xref: /linux/fs/ubifs/file.c (revision 02091cbe9cc4f18167208eec1d6de636cc731817)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation.
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements VFS file and inode operations for regular files, device
13  * nodes and symlinks as well as address space operations.
14  *
15  * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if
16  * the page is dirty and is used for optimization purposes - dirty pages are
17  * not budgeted so the flag shows that 'ubifs_write_end()' should not release
18  * the budget for this page. The @PG_checked flag is set if full budgeting is
19  * required for the page e.g., when it corresponds to a file hole or it is
20  * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because
21  * it is OK to fail in this function, and the budget is released in
22  * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry
23  * information about how the page was budgeted, to make it possible to release
24  * the budget properly.
25  *
26  * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we
27  * implement. However, this is not true for 'ubifs_writepage()', which may be
28  * called with @i_mutex unlocked. For example, when flusher thread is doing
29  * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex.
30  * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g.
31  * in the "sys_write -> alloc_pages -> direct reclaim path". So, in
32  * 'ubifs_writepage()' we are only guaranteed that the page is locked.
33  *
34  * Similarly, @i_mutex is not always locked in 'ubifs_read_folio()', e.g., the
35  * read-ahead path does not lock it ("sys_read -> generic_file_aio_read ->
36  * ondemand_readahead -> read_folio"). In case of readahead, @I_SYNC flag is not
37  * set as well. However, UBIFS disables readahead.
38  */
39 
40 #include "ubifs.h"
41 #include <linux/mount.h>
42 #include <linux/slab.h>
43 #include <linux/migrate.h>
44 
45 static int read_block(struct inode *inode, void *addr, unsigned int block,
46 		      struct ubifs_data_node *dn)
47 {
48 	struct ubifs_info *c = inode->i_sb->s_fs_info;
49 	int err, len, out_len;
50 	union ubifs_key key;
51 	unsigned int dlen;
52 
53 	data_key_init(c, &key, inode->i_ino, block);
54 	err = ubifs_tnc_lookup(c, &key, dn);
55 	if (err) {
56 		if (err == -ENOENT)
57 			/* Not found, so it must be a hole */
58 			memset(addr, 0, UBIFS_BLOCK_SIZE);
59 		return err;
60 	}
61 
62 	ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
63 		     ubifs_inode(inode)->creat_sqnum);
64 	len = le32_to_cpu(dn->size);
65 	if (len <= 0 || len > UBIFS_BLOCK_SIZE)
66 		goto dump;
67 
68 	dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
69 
70 	if (IS_ENCRYPTED(inode)) {
71 		err = ubifs_decrypt(inode, dn, &dlen, block);
72 		if (err)
73 			goto dump;
74 	}
75 
76 	out_len = UBIFS_BLOCK_SIZE;
77 	err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
78 			       le16_to_cpu(dn->compr_type));
79 	if (err || len != out_len)
80 		goto dump;
81 
82 	/*
83 	 * Data length can be less than a full block, even for blocks that are
84 	 * not the last in the file (e.g., as a result of making a hole and
85 	 * appending data). Ensure that the remainder is zeroed out.
86 	 */
87 	if (len < UBIFS_BLOCK_SIZE)
88 		memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
89 
90 	return 0;
91 
92 dump:
93 	ubifs_err(c, "bad data node (block %u, inode %lu)",
94 		  block, inode->i_ino);
95 	ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ);
96 	return -EINVAL;
97 }
98 
99 static int do_readpage(struct page *page)
100 {
101 	void *addr;
102 	int err = 0, i;
103 	unsigned int block, beyond;
104 	struct ubifs_data_node *dn;
105 	struct inode *inode = page->mapping->host;
106 	struct ubifs_info *c = inode->i_sb->s_fs_info;
107 	loff_t i_size = i_size_read(inode);
108 
109 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
110 		inode->i_ino, page->index, i_size, page->flags);
111 	ubifs_assert(c, !PageChecked(page));
112 	ubifs_assert(c, !PagePrivate(page));
113 
114 	addr = kmap(page);
115 
116 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
117 	beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
118 	if (block >= beyond) {
119 		/* Reading beyond inode */
120 		SetPageChecked(page);
121 		memset(addr, 0, PAGE_SIZE);
122 		goto out;
123 	}
124 
125 	dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS);
126 	if (!dn) {
127 		err = -ENOMEM;
128 		goto error;
129 	}
130 
131 	i = 0;
132 	while (1) {
133 		int ret;
134 
135 		if (block >= beyond) {
136 			/* Reading beyond inode */
137 			err = -ENOENT;
138 			memset(addr, 0, UBIFS_BLOCK_SIZE);
139 		} else {
140 			ret = read_block(inode, addr, block, dn);
141 			if (ret) {
142 				err = ret;
143 				if (err != -ENOENT)
144 					break;
145 			} else if (block + 1 == beyond) {
146 				int dlen = le32_to_cpu(dn->size);
147 				int ilen = i_size & (UBIFS_BLOCK_SIZE - 1);
148 
149 				if (ilen && ilen < dlen)
150 					memset(addr + ilen, 0, dlen - ilen);
151 			}
152 		}
153 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
154 			break;
155 		block += 1;
156 		addr += UBIFS_BLOCK_SIZE;
157 	}
158 	if (err) {
159 		struct ubifs_info *c = inode->i_sb->s_fs_info;
160 		if (err == -ENOENT) {
161 			/* Not found, so it must be a hole */
162 			SetPageChecked(page);
163 			dbg_gen("hole");
164 			goto out_free;
165 		}
166 		ubifs_err(c, "cannot read page %lu of inode %lu, error %d",
167 			  page->index, inode->i_ino, err);
168 		goto error;
169 	}
170 
171 out_free:
172 	kfree(dn);
173 out:
174 	SetPageUptodate(page);
175 	ClearPageError(page);
176 	flush_dcache_page(page);
177 	kunmap(page);
178 	return 0;
179 
180 error:
181 	kfree(dn);
182 	ClearPageUptodate(page);
183 	SetPageError(page);
184 	flush_dcache_page(page);
185 	kunmap(page);
186 	return err;
187 }
188 
189 /**
190  * release_new_page_budget - release budget of a new page.
191  * @c: UBIFS file-system description object
192  *
193  * This is a helper function which releases budget corresponding to the budget
194  * of one new page of data.
195  */
196 static void release_new_page_budget(struct ubifs_info *c)
197 {
198 	struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 };
199 
200 	ubifs_release_budget(c, &req);
201 }
202 
203 /**
204  * release_existing_page_budget - release budget of an existing page.
205  * @c: UBIFS file-system description object
206  *
207  * This is a helper function which releases budget corresponding to the budget
208  * of changing one page of data which already exists on the flash media.
209  */
210 static void release_existing_page_budget(struct ubifs_info *c)
211 {
212 	struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget};
213 
214 	ubifs_release_budget(c, &req);
215 }
216 
217 static int write_begin_slow(struct address_space *mapping,
218 			    loff_t pos, unsigned len, struct page **pagep)
219 {
220 	struct inode *inode = mapping->host;
221 	struct ubifs_info *c = inode->i_sb->s_fs_info;
222 	pgoff_t index = pos >> PAGE_SHIFT;
223 	struct ubifs_budget_req req = { .new_page = 1 };
224 	int err, appending = !!(pos + len > inode->i_size);
225 	struct page *page;
226 
227 	dbg_gen("ino %lu, pos %llu, len %u, i_size %lld",
228 		inode->i_ino, pos, len, inode->i_size);
229 
230 	/*
231 	 * At the slow path we have to budget before locking the page, because
232 	 * budgeting may force write-back, which would wait on locked pages and
233 	 * deadlock if we had the page locked. At this point we do not know
234 	 * anything about the page, so assume that this is a new page which is
235 	 * written to a hole. This corresponds to largest budget. Later the
236 	 * budget will be amended if this is not true.
237 	 */
238 	if (appending)
239 		/* We are appending data, budget for inode change */
240 		req.dirtied_ino = 1;
241 
242 	err = ubifs_budget_space(c, &req);
243 	if (unlikely(err))
244 		return err;
245 
246 	page = grab_cache_page_write_begin(mapping, index);
247 	if (unlikely(!page)) {
248 		ubifs_release_budget(c, &req);
249 		return -ENOMEM;
250 	}
251 
252 	if (!PageUptodate(page)) {
253 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE)
254 			SetPageChecked(page);
255 		else {
256 			err = do_readpage(page);
257 			if (err) {
258 				unlock_page(page);
259 				put_page(page);
260 				ubifs_release_budget(c, &req);
261 				return err;
262 			}
263 		}
264 
265 		SetPageUptodate(page);
266 		ClearPageError(page);
267 	}
268 
269 	if (PagePrivate(page))
270 		/*
271 		 * The page is dirty, which means it was budgeted twice:
272 		 *   o first time the budget was allocated by the task which
273 		 *     made the page dirty and set the PG_private flag;
274 		 *   o and then we budgeted for it for the second time at the
275 		 *     very beginning of this function.
276 		 *
277 		 * So what we have to do is to release the page budget we
278 		 * allocated.
279 		 */
280 		release_new_page_budget(c);
281 	else if (!PageChecked(page))
282 		/*
283 		 * We are changing a page which already exists on the media.
284 		 * This means that changing the page does not make the amount
285 		 * of indexing information larger, and this part of the budget
286 		 * which we have already acquired may be released.
287 		 */
288 		ubifs_convert_page_budget(c);
289 
290 	if (appending) {
291 		struct ubifs_inode *ui = ubifs_inode(inode);
292 
293 		/*
294 		 * 'ubifs_write_end()' is optimized from the fast-path part of
295 		 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked
296 		 * if data is appended.
297 		 */
298 		mutex_lock(&ui->ui_mutex);
299 		if (ui->dirty)
300 			/*
301 			 * The inode is dirty already, so we may free the
302 			 * budget we allocated.
303 			 */
304 			ubifs_release_dirty_inode_budget(c, ui);
305 	}
306 
307 	*pagep = page;
308 	return 0;
309 }
310 
311 /**
312  * allocate_budget - allocate budget for 'ubifs_write_begin()'.
313  * @c: UBIFS file-system description object
314  * @page: page to allocate budget for
315  * @ui: UBIFS inode object the page belongs to
316  * @appending: non-zero if the page is appended
317  *
318  * This is a helper function for 'ubifs_write_begin()' which allocates budget
319  * for the operation. The budget is allocated differently depending on whether
320  * this is appending, whether the page is dirty or not, and so on. This
321  * function leaves the @ui->ui_mutex locked in case of appending. Returns zero
322  * in case of success and %-ENOSPC in case of failure.
323  */
324 static int allocate_budget(struct ubifs_info *c, struct page *page,
325 			   struct ubifs_inode *ui, int appending)
326 {
327 	struct ubifs_budget_req req = { .fast = 1 };
328 
329 	if (PagePrivate(page)) {
330 		if (!appending)
331 			/*
332 			 * The page is dirty and we are not appending, which
333 			 * means no budget is needed at all.
334 			 */
335 			return 0;
336 
337 		mutex_lock(&ui->ui_mutex);
338 		if (ui->dirty)
339 			/*
340 			 * The page is dirty and we are appending, so the inode
341 			 * has to be marked as dirty. However, it is already
342 			 * dirty, so we do not need any budget. We may return,
343 			 * but @ui->ui_mutex hast to be left locked because we
344 			 * should prevent write-back from flushing the inode
345 			 * and freeing the budget. The lock will be released in
346 			 * 'ubifs_write_end()'.
347 			 */
348 			return 0;
349 
350 		/*
351 		 * The page is dirty, we are appending, the inode is clean, so
352 		 * we need to budget the inode change.
353 		 */
354 		req.dirtied_ino = 1;
355 	} else {
356 		if (PageChecked(page))
357 			/*
358 			 * The page corresponds to a hole and does not
359 			 * exist on the media. So changing it makes
360 			 * make the amount of indexing information
361 			 * larger, and we have to budget for a new
362 			 * page.
363 			 */
364 			req.new_page = 1;
365 		else
366 			/*
367 			 * Not a hole, the change will not add any new
368 			 * indexing information, budget for page
369 			 * change.
370 			 */
371 			req.dirtied_page = 1;
372 
373 		if (appending) {
374 			mutex_lock(&ui->ui_mutex);
375 			if (!ui->dirty)
376 				/*
377 				 * The inode is clean but we will have to mark
378 				 * it as dirty because we are appending. This
379 				 * needs a budget.
380 				 */
381 				req.dirtied_ino = 1;
382 		}
383 	}
384 
385 	return ubifs_budget_space(c, &req);
386 }
387 
388 /*
389  * This function is called when a page of data is going to be written. Since
390  * the page of data will not necessarily go to the flash straight away, UBIFS
391  * has to reserve space on the media for it, which is done by means of
392  * budgeting.
393  *
394  * This is the hot-path of the file-system and we are trying to optimize it as
395  * much as possible. For this reasons it is split on 2 parts - slow and fast.
396  *
397  * There many budgeting cases:
398  *     o a new page is appended - we have to budget for a new page and for
399  *       changing the inode; however, if the inode is already dirty, there is
400  *       no need to budget for it;
401  *     o an existing clean page is changed - we have budget for it; if the page
402  *       does not exist on the media (a hole), we have to budget for a new
403  *       page; otherwise, we may budget for changing an existing page; the
404  *       difference between these cases is that changing an existing page does
405  *       not introduce anything new to the FS indexing information, so it does
406  *       not grow, and smaller budget is acquired in this case;
407  *     o an existing dirty page is changed - no need to budget at all, because
408  *       the page budget has been acquired by earlier, when the page has been
409  *       marked dirty.
410  *
411  * UBIFS budgeting sub-system may force write-back if it thinks there is no
412  * space to reserve. This imposes some locking restrictions and makes it
413  * impossible to take into account the above cases, and makes it impossible to
414  * optimize budgeting.
415  *
416  * The solution for this is that the fast path of 'ubifs_write_begin()' assumes
417  * there is a plenty of flash space and the budget will be acquired quickly,
418  * without forcing write-back. The slow path does not make this assumption.
419  */
420 static int ubifs_write_begin(struct file *file, struct address_space *mapping,
421 			     loff_t pos, unsigned len,
422 			     struct page **pagep, void **fsdata)
423 {
424 	struct inode *inode = mapping->host;
425 	struct ubifs_info *c = inode->i_sb->s_fs_info;
426 	struct ubifs_inode *ui = ubifs_inode(inode);
427 	pgoff_t index = pos >> PAGE_SHIFT;
428 	int err, appending = !!(pos + len > inode->i_size);
429 	int skipped_read = 0;
430 	struct page *page;
431 
432 	ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size);
433 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
434 
435 	if (unlikely(c->ro_error))
436 		return -EROFS;
437 
438 	/* Try out the fast-path part first */
439 	page = grab_cache_page_write_begin(mapping, index);
440 	if (unlikely(!page))
441 		return -ENOMEM;
442 
443 	if (!PageUptodate(page)) {
444 		/* The page is not loaded from the flash */
445 		if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) {
446 			/*
447 			 * We change whole page so no need to load it. But we
448 			 * do not know whether this page exists on the media or
449 			 * not, so we assume the latter because it requires
450 			 * larger budget. The assumption is that it is better
451 			 * to budget a bit more than to read the page from the
452 			 * media. Thus, we are setting the @PG_checked flag
453 			 * here.
454 			 */
455 			SetPageChecked(page);
456 			skipped_read = 1;
457 		} else {
458 			err = do_readpage(page);
459 			if (err) {
460 				unlock_page(page);
461 				put_page(page);
462 				return err;
463 			}
464 		}
465 
466 		SetPageUptodate(page);
467 		ClearPageError(page);
468 	}
469 
470 	err = allocate_budget(c, page, ui, appending);
471 	if (unlikely(err)) {
472 		ubifs_assert(c, err == -ENOSPC);
473 		/*
474 		 * If we skipped reading the page because we were going to
475 		 * write all of it, then it is not up to date.
476 		 */
477 		if (skipped_read) {
478 			ClearPageChecked(page);
479 			ClearPageUptodate(page);
480 		}
481 		/*
482 		 * Budgeting failed which means it would have to force
483 		 * write-back but didn't, because we set the @fast flag in the
484 		 * request. Write-back cannot be done now, while we have the
485 		 * page locked, because it would deadlock. Unlock and free
486 		 * everything and fall-back to slow-path.
487 		 */
488 		if (appending) {
489 			ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
490 			mutex_unlock(&ui->ui_mutex);
491 		}
492 		unlock_page(page);
493 		put_page(page);
494 
495 		return write_begin_slow(mapping, pos, len, pagep);
496 	}
497 
498 	/*
499 	 * Whee, we acquired budgeting quickly - without involving
500 	 * garbage-collection, committing or forcing write-back. We return
501 	 * with @ui->ui_mutex locked if we are appending pages, and unlocked
502 	 * otherwise. This is an optimization (slightly hacky though).
503 	 */
504 	*pagep = page;
505 	return 0;
506 
507 }
508 
509 /**
510  * cancel_budget - cancel budget.
511  * @c: UBIFS file-system description object
512  * @page: page to cancel budget for
513  * @ui: UBIFS inode object the page belongs to
514  * @appending: non-zero if the page is appended
515  *
516  * This is a helper function for a page write operation. It unlocks the
517  * @ui->ui_mutex in case of appending.
518  */
519 static void cancel_budget(struct ubifs_info *c, struct page *page,
520 			  struct ubifs_inode *ui, int appending)
521 {
522 	if (appending) {
523 		if (!ui->dirty)
524 			ubifs_release_dirty_inode_budget(c, ui);
525 		mutex_unlock(&ui->ui_mutex);
526 	}
527 	if (!PagePrivate(page)) {
528 		if (PageChecked(page))
529 			release_new_page_budget(c);
530 		else
531 			release_existing_page_budget(c);
532 	}
533 }
534 
535 static int ubifs_write_end(struct file *file, struct address_space *mapping,
536 			   loff_t pos, unsigned len, unsigned copied,
537 			   struct page *page, void *fsdata)
538 {
539 	struct inode *inode = mapping->host;
540 	struct ubifs_inode *ui = ubifs_inode(inode);
541 	struct ubifs_info *c = inode->i_sb->s_fs_info;
542 	loff_t end_pos = pos + len;
543 	int appending = !!(end_pos > inode->i_size);
544 
545 	dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld",
546 		inode->i_ino, pos, page->index, len, copied, inode->i_size);
547 
548 	if (unlikely(copied < len && len == PAGE_SIZE)) {
549 		/*
550 		 * VFS copied less data to the page that it intended and
551 		 * declared in its '->write_begin()' call via the @len
552 		 * argument. If the page was not up-to-date, and @len was
553 		 * @PAGE_SIZE, the 'ubifs_write_begin()' function did
554 		 * not load it from the media (for optimization reasons). This
555 		 * means that part of the page contains garbage. So read the
556 		 * page now.
557 		 */
558 		dbg_gen("copied %d instead of %d, read page and repeat",
559 			copied, len);
560 		cancel_budget(c, page, ui, appending);
561 		ClearPageChecked(page);
562 
563 		/*
564 		 * Return 0 to force VFS to repeat the whole operation, or the
565 		 * error code if 'do_readpage()' fails.
566 		 */
567 		copied = do_readpage(page);
568 		goto out;
569 	}
570 
571 	if (!PagePrivate(page)) {
572 		attach_page_private(page, (void *)1);
573 		atomic_long_inc(&c->dirty_pg_cnt);
574 		__set_page_dirty_nobuffers(page);
575 	}
576 
577 	if (appending) {
578 		i_size_write(inode, end_pos);
579 		ui->ui_size = end_pos;
580 		/*
581 		 * Note, we do not set @I_DIRTY_PAGES (which means that the
582 		 * inode has dirty pages), this has been done in
583 		 * '__set_page_dirty_nobuffers()'.
584 		 */
585 		__mark_inode_dirty(inode, I_DIRTY_DATASYNC);
586 		ubifs_assert(c, mutex_is_locked(&ui->ui_mutex));
587 		mutex_unlock(&ui->ui_mutex);
588 	}
589 
590 out:
591 	unlock_page(page);
592 	put_page(page);
593 	return copied;
594 }
595 
596 /**
597  * populate_page - copy data nodes into a page for bulk-read.
598  * @c: UBIFS file-system description object
599  * @page: page
600  * @bu: bulk-read information
601  * @n: next zbranch slot
602  *
603  * This function returns %0 on success and a negative error code on failure.
604  */
605 static int populate_page(struct ubifs_info *c, struct page *page,
606 			 struct bu_info *bu, int *n)
607 {
608 	int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0;
609 	struct inode *inode = page->mapping->host;
610 	loff_t i_size = i_size_read(inode);
611 	unsigned int page_block;
612 	void *addr, *zaddr;
613 	pgoff_t end_index;
614 
615 	dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx",
616 		inode->i_ino, page->index, i_size, page->flags);
617 
618 	addr = zaddr = kmap(page);
619 
620 	end_index = (i_size - 1) >> PAGE_SHIFT;
621 	if (!i_size || page->index > end_index) {
622 		hole = 1;
623 		memset(addr, 0, PAGE_SIZE);
624 		goto out_hole;
625 	}
626 
627 	page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
628 	while (1) {
629 		int err, len, out_len, dlen;
630 
631 		if (nn >= bu->cnt) {
632 			hole = 1;
633 			memset(addr, 0, UBIFS_BLOCK_SIZE);
634 		} else if (key_block(c, &bu->zbranch[nn].key) == page_block) {
635 			struct ubifs_data_node *dn;
636 
637 			dn = bu->buf + (bu->zbranch[nn].offs - offs);
638 
639 			ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) >
640 				     ubifs_inode(inode)->creat_sqnum);
641 
642 			len = le32_to_cpu(dn->size);
643 			if (len <= 0 || len > UBIFS_BLOCK_SIZE)
644 				goto out_err;
645 
646 			dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ;
647 			out_len = UBIFS_BLOCK_SIZE;
648 
649 			if (IS_ENCRYPTED(inode)) {
650 				err = ubifs_decrypt(inode, dn, &dlen, page_block);
651 				if (err)
652 					goto out_err;
653 			}
654 
655 			err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len,
656 					       le16_to_cpu(dn->compr_type));
657 			if (err || len != out_len)
658 				goto out_err;
659 
660 			if (len < UBIFS_BLOCK_SIZE)
661 				memset(addr + len, 0, UBIFS_BLOCK_SIZE - len);
662 
663 			nn += 1;
664 			read = (i << UBIFS_BLOCK_SHIFT) + len;
665 		} else if (key_block(c, &bu->zbranch[nn].key) < page_block) {
666 			nn += 1;
667 			continue;
668 		} else {
669 			hole = 1;
670 			memset(addr, 0, UBIFS_BLOCK_SIZE);
671 		}
672 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
673 			break;
674 		addr += UBIFS_BLOCK_SIZE;
675 		page_block += 1;
676 	}
677 
678 	if (end_index == page->index) {
679 		int len = i_size & (PAGE_SIZE - 1);
680 
681 		if (len && len < read)
682 			memset(zaddr + len, 0, read - len);
683 	}
684 
685 out_hole:
686 	if (hole) {
687 		SetPageChecked(page);
688 		dbg_gen("hole");
689 	}
690 
691 	SetPageUptodate(page);
692 	ClearPageError(page);
693 	flush_dcache_page(page);
694 	kunmap(page);
695 	*n = nn;
696 	return 0;
697 
698 out_err:
699 	ClearPageUptodate(page);
700 	SetPageError(page);
701 	flush_dcache_page(page);
702 	kunmap(page);
703 	ubifs_err(c, "bad data node (block %u, inode %lu)",
704 		  page_block, inode->i_ino);
705 	return -EINVAL;
706 }
707 
708 /**
709  * ubifs_do_bulk_read - do bulk-read.
710  * @c: UBIFS file-system description object
711  * @bu: bulk-read information
712  * @page1: first page to read
713  *
714  * This function returns %1 if the bulk-read is done, otherwise %0 is returned.
715  */
716 static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu,
717 			      struct page *page1)
718 {
719 	pgoff_t offset = page1->index, end_index;
720 	struct address_space *mapping = page1->mapping;
721 	struct inode *inode = mapping->host;
722 	struct ubifs_inode *ui = ubifs_inode(inode);
723 	int err, page_idx, page_cnt, ret = 0, n = 0;
724 	int allocate = bu->buf ? 0 : 1;
725 	loff_t isize;
726 	gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS;
727 
728 	err = ubifs_tnc_get_bu_keys(c, bu);
729 	if (err)
730 		goto out_warn;
731 
732 	if (bu->eof) {
733 		/* Turn off bulk-read at the end of the file */
734 		ui->read_in_a_row = 1;
735 		ui->bulk_read = 0;
736 	}
737 
738 	page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT;
739 	if (!page_cnt) {
740 		/*
741 		 * This happens when there are multiple blocks per page and the
742 		 * blocks for the first page we are looking for, are not
743 		 * together. If all the pages were like this, bulk-read would
744 		 * reduce performance, so we turn it off for a while.
745 		 */
746 		goto out_bu_off;
747 	}
748 
749 	if (bu->cnt) {
750 		if (allocate) {
751 			/*
752 			 * Allocate bulk-read buffer depending on how many data
753 			 * nodes we are going to read.
754 			 */
755 			bu->buf_len = bu->zbranch[bu->cnt - 1].offs +
756 				      bu->zbranch[bu->cnt - 1].len -
757 				      bu->zbranch[0].offs;
758 			ubifs_assert(c, bu->buf_len > 0);
759 			ubifs_assert(c, bu->buf_len <= c->leb_size);
760 			bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN);
761 			if (!bu->buf)
762 				goto out_bu_off;
763 		}
764 
765 		err = ubifs_tnc_bulk_read(c, bu);
766 		if (err)
767 			goto out_warn;
768 	}
769 
770 	err = populate_page(c, page1, bu, &n);
771 	if (err)
772 		goto out_warn;
773 
774 	unlock_page(page1);
775 	ret = 1;
776 
777 	isize = i_size_read(inode);
778 	if (isize == 0)
779 		goto out_free;
780 	end_index = ((isize - 1) >> PAGE_SHIFT);
781 
782 	for (page_idx = 1; page_idx < page_cnt; page_idx++) {
783 		pgoff_t page_offset = offset + page_idx;
784 		struct page *page;
785 
786 		if (page_offset > end_index)
787 			break;
788 		page = pagecache_get_page(mapping, page_offset,
789 				 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT,
790 				 ra_gfp_mask);
791 		if (!page)
792 			break;
793 		if (!PageUptodate(page))
794 			err = populate_page(c, page, bu, &n);
795 		unlock_page(page);
796 		put_page(page);
797 		if (err)
798 			break;
799 	}
800 
801 	ui->last_page_read = offset + page_idx - 1;
802 
803 out_free:
804 	if (allocate)
805 		kfree(bu->buf);
806 	return ret;
807 
808 out_warn:
809 	ubifs_warn(c, "ignoring error %d and skipping bulk-read", err);
810 	goto out_free;
811 
812 out_bu_off:
813 	ui->read_in_a_row = ui->bulk_read = 0;
814 	goto out_free;
815 }
816 
817 /**
818  * ubifs_bulk_read - determine whether to bulk-read and, if so, do it.
819  * @page: page from which to start bulk-read.
820  *
821  * Some flash media are capable of reading sequentially at faster rates. UBIFS
822  * bulk-read facility is designed to take advantage of that, by reading in one
823  * go consecutive data nodes that are also located consecutively in the same
824  * LEB. This function returns %1 if a bulk-read is done and %0 otherwise.
825  */
826 static int ubifs_bulk_read(struct page *page)
827 {
828 	struct inode *inode = page->mapping->host;
829 	struct ubifs_info *c = inode->i_sb->s_fs_info;
830 	struct ubifs_inode *ui = ubifs_inode(inode);
831 	pgoff_t index = page->index, last_page_read = ui->last_page_read;
832 	struct bu_info *bu;
833 	int err = 0, allocated = 0;
834 
835 	ui->last_page_read = index;
836 	if (!c->bulk_read)
837 		return 0;
838 
839 	/*
840 	 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization,
841 	 * so don't bother if we cannot lock the mutex.
842 	 */
843 	if (!mutex_trylock(&ui->ui_mutex))
844 		return 0;
845 
846 	if (index != last_page_read + 1) {
847 		/* Turn off bulk-read if we stop reading sequentially */
848 		ui->read_in_a_row = 1;
849 		if (ui->bulk_read)
850 			ui->bulk_read = 0;
851 		goto out_unlock;
852 	}
853 
854 	if (!ui->bulk_read) {
855 		ui->read_in_a_row += 1;
856 		if (ui->read_in_a_row < 3)
857 			goto out_unlock;
858 		/* Three reads in a row, so switch on bulk-read */
859 		ui->bulk_read = 1;
860 	}
861 
862 	/*
863 	 * If possible, try to use pre-allocated bulk-read information, which
864 	 * is protected by @c->bu_mutex.
865 	 */
866 	if (mutex_trylock(&c->bu_mutex))
867 		bu = &c->bu;
868 	else {
869 		bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN);
870 		if (!bu)
871 			goto out_unlock;
872 
873 		bu->buf = NULL;
874 		allocated = 1;
875 	}
876 
877 	bu->buf_len = c->max_bu_buf_len;
878 	data_key_init(c, &bu->key, inode->i_ino,
879 		      page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT);
880 	err = ubifs_do_bulk_read(c, bu, page);
881 
882 	if (!allocated)
883 		mutex_unlock(&c->bu_mutex);
884 	else
885 		kfree(bu);
886 
887 out_unlock:
888 	mutex_unlock(&ui->ui_mutex);
889 	return err;
890 }
891 
892 static int ubifs_read_folio(struct file *file, struct folio *folio)
893 {
894 	struct page *page = &folio->page;
895 
896 	if (ubifs_bulk_read(page))
897 		return 0;
898 	do_readpage(page);
899 	folio_unlock(folio);
900 	return 0;
901 }
902 
903 static int do_writepage(struct page *page, int len)
904 {
905 	int err = 0, i, blen;
906 	unsigned int block;
907 	void *addr;
908 	union ubifs_key key;
909 	struct inode *inode = page->mapping->host;
910 	struct ubifs_info *c = inode->i_sb->s_fs_info;
911 
912 #ifdef UBIFS_DEBUG
913 	struct ubifs_inode *ui = ubifs_inode(inode);
914 	spin_lock(&ui->ui_lock);
915 	ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT);
916 	spin_unlock(&ui->ui_lock);
917 #endif
918 
919 	/* Update radix tree tags */
920 	set_page_writeback(page);
921 
922 	addr = kmap(page);
923 	block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT;
924 	i = 0;
925 	while (len) {
926 		blen = min_t(int, len, UBIFS_BLOCK_SIZE);
927 		data_key_init(c, &key, inode->i_ino, block);
928 		err = ubifs_jnl_write_data(c, inode, &key, addr, blen);
929 		if (err)
930 			break;
931 		if (++i >= UBIFS_BLOCKS_PER_PAGE)
932 			break;
933 		block += 1;
934 		addr += blen;
935 		len -= blen;
936 	}
937 	if (err) {
938 		SetPageError(page);
939 		ubifs_err(c, "cannot write page %lu of inode %lu, error %d",
940 			  page->index, inode->i_ino, err);
941 		ubifs_ro_mode(c, err);
942 	}
943 
944 	ubifs_assert(c, PagePrivate(page));
945 	if (PageChecked(page))
946 		release_new_page_budget(c);
947 	else
948 		release_existing_page_budget(c);
949 
950 	atomic_long_dec(&c->dirty_pg_cnt);
951 	detach_page_private(page);
952 	ClearPageChecked(page);
953 
954 	kunmap(page);
955 	unlock_page(page);
956 	end_page_writeback(page);
957 	return err;
958 }
959 
960 /*
961  * When writing-back dirty inodes, VFS first writes-back pages belonging to the
962  * inode, then the inode itself. For UBIFS this may cause a problem. Consider a
963  * situation when a we have an inode with size 0, then a megabyte of data is
964  * appended to the inode, then write-back starts and flushes some amount of the
965  * dirty pages, the journal becomes full, commit happens and finishes, and then
966  * an unclean reboot happens. When the file system is mounted next time, the
967  * inode size would still be 0, but there would be many pages which are beyond
968  * the inode size, they would be indexed and consume flash space. Because the
969  * journal has been committed, the replay would not be able to detect this
970  * situation and correct the inode size. This means UBIFS would have to scan
971  * whole index and correct all inode sizes, which is long an unacceptable.
972  *
973  * To prevent situations like this, UBIFS writes pages back only if they are
974  * within the last synchronized inode size, i.e. the size which has been
975  * written to the flash media last time. Otherwise, UBIFS forces inode
976  * write-back, thus making sure the on-flash inode contains current inode size,
977  * and then keeps writing pages back.
978  *
979  * Some locking issues explanation. 'ubifs_writepage()' first is called with
980  * the page locked, and it locks @ui_mutex. However, write-back does take inode
981  * @i_mutex, which means other VFS operations may be run on this inode at the
982  * same time. And the problematic one is truncation to smaller size, from where
983  * we have to call 'truncate_setsize()', which first changes @inode->i_size,
984  * then drops the truncated pages. And while dropping the pages, it takes the
985  * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()'
986  * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'.
987  * This means that @inode->i_size is changed while @ui_mutex is unlocked.
988  *
989  * XXX(truncate): with the new truncate sequence this is not true anymore,
990  * and the calls to truncate_setsize can be move around freely.  They should
991  * be moved to the very end of the truncate sequence.
992  *
993  * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond
994  * inode size. How do we do this if @inode->i_size may became smaller while we
995  * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the
996  * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size
997  * internally and updates it under @ui_mutex.
998  *
999  * Q: why we do not worry that if we race with truncation, we may end up with a
1000  * situation when the inode is truncated while we are in the middle of
1001  * 'do_writepage()', so we do write beyond inode size?
1002  * A: If we are in the middle of 'do_writepage()', truncation would be locked
1003  * on the page lock and it would not write the truncated inode node to the
1004  * journal before we have finished.
1005  */
1006 static int ubifs_writepage(struct page *page, struct writeback_control *wbc)
1007 {
1008 	struct inode *inode = page->mapping->host;
1009 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1010 	struct ubifs_inode *ui = ubifs_inode(inode);
1011 	loff_t i_size =  i_size_read(inode), synced_i_size;
1012 	pgoff_t end_index = i_size >> PAGE_SHIFT;
1013 	int err, len = i_size & (PAGE_SIZE - 1);
1014 	void *kaddr;
1015 
1016 	dbg_gen("ino %lu, pg %lu, pg flags %#lx",
1017 		inode->i_ino, page->index, page->flags);
1018 	ubifs_assert(c, PagePrivate(page));
1019 
1020 	/* Is the page fully outside @i_size? (truncate in progress) */
1021 	if (page->index > end_index || (page->index == end_index && !len)) {
1022 		err = 0;
1023 		goto out_unlock;
1024 	}
1025 
1026 	spin_lock(&ui->ui_lock);
1027 	synced_i_size = ui->synced_i_size;
1028 	spin_unlock(&ui->ui_lock);
1029 
1030 	/* Is the page fully inside @i_size? */
1031 	if (page->index < end_index) {
1032 		if (page->index >= synced_i_size >> PAGE_SHIFT) {
1033 			err = inode->i_sb->s_op->write_inode(inode, NULL);
1034 			if (err)
1035 				goto out_redirty;
1036 			/*
1037 			 * The inode has been written, but the write-buffer has
1038 			 * not been synchronized, so in case of an unclean
1039 			 * reboot we may end up with some pages beyond inode
1040 			 * size, but they would be in the journal (because
1041 			 * commit flushes write buffers) and recovery would deal
1042 			 * with this.
1043 			 */
1044 		}
1045 		return do_writepage(page, PAGE_SIZE);
1046 	}
1047 
1048 	/*
1049 	 * The page straddles @i_size. It must be zeroed out on each and every
1050 	 * writepage invocation because it may be mmapped. "A file is mapped
1051 	 * in multiples of the page size. For a file that is not a multiple of
1052 	 * the page size, the remaining memory is zeroed when mapped, and
1053 	 * writes to that region are not written out to the file."
1054 	 */
1055 	kaddr = kmap_atomic(page);
1056 	memset(kaddr + len, 0, PAGE_SIZE - len);
1057 	flush_dcache_page(page);
1058 	kunmap_atomic(kaddr);
1059 
1060 	if (i_size > synced_i_size) {
1061 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1062 		if (err)
1063 			goto out_redirty;
1064 	}
1065 
1066 	return do_writepage(page, len);
1067 out_redirty:
1068 	/*
1069 	 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because
1070 	 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so
1071 	 * there is no need to do space budget for dirty inode.
1072 	 */
1073 	redirty_page_for_writepage(wbc, page);
1074 out_unlock:
1075 	unlock_page(page);
1076 	return err;
1077 }
1078 
1079 /**
1080  * do_attr_changes - change inode attributes.
1081  * @inode: inode to change attributes for
1082  * @attr: describes attributes to change
1083  */
1084 static void do_attr_changes(struct inode *inode, const struct iattr *attr)
1085 {
1086 	if (attr->ia_valid & ATTR_UID)
1087 		inode->i_uid = attr->ia_uid;
1088 	if (attr->ia_valid & ATTR_GID)
1089 		inode->i_gid = attr->ia_gid;
1090 	if (attr->ia_valid & ATTR_ATIME)
1091 		inode->i_atime = attr->ia_atime;
1092 	if (attr->ia_valid & ATTR_MTIME)
1093 		inode->i_mtime = attr->ia_mtime;
1094 	if (attr->ia_valid & ATTR_CTIME)
1095 		inode_set_ctime_to_ts(inode, attr->ia_ctime);
1096 	if (attr->ia_valid & ATTR_MODE) {
1097 		umode_t mode = attr->ia_mode;
1098 
1099 		if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID))
1100 			mode &= ~S_ISGID;
1101 		inode->i_mode = mode;
1102 	}
1103 }
1104 
1105 /**
1106  * do_truncation - truncate an inode.
1107  * @c: UBIFS file-system description object
1108  * @inode: inode to truncate
1109  * @attr: inode attribute changes description
1110  *
1111  * This function implements VFS '->setattr()' call when the inode is truncated
1112  * to a smaller size. Returns zero in case of success and a negative error code
1113  * in case of failure.
1114  */
1115 static int do_truncation(struct ubifs_info *c, struct inode *inode,
1116 			 const struct iattr *attr)
1117 {
1118 	int err;
1119 	struct ubifs_budget_req req;
1120 	loff_t old_size = inode->i_size, new_size = attr->ia_size;
1121 	int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1;
1122 	struct ubifs_inode *ui = ubifs_inode(inode);
1123 
1124 	dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size);
1125 	memset(&req, 0, sizeof(struct ubifs_budget_req));
1126 
1127 	/*
1128 	 * If this is truncation to a smaller size, and we do not truncate on a
1129 	 * block boundary, budget for changing one data block, because the last
1130 	 * block will be re-written.
1131 	 */
1132 	if (new_size & (UBIFS_BLOCK_SIZE - 1))
1133 		req.dirtied_page = 1;
1134 
1135 	req.dirtied_ino = 1;
1136 	/* A funny way to budget for truncation node */
1137 	req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ;
1138 	err = ubifs_budget_space(c, &req);
1139 	if (err) {
1140 		/*
1141 		 * Treat truncations to zero as deletion and always allow them,
1142 		 * just like we do for '->unlink()'.
1143 		 */
1144 		if (new_size || err != -ENOSPC)
1145 			return err;
1146 		budgeted = 0;
1147 	}
1148 
1149 	truncate_setsize(inode, new_size);
1150 
1151 	if (offset) {
1152 		pgoff_t index = new_size >> PAGE_SHIFT;
1153 		struct page *page;
1154 
1155 		page = find_lock_page(inode->i_mapping, index);
1156 		if (page) {
1157 			if (PageDirty(page)) {
1158 				/*
1159 				 * 'ubifs_jnl_truncate()' will try to truncate
1160 				 * the last data node, but it contains
1161 				 * out-of-date data because the page is dirty.
1162 				 * Write the page now, so that
1163 				 * 'ubifs_jnl_truncate()' will see an already
1164 				 * truncated (and up to date) data node.
1165 				 */
1166 				ubifs_assert(c, PagePrivate(page));
1167 
1168 				clear_page_dirty_for_io(page);
1169 				if (UBIFS_BLOCKS_PER_PAGE_SHIFT)
1170 					offset = new_size &
1171 						 (PAGE_SIZE - 1);
1172 				err = do_writepage(page, offset);
1173 				put_page(page);
1174 				if (err)
1175 					goto out_budg;
1176 				/*
1177 				 * We could now tell 'ubifs_jnl_truncate()' not
1178 				 * to read the last block.
1179 				 */
1180 			} else {
1181 				/*
1182 				 * We could 'kmap()' the page and pass the data
1183 				 * to 'ubifs_jnl_truncate()' to save it from
1184 				 * having to read it.
1185 				 */
1186 				unlock_page(page);
1187 				put_page(page);
1188 			}
1189 		}
1190 	}
1191 
1192 	mutex_lock(&ui->ui_mutex);
1193 	ui->ui_size = inode->i_size;
1194 	/* Truncation changes inode [mc]time */
1195 	inode->i_mtime = inode_set_ctime_current(inode);
1196 	/* Other attributes may be changed at the same time as well */
1197 	do_attr_changes(inode, attr);
1198 	err = ubifs_jnl_truncate(c, inode, old_size, new_size);
1199 	mutex_unlock(&ui->ui_mutex);
1200 
1201 out_budg:
1202 	if (budgeted)
1203 		ubifs_release_budget(c, &req);
1204 	else {
1205 		c->bi.nospace = c->bi.nospace_rp = 0;
1206 		smp_wmb();
1207 	}
1208 	return err;
1209 }
1210 
1211 /**
1212  * do_setattr - change inode attributes.
1213  * @c: UBIFS file-system description object
1214  * @inode: inode to change attributes for
1215  * @attr: inode attribute changes description
1216  *
1217  * This function implements VFS '->setattr()' call for all cases except
1218  * truncations to smaller size. Returns zero in case of success and a negative
1219  * error code in case of failure.
1220  */
1221 static int do_setattr(struct ubifs_info *c, struct inode *inode,
1222 		      const struct iattr *attr)
1223 {
1224 	int err, release;
1225 	loff_t new_size = attr->ia_size;
1226 	struct ubifs_inode *ui = ubifs_inode(inode);
1227 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1228 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1229 
1230 	err = ubifs_budget_space(c, &req);
1231 	if (err)
1232 		return err;
1233 
1234 	if (attr->ia_valid & ATTR_SIZE) {
1235 		dbg_gen("size %lld -> %lld", inode->i_size, new_size);
1236 		truncate_setsize(inode, new_size);
1237 	}
1238 
1239 	mutex_lock(&ui->ui_mutex);
1240 	if (attr->ia_valid & ATTR_SIZE) {
1241 		/* Truncation changes inode [mc]time */
1242 		inode->i_mtime = inode_set_ctime_current(inode);
1243 		/* 'truncate_setsize()' changed @i_size, update @ui_size */
1244 		ui->ui_size = inode->i_size;
1245 	}
1246 
1247 	do_attr_changes(inode, attr);
1248 
1249 	release = ui->dirty;
1250 	if (attr->ia_valid & ATTR_SIZE)
1251 		/*
1252 		 * Inode length changed, so we have to make sure
1253 		 * @I_DIRTY_DATASYNC is set.
1254 		 */
1255 		 __mark_inode_dirty(inode, I_DIRTY_DATASYNC);
1256 	else
1257 		mark_inode_dirty_sync(inode);
1258 	mutex_unlock(&ui->ui_mutex);
1259 
1260 	if (release)
1261 		ubifs_release_budget(c, &req);
1262 	if (IS_SYNC(inode))
1263 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1264 	return err;
1265 }
1266 
1267 int ubifs_setattr(struct mnt_idmap *idmap, struct dentry *dentry,
1268 		  struct iattr *attr)
1269 {
1270 	int err;
1271 	struct inode *inode = d_inode(dentry);
1272 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1273 
1274 	dbg_gen("ino %lu, mode %#x, ia_valid %#x",
1275 		inode->i_ino, inode->i_mode, attr->ia_valid);
1276 	err = setattr_prepare(&nop_mnt_idmap, dentry, attr);
1277 	if (err)
1278 		return err;
1279 
1280 	err = dbg_check_synced_i_size(c, inode);
1281 	if (err)
1282 		return err;
1283 
1284 	err = fscrypt_prepare_setattr(dentry, attr);
1285 	if (err)
1286 		return err;
1287 
1288 	if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size)
1289 		/* Truncation to a smaller size */
1290 		err = do_truncation(c, inode, attr);
1291 	else
1292 		err = do_setattr(c, inode, attr);
1293 
1294 	return err;
1295 }
1296 
1297 static void ubifs_invalidate_folio(struct folio *folio, size_t offset,
1298 				 size_t length)
1299 {
1300 	struct inode *inode = folio->mapping->host;
1301 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1302 
1303 	ubifs_assert(c, folio_test_private(folio));
1304 	if (offset || length < folio_size(folio))
1305 		/* Partial folio remains dirty */
1306 		return;
1307 
1308 	if (folio_test_checked(folio))
1309 		release_new_page_budget(c);
1310 	else
1311 		release_existing_page_budget(c);
1312 
1313 	atomic_long_dec(&c->dirty_pg_cnt);
1314 	folio_detach_private(folio);
1315 	folio_clear_checked(folio);
1316 }
1317 
1318 int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync)
1319 {
1320 	struct inode *inode = file->f_mapping->host;
1321 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1322 	int err;
1323 
1324 	dbg_gen("syncing inode %lu", inode->i_ino);
1325 
1326 	if (c->ro_mount)
1327 		/*
1328 		 * For some really strange reasons VFS does not filter out
1329 		 * 'fsync()' for R/O mounted file-systems as per 2.6.39.
1330 		 */
1331 		return 0;
1332 
1333 	err = file_write_and_wait_range(file, start, end);
1334 	if (err)
1335 		return err;
1336 	inode_lock(inode);
1337 
1338 	/* Synchronize the inode unless this is a 'datasync()' call. */
1339 	if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) {
1340 		err = inode->i_sb->s_op->write_inode(inode, NULL);
1341 		if (err)
1342 			goto out;
1343 	}
1344 
1345 	/*
1346 	 * Nodes related to this inode may still sit in a write-buffer. Flush
1347 	 * them.
1348 	 */
1349 	err = ubifs_sync_wbufs_by_inode(c, inode);
1350 out:
1351 	inode_unlock(inode);
1352 	return err;
1353 }
1354 
1355 /**
1356  * mctime_update_needed - check if mtime or ctime update is needed.
1357  * @inode: the inode to do the check for
1358  * @now: current time
1359  *
1360  * This helper function checks if the inode mtime/ctime should be updated or
1361  * not. If current values of the time-stamps are within the UBIFS inode time
1362  * granularity, they are not updated. This is an optimization.
1363  */
1364 static inline int mctime_update_needed(const struct inode *inode,
1365 				       const struct timespec64 *now)
1366 {
1367 	struct timespec64 ctime = inode_get_ctime(inode);
1368 
1369 	if (!timespec64_equal(&inode->i_mtime, now) ||
1370 	    !timespec64_equal(&ctime, now))
1371 		return 1;
1372 	return 0;
1373 }
1374 
1375 /**
1376  * ubifs_update_time - update time of inode.
1377  * @inode: inode to update
1378  *
1379  * This function updates time of the inode.
1380  */
1381 int ubifs_update_time(struct inode *inode, int flags)
1382 {
1383 	struct ubifs_inode *ui = ubifs_inode(inode);
1384 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1385 	struct ubifs_budget_req req = { .dirtied_ino = 1,
1386 			.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1387 	int err, release;
1388 
1389 	if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) {
1390 		generic_update_time(inode, flags);
1391 		return 0;
1392 	}
1393 
1394 	err = ubifs_budget_space(c, &req);
1395 	if (err)
1396 		return err;
1397 
1398 	mutex_lock(&ui->ui_mutex);
1399 	inode_update_timestamps(inode, flags);
1400 	release = ui->dirty;
1401 	__mark_inode_dirty(inode, I_DIRTY_SYNC);
1402 	mutex_unlock(&ui->ui_mutex);
1403 	if (release)
1404 		ubifs_release_budget(c, &req);
1405 	return 0;
1406 }
1407 
1408 /**
1409  * update_mctime - update mtime and ctime of an inode.
1410  * @inode: inode to update
1411  *
1412  * This function updates mtime and ctime of the inode if it is not equivalent to
1413  * current time. Returns zero in case of success and a negative error code in
1414  * case of failure.
1415  */
1416 static int update_mctime(struct inode *inode)
1417 {
1418 	struct timespec64 now = current_time(inode);
1419 	struct ubifs_inode *ui = ubifs_inode(inode);
1420 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1421 
1422 	if (mctime_update_needed(inode, &now)) {
1423 		int err, release;
1424 		struct ubifs_budget_req req = { .dirtied_ino = 1,
1425 				.dirtied_ino_d = ALIGN(ui->data_len, 8) };
1426 
1427 		err = ubifs_budget_space(c, &req);
1428 		if (err)
1429 			return err;
1430 
1431 		mutex_lock(&ui->ui_mutex);
1432 		inode->i_mtime = inode_set_ctime_current(inode);
1433 		release = ui->dirty;
1434 		mark_inode_dirty_sync(inode);
1435 		mutex_unlock(&ui->ui_mutex);
1436 		if (release)
1437 			ubifs_release_budget(c, &req);
1438 	}
1439 
1440 	return 0;
1441 }
1442 
1443 static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from)
1444 {
1445 	int err = update_mctime(file_inode(iocb->ki_filp));
1446 	if (err)
1447 		return err;
1448 
1449 	return generic_file_write_iter(iocb, from);
1450 }
1451 
1452 static bool ubifs_dirty_folio(struct address_space *mapping,
1453 		struct folio *folio)
1454 {
1455 	bool ret;
1456 	struct ubifs_info *c = mapping->host->i_sb->s_fs_info;
1457 
1458 	ret = filemap_dirty_folio(mapping, folio);
1459 	/*
1460 	 * An attempt to dirty a page without budgeting for it - should not
1461 	 * happen.
1462 	 */
1463 	ubifs_assert(c, ret == false);
1464 	return ret;
1465 }
1466 
1467 static bool ubifs_release_folio(struct folio *folio, gfp_t unused_gfp_flags)
1468 {
1469 	struct inode *inode = folio->mapping->host;
1470 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1471 
1472 	if (folio_test_writeback(folio))
1473 		return false;
1474 
1475 	/*
1476 	 * Page is private but not dirty, weird? There is one condition
1477 	 * making it happened. ubifs_writepage skipped the page because
1478 	 * page index beyonds isize (for example. truncated by other
1479 	 * process named A), then the page is invalidated by fadvise64
1480 	 * syscall before being truncated by process A.
1481 	 */
1482 	ubifs_assert(c, folio_test_private(folio));
1483 	if (folio_test_checked(folio))
1484 		release_new_page_budget(c);
1485 	else
1486 		release_existing_page_budget(c);
1487 
1488 	atomic_long_dec(&c->dirty_pg_cnt);
1489 	folio_detach_private(folio);
1490 	folio_clear_checked(folio);
1491 	return true;
1492 }
1493 
1494 /*
1495  * mmap()d file has taken write protection fault and is being made writable.
1496  * UBIFS must ensure page is budgeted for.
1497  */
1498 static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf)
1499 {
1500 	struct page *page = vmf->page;
1501 	struct inode *inode = file_inode(vmf->vma->vm_file);
1502 	struct ubifs_info *c = inode->i_sb->s_fs_info;
1503 	struct timespec64 now = current_time(inode);
1504 	struct ubifs_budget_req req = { .new_page = 1 };
1505 	int err, update_time;
1506 
1507 	dbg_gen("ino %lu, pg %lu, i_size %lld",	inode->i_ino, page->index,
1508 		i_size_read(inode));
1509 	ubifs_assert(c, !c->ro_media && !c->ro_mount);
1510 
1511 	if (unlikely(c->ro_error))
1512 		return VM_FAULT_SIGBUS; /* -EROFS */
1513 
1514 	/*
1515 	 * We have not locked @page so far so we may budget for changing the
1516 	 * page. Note, we cannot do this after we locked the page, because
1517 	 * budgeting may cause write-back which would cause deadlock.
1518 	 *
1519 	 * At the moment we do not know whether the page is dirty or not, so we
1520 	 * assume that it is not and budget for a new page. We could look at
1521 	 * the @PG_private flag and figure this out, but we may race with write
1522 	 * back and the page state may change by the time we lock it, so this
1523 	 * would need additional care. We do not bother with this at the
1524 	 * moment, although it might be good idea to do. Instead, we allocate
1525 	 * budget for a new page and amend it later on if the page was in fact
1526 	 * dirty.
1527 	 *
1528 	 * The budgeting-related logic of this function is similar to what we
1529 	 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there
1530 	 * for more comments.
1531 	 */
1532 	update_time = mctime_update_needed(inode, &now);
1533 	if (update_time)
1534 		/*
1535 		 * We have to change inode time stamp which requires extra
1536 		 * budgeting.
1537 		 */
1538 		req.dirtied_ino = 1;
1539 
1540 	err = ubifs_budget_space(c, &req);
1541 	if (unlikely(err)) {
1542 		if (err == -ENOSPC)
1543 			ubifs_warn(c, "out of space for mmapped file (inode number %lu)",
1544 				   inode->i_ino);
1545 		return VM_FAULT_SIGBUS;
1546 	}
1547 
1548 	lock_page(page);
1549 	if (unlikely(page->mapping != inode->i_mapping ||
1550 		     page_offset(page) > i_size_read(inode))) {
1551 		/* Page got truncated out from underneath us */
1552 		goto sigbus;
1553 	}
1554 
1555 	if (PagePrivate(page))
1556 		release_new_page_budget(c);
1557 	else {
1558 		if (!PageChecked(page))
1559 			ubifs_convert_page_budget(c);
1560 		attach_page_private(page, (void *)1);
1561 		atomic_long_inc(&c->dirty_pg_cnt);
1562 		__set_page_dirty_nobuffers(page);
1563 	}
1564 
1565 	if (update_time) {
1566 		int release;
1567 		struct ubifs_inode *ui = ubifs_inode(inode);
1568 
1569 		mutex_lock(&ui->ui_mutex);
1570 		inode->i_mtime = inode_set_ctime_current(inode);
1571 		release = ui->dirty;
1572 		mark_inode_dirty_sync(inode);
1573 		mutex_unlock(&ui->ui_mutex);
1574 		if (release)
1575 			ubifs_release_dirty_inode_budget(c, ui);
1576 	}
1577 
1578 	wait_for_stable_page(page);
1579 	return VM_FAULT_LOCKED;
1580 
1581 sigbus:
1582 	unlock_page(page);
1583 	ubifs_release_budget(c, &req);
1584 	return VM_FAULT_SIGBUS;
1585 }
1586 
1587 static const struct vm_operations_struct ubifs_file_vm_ops = {
1588 	.fault        = filemap_fault,
1589 	.map_pages = filemap_map_pages,
1590 	.page_mkwrite = ubifs_vm_page_mkwrite,
1591 };
1592 
1593 static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma)
1594 {
1595 	int err;
1596 
1597 	err = generic_file_mmap(file, vma);
1598 	if (err)
1599 		return err;
1600 	vma->vm_ops = &ubifs_file_vm_ops;
1601 
1602 	if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT))
1603 		file_accessed(file);
1604 
1605 	return 0;
1606 }
1607 
1608 static const char *ubifs_get_link(struct dentry *dentry,
1609 					    struct inode *inode,
1610 					    struct delayed_call *done)
1611 {
1612 	struct ubifs_inode *ui = ubifs_inode(inode);
1613 
1614 	if (!IS_ENCRYPTED(inode))
1615 		return ui->data;
1616 
1617 	if (!dentry)
1618 		return ERR_PTR(-ECHILD);
1619 
1620 	return fscrypt_get_symlink(inode, ui->data, ui->data_len, done);
1621 }
1622 
1623 static int ubifs_symlink_getattr(struct mnt_idmap *idmap,
1624 				 const struct path *path, struct kstat *stat,
1625 				 u32 request_mask, unsigned int query_flags)
1626 {
1627 	ubifs_getattr(idmap, path, stat, request_mask, query_flags);
1628 
1629 	if (IS_ENCRYPTED(d_inode(path->dentry)))
1630 		return fscrypt_symlink_getattr(path, stat);
1631 	return 0;
1632 }
1633 
1634 const struct address_space_operations ubifs_file_address_operations = {
1635 	.read_folio     = ubifs_read_folio,
1636 	.writepage      = ubifs_writepage,
1637 	.write_begin    = ubifs_write_begin,
1638 	.write_end      = ubifs_write_end,
1639 	.invalidate_folio = ubifs_invalidate_folio,
1640 	.dirty_folio	= ubifs_dirty_folio,
1641 	.migrate_folio	= filemap_migrate_folio,
1642 	.release_folio	= ubifs_release_folio,
1643 };
1644 
1645 const struct inode_operations ubifs_file_inode_operations = {
1646 	.setattr     = ubifs_setattr,
1647 	.getattr     = ubifs_getattr,
1648 	.listxattr   = ubifs_listxattr,
1649 	.update_time = ubifs_update_time,
1650 	.fileattr_get = ubifs_fileattr_get,
1651 	.fileattr_set = ubifs_fileattr_set,
1652 };
1653 
1654 const struct inode_operations ubifs_symlink_inode_operations = {
1655 	.get_link    = ubifs_get_link,
1656 	.setattr     = ubifs_setattr,
1657 	.getattr     = ubifs_symlink_getattr,
1658 	.listxattr   = ubifs_listxattr,
1659 	.update_time = ubifs_update_time,
1660 };
1661 
1662 const struct file_operations ubifs_file_operations = {
1663 	.llseek         = generic_file_llseek,
1664 	.read_iter      = generic_file_read_iter,
1665 	.write_iter     = ubifs_write_iter,
1666 	.mmap           = ubifs_file_mmap,
1667 	.fsync          = ubifs_fsync,
1668 	.unlocked_ioctl = ubifs_ioctl,
1669 	.splice_read	= filemap_splice_read,
1670 	.splice_write	= iter_file_splice_write,
1671 	.open		= fscrypt_file_open,
1672 #ifdef CONFIG_COMPAT
1673 	.compat_ioctl   = ubifs_compat_ioctl,
1674 #endif
1675 };
1676