1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation. 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements VFS file and inode operations for regular files, device 25 * nodes and symlinks as well as address space operations. 26 * 27 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 28 * the page is dirty and is used for optimization purposes - dirty pages are 29 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 30 * the budget for this page. The @PG_checked flag is set if full budgeting is 31 * required for the page e.g., when it corresponds to a file hole or it is 32 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 33 * it is OK to fail in this function, and the budget is released in 34 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 35 * information about how the page was budgeted, to make it possible to release 36 * the budget properly. 37 * 38 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 39 * implement. However, this is not true for 'ubifs_writepage()', which may be 40 * called with @i_mutex unlocked. For example, when flusher thread is doing 41 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 42 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 43 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 44 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 45 * 46 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the 47 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 48 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not 49 * set as well. However, UBIFS disables readahead. 50 */ 51 52 #include "ubifs.h" 53 #include <linux/mount.h> 54 #include <linux/slab.h> 55 56 static int read_block(struct inode *inode, void *addr, unsigned int block, 57 struct ubifs_data_node *dn) 58 { 59 struct ubifs_info *c = inode->i_sb->s_fs_info; 60 int err, len, out_len; 61 union ubifs_key key; 62 unsigned int dlen; 63 64 data_key_init(c, &key, inode->i_ino, block); 65 err = ubifs_tnc_lookup(c, &key, dn); 66 if (err) { 67 if (err == -ENOENT) 68 /* Not found, so it must be a hole */ 69 memset(addr, 0, UBIFS_BLOCK_SIZE); 70 return err; 71 } 72 73 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 74 ubifs_inode(inode)->creat_sqnum); 75 len = le32_to_cpu(dn->size); 76 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 77 goto dump; 78 79 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 80 out_len = UBIFS_BLOCK_SIZE; 81 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 82 le16_to_cpu(dn->compr_type)); 83 if (err || len != out_len) 84 goto dump; 85 86 /* 87 * Data length can be less than a full block, even for blocks that are 88 * not the last in the file (e.g., as a result of making a hole and 89 * appending data). Ensure that the remainder is zeroed out. 90 */ 91 if (len < UBIFS_BLOCK_SIZE) 92 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 93 94 return 0; 95 96 dump: 97 ubifs_err(c, "bad data node (block %u, inode %lu)", 98 block, inode->i_ino); 99 ubifs_dump_node(c, dn); 100 return -EINVAL; 101 } 102 103 static int do_readpage(struct page *page) 104 { 105 void *addr; 106 int err = 0, i; 107 unsigned int block, beyond; 108 struct ubifs_data_node *dn; 109 struct inode *inode = page->mapping->host; 110 loff_t i_size = i_size_read(inode); 111 112 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 113 inode->i_ino, page->index, i_size, page->flags); 114 ubifs_assert(!PageChecked(page)); 115 ubifs_assert(!PagePrivate(page)); 116 117 addr = kmap(page); 118 119 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 120 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 121 if (block >= beyond) { 122 /* Reading beyond inode */ 123 SetPageChecked(page); 124 memset(addr, 0, PAGE_SIZE); 125 goto out; 126 } 127 128 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 129 if (!dn) { 130 err = -ENOMEM; 131 goto error; 132 } 133 134 i = 0; 135 while (1) { 136 int ret; 137 138 if (block >= beyond) { 139 /* Reading beyond inode */ 140 err = -ENOENT; 141 memset(addr, 0, UBIFS_BLOCK_SIZE); 142 } else { 143 ret = read_block(inode, addr, block, dn); 144 if (ret) { 145 err = ret; 146 if (err != -ENOENT) 147 break; 148 } else if (block + 1 == beyond) { 149 int dlen = le32_to_cpu(dn->size); 150 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 151 152 if (ilen && ilen < dlen) 153 memset(addr + ilen, 0, dlen - ilen); 154 } 155 } 156 if (++i >= UBIFS_BLOCKS_PER_PAGE) 157 break; 158 block += 1; 159 addr += UBIFS_BLOCK_SIZE; 160 } 161 if (err) { 162 struct ubifs_info *c = inode->i_sb->s_fs_info; 163 if (err == -ENOENT) { 164 /* Not found, so it must be a hole */ 165 SetPageChecked(page); 166 dbg_gen("hole"); 167 goto out_free; 168 } 169 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 170 page->index, inode->i_ino, err); 171 goto error; 172 } 173 174 out_free: 175 kfree(dn); 176 out: 177 SetPageUptodate(page); 178 ClearPageError(page); 179 flush_dcache_page(page); 180 kunmap(page); 181 return 0; 182 183 error: 184 kfree(dn); 185 ClearPageUptodate(page); 186 SetPageError(page); 187 flush_dcache_page(page); 188 kunmap(page); 189 return err; 190 } 191 192 /** 193 * release_new_page_budget - release budget of a new page. 194 * @c: UBIFS file-system description object 195 * 196 * This is a helper function which releases budget corresponding to the budget 197 * of one new page of data. 198 */ 199 static void release_new_page_budget(struct ubifs_info *c) 200 { 201 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 202 203 ubifs_release_budget(c, &req); 204 } 205 206 /** 207 * release_existing_page_budget - release budget of an existing page. 208 * @c: UBIFS file-system description object 209 * 210 * This is a helper function which releases budget corresponding to the budget 211 * of changing one one page of data which already exists on the flash media. 212 */ 213 static void release_existing_page_budget(struct ubifs_info *c) 214 { 215 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 216 217 ubifs_release_budget(c, &req); 218 } 219 220 static int write_begin_slow(struct address_space *mapping, 221 loff_t pos, unsigned len, struct page **pagep, 222 unsigned flags) 223 { 224 struct inode *inode = mapping->host; 225 struct ubifs_info *c = inode->i_sb->s_fs_info; 226 pgoff_t index = pos >> PAGE_SHIFT; 227 struct ubifs_budget_req req = { .new_page = 1 }; 228 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 229 struct page *page; 230 231 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 232 inode->i_ino, pos, len, inode->i_size); 233 234 /* 235 * At the slow path we have to budget before locking the page, because 236 * budgeting may force write-back, which would wait on locked pages and 237 * deadlock if we had the page locked. At this point we do not know 238 * anything about the page, so assume that this is a new page which is 239 * written to a hole. This corresponds to largest budget. Later the 240 * budget will be amended if this is not true. 241 */ 242 if (appending) 243 /* We are appending data, budget for inode change */ 244 req.dirtied_ino = 1; 245 246 err = ubifs_budget_space(c, &req); 247 if (unlikely(err)) 248 return err; 249 250 page = grab_cache_page_write_begin(mapping, index, flags); 251 if (unlikely(!page)) { 252 ubifs_release_budget(c, &req); 253 return -ENOMEM; 254 } 255 256 if (!PageUptodate(page)) { 257 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) 258 SetPageChecked(page); 259 else { 260 err = do_readpage(page); 261 if (err) { 262 unlock_page(page); 263 put_page(page); 264 ubifs_release_budget(c, &req); 265 return err; 266 } 267 } 268 269 SetPageUptodate(page); 270 ClearPageError(page); 271 } 272 273 if (PagePrivate(page)) 274 /* 275 * The page is dirty, which means it was budgeted twice: 276 * o first time the budget was allocated by the task which 277 * made the page dirty and set the PG_private flag; 278 * o and then we budgeted for it for the second time at the 279 * very beginning of this function. 280 * 281 * So what we have to do is to release the page budget we 282 * allocated. 283 */ 284 release_new_page_budget(c); 285 else if (!PageChecked(page)) 286 /* 287 * We are changing a page which already exists on the media. 288 * This means that changing the page does not make the amount 289 * of indexing information larger, and this part of the budget 290 * which we have already acquired may be released. 291 */ 292 ubifs_convert_page_budget(c); 293 294 if (appending) { 295 struct ubifs_inode *ui = ubifs_inode(inode); 296 297 /* 298 * 'ubifs_write_end()' is optimized from the fast-path part of 299 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 300 * if data is appended. 301 */ 302 mutex_lock(&ui->ui_mutex); 303 if (ui->dirty) 304 /* 305 * The inode is dirty already, so we may free the 306 * budget we allocated. 307 */ 308 ubifs_release_dirty_inode_budget(c, ui); 309 } 310 311 *pagep = page; 312 return 0; 313 } 314 315 /** 316 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 317 * @c: UBIFS file-system description object 318 * @page: page to allocate budget for 319 * @ui: UBIFS inode object the page belongs to 320 * @appending: non-zero if the page is appended 321 * 322 * This is a helper function for 'ubifs_write_begin()' which allocates budget 323 * for the operation. The budget is allocated differently depending on whether 324 * this is appending, whether the page is dirty or not, and so on. This 325 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 326 * in case of success and %-ENOSPC in case of failure. 327 */ 328 static int allocate_budget(struct ubifs_info *c, struct page *page, 329 struct ubifs_inode *ui, int appending) 330 { 331 struct ubifs_budget_req req = { .fast = 1 }; 332 333 if (PagePrivate(page)) { 334 if (!appending) 335 /* 336 * The page is dirty and we are not appending, which 337 * means no budget is needed at all. 338 */ 339 return 0; 340 341 mutex_lock(&ui->ui_mutex); 342 if (ui->dirty) 343 /* 344 * The page is dirty and we are appending, so the inode 345 * has to be marked as dirty. However, it is already 346 * dirty, so we do not need any budget. We may return, 347 * but @ui->ui_mutex hast to be left locked because we 348 * should prevent write-back from flushing the inode 349 * and freeing the budget. The lock will be released in 350 * 'ubifs_write_end()'. 351 */ 352 return 0; 353 354 /* 355 * The page is dirty, we are appending, the inode is clean, so 356 * we need to budget the inode change. 357 */ 358 req.dirtied_ino = 1; 359 } else { 360 if (PageChecked(page)) 361 /* 362 * The page corresponds to a hole and does not 363 * exist on the media. So changing it makes 364 * make the amount of indexing information 365 * larger, and we have to budget for a new 366 * page. 367 */ 368 req.new_page = 1; 369 else 370 /* 371 * Not a hole, the change will not add any new 372 * indexing information, budget for page 373 * change. 374 */ 375 req.dirtied_page = 1; 376 377 if (appending) { 378 mutex_lock(&ui->ui_mutex); 379 if (!ui->dirty) 380 /* 381 * The inode is clean but we will have to mark 382 * it as dirty because we are appending. This 383 * needs a budget. 384 */ 385 req.dirtied_ino = 1; 386 } 387 } 388 389 return ubifs_budget_space(c, &req); 390 } 391 392 /* 393 * This function is called when a page of data is going to be written. Since 394 * the page of data will not necessarily go to the flash straight away, UBIFS 395 * has to reserve space on the media for it, which is done by means of 396 * budgeting. 397 * 398 * This is the hot-path of the file-system and we are trying to optimize it as 399 * much as possible. For this reasons it is split on 2 parts - slow and fast. 400 * 401 * There many budgeting cases: 402 * o a new page is appended - we have to budget for a new page and for 403 * changing the inode; however, if the inode is already dirty, there is 404 * no need to budget for it; 405 * o an existing clean page is changed - we have budget for it; if the page 406 * does not exist on the media (a hole), we have to budget for a new 407 * page; otherwise, we may budget for changing an existing page; the 408 * difference between these cases is that changing an existing page does 409 * not introduce anything new to the FS indexing information, so it does 410 * not grow, and smaller budget is acquired in this case; 411 * o an existing dirty page is changed - no need to budget at all, because 412 * the page budget has been acquired by earlier, when the page has been 413 * marked dirty. 414 * 415 * UBIFS budgeting sub-system may force write-back if it thinks there is no 416 * space to reserve. This imposes some locking restrictions and makes it 417 * impossible to take into account the above cases, and makes it impossible to 418 * optimize budgeting. 419 * 420 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 421 * there is a plenty of flash space and the budget will be acquired quickly, 422 * without forcing write-back. The slow path does not make this assumption. 423 */ 424 static int ubifs_write_begin(struct file *file, struct address_space *mapping, 425 loff_t pos, unsigned len, unsigned flags, 426 struct page **pagep, void **fsdata) 427 { 428 struct inode *inode = mapping->host; 429 struct ubifs_info *c = inode->i_sb->s_fs_info; 430 struct ubifs_inode *ui = ubifs_inode(inode); 431 pgoff_t index = pos >> PAGE_SHIFT; 432 int uninitialized_var(err), appending = !!(pos + len > inode->i_size); 433 int skipped_read = 0; 434 struct page *page; 435 436 ubifs_assert(ubifs_inode(inode)->ui_size == inode->i_size); 437 ubifs_assert(!c->ro_media && !c->ro_mount); 438 439 if (unlikely(c->ro_error)) 440 return -EROFS; 441 442 /* Try out the fast-path part first */ 443 page = grab_cache_page_write_begin(mapping, index, flags); 444 if (unlikely(!page)) 445 return -ENOMEM; 446 447 if (!PageUptodate(page)) { 448 /* The page is not loaded from the flash */ 449 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) { 450 /* 451 * We change whole page so no need to load it. But we 452 * do not know whether this page exists on the media or 453 * not, so we assume the latter because it requires 454 * larger budget. The assumption is that it is better 455 * to budget a bit more than to read the page from the 456 * media. Thus, we are setting the @PG_checked flag 457 * here. 458 */ 459 SetPageChecked(page); 460 skipped_read = 1; 461 } else { 462 err = do_readpage(page); 463 if (err) { 464 unlock_page(page); 465 put_page(page); 466 return err; 467 } 468 } 469 470 SetPageUptodate(page); 471 ClearPageError(page); 472 } 473 474 err = allocate_budget(c, page, ui, appending); 475 if (unlikely(err)) { 476 ubifs_assert(err == -ENOSPC); 477 /* 478 * If we skipped reading the page because we were going to 479 * write all of it, then it is not up to date. 480 */ 481 if (skipped_read) { 482 ClearPageChecked(page); 483 ClearPageUptodate(page); 484 } 485 /* 486 * Budgeting failed which means it would have to force 487 * write-back but didn't, because we set the @fast flag in the 488 * request. Write-back cannot be done now, while we have the 489 * page locked, because it would deadlock. Unlock and free 490 * everything and fall-back to slow-path. 491 */ 492 if (appending) { 493 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 494 mutex_unlock(&ui->ui_mutex); 495 } 496 unlock_page(page); 497 put_page(page); 498 499 return write_begin_slow(mapping, pos, len, pagep, flags); 500 } 501 502 /* 503 * Whee, we acquired budgeting quickly - without involving 504 * garbage-collection, committing or forcing write-back. We return 505 * with @ui->ui_mutex locked if we are appending pages, and unlocked 506 * otherwise. This is an optimization (slightly hacky though). 507 */ 508 *pagep = page; 509 return 0; 510 511 } 512 513 /** 514 * cancel_budget - cancel budget. 515 * @c: UBIFS file-system description object 516 * @page: page to cancel budget for 517 * @ui: UBIFS inode object the page belongs to 518 * @appending: non-zero if the page is appended 519 * 520 * This is a helper function for a page write operation. It unlocks the 521 * @ui->ui_mutex in case of appending. 522 */ 523 static void cancel_budget(struct ubifs_info *c, struct page *page, 524 struct ubifs_inode *ui, int appending) 525 { 526 if (appending) { 527 if (!ui->dirty) 528 ubifs_release_dirty_inode_budget(c, ui); 529 mutex_unlock(&ui->ui_mutex); 530 } 531 if (!PagePrivate(page)) { 532 if (PageChecked(page)) 533 release_new_page_budget(c); 534 else 535 release_existing_page_budget(c); 536 } 537 } 538 539 static int ubifs_write_end(struct file *file, struct address_space *mapping, 540 loff_t pos, unsigned len, unsigned copied, 541 struct page *page, void *fsdata) 542 { 543 struct inode *inode = mapping->host; 544 struct ubifs_inode *ui = ubifs_inode(inode); 545 struct ubifs_info *c = inode->i_sb->s_fs_info; 546 loff_t end_pos = pos + len; 547 int appending = !!(end_pos > inode->i_size); 548 549 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 550 inode->i_ino, pos, page->index, len, copied, inode->i_size); 551 552 if (unlikely(copied < len && len == PAGE_SIZE)) { 553 /* 554 * VFS copied less data to the page that it intended and 555 * declared in its '->write_begin()' call via the @len 556 * argument. If the page was not up-to-date, and @len was 557 * @PAGE_SIZE, the 'ubifs_write_begin()' function did 558 * not load it from the media (for optimization reasons). This 559 * means that part of the page contains garbage. So read the 560 * page now. 561 */ 562 dbg_gen("copied %d instead of %d, read page and repeat", 563 copied, len); 564 cancel_budget(c, page, ui, appending); 565 ClearPageChecked(page); 566 567 /* 568 * Return 0 to force VFS to repeat the whole operation, or the 569 * error code if 'do_readpage()' fails. 570 */ 571 copied = do_readpage(page); 572 goto out; 573 } 574 575 if (!PagePrivate(page)) { 576 SetPagePrivate(page); 577 atomic_long_inc(&c->dirty_pg_cnt); 578 __set_page_dirty_nobuffers(page); 579 } 580 581 if (appending) { 582 i_size_write(inode, end_pos); 583 ui->ui_size = end_pos; 584 /* 585 * Note, we do not set @I_DIRTY_PAGES (which means that the 586 * inode has dirty pages), this has been done in 587 * '__set_page_dirty_nobuffers()'. 588 */ 589 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 590 ubifs_assert(mutex_is_locked(&ui->ui_mutex)); 591 mutex_unlock(&ui->ui_mutex); 592 } 593 594 out: 595 unlock_page(page); 596 put_page(page); 597 return copied; 598 } 599 600 /** 601 * populate_page - copy data nodes into a page for bulk-read. 602 * @c: UBIFS file-system description object 603 * @page: page 604 * @bu: bulk-read information 605 * @n: next zbranch slot 606 * 607 * This function returns %0 on success and a negative error code on failure. 608 */ 609 static int populate_page(struct ubifs_info *c, struct page *page, 610 struct bu_info *bu, int *n) 611 { 612 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 613 struct inode *inode = page->mapping->host; 614 loff_t i_size = i_size_read(inode); 615 unsigned int page_block; 616 void *addr, *zaddr; 617 pgoff_t end_index; 618 619 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 620 inode->i_ino, page->index, i_size, page->flags); 621 622 addr = zaddr = kmap(page); 623 624 end_index = (i_size - 1) >> PAGE_SHIFT; 625 if (!i_size || page->index > end_index) { 626 hole = 1; 627 memset(addr, 0, PAGE_SIZE); 628 goto out_hole; 629 } 630 631 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 632 while (1) { 633 int err, len, out_len, dlen; 634 635 if (nn >= bu->cnt) { 636 hole = 1; 637 memset(addr, 0, UBIFS_BLOCK_SIZE); 638 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 639 struct ubifs_data_node *dn; 640 641 dn = bu->buf + (bu->zbranch[nn].offs - offs); 642 643 ubifs_assert(le64_to_cpu(dn->ch.sqnum) > 644 ubifs_inode(inode)->creat_sqnum); 645 646 len = le32_to_cpu(dn->size); 647 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 648 goto out_err; 649 650 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 651 out_len = UBIFS_BLOCK_SIZE; 652 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 653 le16_to_cpu(dn->compr_type)); 654 if (err || len != out_len) 655 goto out_err; 656 657 if (len < UBIFS_BLOCK_SIZE) 658 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 659 660 nn += 1; 661 read = (i << UBIFS_BLOCK_SHIFT) + len; 662 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 663 nn += 1; 664 continue; 665 } else { 666 hole = 1; 667 memset(addr, 0, UBIFS_BLOCK_SIZE); 668 } 669 if (++i >= UBIFS_BLOCKS_PER_PAGE) 670 break; 671 addr += UBIFS_BLOCK_SIZE; 672 page_block += 1; 673 } 674 675 if (end_index == page->index) { 676 int len = i_size & (PAGE_SIZE - 1); 677 678 if (len && len < read) 679 memset(zaddr + len, 0, read - len); 680 } 681 682 out_hole: 683 if (hole) { 684 SetPageChecked(page); 685 dbg_gen("hole"); 686 } 687 688 SetPageUptodate(page); 689 ClearPageError(page); 690 flush_dcache_page(page); 691 kunmap(page); 692 *n = nn; 693 return 0; 694 695 out_err: 696 ClearPageUptodate(page); 697 SetPageError(page); 698 flush_dcache_page(page); 699 kunmap(page); 700 ubifs_err(c, "bad data node (block %u, inode %lu)", 701 page_block, inode->i_ino); 702 return -EINVAL; 703 } 704 705 /** 706 * ubifs_do_bulk_read - do bulk-read. 707 * @c: UBIFS file-system description object 708 * @bu: bulk-read information 709 * @page1: first page to read 710 * 711 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 712 */ 713 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 714 struct page *page1) 715 { 716 pgoff_t offset = page1->index, end_index; 717 struct address_space *mapping = page1->mapping; 718 struct inode *inode = mapping->host; 719 struct ubifs_inode *ui = ubifs_inode(inode); 720 int err, page_idx, page_cnt, ret = 0, n = 0; 721 int allocate = bu->buf ? 0 : 1; 722 loff_t isize; 723 724 err = ubifs_tnc_get_bu_keys(c, bu); 725 if (err) 726 goto out_warn; 727 728 if (bu->eof) { 729 /* Turn off bulk-read at the end of the file */ 730 ui->read_in_a_row = 1; 731 ui->bulk_read = 0; 732 } 733 734 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 735 if (!page_cnt) { 736 /* 737 * This happens when there are multiple blocks per page and the 738 * blocks for the first page we are looking for, are not 739 * together. If all the pages were like this, bulk-read would 740 * reduce performance, so we turn it off for a while. 741 */ 742 goto out_bu_off; 743 } 744 745 if (bu->cnt) { 746 if (allocate) { 747 /* 748 * Allocate bulk-read buffer depending on how many data 749 * nodes we are going to read. 750 */ 751 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 752 bu->zbranch[bu->cnt - 1].len - 753 bu->zbranch[0].offs; 754 ubifs_assert(bu->buf_len > 0); 755 ubifs_assert(bu->buf_len <= c->leb_size); 756 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 757 if (!bu->buf) 758 goto out_bu_off; 759 } 760 761 err = ubifs_tnc_bulk_read(c, bu); 762 if (err) 763 goto out_warn; 764 } 765 766 err = populate_page(c, page1, bu, &n); 767 if (err) 768 goto out_warn; 769 770 unlock_page(page1); 771 ret = 1; 772 773 isize = i_size_read(inode); 774 if (isize == 0) 775 goto out_free; 776 end_index = ((isize - 1) >> PAGE_SHIFT); 777 778 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 779 pgoff_t page_offset = offset + page_idx; 780 struct page *page; 781 782 if (page_offset > end_index) 783 break; 784 page = find_or_create_page(mapping, page_offset, 785 GFP_NOFS | __GFP_COLD); 786 if (!page) 787 break; 788 if (!PageUptodate(page)) 789 err = populate_page(c, page, bu, &n); 790 unlock_page(page); 791 put_page(page); 792 if (err) 793 break; 794 } 795 796 ui->last_page_read = offset + page_idx - 1; 797 798 out_free: 799 if (allocate) 800 kfree(bu->buf); 801 return ret; 802 803 out_warn: 804 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 805 goto out_free; 806 807 out_bu_off: 808 ui->read_in_a_row = ui->bulk_read = 0; 809 goto out_free; 810 } 811 812 /** 813 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 814 * @page: page from which to start bulk-read. 815 * 816 * Some flash media are capable of reading sequentially at faster rates. UBIFS 817 * bulk-read facility is designed to take advantage of that, by reading in one 818 * go consecutive data nodes that are also located consecutively in the same 819 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 820 */ 821 static int ubifs_bulk_read(struct page *page) 822 { 823 struct inode *inode = page->mapping->host; 824 struct ubifs_info *c = inode->i_sb->s_fs_info; 825 struct ubifs_inode *ui = ubifs_inode(inode); 826 pgoff_t index = page->index, last_page_read = ui->last_page_read; 827 struct bu_info *bu; 828 int err = 0, allocated = 0; 829 830 ui->last_page_read = index; 831 if (!c->bulk_read) 832 return 0; 833 834 /* 835 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 836 * so don't bother if we cannot lock the mutex. 837 */ 838 if (!mutex_trylock(&ui->ui_mutex)) 839 return 0; 840 841 if (index != last_page_read + 1) { 842 /* Turn off bulk-read if we stop reading sequentially */ 843 ui->read_in_a_row = 1; 844 if (ui->bulk_read) 845 ui->bulk_read = 0; 846 goto out_unlock; 847 } 848 849 if (!ui->bulk_read) { 850 ui->read_in_a_row += 1; 851 if (ui->read_in_a_row < 3) 852 goto out_unlock; 853 /* Three reads in a row, so switch on bulk-read */ 854 ui->bulk_read = 1; 855 } 856 857 /* 858 * If possible, try to use pre-allocated bulk-read information, which 859 * is protected by @c->bu_mutex. 860 */ 861 if (mutex_trylock(&c->bu_mutex)) 862 bu = &c->bu; 863 else { 864 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 865 if (!bu) 866 goto out_unlock; 867 868 bu->buf = NULL; 869 allocated = 1; 870 } 871 872 bu->buf_len = c->max_bu_buf_len; 873 data_key_init(c, &bu->key, inode->i_ino, 874 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 875 err = ubifs_do_bulk_read(c, bu, page); 876 877 if (!allocated) 878 mutex_unlock(&c->bu_mutex); 879 else 880 kfree(bu); 881 882 out_unlock: 883 mutex_unlock(&ui->ui_mutex); 884 return err; 885 } 886 887 static int ubifs_readpage(struct file *file, struct page *page) 888 { 889 if (ubifs_bulk_read(page)) 890 return 0; 891 do_readpage(page); 892 unlock_page(page); 893 return 0; 894 } 895 896 static int do_writepage(struct page *page, int len) 897 { 898 int err = 0, i, blen; 899 unsigned int block; 900 void *addr; 901 union ubifs_key key; 902 struct inode *inode = page->mapping->host; 903 struct ubifs_info *c = inode->i_sb->s_fs_info; 904 905 #ifdef UBIFS_DEBUG 906 struct ubifs_inode *ui = ubifs_inode(inode); 907 spin_lock(&ui->ui_lock); 908 ubifs_assert(page->index <= ui->synced_i_size >> PAGE_SHIFT); 909 spin_unlock(&ui->ui_lock); 910 #endif 911 912 /* Update radix tree tags */ 913 set_page_writeback(page); 914 915 addr = kmap(page); 916 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 917 i = 0; 918 while (len) { 919 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 920 data_key_init(c, &key, inode->i_ino, block); 921 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 922 if (err) 923 break; 924 if (++i >= UBIFS_BLOCKS_PER_PAGE) 925 break; 926 block += 1; 927 addr += blen; 928 len -= blen; 929 } 930 if (err) { 931 SetPageError(page); 932 ubifs_err(c, "cannot write page %lu of inode %lu, error %d", 933 page->index, inode->i_ino, err); 934 ubifs_ro_mode(c, err); 935 } 936 937 ubifs_assert(PagePrivate(page)); 938 if (PageChecked(page)) 939 release_new_page_budget(c); 940 else 941 release_existing_page_budget(c); 942 943 atomic_long_dec(&c->dirty_pg_cnt); 944 ClearPagePrivate(page); 945 ClearPageChecked(page); 946 947 kunmap(page); 948 unlock_page(page); 949 end_page_writeback(page); 950 return err; 951 } 952 953 /* 954 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 955 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 956 * situation when a we have an inode with size 0, then a megabyte of data is 957 * appended to the inode, then write-back starts and flushes some amount of the 958 * dirty pages, the journal becomes full, commit happens and finishes, and then 959 * an unclean reboot happens. When the file system is mounted next time, the 960 * inode size would still be 0, but there would be many pages which are beyond 961 * the inode size, they would be indexed and consume flash space. Because the 962 * journal has been committed, the replay would not be able to detect this 963 * situation and correct the inode size. This means UBIFS would have to scan 964 * whole index and correct all inode sizes, which is long an unacceptable. 965 * 966 * To prevent situations like this, UBIFS writes pages back only if they are 967 * within the last synchronized inode size, i.e. the size which has been 968 * written to the flash media last time. Otherwise, UBIFS forces inode 969 * write-back, thus making sure the on-flash inode contains current inode size, 970 * and then keeps writing pages back. 971 * 972 * Some locking issues explanation. 'ubifs_writepage()' first is called with 973 * the page locked, and it locks @ui_mutex. However, write-back does take inode 974 * @i_mutex, which means other VFS operations may be run on this inode at the 975 * same time. And the problematic one is truncation to smaller size, from where 976 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 977 * then drops the truncated pages. And while dropping the pages, it takes the 978 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 979 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 980 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 981 * 982 * XXX(truncate): with the new truncate sequence this is not true anymore, 983 * and the calls to truncate_setsize can be move around freely. They should 984 * be moved to the very end of the truncate sequence. 985 * 986 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 987 * inode size. How do we do this if @inode->i_size may became smaller while we 988 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 989 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 990 * internally and updates it under @ui_mutex. 991 * 992 * Q: why we do not worry that if we race with truncation, we may end up with a 993 * situation when the inode is truncated while we are in the middle of 994 * 'do_writepage()', so we do write beyond inode size? 995 * A: If we are in the middle of 'do_writepage()', truncation would be locked 996 * on the page lock and it would not write the truncated inode node to the 997 * journal before we have finished. 998 */ 999 static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1000 { 1001 struct inode *inode = page->mapping->host; 1002 struct ubifs_inode *ui = ubifs_inode(inode); 1003 loff_t i_size = i_size_read(inode), synced_i_size; 1004 pgoff_t end_index = i_size >> PAGE_SHIFT; 1005 int err, len = i_size & (PAGE_SIZE - 1); 1006 void *kaddr; 1007 1008 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1009 inode->i_ino, page->index, page->flags); 1010 ubifs_assert(PagePrivate(page)); 1011 1012 /* Is the page fully outside @i_size? (truncate in progress) */ 1013 if (page->index > end_index || (page->index == end_index && !len)) { 1014 err = 0; 1015 goto out_unlock; 1016 } 1017 1018 spin_lock(&ui->ui_lock); 1019 synced_i_size = ui->synced_i_size; 1020 spin_unlock(&ui->ui_lock); 1021 1022 /* Is the page fully inside @i_size? */ 1023 if (page->index < end_index) { 1024 if (page->index >= synced_i_size >> PAGE_SHIFT) { 1025 err = inode->i_sb->s_op->write_inode(inode, NULL); 1026 if (err) 1027 goto out_unlock; 1028 /* 1029 * The inode has been written, but the write-buffer has 1030 * not been synchronized, so in case of an unclean 1031 * reboot we may end up with some pages beyond inode 1032 * size, but they would be in the journal (because 1033 * commit flushes write buffers) and recovery would deal 1034 * with this. 1035 */ 1036 } 1037 return do_writepage(page, PAGE_SIZE); 1038 } 1039 1040 /* 1041 * The page straddles @i_size. It must be zeroed out on each and every 1042 * writepage invocation because it may be mmapped. "A file is mapped 1043 * in multiples of the page size. For a file that is not a multiple of 1044 * the page size, the remaining memory is zeroed when mapped, and 1045 * writes to that region are not written out to the file." 1046 */ 1047 kaddr = kmap_atomic(page); 1048 memset(kaddr + len, 0, PAGE_SIZE - len); 1049 flush_dcache_page(page); 1050 kunmap_atomic(kaddr); 1051 1052 if (i_size > synced_i_size) { 1053 err = inode->i_sb->s_op->write_inode(inode, NULL); 1054 if (err) 1055 goto out_unlock; 1056 } 1057 1058 return do_writepage(page, len); 1059 1060 out_unlock: 1061 unlock_page(page); 1062 return err; 1063 } 1064 1065 /** 1066 * do_attr_changes - change inode attributes. 1067 * @inode: inode to change attributes for 1068 * @attr: describes attributes to change 1069 */ 1070 static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1071 { 1072 if (attr->ia_valid & ATTR_UID) 1073 inode->i_uid = attr->ia_uid; 1074 if (attr->ia_valid & ATTR_GID) 1075 inode->i_gid = attr->ia_gid; 1076 if (attr->ia_valid & ATTR_ATIME) 1077 inode->i_atime = timespec_trunc(attr->ia_atime, 1078 inode->i_sb->s_time_gran); 1079 if (attr->ia_valid & ATTR_MTIME) 1080 inode->i_mtime = timespec_trunc(attr->ia_mtime, 1081 inode->i_sb->s_time_gran); 1082 if (attr->ia_valid & ATTR_CTIME) 1083 inode->i_ctime = timespec_trunc(attr->ia_ctime, 1084 inode->i_sb->s_time_gran); 1085 if (attr->ia_valid & ATTR_MODE) { 1086 umode_t mode = attr->ia_mode; 1087 1088 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1089 mode &= ~S_ISGID; 1090 inode->i_mode = mode; 1091 } 1092 } 1093 1094 /** 1095 * do_truncation - truncate an inode. 1096 * @c: UBIFS file-system description object 1097 * @inode: inode to truncate 1098 * @attr: inode attribute changes description 1099 * 1100 * This function implements VFS '->setattr()' call when the inode is truncated 1101 * to a smaller size. Returns zero in case of success and a negative error code 1102 * in case of failure. 1103 */ 1104 static int do_truncation(struct ubifs_info *c, struct inode *inode, 1105 const struct iattr *attr) 1106 { 1107 int err; 1108 struct ubifs_budget_req req; 1109 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1110 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1111 struct ubifs_inode *ui = ubifs_inode(inode); 1112 1113 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1114 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1115 1116 /* 1117 * If this is truncation to a smaller size, and we do not truncate on a 1118 * block boundary, budget for changing one data block, because the last 1119 * block will be re-written. 1120 */ 1121 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1122 req.dirtied_page = 1; 1123 1124 req.dirtied_ino = 1; 1125 /* A funny way to budget for truncation node */ 1126 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1127 err = ubifs_budget_space(c, &req); 1128 if (err) { 1129 /* 1130 * Treat truncations to zero as deletion and always allow them, 1131 * just like we do for '->unlink()'. 1132 */ 1133 if (new_size || err != -ENOSPC) 1134 return err; 1135 budgeted = 0; 1136 } 1137 1138 truncate_setsize(inode, new_size); 1139 1140 if (offset) { 1141 pgoff_t index = new_size >> PAGE_SHIFT; 1142 struct page *page; 1143 1144 page = find_lock_page(inode->i_mapping, index); 1145 if (page) { 1146 if (PageDirty(page)) { 1147 /* 1148 * 'ubifs_jnl_truncate()' will try to truncate 1149 * the last data node, but it contains 1150 * out-of-date data because the page is dirty. 1151 * Write the page now, so that 1152 * 'ubifs_jnl_truncate()' will see an already 1153 * truncated (and up to date) data node. 1154 */ 1155 ubifs_assert(PagePrivate(page)); 1156 1157 clear_page_dirty_for_io(page); 1158 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1159 offset = new_size & 1160 (PAGE_SIZE - 1); 1161 err = do_writepage(page, offset); 1162 put_page(page); 1163 if (err) 1164 goto out_budg; 1165 /* 1166 * We could now tell 'ubifs_jnl_truncate()' not 1167 * to read the last block. 1168 */ 1169 } else { 1170 /* 1171 * We could 'kmap()' the page and pass the data 1172 * to 'ubifs_jnl_truncate()' to save it from 1173 * having to read it. 1174 */ 1175 unlock_page(page); 1176 put_page(page); 1177 } 1178 } 1179 } 1180 1181 mutex_lock(&ui->ui_mutex); 1182 ui->ui_size = inode->i_size; 1183 /* Truncation changes inode [mc]time */ 1184 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1185 /* Other attributes may be changed at the same time as well */ 1186 do_attr_changes(inode, attr); 1187 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1188 mutex_unlock(&ui->ui_mutex); 1189 1190 out_budg: 1191 if (budgeted) 1192 ubifs_release_budget(c, &req); 1193 else { 1194 c->bi.nospace = c->bi.nospace_rp = 0; 1195 smp_wmb(); 1196 } 1197 return err; 1198 } 1199 1200 /** 1201 * do_setattr - change inode attributes. 1202 * @c: UBIFS file-system description object 1203 * @inode: inode to change attributes for 1204 * @attr: inode attribute changes description 1205 * 1206 * This function implements VFS '->setattr()' call for all cases except 1207 * truncations to smaller size. Returns zero in case of success and a negative 1208 * error code in case of failure. 1209 */ 1210 static int do_setattr(struct ubifs_info *c, struct inode *inode, 1211 const struct iattr *attr) 1212 { 1213 int err, release; 1214 loff_t new_size = attr->ia_size; 1215 struct ubifs_inode *ui = ubifs_inode(inode); 1216 struct ubifs_budget_req req = { .dirtied_ino = 1, 1217 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1218 1219 err = ubifs_budget_space(c, &req); 1220 if (err) 1221 return err; 1222 1223 if (attr->ia_valid & ATTR_SIZE) { 1224 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1225 truncate_setsize(inode, new_size); 1226 } 1227 1228 mutex_lock(&ui->ui_mutex); 1229 if (attr->ia_valid & ATTR_SIZE) { 1230 /* Truncation changes inode [mc]time */ 1231 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1232 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1233 ui->ui_size = inode->i_size; 1234 } 1235 1236 do_attr_changes(inode, attr); 1237 1238 release = ui->dirty; 1239 if (attr->ia_valid & ATTR_SIZE) 1240 /* 1241 * Inode length changed, so we have to make sure 1242 * @I_DIRTY_DATASYNC is set. 1243 */ 1244 __mark_inode_dirty(inode, I_DIRTY_SYNC | I_DIRTY_DATASYNC); 1245 else 1246 mark_inode_dirty_sync(inode); 1247 mutex_unlock(&ui->ui_mutex); 1248 1249 if (release) 1250 ubifs_release_budget(c, &req); 1251 if (IS_SYNC(inode)) 1252 err = inode->i_sb->s_op->write_inode(inode, NULL); 1253 return err; 1254 } 1255 1256 int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1257 { 1258 int err; 1259 struct inode *inode = d_inode(dentry); 1260 struct ubifs_info *c = inode->i_sb->s_fs_info; 1261 1262 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1263 inode->i_ino, inode->i_mode, attr->ia_valid); 1264 err = inode_change_ok(inode, attr); 1265 if (err) 1266 return err; 1267 1268 err = dbg_check_synced_i_size(c, inode); 1269 if (err) 1270 return err; 1271 1272 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1273 /* Truncation to a smaller size */ 1274 err = do_truncation(c, inode, attr); 1275 else 1276 err = do_setattr(c, inode, attr); 1277 1278 return err; 1279 } 1280 1281 static void ubifs_invalidatepage(struct page *page, unsigned int offset, 1282 unsigned int length) 1283 { 1284 struct inode *inode = page->mapping->host; 1285 struct ubifs_info *c = inode->i_sb->s_fs_info; 1286 1287 ubifs_assert(PagePrivate(page)); 1288 if (offset || length < PAGE_SIZE) 1289 /* Partial page remains dirty */ 1290 return; 1291 1292 if (PageChecked(page)) 1293 release_new_page_budget(c); 1294 else 1295 release_existing_page_budget(c); 1296 1297 atomic_long_dec(&c->dirty_pg_cnt); 1298 ClearPagePrivate(page); 1299 ClearPageChecked(page); 1300 } 1301 1302 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1303 { 1304 struct inode *inode = file->f_mapping->host; 1305 struct ubifs_info *c = inode->i_sb->s_fs_info; 1306 int err; 1307 1308 dbg_gen("syncing inode %lu", inode->i_ino); 1309 1310 if (c->ro_mount) 1311 /* 1312 * For some really strange reasons VFS does not filter out 1313 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1314 */ 1315 return 0; 1316 1317 err = filemap_write_and_wait_range(inode->i_mapping, start, end); 1318 if (err) 1319 return err; 1320 inode_lock(inode); 1321 1322 /* Synchronize the inode unless this is a 'datasync()' call. */ 1323 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1324 err = inode->i_sb->s_op->write_inode(inode, NULL); 1325 if (err) 1326 goto out; 1327 } 1328 1329 /* 1330 * Nodes related to this inode may still sit in a write-buffer. Flush 1331 * them. 1332 */ 1333 err = ubifs_sync_wbufs_by_inode(c, inode); 1334 out: 1335 inode_unlock(inode); 1336 return err; 1337 } 1338 1339 /** 1340 * mctime_update_needed - check if mtime or ctime update is needed. 1341 * @inode: the inode to do the check for 1342 * @now: current time 1343 * 1344 * This helper function checks if the inode mtime/ctime should be updated or 1345 * not. If current values of the time-stamps are within the UBIFS inode time 1346 * granularity, they are not updated. This is an optimization. 1347 */ 1348 static inline int mctime_update_needed(const struct inode *inode, 1349 const struct timespec *now) 1350 { 1351 if (!timespec_equal(&inode->i_mtime, now) || 1352 !timespec_equal(&inode->i_ctime, now)) 1353 return 1; 1354 return 0; 1355 } 1356 1357 #ifdef CONFIG_UBIFS_ATIME_SUPPORT 1358 /** 1359 * ubifs_update_time - update time of inode. 1360 * @inode: inode to update 1361 * 1362 * This function updates time of the inode. 1363 */ 1364 int ubifs_update_time(struct inode *inode, struct timespec *time, 1365 int flags) 1366 { 1367 struct ubifs_inode *ui = ubifs_inode(inode); 1368 struct ubifs_info *c = inode->i_sb->s_fs_info; 1369 struct ubifs_budget_req req = { .dirtied_ino = 1, 1370 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1371 int iflags = I_DIRTY_TIME; 1372 int err, release; 1373 1374 err = ubifs_budget_space(c, &req); 1375 if (err) 1376 return err; 1377 1378 mutex_lock(&ui->ui_mutex); 1379 if (flags & S_ATIME) 1380 inode->i_atime = *time; 1381 if (flags & S_CTIME) 1382 inode->i_ctime = *time; 1383 if (flags & S_MTIME) 1384 inode->i_mtime = *time; 1385 1386 if (!(inode->i_sb->s_flags & MS_LAZYTIME)) 1387 iflags |= I_DIRTY_SYNC; 1388 1389 release = ui->dirty; 1390 __mark_inode_dirty(inode, iflags); 1391 mutex_unlock(&ui->ui_mutex); 1392 if (release) 1393 ubifs_release_budget(c, &req); 1394 return 0; 1395 } 1396 #endif 1397 1398 /** 1399 * update_ctime - update mtime and ctime of an inode. 1400 * @inode: inode to update 1401 * 1402 * This function updates mtime and ctime of the inode if it is not equivalent to 1403 * current time. Returns zero in case of success and a negative error code in 1404 * case of failure. 1405 */ 1406 static int update_mctime(struct inode *inode) 1407 { 1408 struct timespec now = ubifs_current_time(inode); 1409 struct ubifs_inode *ui = ubifs_inode(inode); 1410 struct ubifs_info *c = inode->i_sb->s_fs_info; 1411 1412 if (mctime_update_needed(inode, &now)) { 1413 int err, release; 1414 struct ubifs_budget_req req = { .dirtied_ino = 1, 1415 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1416 1417 err = ubifs_budget_space(c, &req); 1418 if (err) 1419 return err; 1420 1421 mutex_lock(&ui->ui_mutex); 1422 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1423 release = ui->dirty; 1424 mark_inode_dirty_sync(inode); 1425 mutex_unlock(&ui->ui_mutex); 1426 if (release) 1427 ubifs_release_budget(c, &req); 1428 } 1429 1430 return 0; 1431 } 1432 1433 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1434 { 1435 int err = update_mctime(file_inode(iocb->ki_filp)); 1436 if (err) 1437 return err; 1438 1439 return generic_file_write_iter(iocb, from); 1440 } 1441 1442 static int ubifs_set_page_dirty(struct page *page) 1443 { 1444 int ret; 1445 1446 ret = __set_page_dirty_nobuffers(page); 1447 /* 1448 * An attempt to dirty a page without budgeting for it - should not 1449 * happen. 1450 */ 1451 ubifs_assert(ret == 0); 1452 return ret; 1453 } 1454 1455 static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1456 { 1457 /* 1458 * An attempt to release a dirty page without budgeting for it - should 1459 * not happen. 1460 */ 1461 if (PageWriteback(page)) 1462 return 0; 1463 ubifs_assert(PagePrivate(page)); 1464 ubifs_assert(0); 1465 ClearPagePrivate(page); 1466 ClearPageChecked(page); 1467 return 1; 1468 } 1469 1470 /* 1471 * mmap()d file has taken write protection fault and is being made writable. 1472 * UBIFS must ensure page is budgeted for. 1473 */ 1474 static int ubifs_vm_page_mkwrite(struct vm_area_struct *vma, 1475 struct vm_fault *vmf) 1476 { 1477 struct page *page = vmf->page; 1478 struct inode *inode = file_inode(vma->vm_file); 1479 struct ubifs_info *c = inode->i_sb->s_fs_info; 1480 struct timespec now = ubifs_current_time(inode); 1481 struct ubifs_budget_req req = { .new_page = 1 }; 1482 int err, update_time; 1483 1484 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1485 i_size_read(inode)); 1486 ubifs_assert(!c->ro_media && !c->ro_mount); 1487 1488 if (unlikely(c->ro_error)) 1489 return VM_FAULT_SIGBUS; /* -EROFS */ 1490 1491 /* 1492 * We have not locked @page so far so we may budget for changing the 1493 * page. Note, we cannot do this after we locked the page, because 1494 * budgeting may cause write-back which would cause deadlock. 1495 * 1496 * At the moment we do not know whether the page is dirty or not, so we 1497 * assume that it is not and budget for a new page. We could look at 1498 * the @PG_private flag and figure this out, but we may race with write 1499 * back and the page state may change by the time we lock it, so this 1500 * would need additional care. We do not bother with this at the 1501 * moment, although it might be good idea to do. Instead, we allocate 1502 * budget for a new page and amend it later on if the page was in fact 1503 * dirty. 1504 * 1505 * The budgeting-related logic of this function is similar to what we 1506 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1507 * for more comments. 1508 */ 1509 update_time = mctime_update_needed(inode, &now); 1510 if (update_time) 1511 /* 1512 * We have to change inode time stamp which requires extra 1513 * budgeting. 1514 */ 1515 req.dirtied_ino = 1; 1516 1517 err = ubifs_budget_space(c, &req); 1518 if (unlikely(err)) { 1519 if (err == -ENOSPC) 1520 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1521 inode->i_ino); 1522 return VM_FAULT_SIGBUS; 1523 } 1524 1525 lock_page(page); 1526 if (unlikely(page->mapping != inode->i_mapping || 1527 page_offset(page) > i_size_read(inode))) { 1528 /* Page got truncated out from underneath us */ 1529 err = -EINVAL; 1530 goto out_unlock; 1531 } 1532 1533 if (PagePrivate(page)) 1534 release_new_page_budget(c); 1535 else { 1536 if (!PageChecked(page)) 1537 ubifs_convert_page_budget(c); 1538 SetPagePrivate(page); 1539 atomic_long_inc(&c->dirty_pg_cnt); 1540 __set_page_dirty_nobuffers(page); 1541 } 1542 1543 if (update_time) { 1544 int release; 1545 struct ubifs_inode *ui = ubifs_inode(inode); 1546 1547 mutex_lock(&ui->ui_mutex); 1548 inode->i_mtime = inode->i_ctime = ubifs_current_time(inode); 1549 release = ui->dirty; 1550 mark_inode_dirty_sync(inode); 1551 mutex_unlock(&ui->ui_mutex); 1552 if (release) 1553 ubifs_release_dirty_inode_budget(c, ui); 1554 } 1555 1556 wait_for_stable_page(page); 1557 return VM_FAULT_LOCKED; 1558 1559 out_unlock: 1560 unlock_page(page); 1561 ubifs_release_budget(c, &req); 1562 if (err) 1563 err = VM_FAULT_SIGBUS; 1564 return err; 1565 } 1566 1567 static const struct vm_operations_struct ubifs_file_vm_ops = { 1568 .fault = filemap_fault, 1569 .map_pages = filemap_map_pages, 1570 .page_mkwrite = ubifs_vm_page_mkwrite, 1571 }; 1572 1573 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1574 { 1575 int err; 1576 1577 err = generic_file_mmap(file, vma); 1578 if (err) 1579 return err; 1580 vma->vm_ops = &ubifs_file_vm_ops; 1581 #ifdef CONFIG_UBIFS_ATIME_SUPPORT 1582 file_accessed(file); 1583 #endif 1584 return 0; 1585 } 1586 1587 const struct address_space_operations ubifs_file_address_operations = { 1588 .readpage = ubifs_readpage, 1589 .writepage = ubifs_writepage, 1590 .write_begin = ubifs_write_begin, 1591 .write_end = ubifs_write_end, 1592 .invalidatepage = ubifs_invalidatepage, 1593 .set_page_dirty = ubifs_set_page_dirty, 1594 .releasepage = ubifs_releasepage, 1595 }; 1596 1597 const struct inode_operations ubifs_file_inode_operations = { 1598 .setattr = ubifs_setattr, 1599 .getattr = ubifs_getattr, 1600 .setxattr = generic_setxattr, 1601 .getxattr = generic_getxattr, 1602 .listxattr = ubifs_listxattr, 1603 .removexattr = generic_removexattr, 1604 #ifdef CONFIG_UBIFS_ATIME_SUPPORT 1605 .update_time = ubifs_update_time, 1606 #endif 1607 }; 1608 1609 const struct inode_operations ubifs_symlink_inode_operations = { 1610 .readlink = generic_readlink, 1611 .get_link = simple_get_link, 1612 .setattr = ubifs_setattr, 1613 .getattr = ubifs_getattr, 1614 .setxattr = generic_setxattr, 1615 .getxattr = generic_getxattr, 1616 .listxattr = ubifs_listxattr, 1617 .removexattr = generic_removexattr, 1618 #ifdef CONFIG_UBIFS_ATIME_SUPPORT 1619 .update_time = ubifs_update_time, 1620 #endif 1621 }; 1622 1623 const struct file_operations ubifs_file_operations = { 1624 .llseek = generic_file_llseek, 1625 .read_iter = generic_file_read_iter, 1626 .write_iter = ubifs_write_iter, 1627 .mmap = ubifs_file_mmap, 1628 .fsync = ubifs_fsync, 1629 .unlocked_ioctl = ubifs_ioctl, 1630 .splice_read = generic_file_splice_read, 1631 .splice_write = iter_file_splice_write, 1632 #ifdef CONFIG_COMPAT 1633 .compat_ioctl = ubifs_compat_ioctl, 1634 #endif 1635 }; 1636