xref: /linux/fs/ubifs/file.c (revision 47902f3611b392209e2a412bf7ec02dca95e666d)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements VFS file and inode operations for regular files, device
25  * nodes and symlinks as well as address space operations.
26  *
27  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
28  * the page is dirty and is used for optimization purposes - dirty pages are
29  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
30  * the budget for this page. The @PG_checked flag is set if full budgeting is
31  * required for the page e.g., when it corresponds to a file hole or it is
32  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
33  * it is OK to fail in this function, and the budget is released in
34  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
35  * information about how the page was budgeted, to make it possible to release
36  * the budget properly.
37  *
38  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
39  * implement. However, this is not true for 'ubifs_writepage()', which may be
40  * called with @i_mutex unlocked. For example, when pdflush is doing background
41  * write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. At "normal"
42  * work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. in the
43  * "sys_write -> alloc_pages -> direct reclaim path". So, in 'ubifs_writepage()'
44  * we are only guaranteed that the page is locked.
45  *
46  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
47  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
48  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
49  * set as well. However, UBIFS disables readahead.
50  */
51 
52 #include "ubifs.h"
53 #include <linux/mount.h>
54 #include <linux/namei.h>
55 #include <linux/slab.h>
56 
57 static int read_block(struct inode *inode, void *addr, unsigned int block,
58 		      struct ubifs_data_node *dn)
59 {
60 	struct ubifs_info *c = inode->i_sb->s_fs_info;
61 	int err, len, out_len;
62 	union ubifs_key key;
63 	unsigned int dlen;
64 
65 	data_key_init(c, &key, inode->i_ino, block);
66 	err = ubifs_tnc_lookup(c, &key, dn);
67 	if (err) {
68 		if (err == -ENOENT)
69 			/* Not found, so it must be a hole */
70 			memset(addr, 0, UBIFS_BLOCK_SIZE);
71 		return err;
72 	}
73 
74 	ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
75 		     ubifs_inode(inode)->creat_sqnum);
76 	len = le32_to_cpu(dn->size);
77 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
78 		goto dump;
79 
80 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
81 	out_len = UBIFS_BLOCK_SIZE;
82 	err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
83 			       le16_to_cpu(dn->compr_type));
84 	if (err || len != out_len)
85 		goto dump;
86 
87 	/*
88 	 * Data length can be less than a full block, even for blocks that are
89 	 * not the last in the file (e.g., as a result of making a hole and
90 	 * appending data). Ensure that the remainder is zeroed out.
91 	 */
92 	if (len < UBIFS_BLOCK_SIZE)
93 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
94 
95 	return 0;
96 
97 dump:
98 	ubifs_err("bad data node (block %u, inode %lu)",
99 		  block, inode->i_ino);
100 	dbg_dump_node(c, dn);
101 	return -EINVAL;
102 }
103 
104 static int do_readpage(struct page *page)
105 {
106 	void *addr;
107 	int err = 0, i;
108 	unsigned int block, beyond;
109 	struct ubifs_data_node *dn;
110 	struct inode *inode = page->mapping->host;
111 	loff_t i_size = i_size_read(inode);
112 
113 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
114 		inode->i_ino, page->index, i_size, page->flags);
115 	ubifs_assert(!PageChecked(page));
116 	ubifs_assert(!PagePrivate(page));
117 
118 	addr = kmap(page);
119 
120 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
121 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
122 	if (block >= beyond) {
123 		/* Reading beyond inode */
124 		SetPageChecked(page);
125 		memset(addr, 0, PAGE_CACHE_SIZE);
126 		goto out;
127 	}
128 
129 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
130 	if (!dn) {
131 		err = -ENOMEM;
132 		goto error;
133 	}
134 
135 	i = 0;
136 	while (1) {
137 		int ret;
138 
139 		if (block >= beyond) {
140 			/* Reading beyond inode */
141 			err = -ENOENT;
142 			memset(addr, 0, UBIFS_BLOCK_SIZE);
143 		} else {
144 			ret = read_block(inode, addr, block, dn);
145 			if (ret) {
146 				err = ret;
147 				if (err != -ENOENT)
148 					break;
149 			} else if (block + 1 == beyond) {
150 				int dlen = le32_to_cpu(dn->size);
151 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
152 
153 				if (ilen && ilen < dlen)
154 					memset(addr + ilen, 0, dlen - ilen);
155 			}
156 		}
157 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
158 			break;
159 		block += 1;
160 		addr += UBIFS_BLOCK_SIZE;
161 	}
162 	if (err) {
163 		if (err == -ENOENT) {
164 			/* Not found, so it must be a hole */
165 			SetPageChecked(page);
166 			dbg_gen("hole");
167 			goto out_free;
168 		}
169 		ubifs_err("cannot read page %lu of inode %lu, error %d",
170 			  page->index, inode->i_ino, err);
171 		goto error;
172 	}
173 
174 out_free:
175 	kfree(dn);
176 out:
177 	SetPageUptodate(page);
178 	ClearPageError(page);
179 	flush_dcache_page(page);
180 	kunmap(page);
181 	return 0;
182 
183 error:
184 	kfree(dn);
185 	ClearPageUptodate(page);
186 	SetPageError(page);
187 	flush_dcache_page(page);
188 	kunmap(page);
189 	return err;
190 }
191 
192 /**
193  * release_new_page_budget - release budget of a new page.
194  * @c: UBIFS file-system description object
195  *
196  * This is a helper function which releases budget corresponding to the budget
197  * of one new page of data.
198  */
199 static void release_new_page_budget(struct ubifs_info *c)
200 {
201 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
202 
203 	ubifs_release_budget(c, &req);
204 }
205 
206 /**
207  * release_existing_page_budget - release budget of an existing page.
208  * @c: UBIFS file-system description object
209  *
210  * This is a helper function which releases budget corresponding to the budget
211  * of changing one one page of data which already exists on the flash media.
212  */
213 static void release_existing_page_budget(struct ubifs_info *c)
214 {
215 	struct ubifs_budget_req req = { .dd_growth = c->page_budget};
216 
217 	ubifs_release_budget(c, &req);
218 }
219 
220 static int write_begin_slow(struct address_space *mapping,
221 			    loff_t pos, unsigned len, struct page **pagep,
222 			    unsigned flags)
223 {
224 	struct inode *inode = mapping->host;
225 	struct ubifs_info *c = inode->i_sb->s_fs_info;
226 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
227 	struct ubifs_budget_req req = { .new_page = 1 };
228 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
229 	struct page *page;
230 
231 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
232 		inode->i_ino, pos, len, inode->i_size);
233 
234 	/*
235 	 * At the slow path we have to budget before locking the page, because
236 	 * budgeting may force write-back, which would wait on locked pages and
237 	 * deadlock if we had the page locked. At this point we do not know
238 	 * anything about the page, so assume that this is a new page which is
239 	 * written to a hole. This corresponds to largest budget. Later the
240 	 * budget will be amended if this is not true.
241 	 */
242 	if (appending)
243 		/* We are appending data, budget for inode change */
244 		req.dirtied_ino = 1;
245 
246 	err = ubifs_budget_space(c, &req);
247 	if (unlikely(err))
248 		return err;
249 
250 	page = grab_cache_page_write_begin(mapping, index, flags);
251 	if (unlikely(!page)) {
252 		ubifs_release_budget(c, &req);
253 		return -ENOMEM;
254 	}
255 
256 	if (!PageUptodate(page)) {
257 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE)
258 			SetPageChecked(page);
259 		else {
260 			err = do_readpage(page);
261 			if (err) {
262 				unlock_page(page);
263 				page_cache_release(page);
264 				return err;
265 			}
266 		}
267 
268 		SetPageUptodate(page);
269 		ClearPageError(page);
270 	}
271 
272 	if (PagePrivate(page))
273 		/*
274 		 * The page is dirty, which means it was budgeted twice:
275 		 *   o first time the budget was allocated by the task which
276 		 *     made the page dirty and set the PG_private flag;
277 		 *   o and then we budgeted for it for the second time at the
278 		 *     very beginning of this function.
279 		 *
280 		 * So what we have to do is to release the page budget we
281 		 * allocated.
282 		 */
283 		release_new_page_budget(c);
284 	else if (!PageChecked(page))
285 		/*
286 		 * We are changing a page which already exists on the media.
287 		 * This means that changing the page does not make the amount
288 		 * of indexing information larger, and this part of the budget
289 		 * which we have already acquired may be released.
290 		 */
291 		ubifs_convert_page_budget(c);
292 
293 	if (appending) {
294 		struct ubifs_inode *ui = ubifs_inode(inode);
295 
296 		/*
297 		 * 'ubifs_write_end()' is optimized from the fast-path part of
298 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
299 		 * if data is appended.
300 		 */
301 		mutex_lock(&ui->ui_mutex);
302 		if (ui->dirty)
303 			/*
304 			 * The inode is dirty already, so we may free the
305 			 * budget we allocated.
306 			 */
307 			ubifs_release_dirty_inode_budget(c, ui);
308 	}
309 
310 	*pagep = page;
311 	return 0;
312 }
313 
314 /**
315  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
316  * @c: UBIFS file-system description object
317  * @page: page to allocate budget for
318  * @ui: UBIFS inode object the page belongs to
319  * @appending: non-zero if the page is appended
320  *
321  * This is a helper function for 'ubifs_write_begin()' which allocates budget
322  * for the operation. The budget is allocated differently depending on whether
323  * this is appending, whether the page is dirty or not, and so on. This
324  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
325  * in case of success and %-ENOSPC in case of failure.
326  */
327 static int allocate_budget(struct ubifs_info *c, struct page *page,
328 			   struct ubifs_inode *ui, int appending)
329 {
330 	struct ubifs_budget_req req = { .fast = 1 };
331 
332 	if (PagePrivate(page)) {
333 		if (!appending)
334 			/*
335 			 * The page is dirty and we are not appending, which
336 			 * means no budget is needed at all.
337 			 */
338 			return 0;
339 
340 		mutex_lock(&ui->ui_mutex);
341 		if (ui->dirty)
342 			/*
343 			 * The page is dirty and we are appending, so the inode
344 			 * has to be marked as dirty. However, it is already
345 			 * dirty, so we do not need any budget. We may return,
346 			 * but @ui->ui_mutex hast to be left locked because we
347 			 * should prevent write-back from flushing the inode
348 			 * and freeing the budget. The lock will be released in
349 			 * 'ubifs_write_end()'.
350 			 */
351 			return 0;
352 
353 		/*
354 		 * The page is dirty, we are appending, the inode is clean, so
355 		 * we need to budget the inode change.
356 		 */
357 		req.dirtied_ino = 1;
358 	} else {
359 		if (PageChecked(page))
360 			/*
361 			 * The page corresponds to a hole and does not
362 			 * exist on the media. So changing it makes
363 			 * make the amount of indexing information
364 			 * larger, and we have to budget for a new
365 			 * page.
366 			 */
367 			req.new_page = 1;
368 		else
369 			/*
370 			 * Not a hole, the change will not add any new
371 			 * indexing information, budget for page
372 			 * change.
373 			 */
374 			req.dirtied_page = 1;
375 
376 		if (appending) {
377 			mutex_lock(&ui->ui_mutex);
378 			if (!ui->dirty)
379 				/*
380 				 * The inode is clean but we will have to mark
381 				 * it as dirty because we are appending. This
382 				 * needs a budget.
383 				 */
384 				req.dirtied_ino = 1;
385 		}
386 	}
387 
388 	return ubifs_budget_space(c, &req);
389 }
390 
391 /*
392  * This function is called when a page of data is going to be written. Since
393  * the page of data will not necessarily go to the flash straight away, UBIFS
394  * has to reserve space on the media for it, which is done by means of
395  * budgeting.
396  *
397  * This is the hot-path of the file-system and we are trying to optimize it as
398  * much as possible. For this reasons it is split on 2 parts - slow and fast.
399  *
400  * There many budgeting cases:
401  *     o a new page is appended - we have to budget for a new page and for
402  *       changing the inode; however, if the inode is already dirty, there is
403  *       no need to budget for it;
404  *     o an existing clean page is changed - we have budget for it; if the page
405  *       does not exist on the media (a hole), we have to budget for a new
406  *       page; otherwise, we may budget for changing an existing page; the
407  *       difference between these cases is that changing an existing page does
408  *       not introduce anything new to the FS indexing information, so it does
409  *       not grow, and smaller budget is acquired in this case;
410  *     o an existing dirty page is changed - no need to budget at all, because
411  *       the page budget has been acquired by earlier, when the page has been
412  *       marked dirty.
413  *
414  * UBIFS budgeting sub-system may force write-back if it thinks there is no
415  * space to reserve. This imposes some locking restrictions and makes it
416  * impossible to take into account the above cases, and makes it impossible to
417  * optimize budgeting.
418  *
419  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
420  * there is a plenty of flash space and the budget will be acquired quickly,
421  * without forcing write-back. The slow path does not make this assumption.
422  */
423 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
424 			     loff_t pos, unsigned len, unsigned flags,
425 			     struct page **pagep, void **fsdata)
426 {
427 	struct inode *inode = mapping->host;
428 	struct ubifs_info *c = inode->i_sb->s_fs_info;
429 	struct ubifs_inode *ui = ubifs_inode(inode);
430 	pgoff_t index = pos >> PAGE_CACHE_SHIFT;
431 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
432 	int skipped_read = 0;
433 	struct page *page;
434 
435 	ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size);
436 
437 	if (unlikely(c->ro_media))
438 		return -EROFS;
439 
440 	/* Try out the fast-path part first */
441 	page = grab_cache_page_write_begin(mapping, index, flags);
442 	if (unlikely(!page))
443 		return -ENOMEM;
444 
445 	if (!PageUptodate(page)) {
446 		/* The page is not loaded from the flash */
447 		if (!(pos & ~PAGE_CACHE_MASK) && len == PAGE_CACHE_SIZE) {
448 			/*
449 			 * We change whole page so no need to load it. But we
450 			 * have to set the @PG_checked flag to make the further
451 			 * code know that the page is new. This might be not
452 			 * true, but it is better to budget more than to read
453 			 * the page from the media.
454 			 */
455 			SetPageChecked(page);
456 			skipped_read = 1;
457 		} else {
458 			err = do_readpage(page);
459 			if (err) {
460 				unlock_page(page);
461 				page_cache_release(page);
462 				return err;
463 			}
464 		}
465 
466 		SetPageUptodate(page);
467 		ClearPageError(page);
468 	}
469 
470 	err = allocate_budget(c, page, ui, appending);
471 	if (unlikely(err)) {
472 		ubifs_assert(err == -ENOSPC);
473 		/*
474 		 * If we skipped reading the page because we were going to
475 		 * write all of it, then it is not up to date.
476 		 */
477 		if (skipped_read) {
478 			ClearPageChecked(page);
479 			ClearPageUptodate(page);
480 		}
481 		/*
482 		 * Budgeting failed which means it would have to force
483 		 * write-back but didn't, because we set the @fast flag in the
484 		 * request. Write-back cannot be done now, while we have the
485 		 * page locked, because it would deadlock. Unlock and free
486 		 * everything and fall-back to slow-path.
487 		 */
488 		if (appending) {
489 			ubifs_assert(mutex_is_locked(&ui->ui_mutex));
490 			mutex_unlock(&ui->ui_mutex);
491 		}
492 		unlock_page(page);
493 		page_cache_release(page);
494 
495 		return write_begin_slow(mapping, pos, len, pagep, flags);
496 	}
497 
498 	/*
499 	 * Whee, we acquired budgeting quickly - without involving
500 	 * garbage-collection, committing or forcing write-back. We return
501 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
502 	 * otherwise. This is an optimization (slightly hacky though).
503 	 */
504 	*pagep = page;
505 	return 0;
506 
507 }
508 
509 /**
510  * cancel_budget - cancel budget.
511  * @c: UBIFS file-system description object
512  * @page: page to cancel budget for
513  * @ui: UBIFS inode object the page belongs to
514  * @appending: non-zero if the page is appended
515  *
516  * This is a helper function for a page write operation. It unlocks the
517  * @ui->ui_mutex in case of appending.
518  */
519 static void cancel_budget(struct ubifs_info *c, struct page *page,
520 			  struct ubifs_inode *ui, int appending)
521 {
522 	if (appending) {
523 		if (!ui->dirty)
524 			ubifs_release_dirty_inode_budget(c, ui);
525 		mutex_unlock(&ui->ui_mutex);
526 	}
527 	if (!PagePrivate(page)) {
528 		if (PageChecked(page))
529 			release_new_page_budget(c);
530 		else
531 			release_existing_page_budget(c);
532 	}
533 }
534 
535 static int ubifs_write_end(struct file *file, struct address_space *mapping,
536 			   loff_t pos, unsigned len, unsigned copied,
537 			   struct page *page, void *fsdata)
538 {
539 	struct inode *inode = mapping->host;
540 	struct ubifs_inode *ui = ubifs_inode(inode);
541 	struct ubifs_info *c = inode->i_sb->s_fs_info;
542 	loff_t end_pos = pos + len;
543 	int appending = !!(end_pos > inode->i_size);
544 
545 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
546 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
547 
548 	if (unlikely(copied < len && len == PAGE_CACHE_SIZE)) {
549 		/*
550 		 * VFS copied less data to the page that it intended and
551 		 * declared in its '->write_begin()' call via the @len
552 		 * argument. If the page was not up-to-date, and @len was
553 		 * @PAGE_CACHE_SIZE, the 'ubifs_write_begin()' function did
554 		 * not load it from the media (for optimization reasons). This
555 		 * means that part of the page contains garbage. So read the
556 		 * page now.
557 		 */
558 		dbg_gen("copied %d instead of %d, read page and repeat",
559 			copied, len);
560 		cancel_budget(c, page, ui, appending);
561 
562 		/*
563 		 * Return 0 to force VFS to repeat the whole operation, or the
564 		 * error code if 'do_readpage()' fails.
565 		 */
566 		copied = do_readpage(page);
567 		goto out;
568 	}
569 
570 	if (!PagePrivate(page)) {
571 		SetPagePrivate(page);
572 		atomic_long_inc(&c->dirty_pg_cnt);
573 		__set_page_dirty_nobuffers(page);
574 	}
575 
576 	if (appending) {
577 		i_size_write(inode, end_pos);
578 		ui->ui_size = end_pos;
579 		/*
580 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
581 		 * inode has dirty pages), this has been done in
582 		 * '__set_page_dirty_nobuffers()'.
583 		 */
584 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
585 		ubifs_assert(mutex_is_locked(&ui->ui_mutex));
586 		mutex_unlock(&ui->ui_mutex);
587 	}
588 
589 out:
590 	unlock_page(page);
591 	page_cache_release(page);
592 	return copied;
593 }
594 
595 /**
596  * populate_page - copy data nodes into a page for bulk-read.
597  * @c: UBIFS file-system description object
598  * @page: page
599  * @bu: bulk-read information
600  * @n: next zbranch slot
601  *
602  * This function returns %0 on success and a negative error code on failure.
603  */
604 static int populate_page(struct ubifs_info *c, struct page *page,
605 			 struct bu_info *bu, int *n)
606 {
607 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
608 	struct inode *inode = page->mapping->host;
609 	loff_t i_size = i_size_read(inode);
610 	unsigned int page_block;
611 	void *addr, *zaddr;
612 	pgoff_t end_index;
613 
614 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
615 		inode->i_ino, page->index, i_size, page->flags);
616 
617 	addr = zaddr = kmap(page);
618 
619 	end_index = (i_size - 1) >> PAGE_CACHE_SHIFT;
620 	if (!i_size || page->index > end_index) {
621 		hole = 1;
622 		memset(addr, 0, PAGE_CACHE_SIZE);
623 		goto out_hole;
624 	}
625 
626 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
627 	while (1) {
628 		int err, len, out_len, dlen;
629 
630 		if (nn >= bu->cnt) {
631 			hole = 1;
632 			memset(addr, 0, UBIFS_BLOCK_SIZE);
633 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
634 			struct ubifs_data_node *dn;
635 
636 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
637 
638 			ubifs_assert(le64_to_cpu(dn->ch.sqnum) >
639 				     ubifs_inode(inode)->creat_sqnum);
640 
641 			len = le32_to_cpu(dn->size);
642 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
643 				goto out_err;
644 
645 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
646 			out_len = UBIFS_BLOCK_SIZE;
647 			err = ubifs_decompress(&dn->data, dlen, addr, &out_len,
648 					       le16_to_cpu(dn->compr_type));
649 			if (err || len != out_len)
650 				goto out_err;
651 
652 			if (len < UBIFS_BLOCK_SIZE)
653 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
654 
655 			nn += 1;
656 			read = (i << UBIFS_BLOCK_SHIFT) + len;
657 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
658 			nn += 1;
659 			continue;
660 		} else {
661 			hole = 1;
662 			memset(addr, 0, UBIFS_BLOCK_SIZE);
663 		}
664 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
665 			break;
666 		addr += UBIFS_BLOCK_SIZE;
667 		page_block += 1;
668 	}
669 
670 	if (end_index == page->index) {
671 		int len = i_size & (PAGE_CACHE_SIZE - 1);
672 
673 		if (len && len < read)
674 			memset(zaddr + len, 0, read - len);
675 	}
676 
677 out_hole:
678 	if (hole) {
679 		SetPageChecked(page);
680 		dbg_gen("hole");
681 	}
682 
683 	SetPageUptodate(page);
684 	ClearPageError(page);
685 	flush_dcache_page(page);
686 	kunmap(page);
687 	*n = nn;
688 	return 0;
689 
690 out_err:
691 	ClearPageUptodate(page);
692 	SetPageError(page);
693 	flush_dcache_page(page);
694 	kunmap(page);
695 	ubifs_err("bad data node (block %u, inode %lu)",
696 		  page_block, inode->i_ino);
697 	return -EINVAL;
698 }
699 
700 /**
701  * ubifs_do_bulk_read - do bulk-read.
702  * @c: UBIFS file-system description object
703  * @bu: bulk-read information
704  * @page1: first page to read
705  *
706  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
707  */
708 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
709 			      struct page *page1)
710 {
711 	pgoff_t offset = page1->index, end_index;
712 	struct address_space *mapping = page1->mapping;
713 	struct inode *inode = mapping->host;
714 	struct ubifs_inode *ui = ubifs_inode(inode);
715 	int err, page_idx, page_cnt, ret = 0, n = 0;
716 	int allocate = bu->buf ? 0 : 1;
717 	loff_t isize;
718 
719 	err = ubifs_tnc_get_bu_keys(c, bu);
720 	if (err)
721 		goto out_warn;
722 
723 	if (bu->eof) {
724 		/* Turn off bulk-read at the end of the file */
725 		ui->read_in_a_row = 1;
726 		ui->bulk_read = 0;
727 	}
728 
729 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
730 	if (!page_cnt) {
731 		/*
732 		 * This happens when there are multiple blocks per page and the
733 		 * blocks for the first page we are looking for, are not
734 		 * together. If all the pages were like this, bulk-read would
735 		 * reduce performance, so we turn it off for a while.
736 		 */
737 		goto out_bu_off;
738 	}
739 
740 	if (bu->cnt) {
741 		if (allocate) {
742 			/*
743 			 * Allocate bulk-read buffer depending on how many data
744 			 * nodes we are going to read.
745 			 */
746 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
747 				      bu->zbranch[bu->cnt - 1].len -
748 				      bu->zbranch[0].offs;
749 			ubifs_assert(bu->buf_len > 0);
750 			ubifs_assert(bu->buf_len <= c->leb_size);
751 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
752 			if (!bu->buf)
753 				goto out_bu_off;
754 		}
755 
756 		err = ubifs_tnc_bulk_read(c, bu);
757 		if (err)
758 			goto out_warn;
759 	}
760 
761 	err = populate_page(c, page1, bu, &n);
762 	if (err)
763 		goto out_warn;
764 
765 	unlock_page(page1);
766 	ret = 1;
767 
768 	isize = i_size_read(inode);
769 	if (isize == 0)
770 		goto out_free;
771 	end_index = ((isize - 1) >> PAGE_CACHE_SHIFT);
772 
773 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
774 		pgoff_t page_offset = offset + page_idx;
775 		struct page *page;
776 
777 		if (page_offset > end_index)
778 			break;
779 		page = find_or_create_page(mapping, page_offset,
780 					   GFP_NOFS | __GFP_COLD);
781 		if (!page)
782 			break;
783 		if (!PageUptodate(page))
784 			err = populate_page(c, page, bu, &n);
785 		unlock_page(page);
786 		page_cache_release(page);
787 		if (err)
788 			break;
789 	}
790 
791 	ui->last_page_read = offset + page_idx - 1;
792 
793 out_free:
794 	if (allocate)
795 		kfree(bu->buf);
796 	return ret;
797 
798 out_warn:
799 	ubifs_warn("ignoring error %d and skipping bulk-read", err);
800 	goto out_free;
801 
802 out_bu_off:
803 	ui->read_in_a_row = ui->bulk_read = 0;
804 	goto out_free;
805 }
806 
807 /**
808  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
809  * @page: page from which to start bulk-read.
810  *
811  * Some flash media are capable of reading sequentially at faster rates. UBIFS
812  * bulk-read facility is designed to take advantage of that, by reading in one
813  * go consecutive data nodes that are also located consecutively in the same
814  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
815  */
816 static int ubifs_bulk_read(struct page *page)
817 {
818 	struct inode *inode = page->mapping->host;
819 	struct ubifs_info *c = inode->i_sb->s_fs_info;
820 	struct ubifs_inode *ui = ubifs_inode(inode);
821 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
822 	struct bu_info *bu;
823 	int err = 0, allocated = 0;
824 
825 	ui->last_page_read = index;
826 	if (!c->bulk_read)
827 		return 0;
828 
829 	/*
830 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
831 	 * so don't bother if we cannot lock the mutex.
832 	 */
833 	if (!mutex_trylock(&ui->ui_mutex))
834 		return 0;
835 
836 	if (index != last_page_read + 1) {
837 		/* Turn off bulk-read if we stop reading sequentially */
838 		ui->read_in_a_row = 1;
839 		if (ui->bulk_read)
840 			ui->bulk_read = 0;
841 		goto out_unlock;
842 	}
843 
844 	if (!ui->bulk_read) {
845 		ui->read_in_a_row += 1;
846 		if (ui->read_in_a_row < 3)
847 			goto out_unlock;
848 		/* Three reads in a row, so switch on bulk-read */
849 		ui->bulk_read = 1;
850 	}
851 
852 	/*
853 	 * If possible, try to use pre-allocated bulk-read information, which
854 	 * is protected by @c->bu_mutex.
855 	 */
856 	if (mutex_trylock(&c->bu_mutex))
857 		bu = &c->bu;
858 	else {
859 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
860 		if (!bu)
861 			goto out_unlock;
862 
863 		bu->buf = NULL;
864 		allocated = 1;
865 	}
866 
867 	bu->buf_len = c->max_bu_buf_len;
868 	data_key_init(c, &bu->key, inode->i_ino,
869 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
870 	err = ubifs_do_bulk_read(c, bu, page);
871 
872 	if (!allocated)
873 		mutex_unlock(&c->bu_mutex);
874 	else
875 		kfree(bu);
876 
877 out_unlock:
878 	mutex_unlock(&ui->ui_mutex);
879 	return err;
880 }
881 
882 static int ubifs_readpage(struct file *file, struct page *page)
883 {
884 	if (ubifs_bulk_read(page))
885 		return 0;
886 	do_readpage(page);
887 	unlock_page(page);
888 	return 0;
889 }
890 
891 static int do_writepage(struct page *page, int len)
892 {
893 	int err = 0, i, blen;
894 	unsigned int block;
895 	void *addr;
896 	union ubifs_key key;
897 	struct inode *inode = page->mapping->host;
898 	struct ubifs_info *c = inode->i_sb->s_fs_info;
899 
900 #ifdef UBIFS_DEBUG
901 	spin_lock(&ui->ui_lock);
902 	ubifs_assert(page->index <= ui->synced_i_size << PAGE_CACHE_SIZE);
903 	spin_unlock(&ui->ui_lock);
904 #endif
905 
906 	/* Update radix tree tags */
907 	set_page_writeback(page);
908 
909 	addr = kmap(page);
910 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
911 	i = 0;
912 	while (len) {
913 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
914 		data_key_init(c, &key, inode->i_ino, block);
915 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
916 		if (err)
917 			break;
918 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
919 			break;
920 		block += 1;
921 		addr += blen;
922 		len -= blen;
923 	}
924 	if (err) {
925 		SetPageError(page);
926 		ubifs_err("cannot write page %lu of inode %lu, error %d",
927 			  page->index, inode->i_ino, err);
928 		ubifs_ro_mode(c, err);
929 	}
930 
931 	ubifs_assert(PagePrivate(page));
932 	if (PageChecked(page))
933 		release_new_page_budget(c);
934 	else
935 		release_existing_page_budget(c);
936 
937 	atomic_long_dec(&c->dirty_pg_cnt);
938 	ClearPagePrivate(page);
939 	ClearPageChecked(page);
940 
941 	kunmap(page);
942 	unlock_page(page);
943 	end_page_writeback(page);
944 	return err;
945 }
946 
947 /*
948  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
949  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
950  * situation when a we have an inode with size 0, then a megabyte of data is
951  * appended to the inode, then write-back starts and flushes some amount of the
952  * dirty pages, the journal becomes full, commit happens and finishes, and then
953  * an unclean reboot happens. When the file system is mounted next time, the
954  * inode size would still be 0, but there would be many pages which are beyond
955  * the inode size, they would be indexed and consume flash space. Because the
956  * journal has been committed, the replay would not be able to detect this
957  * situation and correct the inode size. This means UBIFS would have to scan
958  * whole index and correct all inode sizes, which is long an unacceptable.
959  *
960  * To prevent situations like this, UBIFS writes pages back only if they are
961  * within the last synchronized inode size, i.e. the size which has been
962  * written to the flash media last time. Otherwise, UBIFS forces inode
963  * write-back, thus making sure the on-flash inode contains current inode size,
964  * and then keeps writing pages back.
965  *
966  * Some locking issues explanation. 'ubifs_writepage()' first is called with
967  * the page locked, and it locks @ui_mutex. However, write-back does take inode
968  * @i_mutex, which means other VFS operations may be run on this inode at the
969  * same time. And the problematic one is truncation to smaller size, from where
970  * we have to call 'vmtruncate()', which first changes @inode->i_size, then
971  * drops the truncated pages. And while dropping the pages, it takes the page
972  * lock. This means that 'do_truncation()' cannot call 'vmtruncate()' with
973  * @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. This
974  * means that @inode->i_size is changed while @ui_mutex is unlocked.
975  *
976  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
977  * inode size. How do we do this if @inode->i_size may became smaller while we
978  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
979  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
980  * internally and updates it under @ui_mutex.
981  *
982  * Q: why we do not worry that if we race with truncation, we may end up with a
983  * situation when the inode is truncated while we are in the middle of
984  * 'do_writepage()', so we do write beyond inode size?
985  * A: If we are in the middle of 'do_writepage()', truncation would be locked
986  * on the page lock and it would not write the truncated inode node to the
987  * journal before we have finished.
988  */
989 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
990 {
991 	struct inode *inode = page->mapping->host;
992 	struct ubifs_inode *ui = ubifs_inode(inode);
993 	loff_t i_size =  i_size_read(inode), synced_i_size;
994 	pgoff_t end_index = i_size >> PAGE_CACHE_SHIFT;
995 	int err, len = i_size & (PAGE_CACHE_SIZE - 1);
996 	void *kaddr;
997 
998 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
999 		inode->i_ino, page->index, page->flags);
1000 	ubifs_assert(PagePrivate(page));
1001 
1002 	/* Is the page fully outside @i_size? (truncate in progress) */
1003 	if (page->index > end_index || (page->index == end_index && !len)) {
1004 		err = 0;
1005 		goto out_unlock;
1006 	}
1007 
1008 	spin_lock(&ui->ui_lock);
1009 	synced_i_size = ui->synced_i_size;
1010 	spin_unlock(&ui->ui_lock);
1011 
1012 	/* Is the page fully inside @i_size? */
1013 	if (page->index < end_index) {
1014 		if (page->index >= synced_i_size >> PAGE_CACHE_SHIFT) {
1015 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1016 			if (err)
1017 				goto out_unlock;
1018 			/*
1019 			 * The inode has been written, but the write-buffer has
1020 			 * not been synchronized, so in case of an unclean
1021 			 * reboot we may end up with some pages beyond inode
1022 			 * size, but they would be in the journal (because
1023 			 * commit flushes write buffers) and recovery would deal
1024 			 * with this.
1025 			 */
1026 		}
1027 		return do_writepage(page, PAGE_CACHE_SIZE);
1028 	}
1029 
1030 	/*
1031 	 * The page straddles @i_size. It must be zeroed out on each and every
1032 	 * writepage invocation because it may be mmapped. "A file is mapped
1033 	 * in multiples of the page size. For a file that is not a multiple of
1034 	 * the page size, the remaining memory is zeroed when mapped, and
1035 	 * writes to that region are not written out to the file."
1036 	 */
1037 	kaddr = kmap_atomic(page, KM_USER0);
1038 	memset(kaddr + len, 0, PAGE_CACHE_SIZE - len);
1039 	flush_dcache_page(page);
1040 	kunmap_atomic(kaddr, KM_USER0);
1041 
1042 	if (i_size > synced_i_size) {
1043 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1044 		if (err)
1045 			goto out_unlock;
1046 	}
1047 
1048 	return do_writepage(page, len);
1049 
1050 out_unlock:
1051 	unlock_page(page);
1052 	return err;
1053 }
1054 
1055 /**
1056  * do_attr_changes - change inode attributes.
1057  * @inode: inode to change attributes for
1058  * @attr: describes attributes to change
1059  */
1060 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1061 {
1062 	if (attr->ia_valid & ATTR_UID)
1063 		inode->i_uid = attr->ia_uid;
1064 	if (attr->ia_valid & ATTR_GID)
1065 		inode->i_gid = attr->ia_gid;
1066 	if (attr->ia_valid & ATTR_ATIME)
1067 		inode->i_atime = timespec_trunc(attr->ia_atime,
1068 						inode->i_sb->s_time_gran);
1069 	if (attr->ia_valid & ATTR_MTIME)
1070 		inode->i_mtime = timespec_trunc(attr->ia_mtime,
1071 						inode->i_sb->s_time_gran);
1072 	if (attr->ia_valid & ATTR_CTIME)
1073 		inode->i_ctime = timespec_trunc(attr->ia_ctime,
1074 						inode->i_sb->s_time_gran);
1075 	if (attr->ia_valid & ATTR_MODE) {
1076 		umode_t mode = attr->ia_mode;
1077 
1078 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1079 			mode &= ~S_ISGID;
1080 		inode->i_mode = mode;
1081 	}
1082 }
1083 
1084 /**
1085  * do_truncation - truncate an inode.
1086  * @c: UBIFS file-system description object
1087  * @inode: inode to truncate
1088  * @attr: inode attribute changes description
1089  *
1090  * This function implements VFS '->setattr()' call when the inode is truncated
1091  * to a smaller size. Returns zero in case of success and a negative error code
1092  * in case of failure.
1093  */
1094 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1095 			 const struct iattr *attr)
1096 {
1097 	int err;
1098 	struct ubifs_budget_req req;
1099 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1100 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1101 	struct ubifs_inode *ui = ubifs_inode(inode);
1102 
1103 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1104 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1105 
1106 	/*
1107 	 * If this is truncation to a smaller size, and we do not truncate on a
1108 	 * block boundary, budget for changing one data block, because the last
1109 	 * block will be re-written.
1110 	 */
1111 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1112 		req.dirtied_page = 1;
1113 
1114 	req.dirtied_ino = 1;
1115 	/* A funny way to budget for truncation node */
1116 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1117 	err = ubifs_budget_space(c, &req);
1118 	if (err) {
1119 		/*
1120 		 * Treat truncations to zero as deletion and always allow them,
1121 		 * just like we do for '->unlink()'.
1122 		 */
1123 		if (new_size || err != -ENOSPC)
1124 			return err;
1125 		budgeted = 0;
1126 	}
1127 
1128 	err = vmtruncate(inode, new_size);
1129 	if (err)
1130 		goto out_budg;
1131 
1132 	if (offset) {
1133 		pgoff_t index = new_size >> PAGE_CACHE_SHIFT;
1134 		struct page *page;
1135 
1136 		page = find_lock_page(inode->i_mapping, index);
1137 		if (page) {
1138 			if (PageDirty(page)) {
1139 				/*
1140 				 * 'ubifs_jnl_truncate()' will try to truncate
1141 				 * the last data node, but it contains
1142 				 * out-of-date data because the page is dirty.
1143 				 * Write the page now, so that
1144 				 * 'ubifs_jnl_truncate()' will see an already
1145 				 * truncated (and up to date) data node.
1146 				 */
1147 				ubifs_assert(PagePrivate(page));
1148 
1149 				clear_page_dirty_for_io(page);
1150 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1151 					offset = new_size &
1152 						 (PAGE_CACHE_SIZE - 1);
1153 				err = do_writepage(page, offset);
1154 				page_cache_release(page);
1155 				if (err)
1156 					goto out_budg;
1157 				/*
1158 				 * We could now tell 'ubifs_jnl_truncate()' not
1159 				 * to read the last block.
1160 				 */
1161 			} else {
1162 				/*
1163 				 * We could 'kmap()' the page and pass the data
1164 				 * to 'ubifs_jnl_truncate()' to save it from
1165 				 * having to read it.
1166 				 */
1167 				unlock_page(page);
1168 				page_cache_release(page);
1169 			}
1170 		}
1171 	}
1172 
1173 	mutex_lock(&ui->ui_mutex);
1174 	ui->ui_size = inode->i_size;
1175 	/* Truncation changes inode [mc]time */
1176 	inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1177 	/* Other attributes may be changed at the same time as well */
1178 	do_attr_changes(inode, attr);
1179 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1180 	mutex_unlock(&ui->ui_mutex);
1181 
1182 out_budg:
1183 	if (budgeted)
1184 		ubifs_release_budget(c, &req);
1185 	else {
1186 		c->nospace = c->nospace_rp = 0;
1187 		smp_wmb();
1188 	}
1189 	return err;
1190 }
1191 
1192 /**
1193  * do_setattr - change inode attributes.
1194  * @c: UBIFS file-system description object
1195  * @inode: inode to change attributes for
1196  * @attr: inode attribute changes description
1197  *
1198  * This function implements VFS '->setattr()' call for all cases except
1199  * truncations to smaller size. Returns zero in case of success and a negative
1200  * error code in case of failure.
1201  */
1202 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1203 		      const struct iattr *attr)
1204 {
1205 	int err, release;
1206 	loff_t new_size = attr->ia_size;
1207 	struct ubifs_inode *ui = ubifs_inode(inode);
1208 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1209 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1210 
1211 	err = ubifs_budget_space(c, &req);
1212 	if (err)
1213 		return err;
1214 
1215 	if (attr->ia_valid & ATTR_SIZE) {
1216 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1217 		err = vmtruncate(inode, new_size);
1218 		if (err)
1219 			goto out;
1220 	}
1221 
1222 	mutex_lock(&ui->ui_mutex);
1223 	if (attr->ia_valid & ATTR_SIZE) {
1224 		/* Truncation changes inode [mc]time */
1225 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1226 		/* 'vmtruncate()' changed @i_size, update @ui_size */
1227 		ui->ui_size = inode->i_size;
1228 	}
1229 
1230 	do_attr_changes(inode, attr);
1231 
1232 	release = ui->dirty;
1233 	if (attr->ia_valid & ATTR_SIZE)
1234 		/*
1235 		 * Inode length changed, so we have to make sure
1236 		 * @I_DIRTY_DATASYNC is set.
1237 		 */
1238 		 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC);
1239 	else
1240 		mark_inode_dirty_sync(inode);
1241 	mutex_unlock(&ui->ui_mutex);
1242 
1243 	if (release)
1244 		ubifs_release_budget(c, &req);
1245 	if (IS_SYNC(inode))
1246 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1247 	return err;
1248 
1249 out:
1250 	ubifs_release_budget(c, &req);
1251 	return err;
1252 }
1253 
1254 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1255 {
1256 	int err;
1257 	struct inode *inode = dentry->d_inode;
1258 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1259 
1260 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1261 		inode->i_ino, inode->i_mode, attr->ia_valid);
1262 	err = inode_change_ok(inode, attr);
1263 	if (err)
1264 		return err;
1265 
1266 	err = dbg_check_synced_i_size(inode);
1267 	if (err)
1268 		return err;
1269 
1270 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1271 		/* Truncation to a smaller size */
1272 		err = do_truncation(c, inode, attr);
1273 	else
1274 		err = do_setattr(c, inode, attr);
1275 
1276 	return err;
1277 }
1278 
1279 static void ubifs_invalidatepage(struct page *page, unsigned long offset)
1280 {
1281 	struct inode *inode = page->mapping->host;
1282 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1283 
1284 	ubifs_assert(PagePrivate(page));
1285 	if (offset)
1286 		/* Partial page remains dirty */
1287 		return;
1288 
1289 	if (PageChecked(page))
1290 		release_new_page_budget(c);
1291 	else
1292 		release_existing_page_budget(c);
1293 
1294 	atomic_long_dec(&c->dirty_pg_cnt);
1295 	ClearPagePrivate(page);
1296 	ClearPageChecked(page);
1297 }
1298 
1299 static void *ubifs_follow_link(struct dentry *dentry, struct nameidata *nd)
1300 {
1301 	struct ubifs_inode *ui = ubifs_inode(dentry->d_inode);
1302 
1303 	nd_set_link(nd, ui->data);
1304 	return NULL;
1305 }
1306 
1307 int ubifs_fsync(struct file *file, struct dentry *dentry, int datasync)
1308 {
1309 	struct inode *inode = dentry->d_inode;
1310 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1311 	int err;
1312 
1313 	dbg_gen("syncing inode %lu", inode->i_ino);
1314 
1315 	/*
1316 	 * VFS has already synchronized dirty pages for this inode. Synchronize
1317 	 * the inode unless this is a 'datasync()' call.
1318 	 */
1319 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1320 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1321 		if (err)
1322 			return err;
1323 	}
1324 
1325 	/*
1326 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1327 	 * them.
1328 	 */
1329 	err = ubifs_sync_wbufs_by_inode(c, inode);
1330 	if (err)
1331 		return err;
1332 
1333 	return 0;
1334 }
1335 
1336 /**
1337  * mctime_update_needed - check if mtime or ctime update is needed.
1338  * @inode: the inode to do the check for
1339  * @now: current time
1340  *
1341  * This helper function checks if the inode mtime/ctime should be updated or
1342  * not. If current values of the time-stamps are within the UBIFS inode time
1343  * granularity, they are not updated. This is an optimization.
1344  */
1345 static inline int mctime_update_needed(const struct inode *inode,
1346 				       const struct timespec *now)
1347 {
1348 	if (!timespec_equal(&inode->i_mtime, now) ||
1349 	    !timespec_equal(&inode->i_ctime, now))
1350 		return 1;
1351 	return 0;
1352 }
1353 
1354 /**
1355  * update_ctime - update mtime and ctime of an inode.
1356  * @c: UBIFS file-system description object
1357  * @inode: inode to update
1358  *
1359  * This function updates mtime and ctime of the inode if it is not equivalent to
1360  * current time. Returns zero in case of success and a negative error code in
1361  * case of failure.
1362  */
1363 static int update_mctime(struct ubifs_info *c, struct inode *inode)
1364 {
1365 	struct timespec now = ubifs_current_time(inode);
1366 	struct ubifs_inode *ui = ubifs_inode(inode);
1367 
1368 	if (mctime_update_needed(inode, &now)) {
1369 		int err, release;
1370 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1371 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1372 
1373 		err = ubifs_budget_space(c, &req);
1374 		if (err)
1375 			return err;
1376 
1377 		mutex_lock(&ui->ui_mutex);
1378 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1379 		release = ui->dirty;
1380 		mark_inode_dirty_sync(inode);
1381 		mutex_unlock(&ui->ui_mutex);
1382 		if (release)
1383 			ubifs_release_budget(c, &req);
1384 	}
1385 
1386 	return 0;
1387 }
1388 
1389 static ssize_t ubifs_aio_write(struct kiocb *iocb, const struct iovec *iov,
1390 			       unsigned long nr_segs, loff_t pos)
1391 {
1392 	int err;
1393 	struct inode *inode = iocb->ki_filp->f_mapping->host;
1394 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1395 
1396 	err = update_mctime(c, inode);
1397 	if (err)
1398 		return err;
1399 
1400 	return generic_file_aio_write(iocb, iov, nr_segs, pos);
1401 }
1402 
1403 static int ubifs_set_page_dirty(struct page *page)
1404 {
1405 	int ret;
1406 
1407 	ret = __set_page_dirty_nobuffers(page);
1408 	/*
1409 	 * An attempt to dirty a page without budgeting for it - should not
1410 	 * happen.
1411 	 */
1412 	ubifs_assert(ret == 0);
1413 	return ret;
1414 }
1415 
1416 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1417 {
1418 	/*
1419 	 * An attempt to release a dirty page without budgeting for it - should
1420 	 * not happen.
1421 	 */
1422 	if (PageWriteback(page))
1423 		return 0;
1424 	ubifs_assert(PagePrivate(page));
1425 	ubifs_assert(0);
1426 	ClearPagePrivate(page);
1427 	ClearPageChecked(page);
1428 	return 1;
1429 }
1430 
1431 /*
1432  * mmap()d file has taken write protection fault and is being made
1433  * writable. UBIFS must ensure page is budgeted for.
1434  */
1435 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1436 {
1437 	struct page *page = vmf->page;
1438 	struct inode *inode = vma->vm_file->f_path.dentry->d_inode;
1439 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1440 	struct timespec now = ubifs_current_time(inode);
1441 	struct ubifs_budget_req req = { .new_page = 1 };
1442 	int err, update_time;
1443 
1444 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1445 		i_size_read(inode));
1446 	ubifs_assert(!(inode->i_sb->s_flags & MS_RDONLY));
1447 
1448 	if (unlikely(c->ro_media))
1449 		return VM_FAULT_SIGBUS; /* -EROFS */
1450 
1451 	/*
1452 	 * We have not locked @page so far so we may budget for changing the
1453 	 * page. Note, we cannot do this after we locked the page, because
1454 	 * budgeting may cause write-back which would cause deadlock.
1455 	 *
1456 	 * At the moment we do not know whether the page is dirty or not, so we
1457 	 * assume that it is not and budget for a new page. We could look at
1458 	 * the @PG_private flag and figure this out, but we may race with write
1459 	 * back and the page state may change by the time we lock it, so this
1460 	 * would need additional care. We do not bother with this at the
1461 	 * moment, although it might be good idea to do. Instead, we allocate
1462 	 * budget for a new page and amend it later on if the page was in fact
1463 	 * dirty.
1464 	 *
1465 	 * The budgeting-related logic of this function is similar to what we
1466 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1467 	 * for more comments.
1468 	 */
1469 	update_time = mctime_update_needed(inode, &now);
1470 	if (update_time)
1471 		/*
1472 		 * We have to change inode time stamp which requires extra
1473 		 * budgeting.
1474 		 */
1475 		req.dirtied_ino = 1;
1476 
1477 	err = ubifs_budget_space(c, &req);
1478 	if (unlikely(err)) {
1479 		if (err == -ENOSPC)
1480 			ubifs_warn("out of space for mmapped file "
1481 				   "(inode number %lu)", inode->i_ino);
1482 		return VM_FAULT_SIGBUS;
1483 	}
1484 
1485 	lock_page(page);
1486 	if (unlikely(page->mapping != inode->i_mapping ||
1487 		     page_offset(page) > i_size_read(inode))) {
1488 		/* Page got truncated out from underneath us */
1489 		err = -EINVAL;
1490 		goto out_unlock;
1491 	}
1492 
1493 	if (PagePrivate(page))
1494 		release_new_page_budget(c);
1495 	else {
1496 		if (!PageChecked(page))
1497 			ubifs_convert_page_budget(c);
1498 		SetPagePrivate(page);
1499 		atomic_long_inc(&c->dirty_pg_cnt);
1500 		__set_page_dirty_nobuffers(page);
1501 	}
1502 
1503 	if (update_time) {
1504 		int release;
1505 		struct ubifs_inode *ui = ubifs_inode(inode);
1506 
1507 		mutex_lock(&ui->ui_mutex);
1508 		inode->i_mtime = inode->i_ctime = ubifs_current_time(inode);
1509 		release = ui->dirty;
1510 		mark_inode_dirty_sync(inode);
1511 		mutex_unlock(&ui->ui_mutex);
1512 		if (release)
1513 			ubifs_release_dirty_inode_budget(c, ui);
1514 	}
1515 
1516 	unlock_page(page);
1517 	return 0;
1518 
1519 out_unlock:
1520 	unlock_page(page);
1521 	ubifs_release_budget(c, &req);
1522 	if (err)
1523 		err = VM_FAULT_SIGBUS;
1524 	return err;
1525 }
1526 
1527 static const struct vm_operations_struct ubifs_file_vm_ops = {
1528 	.fault        = filemap_fault,
1529 	.page_mkwrite = ubifs_vm_page_mkwrite,
1530 };
1531 
1532 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1533 {
1534 	int err;
1535 
1536 	/* 'generic_file_mmap()' takes care of NOMMU case */
1537 	err = generic_file_mmap(file, vma);
1538 	if (err)
1539 		return err;
1540 	vma->vm_ops = &ubifs_file_vm_ops;
1541 	return 0;
1542 }
1543 
1544 const struct address_space_operations ubifs_file_address_operations = {
1545 	.readpage       = ubifs_readpage,
1546 	.writepage      = ubifs_writepage,
1547 	.write_begin    = ubifs_write_begin,
1548 	.write_end      = ubifs_write_end,
1549 	.invalidatepage = ubifs_invalidatepage,
1550 	.set_page_dirty = ubifs_set_page_dirty,
1551 	.releasepage    = ubifs_releasepage,
1552 };
1553 
1554 const struct inode_operations ubifs_file_inode_operations = {
1555 	.setattr     = ubifs_setattr,
1556 	.getattr     = ubifs_getattr,
1557 #ifdef CONFIG_UBIFS_FS_XATTR
1558 	.setxattr    = ubifs_setxattr,
1559 	.getxattr    = ubifs_getxattr,
1560 	.listxattr   = ubifs_listxattr,
1561 	.removexattr = ubifs_removexattr,
1562 #endif
1563 };
1564 
1565 const struct inode_operations ubifs_symlink_inode_operations = {
1566 	.readlink    = generic_readlink,
1567 	.follow_link = ubifs_follow_link,
1568 	.setattr     = ubifs_setattr,
1569 	.getattr     = ubifs_getattr,
1570 };
1571 
1572 const struct file_operations ubifs_file_operations = {
1573 	.llseek         = generic_file_llseek,
1574 	.read           = do_sync_read,
1575 	.write          = do_sync_write,
1576 	.aio_read       = generic_file_aio_read,
1577 	.aio_write      = ubifs_aio_write,
1578 	.mmap           = ubifs_file_mmap,
1579 	.fsync          = ubifs_fsync,
1580 	.unlocked_ioctl = ubifs_ioctl,
1581 	.splice_read	= generic_file_splice_read,
1582 	.splice_write	= generic_file_splice_write,
1583 #ifdef CONFIG_COMPAT
1584 	.compat_ioctl   = ubifs_compat_ioctl,
1585 #endif
1586 };
1587