount);
439 
440 	if (unlikely(c->ro_error))
441 		return -EROFS;
442 
443 	/* Try out the fast-path part first */
444 	page = grab_cache_page_write_begin(mapping, index, flags);
445 	if (unlikely(!page))
446 		return -ENOMEM;
447 
448 	if (!PageUptodate(page)) {
449 		/* The page is not loaded from the flash */
450 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
451 			/*
452 			 * We change whole page so no need to load it. But we
453 			 * do not know whether this page exists on the media or
454 			 * not, so we assume the latter because it requires
455 			 * larger budget. The assumption is that it is better
456 			 * to budget a bit more than to read the page from the
457 			 * media. Thus, we are setting the @PG_checked flag
458 			 * here.
459 			 */
460 			SetPageChecked(page);
461 			skipped_read = 1;
462 		} else {
463 			err = do_readpage(page);
464 			if (err) {
465 				unlock_page(page);
466 				page_cache_release(page);
467 				return err;
468 			}
469 		}
470 
471 		SetPageUptodate(page);
472 		ClearPageError(page);
473 	}
474 
475 	err = allocate_budget(c, page, ui, appending);
476 	if (unlikely(err)) {
477 		ubifs_assert(err == -ENOSPC);
478 		/*
479 		 * If we skipped reading the page because we were going to
480 		 * write all of it, then it is not up to date.
481 		 */
482 		if (skipped_read) {
483 			ClearPageChecked(page);
484 			ClearPageUptodate(page);
485 		}
486 		/*
487 		 * Budgeting failed which means it would have to force
488 		 * write-back but didn't, because we set the @fast flag in the
489 		 * request. Write-back cannot be done now, while we have the
490 		 * page locked, because it would deadlock. Unlock and free
491 		 * everything and fall-back to slow-path.
492 		 */
493 		if (appending) {
494 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
495 			mutex_unlock(&ui->ui_mutex);
496 		}
497 		unlock_page(page);
498 		page_cache_release(page);
499 
500 		return write_begin_slow(mapping, pos, len, pagep, flags);
501 	}
502 
503 	/*
504 	 * Whee, we acquired budgeting quickly - without involving
505 	 * garbage-collection, committing or forcing write-back. We return
506 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
507 	 * otherwise. This is an optimization (slightly hacky though).
508 	 */
509 	*pagep = page;
510 	return 0;
511 
512 }
513 
514 /**
515  * cancel_budget - cancel budget.
516  * @c: UBIFS file-system description object
517  * @page: page to cancel budget for
518  * @ui: UBIFS inode object the page belongs to
519  * @appending: non-zero if the page is appended
520  *
521  * This is a helper function for a page write operation. It unlocks the
522  * @ui->ui_mutex in case of appending.
523  */
524 static void cancel_budget(struct ubifs_info *c, struct page *page,
525 			  struct ubifs_inode *ui, int appending)
526 {
527 	if (appending) {
528 		if (!ui->dirty)
529 			ubifs_release_dirty_inode_budget(c, ui);
530 		mutex_unlock(&ui->ui_mutex);
531 	}
532 	if (!PagePrivate(page)) {
533 		if (PageChecked(page))
534 			release_new_page_budget(c);
535 		else
536 			release_existing_page_budget(c);
537 	}
538 }
539 
540 static int ubifs_write_end(struct file *file, struct address_space *mapping,
541 			   loff_t pos, unsigned len, unsigned copied,
542 			   struct page *page, void *fsdata)
543 {
544 	struct inode *inode = mapping->host;
545 	struct ubifs_inode *ui = ubifs_inode(inode);
546 	struct ubifs_info *c = inode->i_sb->s_fs_info;
547 	loff_t end_pos = pos + len;
548 	int appending = !!(end_pos > inode->i_size);
549 
550 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
551 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
552 
553 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
554 		/*
555 		 * VFS copied less data to the page that it intended and
556 		 * declared in its '->write_begin()' call via the @len
557 		 * argument. If the page was not up-to-date, and @len was
558 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
559 		 * not load it from the media (for optimization reasons). This
560 		 * means that part of the page contains garbage. So read the
561 		 * page now.
562 		 */
563 		dbg_gen("copied %d instead of %d, read page and repeat",
564 			copied, len);
565 		cancel_budget(c, page, ui, appending);
566 		ClearPageChecked(page);
567 
568 		/*
569 		 * Return 0 to force VFS to repeat the whole operation, or the
570 		 * error code if 'do_readpage()' fails.
571 		 */
572 		copied = do_readpage(page);
573 		goto out;
574 	}
575 
576 	if (!PagePrivate(page)) {
577 		SetPagePrivate(page);
578 		atomic_long_inc(&c->dirty_pg_cnt);
579 		__set_page_dirty_nobuffers(page);
580 	}
581 
582 	if (appending) {
583 		i_size_write(inode, end_pos);
584 		ui->ui_size = end_pos;
585 		/*
586 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
587 		 * inode has dirty pages), this has been done in
588 		 * '__set_page_dirty_nobuffers()'.
589 		 */
590 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
591 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
592 		mutex_unlock(&ui->ui_mutex);
593 	}
594 
595 out:
596 	unlock_page(page);
597 	page_cache_release(page);
598 	return copied;
599 }
600 
601 /**
602  * populate_page - copy data nodes into a page for bulk-read.
603  * @c: UBIFS file-system description object
604  * @page: page
605  * @bu: bulk-read information
606  * @n: next zbranch slot
607  *
608  * This function returns %0 on success and a negative error code on failure.
609  */
610 static int populate_page(struct ubifs_info *c, struct page *page,
611 			 struct bu_info *bu, int *n)
612 {
613 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
614 	struct inode *inode = page->mapping->host;
615 	loff_t i_size = i_size_read(inode);
616 	unsigned int page_block;
617 	void *addr, *zaddr;
618 	pgoff_t end_index;
619 
620 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
621 		inode->i_ino, page->index, i_size, page->flags);
622 
623 	addr = zaddr = kmap(page);
624 
625 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
626 	if (!i_size || page->index > end_index) {
627 		hole = 1;
628 		memset(addr, 0, PAGE_CACHE_SIZE);
629 		goto out_hole;
630 	}
631 
632 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
633 	while (1) {
634 		int err, len, out_len, dlen;
635 
636 		if (nn >= bu->cnt) {
637 			hole = 1;
638 			memset(addr, 0, UBIFS_BLOCK_SIZE);
639 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
640 			struct ubifs_data_node *dn;
641 
642 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
643 
644 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
645 				     ubifs_inode(inode)->creat_sqnum);
646 
647 			len = le32_to_cpu(dn->size);
648 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
649 				goto out_err;
650 
651 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
652 			out_len = UBIFS_BLOCK_SIZE;
653 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
654 					       le16_to_cpu(dn->compr_type));
655 			if (err || len != out_len)
656 				goto out_err;
657 
658 			if (len < UBIFS_BLOCK_SIZE)
659 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
660 
661 			nn += 1;
662 			read = (i << UBIFS_BLOCK_SHIFT) + len;
663 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
664 			nn += 1;
665 			continue;
666 		} else {
667 			hole = 1;
668 			memset(addr, 0, UBIFS_BLOCK_SIZE);
669 		}
670 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
671 			break;
672 		addr += UBIFS_BLOCK_SIZE;
673 		page_block += 1;
674 	}
675 
676 	if (end_index == page->index) {
677 		int len = i_size & (PAGE_CACHE_SIZE - 1);
678 
679 		if (len && len < read)
680 			memset(zaddr + len, 0, read - len);
681 	}
682 
683 out_hole:
684 	if (hole) {
685 		SetPageChecked(page);
686 		dbg_gen("hole");
687 	}
688 
689 	SetPageUptodate(page);
690 	ClearPageError(page);
691 	flush_dcache_page(page);
692 	kunmap(page);
693 	*n = nn;
694 	return 0;
695 
696 out_err:
697 	ClearPageUptodate(page);
698 	SetPageError(page);
699 	flush_dcache_page(page);
700 	kunmap(page);
701 	ubifs_err("bad data node (block %u, inode %lu)",
702 		  page_block, inode->i_ino);
703 	return -EINVAL;
704 }
705 
706 /**
707  * ubifs_do_bulk_read - do bulk-read.
708  * @c: UBIFS file-system description object
709  * @bu: bulk-read information
710  * @page1: first page to read
711  *
712  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
713  */
714 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
715 			      struct page *page1)
716 {
717 	pgoff_t offset = page1->index, end_index;
718 	struct address_space *mapping = page1->mapping;
719 	struct inode *inode = mapping->host;
720 	struct ubifs_inode *ui = ubifs_inode(inode);
721 	int err, page_idx, page_cnt, ret = 0, n = 0;
722 	int allocate = bu->buf ? 0 : 1;
723 	loff_t isize;
724 
725 	err = ubifs_tnc_get_bu_keys(c, bu);
726 	if (err)
727 		goto out_warn;
728 
729 	if (bu->eof) {
730 		/* Turn off bulk-read at the end of the file */
731 		ui->read_in_a_row = 1;
732 		ui->bulk_read = 0;
733 	}
734 
735 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
736 	if (!page_cnt) {
737 		/*
738 		 * This happens when there are multiple blocks per page and the
739 		 * blocks for the first page we are looking for, are not
740 		 * together. If all the pages were like this, bulk-read would
741 		 * reduce performance, so we turn it off for a while.
742 		 */
743 		goto out_bu_off;
744 	}
745 
746 	if (bu->cnt) {
747 		if (allocate) {
748 			/*
749 			 * Allocate bulk-read buffer depending on how many data
750 			 * nodes we are going to read.
751 			 */
752 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
753 				      bu->zbranch[bu->cnt - 1].len -
754 				      bu->zbranch[0].offs;
755 			ubifs_assert(bu->buf_len > 0);
756 			ubifs_assert(bu->buf_len <= c->leb_size);
757 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
758 			if (!bu->buf)
759 				goto out_bu_off;
760 		}
761 
762 		err = ubifs_tnc_bulk_read(c, bu);
763 		if (err)
764 			goto out_warn;
765 	}
766 
767 	err = populate_page(c, page1, bu, &n);
768 	if (err)
769 		goto out_warn;
770 
771 	unlock_page(page1);
772 	ret = 1;
773 
774 	isize = i_size_read(inode);
775 	if (isize == 0)
776 		goto out_free;
777 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
778 
779 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
780 		pgoff_t page_offset = offset + page_idx;
781 		struct page *page;
782 
783 		if (page_offset > end_index)
784 			break;
785 		page = find_or_create_page(mapping, page_offset,
786 					   GFP_NOFS | __GFP_COLD);
787 		if (!page)
788 			break;
789 		if (!PageUptodate(page))
790 			err = populate_page(c, page, bu, &n);
791 		unlock_page(page);
792 		page_cache_release(page);
793 		if (err)
794 			break;
795 	}
796 
797 	ui->last_page_read = offset + page_idx - 1;
798 
799 out_free:
800 	if (allocate)
801 		kfree(bu->buf);
802 	return ret;
803 
804 out_warn:
805 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
806 	goto out_free;
807 
808 out_bu_off:
809 	ui->read_in_a_row = ui->bulk_read = 0;
810 	goto out_free;
811 }
812 
813 /**
814  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
815  * @page: page from which to start bulk-read.
816  *
817  * Some flash media are capable of reading sequentially at faster rates. UBIFS
818  * bulk-read facility is designed to take advantage of that, by reading in one
819  * go consecutive data nodes that are also located consecutively in the same
820  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
821  */
822 static int ubifs_bulk_read(struct page *page)
823 {
824 	struct inode *inode = page->mapping->host;
825 	struct ubifs_info *c = inode->i_sb->s_fs_info;
826 	struct ubifs_inode *ui = ubifs_inode(inode);
827 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
828 	struct bu_info *bu;
829 	int err = 0, allocated = 0;
830 
831 	ui->last_page_read = index;
832 	if (!c->bulk_read)
833 		return 0;
834 
835 	/*
836 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
837 	 * so don't bother if we cannot lock the mutex.
838 	 */
839 	if (!mutex_trylock(&ui->ui_mutex))
840 		return 0;
841 
842 	if (index != last_page_read + 1) {
843 		/* Turn off bulk-read if we stop reading sequentially */
844 		ui->read_in_a_row = 1;
845 		if (ui->bulk_read)
846 			ui->bulk_read = 0;
847 		goto out_unlock;
848 	}
849 
850 	if (!ui->bulk_read) {
851 		ui->read_in_a_row += 1;
852 		if (ui->read_in_a_row < 3)
853 			goto out_unlock;
854 		/* Three reads in a row, so switch on bulk-read */
855 		ui->bulk_read = 1;
856 	}
857 
858 	/*
859 	 * If possible, try to use pre-allocated bulk-read information, which
860 	 * is protected by @c->bu_mutex.
861 	 */
862 	if (mutex_trylock(&c->bu_mutex))
863 		bu = &c->bu;
864 	else {
865 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
866 		if (!bu)
867 			goto out_unlock;
868 
869 		bu->buf = NULL;
870 		allocated = 1;
871 	}
872 
873 	bu->buf_len = c->max_bu_buf_len;
874 	data_key_init(c, &bu->key, inode->i_ino,
875 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
876 	err = ubifs_do_bulk_read(c, bu, page);
877 
878 	if (!allocated)
879 		mutex_unlock(&c->bu_mutex);
880 	else
881 		kfree(bu);
882 
883 out_unlock:
884 	mutex_unlock(&ui->ui_mutex);
885 	return err;
886 }
887 
888 static int ubifs_readpage(struct file *file, struct page *page)
889 {
890 	if (ubifs_bulk_read(page))
891 		return 0;
892 	do_readpage(page);
893 	unlock_page(page);
894 	return 0;
895 }
896 
897 static int do_writepage(struct page *page, int len)
898 {
899 	int err = 0, i, blen;
900 	unsigned int block;
901 	void *addr;
902 	union ubifs_key key;
903 	struct inode *inode = page->mapping->host;
904 	struct ubifs_info *c = inode->i_sb->s_fs_info;
905 
906 #ifdef UBIFS_DEBUG
907 	struct ubifs_inode *ui = ubifs_inode(inode);
908 	spin_lock(&ui->ui_lock);
909 	ubifs_assert(page->index <= ui->synced_i_size >> PAGE_CACHE_SHIFT);
910 	spin_unlock(&ui->ui_lock);
911 #endif
912 
913 	/* Update radix tree tags */
914 	set_page_writeback(page);
915 
916 	addr = kmap(page);
917 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
918 	i = 0;
919 	while (len) {
920 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
921 		data_key_init(c, &key, inode->i_ino, block);
922 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
923 		if (err)
924 			break;
925 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
926 			break;
927 		block += 1;
928 		addr += blen;
929 		len -= blen;
930 	}
931 	if (err) {
932 		SetPageError(page);
933 		ubifs_err("cannot write page %lu of inode %lu, error %d",
934 			  page->index, inode->i_ino, err);
935 		ubifs_ro_mode(c, err);
936 	}
937 
938 	ubifs_assert(PagePrivate(page));
939 	if (PageChecked(page))
940 		release_new_page_budget(c);
941 	else
942 		release_existing_page_budget(c);
943 
944 	atomic_long_dec(&c->dirty_pg_cnt);
945 	ClearPagePrivate(page);
946 	ClearPageChecked(page);
947 
948 	kunmap(page);
949 	unlock_page(page);
950 	end_page_writeback(page);
951 	return err;
952 }
953 
954 /*
955  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
956  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
957  * situation when a we have an inode with size 0, then a megabyte of data is
958  * appended to the inode, then write-back starts and flushes some amount of the
959  * dirty pages, the journal becomes full, commit happens and finishes, and then
960  * an unclean reboot happens. When the file system is mounted next time, the
961  * inode size would still be 0, but there would be many pages which are beyond
962  * the inode size, they would be indexed and consume flash space. Because the
963  * journal has been committed, the replay would not be able to detect this
964  * situation and correct the inode size. This means UBIFS would have to scan
965  * whole index and correct all inode sizes, which is long an unacceptable.
966  *
967  * To prevent situations like this, UBIFS writes pages back only if they are
968  * within the last synchronized inode size, i.e. the size which has been
969  * written to the flash media last time. Otherwise, UBIFS forces inode
970  * write-back, thus making sure the on-flash inode contains current inode size,
971  * and then keeps writing pages back.
972  *
973  * Some locking issues explanation. 'ubifs_writepage()' first is called with
974  * the page locked, and it locks @ui_mutex. However, write-back does take inode
975  * @i_mutex, which means other VFS operations may be run on this inode at the
976  * same time. And the problematic one is truncation to smaller size, from where
977  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
978  * then drops the truncated pages. And while dropping the pages, it takes the
979  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
980  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
981  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
982  *
983  * XXX(truncate): with the new truncate sequence this is not true anymore,
984  * and the calls to truncate_setsize can be move around freely.  They should
985  * be moved to the very end of the truncate sequence.
986  *
987  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
988  * inode size. How do we do this if @inode->i_size may became smaller while we
989  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
990  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
991  * internally and updates it under @ui_mutex.
992  *
993  * Q: why we do not worry that if we race with truncation, we may end up with a
994  * situation when the inode is truncated while we are in the middle of
995  * 'do_writepage()', so we do write beyond inode size?
996  * A: If we are in the middle of 'do_writepage()', truncation would be locked
997  * on the page lock and it would not write the truncated inode node to the
998  * journal before we have finished.
999  */
1000 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1001 {
1002 	struct inode *inode = page->mapping->host;
1003 	struct ubifs_inode *ui = ubifs_inode(inode);
1004 	loff_t i_size =  i_size_read(inode), synced_i_size;
1005 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
1006 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
1007 	void *kaddr;
1008 
1009 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1010 		inode->i_ino, page->index, page->flags);
1011 	ubifs_assert(PagePrivate(page));
1012 
1013 	/* Is the page fully outside @i_size? (truncate in progress) */
1014 	if (page->index > end_index || (page->index == end_index && !len)) {
1015 		err = 0;
1016 		goto out_unlock;
1017 	}
1018 
1019 	spin_lock(&ui->ui_lock);
1020 	synced_i_size = ui->synced_i_size;
1021 	spin_unlock(&ui->ui_lock);
1022 
1023 	/* Is the page fully inside @i_size? */
1024 	if (page->index < end_index) {
1025 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1026 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1027 			if (err)
1028 				goto out_unlock;
1029 			/*
1030 			 * The inode has been written, but the write-buffer has
1031 			 * not been synchronized, so in case of an unclean
1032 			 * reboot we may end up with some pages beyond inode
1033 			 * size, but they would be in the journal (because
1034 			 * commit flushes write buffers) and recovery would deal
1035 			 * with this.
1036 			 */
1037 		}
1038 		return do_writepage(page, PAGE_CACHE_SIZE);
1039 	}
1040 
1041 	/*
1042 	 * The page straddles @i_size. It must be zeroed out on each and every
1043 	 * writepage invocation because it may be mmapped. "A file is mapped
1044 	 * in multiples of the page size. For a file that is not a multiple of
1045 	 * the page size, the remaining memory is zeroed when mapped, and
1046 	 * writes to that region are not written out to the file."
1047 	 */
1048 	kaddr = kmap_atomic(page);
1049 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1050 	flush_dcache_page(page);
1051 	kunmap_atomic(kaddr);
1052 
1053 	if (i_size > synced_i_size) {
1054 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1055 		if (err)
1056 			goto out_unlock;
1057 	}
1058 
1059 	return do_writepage(page, len);
1060 
1061 out_unlock:
1062 	unlock_page(page);
1063 	return err;
1064 }
1065 
1066 /**
1067  * do_attr_changes - change inode attributes.
1068  * @inode: inode to change attributes for
1069  * @attr: describes attributes to change
1070  */
1071 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1072 {
1073 	if (attr->ia_valid & ATTR_UID)
1074 		inode->i_uid = attr->ia_uid;
1075 	if (attr->ia_valid & ATTR_GID)
1076 		inode->i_gid = attr->ia_gid;
1077 	if (attr->ia_valid & ATTR_ATIME)
1078 		inode->i_atime = timespec_trunc(attr->ia_atime,
1079 						inode->i_sb->s_time_gran);
1080 	if (attr->ia_valid & ATTR_MTIME)
1081 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1082 						inode->i_sb->s_time_gran);
1083 	if (attr->ia_valid & ATTR_CTIME)
1084 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1085 						inode->i_sb->s_time_gran);
1086 	if (attr->ia_valid & ATTR_MODE) {
1087 		umode_t mode = attr->ia_mode;
1088 
1089 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1090 			mode &= ~S_ISGID;
1091 		inode->i_mode = mode;
1092 	}
1093 }
1094 
1095 /**
1096  * do_truncation - truncate an inode.
1097  * @c: UBIFS file-system description object
1098  * @inode: inode to truncate
1099  * @attr: inode attribute changes description
1100  *
1101  * This function implements VFS '->setattr()' call when the inode is truncated
1102  * to a smaller size. Returns zero in case of success and a negative error code
1103  * in case of failure.
1104  */
1105 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1106 			 const struct iattr *attr)
1107 {
1108 	int err;
1109 	struct ubifs_budget_req req;
1110 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1111 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1112 	struct ubifs_inode *ui = ubifs_inode(inode);
1113 
1114 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1115 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1116 
1117 	/*
1118 	 * If this is truncation to a smaller size, and we do not truncate on a
1119 	 * block boundary, budget for changing one data block, because the last
1120 	 * block will be re-written.
1121 	 */
1122 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1123 		req.dirtied_page = 1;
1124 
1125 	req.dirtied_ino = 1;
1126 	/* A funny way to budget for truncation node */
1127 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1128 	err = ubifs_budget_space(c, &req);
1129 	if (err) {
1130 		/*
1131 		 * Treat truncations to zero as deletion and always allow them,
1132 		 * just like we do for '->unlink()'.
1133 		 */
1134 		if (new_size || err != -ENOSPC)
1135 			return err;
1136 		budgeted = 0;
1137 	}
1138 
1139 	truncate_setsize(inode, new_size);
1140 
1141 	if (offset) {
1142 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1143 		struct page *page;
1144 
1145 		page = find_lock_page(inode->i_mapping, index);
1146 		if (page) {
1147 			if (PageDirty(page)) {
1148 				/*
1149 				 * 'ubifs_jnl_truncate()' will try to truncate
1150 				 * the last data node, but it contains
1151 				 * out-of-date data because the page is dirty.
1152 				 * Write the page now, so that
1153 				 * 'ubifs_jnl_truncate()' will see an already
1154 				 * truncated (and up to date) data node.
1155 				 */
1156 				ubifs_assert(PagePrivate(page));
1157 
1158 				clear_page_dirty_for_io(page);
1159 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1160 					offset = new_size &
1161 						 (PAGE_CACHE_SIZE - 1);
1162 				err = do_writepage(page, offset);
1163 				page_cache_release(page);
1164 				if (err)
1165 					goto out_budg;
1166 				/*
1167 				 * We could now tell 'ubifs_jnl_truncate()' not
1168 				 * to read the last block.
1169 				 */
1170 			} else {
1171 				/*
1172 				 * We could 'kmap()' the page and pass the data
1173 				 * to 'ubifs_jnl_truncate()' to save it from
1174 				 * having to read it.
1175 				 */
1176 				unlock_page(page);
1177 				page_cache_release(page);
1178 			}
1179 		}
1180 	}
1181 
1182 	mutex_lock(&ui->ui_mutex);
1183 	ui->ui_size = inode->i_size;
1184 	/* Truncation changes inode [mc]time */
1185 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1186 	/* Other attributes may be changed at the same time as well */
1187 	do_attr_changes(inode, attr);
1188 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1189 	mutex_unlock(&ui->ui_mutex);
1190 
1191 out_budg:
1192 	if (budgeted)
1193 		ubifs_release_budget(c, &req);
1194 	else {
1195 		c->bi.nospace = c->bi.nospace_rp = 0;
1196 		smp_wmb();
1197 	}
1198 	return err;
1199 }
1200 
1201 /**
1202  * do_setattr - change inode attributes.
1203  * @c: UBIFS file-system description object
1204  * @inode: inode to change attributes for
1205  * @attr: inode attribute changes description
1206  *
1207  * This function implements VFS '->setattr()' call for all cases except
1208  * truncations to smaller size. Returns zero in case of success and a negative
1209  * error code in case of failure.
1210  */
1211 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1212 		      const struct iattr *attr)
1213 {
1214 	int err, release;
1215 	loff_t new_size = attr->ia_size;
1216 	struct ubifs_inode *ui = ubifs_inode(inode);
1217 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1218 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1219 
1220 	err = ubifs_budget_space(c, &req);
1221 	if (err)
1222 		return err;
1223 
1224 	if (attr->ia_valid & ATTR_SIZE) {
1225 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1226 		truncate_setsize(inode, new_size);
1227 	}
1228 
1229 	mutex_lock(&ui->ui_mutex);
1230 	if (attr->ia_valid & ATTR_SIZE) {
1231 		/* Truncation changes inode [mc]time */
1232 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1233 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1234 		ui->ui_size = inode->i_size;
1235 	}
1236 
1237 	do_attr_changes(inode, attr);
1238 
1239 	release = ui->dirty;
1240 	if (attr->ia_valid & ATTR_SIZE)
1241 		/*
1242 		 * Inode length changed, so we have to make sure
1243 		 * @I_DIRTY_DATASYNC is set.
1244 		 */
1245 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1246 	else
1247 		mark_inode_dirty_sync(inode);
1248 	mutex_unlock(&ui->ui_mutex);
1249 
1250 	if (release)
1251 		ubifs_release_budget(c, &req);
1252 	if (IS_SYNC(inode))
1253 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1254 	return err;
1255 }
1256 
1257 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1258 {
1259 	int err;
1260 	struct inode *inode = dentry->d_inode;
1261 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1262 
1263 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1264 		inode->i_ino, inode->i_mode, attr->ia_valid);
1265 	err = inode_change_ok(inode, attr);
1266 	if (err)
1267 		return err;
1268 
1269 	err = dbg_check_synced_i_size(c, inode);
1270 	if (err)
1271 		return err;
1272 
1273 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1274 		/* Truncation to a smaller size */
1275 		err = do_truncation(c, inode, attr);
1276 	else
1277 		err = do_setattr(c, inode, attr);
1278 
1279 	return err;
1280 }
1281 
1282 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1283 				 unsigned int length)
1284 {
1285 	struct inode *inode = page->mapping->host;
1286 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1287 
1288 	ubifs_assert(PagePrivate(page));
1289 	if (offset || length < PAGE_CACHE_SIZE)
1290 		/* Partial page remains dirty */
1291 		return;
1292 
1293 	if (PageChecked(page))
1294 		release_new_page_budget(c);
1295 	else
1296 		release_existing_page_budget(c);
1297 
1298 	atomic_long_dec(&c->dirty_pg_cnt);
1299 	ClearPagePrivate(page);
1300 	ClearPageChecked(page);
1301 }
1302 
1303 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1304 {
1305 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1306 
1307 	nd_set_link(nd, ui->data);
1308 	return NULL;
1309 }
1310 
1311 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1312 {
1313 	struct inode *inode = file->f_mapping->host;
1314 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1315 	int err;
1316 
1317 	dbg_gen("syncing inode %lu", inode->i_ino);
1318 
1319 	if (c->ro_mount)
1320 		/*
1321 		 * For some really strange reasons VFS does not filter out
1322 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1323 		 */
1324 		return 0;
1325 
1326 	err = filemap_write_and_wait_range(inode->i_mapping, start, end);
1327 	if (err)
1328 		return err;
1329 	mutex_lock(&inode->i_mutex);
1330 
1331 	/* Synchronize the inode unless this is a 'datasync()' call. */
1332 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1333 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1334 		if (err)
1335 			goto out;
1336 	}
1337 
1338 	/*
1339 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1340 	 * them.
1341 	 */
1342 	err = ubifs_sync_wbufs_by_inode(c, inode);
1343 out:
1344 	mutex_unlock(&inode->i_mutex);
1345 	return err;
1346 }
1347 
1348 /**
1349  * mctime_update_needed - check if mtime or ctime update is needed.
1350  * @inode: the inode to do the check for
1351  * @now: current time
1352  *
1353  * This helper function checks if the inode mtime/ctime should be updated or
1354  * not. If current values of the time-stamps are within the UBIFS inode time
1355  * granularity, they are not updated. This is an optimization.
1356  */
1357 static inline int mctime_update_needed(const struct inode *inode,
1358 				       const struct timespec *now)
1359 {
1360 	if (!timespec_equal(&inode->i_mtime, now) ||
1361 	    !timespec_equal(&inode->i_ctime, now))
1362 		return 1;
1363 	return 0;
1364 }
1365 
1366 /**
1367  * update_ctime - update mtime and ctime of an inode.
1368  * @inode: inode to update
1369  *
1370  * This function updates mtime and ctime of the inode if it is not equivalent to
1371  * current time. Returns zero in case of success and a negative error code in
1372  * case of failure.
1373  */
1374 static int update_mctime(struct inode *inode)
1375 {
1376 	struct timespec now = ubifs_current_time(inode);
1377 	struct ubifs_inode *ui = ubifs_inode(inode);
1378 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1379 
1380 	if (mctime_update_needed(inode, &now)) {
1381 		int err, release;
1382 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1383 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1384 
1385 		err = ubifs_budget_space(c, &req);
1386 		if (err)
1387 			return err;
1388 
1389 		mutex_lock(&ui->ui_mutex);
1390 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1391 		release = ui->dirty;
1392 		mark_inode_dirty_sync(inode);
1393 		mutex_unlock(&ui->ui_mutex);
1394 		if (release)
1395 			ubifs_release_budget(c, &req);
1396 	}
1397 
1398 	return 0;
1399 }
1400 
1401 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1402 {
1403 	int err = update_mctime(file_inode(iocb->ki_filp));
1404 	if (err)
1405 		return err;
1406 
1407 	return generic_file_write_iter(iocb, from);
1408 }
1409 
1410 static int ubifs_set_page_dirty(struct page *page)
1411 {
1412 	int ret;
1413 
1414 	ret = __set_page_dirty_nobuffers(page);
1415 	/*
1416 	 * An attempt to dirty a page without budgeting for it - should not
1417 	 * happen.
1418 	 */
1419 	ubifs_assert(ret == 0);
1420 	return ret;
1421 }
1422 
1423 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1424 {
1425 	/*
1426 	 * An attempt to release a dirty page without budgeting for it - should
1427 	 * not happen.
1428 	 */
1429 	if (PageWriteback(page))
1430 		return 0;
1431 	ubifs_assert(PagePrivate(page));
1432 	ubifs_assert(0);
1433 	ClearPagePrivate(page);
1434 	ClearPageChecked(page);
1435 	return 1;
1436 }
1437 
1438 /*
1439  * mmap()d file has taken write protection fault and is being made writable.
1440  * UBIFS must ensure page is budgeted for.
1441  */
1442 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma,
1443 				 struct vm_fault *vmf)
1444 {
1445 	struct page *page = vmf->page;
1446 	struct inode *inode = file_inode(vma->vm_file);
1447 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1448 	struct timespec now = ubifs_current_time(inode);
1449 	struct ubifs_budget_req req = { .new_page = 1 };
1450 	int err, update_time;
1451 
1452 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1453 		i_size_read(inode));
1454 	ubifs_assert(!c->ro_media && !c->ro_mount);
1455 
1456 	if (unlikely(c->ro_error))
1457 		return VM_FAULT_SIGBUS; /* -EROFS */
1458 
1459 	/*
1460 	 * We have not locked @page so far so we may budget for changing the
1461 	 * page. Note, we cannot do this after we locked the page, because
1462 	 * budgeting may cause write-back which would cause deadlock.
1463 	 *
1464 	 * At the moment we do not know whether the page is dirty or not, so we
1465 	 * assume that it is not and budget for a new page. We could look at
1466 	 * the @PG_private flag and figure this out, but we may race with write
1467 	 * back and the page state may change by the time we lock it, so this
1468 	 * would need additional care. We do not bother with this at the
1469 	 * moment, although it might be good idea to do. Instead, we allocate
1470 	 * budget for a new page and amend it later on if the page was in fact
1471 	 * dirty.
1472 	 *
1473 	 * The budgeting-related logic of this function is similar to what we
1474 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1475 	 * for more comments.
1476 	 */
1477 	update_time = mctime_update_needed(inode, &now);
1478 	if (update_time)
1479 		/*
1480 		 * We have to change inode time stamp which requires extra
1481 		 * budgeting.
1482 		 */
1483 		req.dirtied_ino = 1;
1484 
1485 	err = ubifs_budget_space(c, &req);
1486 	if (unlikely(err)) {
1487 		if (err == -ENOSPC)
1488 			ubifs_warn("out of space for mmapped file (inode number %lu)",
1489 				   inode->i_ino);
1490 		return VM_FAULT_SIGBUS;
1491 	}
1492 
1493 	lock_page(page);
1494 	if (unlikely(page->mapping != inode->i_mapping ||
1495 		     page_offset(page) > i_size_read(inode))) {
1496 		/* Page got truncated out from underneath us */
1497 		err = -EINVAL;
1498 		goto out_unlock;
1499 	}
1500 
1501 	if (PagePrivate(page))
1502 		release_new_page_budget(c);
1503 	else {
1504 		if (!PageChecked(page))
1505 			ubifs_convert_page_budget(c);
1506 		SetPagePrivate(page);
1507 		atomic_long_inc(&c->dirty_pg_cnt);
1508 		__set_page_dirty_nobuffers(page);
1509 	}
1510 
1511 	if (update_time) {
1512 		int release;
1513 		struct ubifs_inode *ui = ubifs_inode(inode);
1514 
1515 		mutex_lock(&ui->ui_mutex);
1516 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1517 		release = ui->dirty;
1518 		mark_inode_dirty_sync(inode);
1519 		mutex_unlock(&ui->ui_mutex);
1520 		if (release)
1521 			ubifs_release_dirty_inode_budget(c, ui);
1522 	}
1523 
1524 	wait_for_stable_page(page);
1525 	return VM_FAULT_LOCKED;
1526 
1527 out_unlock:
1528 	unlock_page(page);
1529 	ubifs_release_budget(c, &req);
1530 	if (err)
1531 		err = VM_FAULT_SIGBUS;
1532 	return err;
1533 }
1534 
1535 static const struct vm_operations_struct ubifs_file_vm_ops = {
1536 	.fault        = filemap_fault,
1537 	.map_pages = filemap_map_pages,
1538 	.page_mkwrite = ubifs_vm_page_mkwrite,
1539 	.remap_pages = generic_file_remap_pages,
1540 };
1541 
1542 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1543 {
1544 	int err;
1545 
1546 	err = generic_file_mmap(file, vma);
1547 	if (err)
1548 		return err;
1549 	vma->vm_ops = &ubifs_file_vm_ops;
1550 	return 0;
1551 }
1552 
1553 const struct address_space_operations ubifs_file_address_operations = {
1554 	.readpage       = ubifs_readpage,
1555 	.writepage      = ubifs_writepage,
1556 	.write_begin    = ubifs_write_begin,
1557 	.write_end      = ubifs_write_end,
1558 	.invalidatepage = ubifs_invalidatepage,
1559 	.set_page_dirty = ubifs_set_page_dirty,
1560 	.releasepage    = ubifs_releasepage,
1561 };
1562 
1563 const struct inode_operations ubifs_file_inode_operations = {
1564 	.setattr     = ubifs_setattr,
1565 	.getattr     = ubifs_getattr,
1566 	.setxattr    = ubifs_setxattr,
1567 	.getxattr    = ubifs_getxattr,
1568 	.listxattr   = ubifs_listxattr,
1569 	.removexattr = ubifs_removexattr,
1570 };
1571 
1572 const struct inode_operations ubifs_symlink_inode_operations = {
1573 	.readlink    = generic_readlink,
1574 	.follow_link = ubifs_follow_link,
1575 	.setattr     = ubifs_setattr,
1576 	.getattr     = ubifs_getattr,
1577 };
1578 
1579 const struct file_operations ubifs_file_operations = {
1580 	.llseek         = generic_file_llseek,
1581 	.read           = new_sync_read,
1582 	.write          = new_sync_write,
1583 	.read_iter      = generic_file_read_iter,
1584 	.write_iter     = ubifs_write_iter,
1585 	.mmap           = ubifs_file_mmap,
1586 	.fsync          = ubifs_fsync,
1587 	.unlocked_ioctl = ubifs_ioctl,
1588 	.splice_read	= generic_file_splice_read,
1589 	.splice_write	= iter_file_splice_write,
1590 #ifdef CONFIG_COMPAT
1591 	.compat_ioctl   = ubifs_compat_ioctl,
1592 #endif
1593 };
1594