xref: /linux/fs/ubifs/file.c (revision 1d1997db870f4058676439ef7014390ba9e24eb2)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements VFS file and inode operations for regular files, device
13  * nodes and symlinks as well as address space operations.
14  *
15  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16  * the page is dirty and is used for optimization purposes - dirty pages are
17  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18  * the budget for this page. The @PG_checked flag is set if full budgeting is
19  * required for the page e.g., when it corresponds to a file hole or it is
20  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21  * it is OK to fail in this function, and the budget is released in
22  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23  * information about how the page was budgeted, to make it possible to release
24  * the budget properly.
25  *
26  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27  * implement. However, this is not true for 'ubifs_writepage()', which may be
28  * called with @i_mutex unlocked. For example, when flusher thread is doing
29  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33  *
34  * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the
35  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36  * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not
37  * set as well. However, UBIFS disables readahead.
38  */
39 
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44 
45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 		      struct ubifs_data_node *dn)
47 {
48 	struct ubifs_info *c = inode->i_sb->s_fs_info;
49 	int err, len, out_len;
50 	union ubifs_key key;
51 	unsigned int dlen;
52 
53 	data_key_init(c, &key, inode->i_ino, block);
54 	err = ubifs_tnc_lookup(c, &key, dn);
55 	if (err) {
56 		if (err == -ENOENT)
57 			/* Not found, so it must be a hole */
58 			memset(addr, 0, UBIFS_BLOCK_SIZE);
59 		return err;
60 	}
61 
62 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 		     ubifs_inode(inode)->creat_sqnum);
64 	len = le32_to_cpu(dn->size);
65 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 		goto dump;
67 
68 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69 
70 	if (ubifs_crypt_is_encrypted(inode)) {
71 		err = ubifs_decrypt(inode, dn, &dlen, block);
72 		if (err)
73 			goto dump;
74 	}
75 
76 	out_len = UBIFS_BLOCK_SIZE;
77 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 			       le16_to_cpu(dn->compr_type));
79 	if (err || len != out_len)
80 		goto dump;
81 
82 	/*
83 	 * Data length can be less than a full block, even for blocks that are
84 	 * not the last in the file (e.g., as a result of making a hole and
85 	 * appending data). Ensure that the remainder is zeroed out.
86 	 */
87 	if (len < UBIFS_BLOCK_SIZE)
88 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89 
90 	return 0;
91 
92 dump:
93 	ubifs_err(c, "bad data node (block %u, inode %lu)",
94 		  block, inode->i_ino);
95 	ubifs_dump_node(c, dn);
96 	return -EINVAL;
97 }
98 
99 static int do_readpage(struct page *page)
100 {
101 	void *addr;
102 	int err = 0, i;
103 	unsigned int block, beyond;
104 	struct ubifs_data_node *dn;
105 	struct inode *inode = page->mapping->host;
106 	struct ubifs_info *c = inode->i_sb->s_fs_info;
107 	loff_t i_size = i_size_read(inode);
108 
109 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 		inode->i_ino, page->index, i_size, page->flags);
111 	ubifs_assert(c, !PageChecked(page));
112 	ubifs_assert(c, !PagePrivate(page));
113 
114 	addr = kmap(page);
115 
116 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 	if (block >= beyond) {
119 		/* Reading beyond inode */
120 		SetPageChecked(page);
121 		memset(addr, 0, PAGE_SIZE);
122 		goto out;
123 	}
124 
125 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 	if (!dn) {
127 		err = -ENOMEM;
128 		goto error;
129 	}
130 
131 	i = 0;
132 	while (1) {
133 		int ret;
134 
135 		if (block >= beyond) {
136 			/* Reading beyond inode */
137 			err = -ENOENT;
138 			memset(addr, 0, UBIFS_BLOCK_SIZE);
139 		} else {
140 			ret = read_block(inode, addr, block, dn);
141 			if (ret) {
142 				err = ret;
143 				if (err != -ENOENT)
144 					break;
145 			} else if (block + 1 == beyond) {
146 				int dlen = le32_to_cpu(dn->size);
147 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148 
149 				if (ilen && ilen < dlen)
150 					memset(addr + ilen, 0, dlen - ilen);
151 			}
152 		}
153 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
154 			break;
155 		block += 1;
156 		addr += UBIFS_BLOCK_SIZE;
157 	}
158 	if (err) {
159 		struct ubifs_info *c = inode->i_sb->s_fs_info;
160 		if (err == -ENOENT) {
161 			/* Not found, so it must be a hole */
162 			SetPageChecked(page);
163 			dbg_gen("hole");
164 			goto out_free;
165 		}
166 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 			  page->index, inode->i_ino, err);
168 		goto error;
169 	}
170 
171 out_free:
172 	kfree(dn);
173 out:
174 	SetPageUptodate(page);
175 	ClearPageError(page);
176 	flush_dcache_page(page);
177 	kunmap(page);
178 	return 0;
179 
180 error:
181 	kfree(dn);
182 	ClearPageUptodate(page);
183 	SetPageError(page);
184 	flush_dcache_page(page);
185 	kunmap(page);
186 	return err;
187 }
188 
189 /**
190  * release_new_page_budget - release budget of a new page.
191  * @c: UBIFS file-system description object
192  *
193  * This is a helper function which releases budget corresponding to the budget
194  * of one new page of data.
195  */
196 static void release_new_page_budget(struct ubifs_info *c)
197 {
198 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
199 
200 	ubifs_release_budget(c, &req);
201 }
202 
203 /**
204  * release_existing_page_budget - release budget of an existing page.
205  * @c: UBIFS file-system description object
206  *
207  * This is a helper function which releases budget corresponding to the budget
208  * of changing one one page of data which already exists on the flash media.
209  */
210 static void release_existing_page_budget(struct ubifs_info *c)
211 {
212 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
213 
214 	ubifs_release_budget(c, &req);
215 }
216 
217 static int write_begin_slow(struct address_space *mapping,
218 			    loff_t pos, unsigned len, struct page **pagep,
219 			    unsigned flags)
220 {
221 	struct inode *inode = mapping->host;
222 	struct ubifs_info *c = inode->i_sb->s_fs_info;
223 	pgoff_t index = pos >> PAGE_SHIFT;
224 	struct ubifs_budget_req req = { .new_page = 1 };
225 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
226 	struct page *page;
227 
228 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
229 		inode->i_ino, pos, len, inode->i_size);
230 
231 	/*
232 	 * At the slow path we have to budget before locking the page, because
233 	 * budgeting may force write-back, which would wait on locked pages and
234 	 * deadlock if we had the page locked. At this point we do not know
235 	 * anything about the page, so assume that this is a new page which is
236 	 * written to a hole. This corresponds to largest budget. Later the
237 	 * budget will be amended if this is not true.
238 	 */
239 	if (appending)
240 		/* We are appending data, budget for inode change */
241 		req.dirtied_ino = 1;
242 
243 	err = ubifs_budget_space(c, &req);
244 	if (unlikely(err))
245 		return err;
246 
247 	page = grab_cache_page_write_begin(mapping, index, flags);
248 	if (unlikely(!page)) {
249 		ubifs_release_budget(c, &req);
250 		return -ENOMEM;
251 	}
252 
253 	if (!PageUptodate(page)) {
254 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
255 			SetPageChecked(page);
256 		else {
257 			err = do_readpage(page);
258 			if (err) {
259 				unlock_page(page);
260 				put_page(page);
261 				ubifs_release_budget(c, &req);
262 				return err;
263 			}
264 		}
265 
266 		SetPageUptodate(page);
267 		ClearPageError(page);
268 	}
269 
270 	if (PagePrivate(page))
271 		/*
272 		 * The page is dirty, which means it was budgeted twice:
273 		 *   o first time the budget was allocated by the task which
274 		 *     made the page dirty and set the PG_private flag;
275 		 *   o and then we budgeted for it for the second time at the
276 		 *     very beginning of this function.
277 		 *
278 		 * So what we have to do is to release the page budget we
279 		 * allocated.
280 		 */
281 		release_new_page_budget(c);
282 	else if (!PageChecked(page))
283 		/*
284 		 * We are changing a page which already exists on the media.
285 		 * This means that changing the page does not make the amount
286 		 * of indexing information larger, and this part of the budget
287 		 * which we have already acquired may be released.
288 		 */
289 		ubifs_convert_page_budget(c);
290 
291 	if (appending) {
292 		struct ubifs_inode *ui = ubifs_inode(inode);
293 
294 		/*
295 		 * 'ubifs_write_end()' is optimized from the fast-path part of
296 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
297 		 * if data is appended.
298 		 */
299 		mutex_lock(&ui->ui_mutex);
300 		if (ui->dirty)
301 			/*
302 			 * The inode is dirty already, so we may free the
303 			 * budget we allocated.
304 			 */
305 			ubifs_release_dirty_inode_budget(c, ui);
306 	}
307 
308 	*pagep = page;
309 	return 0;
310 }
311 
312 /**
313  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
314  * @c: UBIFS file-system description object
315  * @page: page to allocate budget for
316  * @ui: UBIFS inode object the page belongs to
317  * @appending: non-zero if the page is appended
318  *
319  * This is a helper function for 'ubifs_write_begin()' which allocates budget
320  * for the operation. The budget is allocated differently depending on whether
321  * this is appending, whether the page is dirty or not, and so on. This
322  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
323  * in case of success and %-ENOSPC in case of failure.
324  */
325 static int allocate_budget(struct ubifs_info *c, struct page *page,
326 			   struct ubifs_inode *ui, int appending)
327 {
328 	struct ubifs_budget_req req = { .fast = 1 };
329 
330 	if (PagePrivate(page)) {
331 		if (!appending)
332 			/*
333 			 * The page is dirty and we are not appending, which
334 			 * means no budget is needed at all.
335 			 */
336 			return 0;
337 
338 		mutex_lock(&ui->ui_mutex);
339 		if (ui->dirty)
340 			/*
341 			 * The page is dirty and we are appending, so the inode
342 			 * has to be marked as dirty. However, it is already
343 			 * dirty, so we do not need any budget. We may return,
344 			 * but @ui->ui_mutex hast to be left locked because we
345 			 * should prevent write-back from flushing the inode
346 			 * and freeing the budget. The lock will be released in
347 			 * 'ubifs_write_end()'.
348 			 */
349 			return 0;
350 
351 		/*
352 		 * The page is dirty, we are appending, the inode is clean, so
353 		 * we need to budget the inode change.
354 		 */
355 		req.dirtied_ino = 1;
356 	} else {
357 		if (PageChecked(page))
358 			/*
359 			 * The page corresponds to a hole and does not
360 			 * exist on the media. So changing it makes
361 			 * make the amount of indexing information
362 			 * larger, and we have to budget for a new
363 			 * page.
364 			 */
365 			req.new_page = 1;
366 		else
367 			/*
368 			 * Not a hole, the change will not add any new
369 			 * indexing information, budget for page
370 			 * change.
371 			 */
372 			req.dirtied_page = 1;
373 
374 		if (appending) {
375 			mutex_lock(&ui->ui_mutex);
376 			if (!ui->dirty)
377 				/*
378 				 * The inode is clean but we will have to mark
379 				 * it as dirty because we are appending. This
380 				 * needs a budget.
381 				 */
382 				req.dirtied_ino = 1;
383 		}
384 	}
385 
386 	return ubifs_budget_space(c, &req);
387 }
388 
389 /*
390  * This function is called when a page of data is going to be written. Since
391  * the page of data will not necessarily go to the flash straight away, UBIFS
392  * has to reserve space on the media for it, which is done by means of
393  * budgeting.
394  *
395  * This is the hot-path of the file-system and we are trying to optimize it as
396  * much as possible. For this reasons it is split on 2 parts - slow and fast.
397  *
398  * There many budgeting cases:
399  *     o a new page is appended - we have to budget for a new page and for
400  *       changing the inode; however, if the inode is already dirty, there is
401  *       no need to budget for it;
402  *     o an existing clean page is changed - we have budget for it; if the page
403  *       does not exist on the media (a hole), we have to budget for a new
404  *       page; otherwise, we may budget for changing an existing page; the
405  *       difference between these cases is that changing an existing page does
406  *       not introduce anything new to the FS indexing information, so it does
407  *       not grow, and smaller budget is acquired in this case;
408  *     o an existing dirty page is changed - no need to budget at all, because
409  *       the page budget has been acquired by earlier, when the page has been
410  *       marked dirty.
411  *
412  * UBIFS budgeting sub-system may force write-back if it thinks there is no
413  * space to reserve. This imposes some locking restrictions and makes it
414  * impossible to take into account the above cases, and makes it impossible to
415  * optimize budgeting.
416  *
417  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
418  * there is a plenty of flash space and the budget will be acquired quickly,
419  * without forcing write-back. The slow path does not make this assumption.
420  */
421 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
422 			     loff_t pos, unsigned len, unsigned flags,
423 			     struct page **pagep, void **fsdata)
424 {
425 	struct inode *inode = mapping->host;
426 	struct ubifs_info *c = inode->i_sb->s_fs_info;
427 	struct ubifs_inode *ui = ubifs_inode(inode);
428 	pgoff_t index = pos >> PAGE_SHIFT;
429 	int uninitialized_var(err), appending = !!(pos + len > inode->i_size);
430 	int skipped_read = 0;
431 	struct page *page;
432 
433 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
434 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
435 
436 	if (unlikely(c->ro_error))
437 		return -EROFS;
438 
439 	/* Try out the fast-path part first */
440 	page = grab_cache_page_write_begin(mapping, index, flags);
441 	if (unlikely(!page))
442 		return -ENOMEM;
443 
444 	if (!PageUptodate(page)) {
445 		/* The page is not loaded from the flash */
446 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
447 			/*
448 			 * We change whole page so no need to load it. But we
449 			 * do not know whether this page exists on the media or
450 			 * not, so we assume the latter because it requires
451 			 * larger budget. The assumption is that it is better
452 			 * to budget a bit more than to read the page from the
453 			 * media. Thus, we are setting the @PG_checked flag
454 			 * here.
455 			 */
456 			SetPageChecked(page);
457 			skipped_read = 1;
458 		} else {
459 			err = do_readpage(page);
460 			if (err) {
461 				unlock_page(page);
462 				put_page(page);
463 				return err;
464 			}
465 		}
466 
467 		SetPageUptodate(page);
468 		ClearPageError(page);
469 	}
470 
471 	err = allocate_budget(c, page, ui, appending);
472 	if (unlikely(err)) {
473 		ubifs_assert(c, err == -ENOSPC);
474 		/*
475 		 * If we skipped reading the page because we were going to
476 		 * write all of it, then it is not up to date.
477 		 */
478 		if (skipped_read) {
479 			ClearPageChecked(page);
480 			ClearPageUptodate(page);
481 		}
482 		/*
483 		 * Budgeting failed which means it would have to force
484 		 * write-back but didn't, because we set the @fast flag in the
485 		 * request. Write-back cannot be done now, while we have the
486 		 * page locked, because it would deadlock. Unlock and free
487 		 * everything and fall-back to slow-path.
488 		 */
489 		if (appending) {
490 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
491 			mutex_unlock(&ui->ui_mutex);
492 		}
493 		unlock_page(page);
494 		put_page(page);
495 
496 		return write_begin_slow(mapping, pos, len, pagep, flags);
497 	}
498 
499 	/*
500 	 * Whee, we acquired budgeting quickly - without involving
501 	 * garbage-collection, committing or forcing write-back. We return
502 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
503 	 * otherwise. This is an optimization (slightly hacky though).
504 	 */
505 	*pagep = page;
506 	return 0;
507 
508 }
509 
510 /**
511  * cancel_budget - cancel budget.
512  * @c: UBIFS file-system description object
513  * @page: page to cancel budget for
514  * @ui: UBIFS inode object the page belongs to
515  * @appending: non-zero if the page is appended
516  *
517  * This is a helper function for a page write operation. It unlocks the
518  * @ui->ui_mutex in case of appending.
519  */
520 static void cancel_budget(struct ubifs_info *c, struct page *page,
521 			  struct ubifs_inode *ui, int appending)
522 {
523 	if (appending) {
524 		if (!ui->dirty)
525 			ubifs_release_dirty_inode_budget(c, ui);
526 		mutex_unlock(&ui->ui_mutex);
527 	}
528 	if (!PagePrivate(page)) {
529 		if (PageChecked(page))
530 			release_new_page_budget(c);
531 		else
532 			release_existing_page_budget(c);
533 	}
534 }
535 
536 static int ubifs_write_end(struct file *file, struct address_space *mapping,
537 			   loff_t pos, unsigned len, unsigned copied,
538 			   struct page *page, void *fsdata)
539 {
540 	struct inode *inode = mapping->host;
541 	struct ubifs_inode *ui = ubifs_inode(inode);
542 	struct ubifs_info *c = inode->i_sb->s_fs_info;
543 	loff_t end_pos = pos + len;
544 	int appending = !!(end_pos > inode->i_size);
545 
546 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
547 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
548 
549 	if (unlikely(copied < len && len == PAGE_SIZE)) {
550 		/*
551 		 * VFS copied less data to the page that it intended and
552 		 * declared in its '->write_begin()' call via the @len
553 		 * argument. If the page was not up-to-date, and @len was
554 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
555 		 * not load it from the media (for optimization reasons). This
556 		 * means that part of the page contains garbage. So read the
557 		 * page now.
558 		 */
559 		dbg_gen("copied %d instead of %d, read page and repeat",
560 			copied, len);
561 		cancel_budget(c, page, ui, appending);
562 		ClearPageChecked(page);
563 
564 		/*
565 		 * Return 0 to force VFS to repeat the whole operation, or the
566 		 * error code if 'do_readpage()' fails.
567 		 */
568 		copied = do_readpage(page);
569 		goto out;
570 	}
571 
572 	if (!PagePrivate(page)) {
573 		SetPagePrivate(page);
574 		atomic_long_inc(&c->dirty_pg_cnt);
575 		__set_page_dirty_nobuffers(page);
576 	}
577 
578 	if (appending) {
579 		i_size_write(inode, end_pos);
580 		ui->ui_size = end_pos;
581 		/*
582 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
583 		 * inode has dirty pages), this has been done in
584 		 * '__set_page_dirty_nobuffers()'.
585 		 */
586 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
587 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
588 		mutex_unlock(&ui->ui_mutex);
589 	}
590 
591 out:
592 	unlock_page(page);
593 	put_page(page);
594 	return copied;
595 }
596 
597 /**
598  * populate_page - copy data nodes into a page for bulk-read.
599  * @c: UBIFS file-system description object
600  * @page: page
601  * @bu: bulk-read information
602  * @n: next zbranch slot
603  *
604  * This function returns %0 on success and a negative error code on failure.
605  */
606 static int populate_page(struct ubifs_info *c, struct page *page,
607 			 struct bu_info *bu, int *n)
608 {
609 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
610 	struct inode *inode = page->mapping->host;
611 	loff_t i_size = i_size_read(inode);
612 	unsigned int page_block;
613 	void *addr, *zaddr;
614 	pgoff_t end_index;
615 
616 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
617 		inode->i_ino, page->index, i_size, page->flags);
618 
619 	addr = zaddr = kmap(page);
620 
621 	end_index = (i_size - 1) >> PAGE_SHIFT;
622 	if (!i_size || page->index > end_index) {
623 		hole = 1;
624 		memset(addr, 0, PAGE_SIZE);
625 		goto out_hole;
626 	}
627 
628 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
629 	while (1) {
630 		int err, len, out_len, dlen;
631 
632 		if (nn >= bu->cnt) {
633 			hole = 1;
634 			memset(addr, 0, UBIFS_BLOCK_SIZE);
635 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
636 			struct ubifs_data_node *dn;
637 
638 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
639 
640 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
641 				     ubifs_inode(inode)->creat_sqnum);
642 
643 			len = le32_to_cpu(dn->size);
644 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
645 				goto out_err;
646 
647 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
648 			out_len = UBIFS_BLOCK_SIZE;
649 
650 			if (ubifs_crypt_is_encrypted(inode)) {
651 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
652 				if (err)
653 					goto out_err;
654 			}
655 
656 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
657 					       le16_to_cpu(dn->compr_type));
658 			if (err || len != out_len)
659 				goto out_err;
660 
661 			if (len < UBIFS_BLOCK_SIZE)
662 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
663 
664 			nn += 1;
665 			read = (i << UBIFS_BLOCK_SHIFT) + len;
666 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
667 			nn += 1;
668 			continue;
669 		} else {
670 			hole = 1;
671 			memset(addr, 0, UBIFS_BLOCK_SIZE);
672 		}
673 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
674 			break;
675 		addr += UBIFS_BLOCK_SIZE;
676 		page_block += 1;
677 	}
678 
679 	if (end_index == page->index) {
680 		int len = i_size & (PAGE_SIZE - 1);
681 
682 		if (len && len < read)
683 			memset(zaddr + len, 0, read - len);
684 	}
685 
686 out_hole:
687 	if (hole) {
688 		SetPageChecked(page);
689 		dbg_gen("hole");
690 	}
691 
692 	SetPageUptodate(page);
693 	ClearPageError(page);
694 	flush_dcache_page(page);
695 	kunmap(page);
696 	*n = nn;
697 	return 0;
698 
699 out_err:
700 	ClearPageUptodate(page);
701 	SetPageError(page);
702 	flush_dcache_page(page);
703 	kunmap(page);
704 	ubifs_err(c, "bad data node (block %u, inode %lu)",
705 		  page_block, inode->i_ino);
706 	return -EINVAL;
707 }
708 
709 /**
710  * ubifs_do_bulk_read - do bulk-read.
711  * @c: UBIFS file-system description object
712  * @bu: bulk-read information
713  * @page1: first page to read
714  *
715  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
716  */
717 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
718 			      struct page *page1)
719 {
720 	pgoff_t offset = page1->index, end_index;
721 	struct address_space *mapping = page1->mapping;
722 	struct inode *inode = mapping->host;
723 	struct ubifs_inode *ui = ubifs_inode(inode);
724 	int err, page_idx, page_cnt, ret = 0, n = 0;
725 	int allocate = bu->buf ? 0 : 1;
726 	loff_t isize;
727 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
728 
729 	err = ubifs_tnc_get_bu_keys(c, bu);
730 	if (err)
731 		goto out_warn;
732 
733 	if (bu->eof) {
734 		/* Turn off bulk-read at the end of the file */
735 		ui->read_in_a_row = 1;
736 		ui->bulk_read = 0;
737 	}
738 
739 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
740 	if (!page_cnt) {
741 		/*
742 		 * This happens when there are multiple blocks per page and the
743 		 * blocks for the first page we are looking for, are not
744 		 * together. If all the pages were like this, bulk-read would
745 		 * reduce performance, so we turn it off for a while.
746 		 */
747 		goto out_bu_off;
748 	}
749 
750 	if (bu->cnt) {
751 		if (allocate) {
752 			/*
753 			 * Allocate bulk-read buffer depending on how many data
754 			 * nodes we are going to read.
755 			 */
756 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
757 				      bu->zbranch[bu->cnt - 1].len -
758 				      bu->zbranch[0].offs;
759 			ubifs_assert(c, bu->buf_len > 0);
760 			ubifs_assert(c, bu->buf_len <= c->leb_size);
761 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
762 			if (!bu->buf)
763 				goto out_bu_off;
764 		}
765 
766 		err = ubifs_tnc_bulk_read(c, bu);
767 		if (err)
768 			goto out_warn;
769 	}
770 
771 	err = populate_page(c, page1, bu, &n);
772 	if (err)
773 		goto out_warn;
774 
775 	unlock_page(page1);
776 	ret = 1;
777 
778 	isize = i_size_read(inode);
779 	if (isize == 0)
780 		goto out_free;
781 	end_index = ((isize - 1) >> PAGE_SHIFT);
782 
783 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
784 		pgoff_t page_offset = offset + page_idx;
785 		struct page *page;
786 
787 		if (page_offset > end_index)
788 			break;
789 		page = find_or_create_page(mapping, page_offset, ra_gfp_mask);
790 		if (!page)
791 			break;
792 		if (!PageUptodate(page))
793 			err = populate_page(c, page, bu, &n);
794 		unlock_page(page);
795 		put_page(page);
796 		if (err)
797 			break;
798 	}
799 
800 	ui->last_page_read = offset + page_idx - 1;
801 
802 out_free:
803 	if (allocate)
804 		kfree(bu->buf);
805 	return ret;
806 
807 out_warn:
808 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
809 	goto out_free;
810 
811 out_bu_off:
812 	ui->read_in_a_row = ui->bulk_read = 0;
813 	goto out_free;
814 }
815 
816 /**
817  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
818  * @page: page from which to start bulk-read.
819  *
820  * Some flash media are capable of reading sequentially at faster rates. UBIFS
821  * bulk-read facility is designed to take advantage of that, by reading in one
822  * go consecutive data nodes that are also located consecutively in the same
823  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
824  */
825 static int ubifs_bulk_read(struct page *page)
826 {
827 	struct inode *inode = page->mapping->host;
828 	struct ubifs_info *c = inode->i_sb->s_fs_info;
829 	struct ubifs_inode *ui = ubifs_inode(inode);
830 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
831 	struct bu_info *bu;
832 	int err = 0, allocated = 0;
833 
834 	ui->last_page_read = index;
835 	if (!c->bulk_read)
836 		return 0;
837 
838 	/*
839 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
840 	 * so don't bother if we cannot lock the mutex.
841 	 */
842 	if (!mutex_trylock(&ui->ui_mutex))
843 		return 0;
844 
845 	if (index != last_page_read + 1) {
846 		/* Turn off bulk-read if we stop reading sequentially */
847 		ui->read_in_a_row = 1;
848 		if (ui->bulk_read)
849 			ui->bulk_read = 0;
850 		goto out_unlock;
851 	}
852 
853 	if (!ui->bulk_read) {
854 		ui->read_in_a_row += 1;
855 		if (ui->read_in_a_row < 3)
856 			goto out_unlock;
857 		/* Three reads in a row, so switch on bulk-read */
858 		ui->bulk_read = 1;
859 	}
860 
861 	/*
862 	 * If possible, try to use pre-allocated bulk-read information, which
863 	 * is protected by @c->bu_mutex.
864 	 */
865 	if (mutex_trylock(&c->bu_mutex))
866 		bu = &c->bu;
867 	else {
868 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
869 		if (!bu)
870 			goto out_unlock;
871 
872 		bu->buf = NULL;
873 		allocated = 1;
874 	}
875 
876 	bu->buf_len = c->max_bu_buf_len;
877 	data_key_init(c, &bu->key, inode->i_ino,
878 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
879 	err = ubifs_do_bulk_read(c, bu, page);
880 
881 	if (!allocated)
882 		mutex_unlock(&c->bu_mutex);
883 	else
884 		kfree(bu);
885 
886 out_unlock:
887 	mutex_unlock(&ui->ui_mutex);
888 	return err;
889 }
890 
891 static int ubifs_readpage(struct file *file, struct page *page)
892 {
893 	if (ubifs_bulk_read(page))
894 		return 0;
895 	do_readpage(page);
896 	unlock_page(page);
897 	return 0;
898 }
899 
900 static int do_writepage(struct page *page, int len)
901 {
902 	int err = 0, i, blen;
903 	unsigned int block;
904 	void *addr;
905 	union ubifs_key key;
906 	struct inode *inode = page->mapping->host;
907 	struct ubifs_info *c = inode->i_sb->s_fs_info;
908 
909 #ifdef UBIFS_DEBUG
910 	struct ubifs_inode *ui = ubifs_inode(inode);
911 	spin_lock(&ui->ui_lock);
912 	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
913 	spin_unlock(&ui->ui_lock);
914 #endif
915 
916 	/* Update radix tree tags */
917 	set_page_writeback(page);
918 
919 	addr = kmap(page);
920 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
921 	i = 0;
922 	while (len) {
923 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
924 		data_key_init(c, &key, inode->i_ino, block);
925 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
926 		if (err)
927 			break;
928 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
929 			break;
930 		block += 1;
931 		addr += blen;
932 		len -= blen;
933 	}
934 	if (err) {
935 		SetPageError(page);
936 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
937 			  page->index, inode->i_ino, err);
938 		ubifs_ro_mode(c, err);
939 	}
940 
941 	ubifs_assert(c, PagePrivate(page));
942 	if (PageChecked(page))
943 		release_new_page_budget(c);
944 	else
945 		release_existing_page_budget(c);
946 
947 	atomic_long_dec(&c->dirty_pg_cnt);
948 	ClearPagePrivate(page);
949 	ClearPageChecked(page);
950 
951 	kunmap(page);
952 	unlock_page(page);
953 	end_page_writeback(page);
954 	return err;
955 }
956 
957 /*
958  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
959  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
960  * situation when a we have an inode with size 0, then a megabyte of data is
961  * appended to the inode, then write-back starts and flushes some amount of the
962  * dirty pages, the journal becomes full, commit happens and finishes, and then
963  * an unclean reboot happens. When the file system is mounted next time, the
964  * inode size would still be 0, but there would be many pages which are beyond
965  * the inode size, they would be indexed and consume flash space. Because the
966  * journal has been committed, the replay would not be able to detect this
967  * situation and correct the inode size. This means UBIFS would have to scan
968  * whole index and correct all inode sizes, which is long an unacceptable.
969  *
970  * To prevent situations like this, UBIFS writes pages back only if they are
971  * within the last synchronized inode size, i.e. the size which has been
972  * written to the flash media last time. Otherwise, UBIFS forces inode
973  * write-back, thus making sure the on-flash inode contains current inode size,
974  * and then keeps writing pages back.
975  *
976  * Some locking issues explanation. 'ubifs_writepage()' first is called with
977  * the page locked, and it locks @ui_mutex. However, write-back does take inode
978  * @i_mutex, which means other VFS operations may be run on this inode at the
979  * same time. And the problematic one is truncation to smaller size, from where
980  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
981  * then drops the truncated pages. And while dropping the pages, it takes the
982  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
983  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
984  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
985  *
986  * XXX(truncate): with the new truncate sequence this is not true anymore,
987  * and the calls to truncate_setsize can be move around freely.  They should
988  * be moved to the very end of the truncate sequence.
989  *
990  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
991  * inode size. How do we do this if @inode->i_size may became smaller while we
992  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
993  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
994  * internally and updates it under @ui_mutex.
995  *
996  * Q: why we do not worry that if we race with truncation, we may end up with a
997  * situation when the inode is truncated while we are in the middle of
998  * 'do_writepage()', so we do write beyond inode size?
999  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1000  * on the page lock and it would not write the truncated inode node to the
1001  * journal before we have finished.
1002  */
1003 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1004 {
1005 	struct inode *inode = page->mapping->host;
1006 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1007 	struct ubifs_inode *ui = ubifs_inode(inode);
1008 	loff_t i_size =  i_size_read(inode), synced_i_size;
1009 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1010 	int err, len = i_size & (PAGE_SIZE - 1);
1011 	void *kaddr;
1012 
1013 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1014 		inode->i_ino, page->index, page->flags);
1015 	ubifs_assert(c, PagePrivate(page));
1016 
1017 	/* Is the page fully outside @i_size? (truncate in progress) */
1018 	if (page->index > end_index || (page->index == end_index && !len)) {
1019 		err = 0;
1020 		goto out_unlock;
1021 	}
1022 
1023 	spin_lock(&ui->ui_lock);
1024 	synced_i_size = ui->synced_i_size;
1025 	spin_unlock(&ui->ui_lock);
1026 
1027 	/* Is the page fully inside @i_size? */
1028 	if (page->index < end_index) {
1029 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1030 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1031 			if (err)
1032 				goto out_unlock;
1033 			/*
1034 			 * The inode has been written, but the write-buffer has
1035 			 * not been synchronized, so in case of an unclean
1036 			 * reboot we may end up with some pages beyond inode
1037 			 * size, but they would be in the journal (because
1038 			 * commit flushes write buffers) and recovery would deal
1039 			 * with this.
1040 			 */
1041 		}
1042 		return do_writepage(page, PAGE_SIZE);
1043 	}
1044 
1045 	/*
1046 	 * The page straddles @i_size. It must be zeroed out on each and every
1047 	 * writepage invocation because it may be mmapped. "A file is mapped
1048 	 * in multiples of the page size. For a file that is not a multiple of
1049 	 * the page size, the remaining memory is zeroed when mapped, and
1050 	 * writes to that region are not written out to the file."
1051 	 */
1052 	kaddr = kmap_atomic(page);
1053 	memset(kaddr + len, 0, PAGE_SIZE - len);
1054 	flush_dcache_page(page);
1055 	kunmap_atomic(kaddr);
1056 
1057 	if (i_size > synced_i_size) {
1058 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1059 		if (err)
1060 			goto out_unlock;
1061 	}
1062 
1063 	return do_writepage(page, len);
1064 
1065 out_unlock:
1066 	unlock_page(page);
1067 	return err;
1068 }
1069 
1070 /**
1071  * do_attr_changes - change inode attributes.
1072  * @inode: inode to change attributes for
1073  * @attr: describes attributes to change
1074  */
1075 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1076 {
1077 	if (attr->ia_valid & ATTR_UID)
1078 		inode->i_uid = attr->ia_uid;
1079 	if (attr->ia_valid & ATTR_GID)
1080 		inode->i_gid = attr->ia_gid;
1081 	if (attr->ia_valid & ATTR_ATIME) {
1082 		inode->i_atime = timestamp_truncate(attr->ia_atime,
1083 						  inode);
1084 	}
1085 	if (attr->ia_valid & ATTR_MTIME) {
1086 		inode->i_mtime = timestamp_truncate(attr->ia_mtime,
1087 						  inode);
1088 	}
1089 	if (attr->ia_valid & ATTR_CTIME) {
1090 		inode->i_ctime = timestamp_truncate(attr->ia_ctime,
1091 						  inode);
1092 	}
1093 	if (attr->ia_valid & ATTR_MODE) {
1094 		umode_t mode = attr->ia_mode;
1095 
1096 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1097 			mode &= ~S_ISGID;
1098 		inode->i_mode = mode;
1099 	}
1100 }
1101 
1102 /**
1103  * do_truncation - truncate an inode.
1104  * @c: UBIFS file-system description object
1105  * @inode: inode to truncate
1106  * @attr: inode attribute changes description
1107  *
1108  * This function implements VFS '->setattr()' call when the inode is truncated
1109  * to a smaller size. Returns zero in case of success and a negative error code
1110  * in case of failure.
1111  */
1112 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1113 			 const struct iattr *attr)
1114 {
1115 	int err;
1116 	struct ubifs_budget_req req;
1117 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1118 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1119 	struct ubifs_inode *ui = ubifs_inode(inode);
1120 
1121 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1122 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1123 
1124 	/*
1125 	 * If this is truncation to a smaller size, and we do not truncate on a
1126 	 * block boundary, budget for changing one data block, because the last
1127 	 * block will be re-written.
1128 	 */
1129 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1130 		req.dirtied_page = 1;
1131 
1132 	req.dirtied_ino = 1;
1133 	/* A funny way to budget for truncation node */
1134 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1135 	err = ubifs_budget_space(c, &req);
1136 	if (err) {
1137 		/*
1138 		 * Treat truncations to zero as deletion and always allow them,
1139 		 * just like we do for '->unlink()'.
1140 		 */
1141 		if (new_size || err != -ENOSPC)
1142 			return err;
1143 		budgeted = 0;
1144 	}
1145 
1146 	truncate_setsize(inode, new_size);
1147 
1148 	if (offset) {
1149 		pgoff_t index = new_size >> PAGE_SHIFT;
1150 		struct page *page;
1151 
1152 		page = find_lock_page(inode->i_mapping, index);
1153 		if (page) {
1154 			if (PageDirty(page)) {
1155 				/*
1156 				 * 'ubifs_jnl_truncate()' will try to truncate
1157 				 * the last data node, but it contains
1158 				 * out-of-date data because the page is dirty.
1159 				 * Write the page now, so that
1160 				 * 'ubifs_jnl_truncate()' will see an already
1161 				 * truncated (and up to date) data node.
1162 				 */
1163 				ubifs_assert(c, PagePrivate(page));
1164 
1165 				clear_page_dirty_for_io(page);
1166 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1167 					offset = new_size &
1168 						 (PAGE_SIZE - 1);
1169 				err = do_writepage(page, offset);
1170 				put_page(page);
1171 				if (err)
1172 					goto out_budg;
1173 				/*
1174 				 * We could now tell 'ubifs_jnl_truncate()' not
1175 				 * to read the last block.
1176 				 */
1177 			} else {
1178 				/*
1179 				 * We could 'kmap()' the page and pass the data
1180 				 * to 'ubifs_jnl_truncate()' to save it from
1181 				 * having to read it.
1182 				 */
1183 				unlock_page(page);
1184 				put_page(page);
1185 			}
1186 		}
1187 	}
1188 
1189 	mutex_lock(&ui->ui_mutex);
1190 	ui->ui_size = inode->i_size;
1191 	/* Truncation changes inode [mc]time */
1192 	inode->i_mtime = inode->i_ctime = current_time(inode);
1193 	/* Other attributes may be changed at the same time as well */
1194 	do_attr_changes(inode, attr);
1195 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1196 	mutex_unlock(&ui->ui_mutex);
1197 
1198 out_budg:
1199 	if (budgeted)
1200 		ubifs_release_budget(c, &req);
1201 	else {
1202 		c->bi.nospace = c->bi.nospace_rp = 0;
1203 		smp_wmb();
1204 	}
1205 	return err;
1206 }
1207 
1208 /**
1209  * do_setattr - change inode attributes.
1210  * @c: UBIFS file-system description object
1211  * @inode: inode to change attributes for
1212  * @attr: inode attribute changes description
1213  *
1214  * This function implements VFS '->setattr()' call for all cases except
1215  * truncations to smaller size. Returns zero in case of success and a negative
1216  * error code in case of failure.
1217  */
1218 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1219 		      const struct iattr *attr)
1220 {
1221 	int err, release;
1222 	loff_t new_size = attr->ia_size;
1223 	struct ubifs_inode *ui = ubifs_inode(inode);
1224 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1225 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1226 
1227 	err = ubifs_budget_space(c, &req);
1228 	if (err)
1229 		return err;
1230 
1231 	if (attr->ia_valid & ATTR_SIZE) {
1232 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1233 		truncate_setsize(inode, new_size);
1234 	}
1235 
1236 	mutex_lock(&ui->ui_mutex);
1237 	if (attr->ia_valid & ATTR_SIZE) {
1238 		/* Truncation changes inode [mc]time */
1239 		inode->i_mtime = inode->i_ctime = current_time(inode);
1240 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1241 		ui->ui_size = inode->i_size;
1242 	}
1243 
1244 	do_attr_changes(inode, attr);
1245 
1246 	release = ui->dirty;
1247 	if (attr->ia_valid & ATTR_SIZE)
1248 		/*
1249 		 * Inode length changed, so we have to make sure
1250 		 * @I_DIRTY_DATASYNC is set.
1251 		 */
1252 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1253 	else
1254 		mark_inode_dirty_sync(inode);
1255 	mutex_unlock(&ui->ui_mutex);
1256 
1257 	if (release)
1258 		ubifs_release_budget(c, &req);
1259 	if (IS_SYNC(inode))
1260 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1261 	return err;
1262 }
1263 
1264 int ubifs_setattr(struct dentry *dentry, struct iattr *attr)
1265 {
1266 	int err;
1267 	struct inode *inode = d_inode(dentry);
1268 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1269 
1270 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1271 		inode->i_ino, inode->i_mode, attr->ia_valid);
1272 	err = setattr_prepare(dentry, attr);
1273 	if (err)
1274 		return err;
1275 
1276 	err = dbg_check_synced_i_size(c, inode);
1277 	if (err)
1278 		return err;
1279 
1280 	err = fscrypt_prepare_setattr(dentry, attr);
1281 	if (err)
1282 		return err;
1283 
1284 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1285 		/* Truncation to a smaller size */
1286 		err = do_truncation(c, inode, attr);
1287 	else
1288 		err = do_setattr(c, inode, attr);
1289 
1290 	return err;
1291 }
1292 
1293 static void ubifs_invalidatepage(struct page *page, unsigned int offset,
1294 				 unsigned int length)
1295 {
1296 	struct inode *inode = page->mapping->host;
1297 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1298 
1299 	ubifs_assert(c, PagePrivate(page));
1300 	if (offset || length < PAGE_SIZE)
1301 		/* Partial page remains dirty */
1302 		return;
1303 
1304 	if (PageChecked(page))
1305 		release_new_page_budget(c);
1306 	else
1307 		release_existing_page_budget(c);
1308 
1309 	atomic_long_dec(&c->dirty_pg_cnt);
1310 	ClearPagePrivate(page);
1311 	ClearPageChecked(page);
1312 }
1313 
1314 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1315 {
1316 	struct inode *inode = file->f_mapping->host;
1317 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1318 	int err;
1319 
1320 	dbg_gen("syncing inode %lu", inode->i_ino);
1321 
1322 	if (c->ro_mount)
1323 		/*
1324 		 * For some really strange reasons VFS does not filter out
1325 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1326 		 */
1327 		return 0;
1328 
1329 	err = file_write_and_wait_range(file, start, end);
1330 	if (err)
1331 		return err;
1332 	inode_lock(inode);
1333 
1334 	/* Synchronize the inode unless this is a 'datasync()' call. */
1335 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1336 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1337 		if (err)
1338 			goto out;
1339 	}
1340 
1341 	/*
1342 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1343 	 * them.
1344 	 */
1345 	err = ubifs_sync_wbufs_by_inode(c, inode);
1346 out:
1347 	inode_unlock(inode);
1348 	return err;
1349 }
1350 
1351 /**
1352  * mctime_update_needed - check if mtime or ctime update is needed.
1353  * @inode: the inode to do the check for
1354  * @now: current time
1355  *
1356  * This helper function checks if the inode mtime/ctime should be updated or
1357  * not. If current values of the time-stamps are within the UBIFS inode time
1358  * granularity, they are not updated. This is an optimization.
1359  */
1360 static inline int mctime_update_needed(const struct inode *inode,
1361 				       const struct timespec64 *now)
1362 {
1363 	if (!timespec64_equal(&inode->i_mtime, now) ||
1364 	    !timespec64_equal(&inode->i_ctime, now))
1365 		return 1;
1366 	return 0;
1367 }
1368 
1369 /**
1370  * ubifs_update_time - update time of inode.
1371  * @inode: inode to update
1372  *
1373  * This function updates time of the inode.
1374  */
1375 int ubifs_update_time(struct inode *inode, struct timespec64 *time,
1376 			     int flags)
1377 {
1378 	struct ubifs_inode *ui = ubifs_inode(inode);
1379 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1380 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1381 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1382 	int iflags = I_DIRTY_TIME;
1383 	int err, release;
1384 
1385 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1386 		return generic_update_time(inode, time, flags);
1387 
1388 	err = ubifs_budget_space(c, &req);
1389 	if (err)
1390 		return err;
1391 
1392 	mutex_lock(&ui->ui_mutex);
1393 	if (flags & S_ATIME)
1394 		inode->i_atime = *time;
1395 	if (flags & S_CTIME)
1396 		inode->i_ctime = *time;
1397 	if (flags & S_MTIME)
1398 		inode->i_mtime = *time;
1399 
1400 	if (!(inode->i_sb->s_flags & SB_LAZYTIME))
1401 		iflags |= I_DIRTY_SYNC;
1402 
1403 	release = ui->dirty;
1404 	__mark_inode_dirty(inode, iflags);
1405 	mutex_unlock(&ui->ui_mutex);
1406 	if (release)
1407 		ubifs_release_budget(c, &req);
1408 	return 0;
1409 }
1410 
1411 /**
1412  * update_mctime - update mtime and ctime of an inode.
1413  * @inode: inode to update
1414  *
1415  * This function updates mtime and ctime of the inode if it is not equivalent to
1416  * current time. Returns zero in case of success and a negative error code in
1417  * case of failure.
1418  */
1419 static int update_mctime(struct inode *inode)
1420 {
1421 	struct timespec64 now = current_time(inode);
1422 	struct ubifs_inode *ui = ubifs_inode(inode);
1423 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1424 
1425 	if (mctime_update_needed(inode, &now)) {
1426 		int err, release;
1427 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1428 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1429 
1430 		err = ubifs_budget_space(c, &req);
1431 		if (err)
1432 			return err;
1433 
1434 		mutex_lock(&ui->ui_mutex);
1435 		inode->i_mtime = inode->i_ctime = current_time(inode);
1436 		release = ui->dirty;
1437 		mark_inode_dirty_sync(inode);
1438 		mutex_unlock(&ui->ui_mutex);
1439 		if (release)
1440 			ubifs_release_budget(c, &req);
1441 	}
1442 
1443 	return 0;
1444 }
1445 
1446 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1447 {
1448 	int err = update_mctime(file_inode(iocb->ki_filp));
1449 	if (err)
1450 		return err;
1451 
1452 	return generic_file_write_iter(iocb, from);
1453 }
1454 
1455 static int ubifs_set_page_dirty(struct page *page)
1456 {
1457 	int ret;
1458 	struct inode *inode = page->mapping->host;
1459 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1460 
1461 	ret = __set_page_dirty_nobuffers(page);
1462 	/*
1463 	 * An attempt to dirty a page without budgeting for it - should not
1464 	 * happen.
1465 	 */
1466 	ubifs_assert(c, ret == 0);
1467 	return ret;
1468 }
1469 
1470 #ifdef CONFIG_MIGRATION
1471 static int ubifs_migrate_page(struct address_space *mapping,
1472 		struct page *newpage, struct page *page, enum migrate_mode mode)
1473 {
1474 	int rc;
1475 
1476 	rc = migrate_page_move_mapping(mapping, newpage, page, 0);
1477 	if (rc != MIGRATEPAGE_SUCCESS)
1478 		return rc;
1479 
1480 	if (PagePrivate(page)) {
1481 		ClearPagePrivate(page);
1482 		SetPagePrivate(newpage);
1483 	}
1484 
1485 	if (mode != MIGRATE_SYNC_NO_COPY)
1486 		migrate_page_copy(newpage, page);
1487 	else
1488 		migrate_page_states(newpage, page);
1489 	return MIGRATEPAGE_SUCCESS;
1490 }
1491 #endif
1492 
1493 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags)
1494 {
1495 	struct inode *inode = page->mapping->host;
1496 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1497 
1498 	/*
1499 	 * An attempt to release a dirty page without budgeting for it - should
1500 	 * not happen.
1501 	 */
1502 	if (PageWriteback(page))
1503 		return 0;
1504 	ubifs_assert(c, PagePrivate(page));
1505 	ubifs_assert(c, 0);
1506 	ClearPagePrivate(page);
1507 	ClearPageChecked(page);
1508 	return 1;
1509 }
1510 
1511 /*
1512  * mmap()d file has taken write protection fault and is being made writable.
1513  * UBIFS must ensure page is budgeted for.
1514  */
1515 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1516 {
1517 	struct page *page = vmf->page;
1518 	struct inode *inode = file_inode(vmf->vma->vm_file);
1519 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1520 	struct timespec64 now = current_time(inode);
1521 	struct ubifs_budget_req req = { .new_page = 1 };
1522 	int err, update_time;
1523 
1524 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1525 		i_size_read(inode));
1526 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1527 
1528 	if (unlikely(c->ro_error))
1529 		return VM_FAULT_SIGBUS; /* -EROFS */
1530 
1531 	/*
1532 	 * We have not locked @page so far so we may budget for changing the
1533 	 * page. Note, we cannot do this after we locked the page, because
1534 	 * budgeting may cause write-back which would cause deadlock.
1535 	 *
1536 	 * At the moment we do not know whether the page is dirty or not, so we
1537 	 * assume that it is not and budget for a new page. We could look at
1538 	 * the @PG_private flag and figure this out, but we may race with write
1539 	 * back and the page state may change by the time we lock it, so this
1540 	 * would need additional care. We do not bother with this at the
1541 	 * moment, although it might be good idea to do. Instead, we allocate
1542 	 * budget for a new page and amend it later on if the page was in fact
1543 	 * dirty.
1544 	 *
1545 	 * The budgeting-related logic of this function is similar to what we
1546 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1547 	 * for more comments.
1548 	 */
1549 	update_time = mctime_update_needed(inode, &now);
1550 	if (update_time)
1551 		/*
1552 		 * We have to change inode time stamp which requires extra
1553 		 * budgeting.
1554 		 */
1555 		req.dirtied_ino = 1;
1556 
1557 	err = ubifs_budget_space(c, &req);
1558 	if (unlikely(err)) {
1559 		if (err == -ENOSPC)
1560 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1561 				   inode->i_ino);
1562 		return VM_FAULT_SIGBUS;
1563 	}
1564 
1565 	lock_page(page);
1566 	if (unlikely(page->mapping != inode->i_mapping ||
1567 		     page_offset(page) > i_size_read(inode))) {
1568 		/* Page got truncated out from underneath us */
1569 		goto sigbus;
1570 	}
1571 
1572 	if (PagePrivate(page))
1573 		release_new_page_budget(c);
1574 	else {
1575 		if (!PageChecked(page))
1576 			ubifs_convert_page_budget(c);
1577 		SetPagePrivate(page);
1578 		atomic_long_inc(&c->dirty_pg_cnt);
1579 		__set_page_dirty_nobuffers(page);
1580 	}
1581 
1582 	if (update_time) {
1583 		int release;
1584 		struct ubifs_inode *ui = ubifs_inode(inode);
1585 
1586 		mutex_lock(&ui->ui_mutex);
1587 		inode->i_mtime = inode->i_ctime = current_time(inode);
1588 		release = ui->dirty;
1589 		mark_inode_dirty_sync(inode);
1590 		mutex_unlock(&ui->ui_mutex);
1591 		if (release)
1592 			ubifs_release_dirty_inode_budget(c, ui);
1593 	}
1594 
1595 	wait_for_stable_page(page);
1596 	return VM_FAULT_LOCKED;
1597 
1598 sigbus:
1599 	unlock_page(page);
1600 	ubifs_release_budget(c, &req);
1601 	return VM_FAULT_SIGBUS;
1602 }
1603 
1604 static const struct vm_operations_struct ubifs_file_vm_ops = {
1605 	.fault        = filemap_fault,
1606 	.map_pages = filemap_map_pages,
1607 	.page_mkwrite = ubifs_vm_page_mkwrite,
1608 };
1609 
1610 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1611 {
1612 	int err;
1613 
1614 	err = generic_file_mmap(file, vma);
1615 	if (err)
1616 		return err;
1617 	vma->vm_ops = &ubifs_file_vm_ops;
1618 
1619 	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1620 		file_accessed(file);
1621 
1622 	return 0;
1623 }
1624 
1625 static const char *ubifs_get_link(struct dentry *dentry,
1626 					    struct inode *inode,
1627 					    struct delayed_call *done)
1628 {
1629 	struct ubifs_inode *ui = ubifs_inode(inode);
1630 
1631 	if (!IS_ENCRYPTED(inode))
1632 		return ui->data;
1633 
1634 	if (!dentry)
1635 		return ERR_PTR(-ECHILD);
1636 
1637 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1638 }
1639 
1640 const struct address_space_operations ubifs_file_address_operations = {
1641 	.readpage       = ubifs_readpage,
1642 	.writepage      = ubifs_writepage,
1643 	.write_begin    = ubifs_write_begin,
1644 	.write_end      = ubifs_write_end,
1645 	.invalidatepage = ubifs_invalidatepage,
1646 	.set_page_dirty = ubifs_set_page_dirty,
1647 #ifdef CONFIG_MIGRATION
1648 	.migratepage	= ubifs_migrate_page,
1649 #endif
1650 	.releasepage    = ubifs_releasepage,
1651 };
1652 
1653 const struct inode_operations ubifs_file_inode_operations = {
1654 	.setattr     = ubifs_setattr,
1655 	.getattr     = ubifs_getattr,
1656 #ifdef CONFIG_UBIFS_FS_XATTR
1657 	.listxattr   = ubifs_listxattr,
1658 #endif
1659 	.update_time = ubifs_update_time,
1660 };
1661 
1662 const struct inode_operations ubifs_symlink_inode_operations = {
1663 	.get_link    = ubifs_get_link,
1664 	.setattr     = ubifs_setattr,
1665 	.getattr     = ubifs_getattr,
1666 #ifdef CONFIG_UBIFS_FS_XATTR
1667 	.listxattr   = ubifs_listxattr,
1668 #endif
1669 	.update_time = ubifs_update_time,
1670 };
1671 
1672 const struct file_operations ubifs_file_operations = {
1673 	.llseek         = generic_file_llseek,
1674 	.read_iter      = generic_file_read_iter,
1675 	.write_iter     = ubifs_write_iter,
1676 	.mmap           = ubifs_file_mmap,
1677 	.fsync          = ubifs_fsync,
1678 	.unlocked_ioctl = ubifs_ioctl,
1679 	.splice_read	= generic_file_splice_read,
1680 	.splice_write	= iter_file_splice_write,
1681 	.open		= fscrypt_file_open,
1682 #ifdef CONFIG_COMPAT
1683 	.compat_ioctl   = ubifs_compat_ioctl,
1684 #endif
1685 };
1686