1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11 /* 12 * This file implements most of the debugging stuff which is compiled in only 13 * when it is enabled. But some debugging check functions are implemented in 14 * corresponding subsystem, just because they are closely related and utilize 15 * various local functions of those subsystems. 16 */ 17 18 #include <linux/module.h> 19 #include <linux/debugfs.h> 20 #include <linux/math64.h> 21 #include <linux/uaccess.h> 22 #include <linux/random.h> 23 #include <linux/ctype.h> 24 #include "ubifs.h" 25 26 static DEFINE_SPINLOCK(dbg_lock); 27 28 static const char *get_key_fmt(int fmt) 29 { 30 switch (fmt) { 31 case UBIFS_SIMPLE_KEY_FMT: 32 return "simple"; 33 default: 34 return "unknown/invalid format"; 35 } 36 } 37 38 static const char *get_key_hash(int hash) 39 { 40 switch (hash) { 41 case UBIFS_KEY_HASH_R5: 42 return "R5"; 43 case UBIFS_KEY_HASH_TEST: 44 return "test"; 45 default: 46 return "unknown/invalid name hash"; 47 } 48 } 49 50 static const char *get_key_type(int type) 51 { 52 switch (type) { 53 case UBIFS_INO_KEY: 54 return "inode"; 55 case UBIFS_DENT_KEY: 56 return "direntry"; 57 case UBIFS_XENT_KEY: 58 return "xentry"; 59 case UBIFS_DATA_KEY: 60 return "data"; 61 case UBIFS_TRUN_KEY: 62 return "truncate"; 63 default: 64 return "unknown/invalid key"; 65 } 66 } 67 68 static const char *get_dent_type(int type) 69 { 70 switch (type) { 71 case UBIFS_ITYPE_REG: 72 return "file"; 73 case UBIFS_ITYPE_DIR: 74 return "dir"; 75 case UBIFS_ITYPE_LNK: 76 return "symlink"; 77 case UBIFS_ITYPE_BLK: 78 return "blkdev"; 79 case UBIFS_ITYPE_CHR: 80 return "char dev"; 81 case UBIFS_ITYPE_FIFO: 82 return "fifo"; 83 case UBIFS_ITYPE_SOCK: 84 return "socket"; 85 default: 86 return "unknown/invalid type"; 87 } 88 } 89 90 const char *dbg_snprintf_key(const struct ubifs_info *c, 91 const union ubifs_key *key, char *buffer, int len) 92 { 93 char *p = buffer; 94 int type = key_type(c, key); 95 96 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 97 switch (type) { 98 case UBIFS_INO_KEY: 99 len -= snprintf(p, len, "(%lu, %s)", 100 (unsigned long)key_inum(c, key), 101 get_key_type(type)); 102 break; 103 case UBIFS_DENT_KEY: 104 case UBIFS_XENT_KEY: 105 len -= snprintf(p, len, "(%lu, %s, %#08x)", 106 (unsigned long)key_inum(c, key), 107 get_key_type(type), key_hash(c, key)); 108 break; 109 case UBIFS_DATA_KEY: 110 len -= snprintf(p, len, "(%lu, %s, %u)", 111 (unsigned long)key_inum(c, key), 112 get_key_type(type), key_block(c, key)); 113 break; 114 case UBIFS_TRUN_KEY: 115 len -= snprintf(p, len, "(%lu, %s)", 116 (unsigned long)key_inum(c, key), 117 get_key_type(type)); 118 break; 119 default: 120 len -= snprintf(p, len, "(bad key type: %#08x, %#08x)", 121 key->u32[0], key->u32[1]); 122 } 123 } else 124 len -= snprintf(p, len, "bad key format %d", c->key_fmt); 125 ubifs_assert(c, len > 0); 126 return p; 127 } 128 129 const char *dbg_ntype(int type) 130 { 131 switch (type) { 132 case UBIFS_PAD_NODE: 133 return "padding node"; 134 case UBIFS_SB_NODE: 135 return "superblock node"; 136 case UBIFS_MST_NODE: 137 return "master node"; 138 case UBIFS_REF_NODE: 139 return "reference node"; 140 case UBIFS_INO_NODE: 141 return "inode node"; 142 case UBIFS_DENT_NODE: 143 return "direntry node"; 144 case UBIFS_XENT_NODE: 145 return "xentry node"; 146 case UBIFS_DATA_NODE: 147 return "data node"; 148 case UBIFS_TRUN_NODE: 149 return "truncate node"; 150 case UBIFS_IDX_NODE: 151 return "indexing node"; 152 case UBIFS_CS_NODE: 153 return "commit start node"; 154 case UBIFS_ORPH_NODE: 155 return "orphan node"; 156 case UBIFS_AUTH_NODE: 157 return "auth node"; 158 default: 159 return "unknown node"; 160 } 161 } 162 163 static const char *dbg_gtype(int type) 164 { 165 switch (type) { 166 case UBIFS_NO_NODE_GROUP: 167 return "no node group"; 168 case UBIFS_IN_NODE_GROUP: 169 return "in node group"; 170 case UBIFS_LAST_OF_NODE_GROUP: 171 return "last of node group"; 172 default: 173 return "unknown"; 174 } 175 } 176 177 const char *dbg_cstate(int cmt_state) 178 { 179 switch (cmt_state) { 180 case COMMIT_RESTING: 181 return "commit resting"; 182 case COMMIT_BACKGROUND: 183 return "background commit requested"; 184 case COMMIT_REQUIRED: 185 return "commit required"; 186 case COMMIT_RUNNING_BACKGROUND: 187 return "BACKGROUND commit running"; 188 case COMMIT_RUNNING_REQUIRED: 189 return "commit running and required"; 190 case COMMIT_BROKEN: 191 return "broken commit"; 192 default: 193 return "unknown commit state"; 194 } 195 } 196 197 const char *dbg_jhead(int jhead) 198 { 199 switch (jhead) { 200 case GCHD: 201 return "0 (GC)"; 202 case BASEHD: 203 return "1 (base)"; 204 case DATAHD: 205 return "2 (data)"; 206 default: 207 return "unknown journal head"; 208 } 209 } 210 211 static void dump_ch(const struct ubifs_ch *ch) 212 { 213 pr_err("\tmagic %#x\n", le32_to_cpu(ch->magic)); 214 pr_err("\tcrc %#x\n", le32_to_cpu(ch->crc)); 215 pr_err("\tnode_type %d (%s)\n", ch->node_type, 216 dbg_ntype(ch->node_type)); 217 pr_err("\tgroup_type %d (%s)\n", ch->group_type, 218 dbg_gtype(ch->group_type)); 219 pr_err("\tsqnum %llu\n", 220 (unsigned long long)le64_to_cpu(ch->sqnum)); 221 pr_err("\tlen %u\n", le32_to_cpu(ch->len)); 222 } 223 224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode) 225 { 226 const struct ubifs_inode *ui = ubifs_inode(inode); 227 struct fscrypt_name nm = {0}; 228 union ubifs_key key; 229 struct ubifs_dent_node *dent, *pdent = NULL; 230 int count = 2; 231 232 pr_err("Dump in-memory inode:"); 233 pr_err("\tinode %lu\n", inode->i_ino); 234 pr_err("\tsize %llu\n", 235 (unsigned long long)i_size_read(inode)); 236 pr_err("\tnlink %u\n", inode->i_nlink); 237 pr_err("\tuid %u\n", (unsigned int)i_uid_read(inode)); 238 pr_err("\tgid %u\n", (unsigned int)i_gid_read(inode)); 239 pr_err("\tatime %u.%u\n", 240 (unsigned int) inode_get_atime_sec(inode), 241 (unsigned int) inode_get_atime_nsec(inode)); 242 pr_err("\tmtime %u.%u\n", 243 (unsigned int) inode_get_mtime_sec(inode), 244 (unsigned int) inode_get_mtime_nsec(inode)); 245 pr_err("\tctime %u.%u\n", 246 (unsigned int) inode_get_ctime_sec(inode), 247 (unsigned int) inode_get_ctime_nsec(inode)); 248 pr_err("\tcreat_sqnum %llu\n", ui->creat_sqnum); 249 pr_err("\txattr_size %u\n", ui->xattr_size); 250 pr_err("\txattr_cnt %u\n", ui->xattr_cnt); 251 pr_err("\txattr_names %u\n", ui->xattr_names); 252 pr_err("\tdirty %u\n", ui->dirty); 253 pr_err("\txattr %u\n", ui->xattr); 254 pr_err("\tbulk_read %u\n", ui->bulk_read); 255 pr_err("\tsynced_i_size %llu\n", 256 (unsigned long long)ui->synced_i_size); 257 pr_err("\tui_size %llu\n", 258 (unsigned long long)ui->ui_size); 259 pr_err("\tflags %d\n", ui->flags); 260 pr_err("\tcompr_type %d\n", ui->compr_type); 261 pr_err("\tlast_page_read %lu\n", ui->last_page_read); 262 pr_err("\tread_in_a_row %lu\n", ui->read_in_a_row); 263 pr_err("\tdata_len %d\n", ui->data_len); 264 265 if (!S_ISDIR(inode->i_mode)) 266 return; 267 268 pr_err("List of directory entries:\n"); 269 ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex)); 270 271 lowest_dent_key(c, &key, inode->i_ino); 272 while (1) { 273 dent = ubifs_tnc_next_ent(c, &key, &nm); 274 if (IS_ERR(dent)) { 275 if (PTR_ERR(dent) != -ENOENT) 276 pr_err("error %ld\n", PTR_ERR(dent)); 277 break; 278 } 279 280 pr_err("\t%d: inode %llu, type %s, len %d\n", 281 count++, (unsigned long long) le64_to_cpu(dent->inum), 282 get_dent_type(dent->type), 283 le16_to_cpu(dent->nlen)); 284 285 fname_name(&nm) = dent->name; 286 fname_len(&nm) = le16_to_cpu(dent->nlen); 287 kfree(pdent); 288 pdent = dent; 289 key_read(c, &dent->key, &key); 290 } 291 kfree(pdent); 292 } 293 294 void ubifs_dump_node(const struct ubifs_info *c, const void *node, int node_len) 295 { 296 int i, n, type, safe_len, max_node_len, min_node_len; 297 union ubifs_key key; 298 const struct ubifs_ch *ch = node; 299 char key_buf[DBG_KEY_BUF_LEN]; 300 301 /* If the magic is incorrect, just hexdump the first bytes */ 302 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 303 pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ); 304 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 305 (void *)node, UBIFS_CH_SZ, 1); 306 return; 307 } 308 309 /* Skip dumping unknown type node */ 310 type = ch->node_type; 311 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 312 pr_err("node type %d was not recognized\n", type); 313 return; 314 } 315 316 spin_lock(&dbg_lock); 317 dump_ch(node); 318 319 if (c->ranges[type].max_len == 0) { 320 max_node_len = min_node_len = c->ranges[type].len; 321 } else { 322 max_node_len = c->ranges[type].max_len; 323 min_node_len = c->ranges[type].min_len; 324 } 325 safe_len = le32_to_cpu(ch->len); 326 safe_len = safe_len > 0 ? safe_len : 0; 327 safe_len = min3(safe_len, max_node_len, node_len); 328 if (safe_len < min_node_len) { 329 pr_err("node len(%d) is too short for %s, left %d bytes:\n", 330 safe_len, dbg_ntype(type), 331 safe_len > UBIFS_CH_SZ ? 332 safe_len - (int)UBIFS_CH_SZ : 0); 333 if (safe_len > UBIFS_CH_SZ) 334 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1, 335 (void *)node + UBIFS_CH_SZ, 336 safe_len - UBIFS_CH_SZ, 0); 337 goto out_unlock; 338 } 339 if (safe_len != le32_to_cpu(ch->len)) 340 pr_err("\ttruncated node length %d\n", safe_len); 341 342 switch (type) { 343 case UBIFS_PAD_NODE: 344 { 345 const struct ubifs_pad_node *pad = node; 346 347 pr_err("\tpad_len %u\n", le32_to_cpu(pad->pad_len)); 348 break; 349 } 350 case UBIFS_SB_NODE: 351 { 352 const struct ubifs_sb_node *sup = node; 353 unsigned int sup_flags = le32_to_cpu(sup->flags); 354 355 pr_err("\tkey_hash %d (%s)\n", 356 (int)sup->key_hash, get_key_hash(sup->key_hash)); 357 pr_err("\tkey_fmt %d (%s)\n", 358 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 359 pr_err("\tflags %#x\n", sup_flags); 360 pr_err("\tbig_lpt %u\n", 361 !!(sup_flags & UBIFS_FLG_BIGLPT)); 362 pr_err("\tspace_fixup %u\n", 363 !!(sup_flags & UBIFS_FLG_SPACE_FIXUP)); 364 pr_err("\tmin_io_size %u\n", le32_to_cpu(sup->min_io_size)); 365 pr_err("\tleb_size %u\n", le32_to_cpu(sup->leb_size)); 366 pr_err("\tleb_cnt %u\n", le32_to_cpu(sup->leb_cnt)); 367 pr_err("\tmax_leb_cnt %u\n", le32_to_cpu(sup->max_leb_cnt)); 368 pr_err("\tmax_bud_bytes %llu\n", 369 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 370 pr_err("\tlog_lebs %u\n", le32_to_cpu(sup->log_lebs)); 371 pr_err("\tlpt_lebs %u\n", le32_to_cpu(sup->lpt_lebs)); 372 pr_err("\torph_lebs %u\n", le32_to_cpu(sup->orph_lebs)); 373 pr_err("\tjhead_cnt %u\n", le32_to_cpu(sup->jhead_cnt)); 374 pr_err("\tfanout %u\n", le32_to_cpu(sup->fanout)); 375 pr_err("\tlsave_cnt %u\n", le32_to_cpu(sup->lsave_cnt)); 376 pr_err("\tdefault_compr %u\n", 377 (int)le16_to_cpu(sup->default_compr)); 378 pr_err("\trp_size %llu\n", 379 (unsigned long long)le64_to_cpu(sup->rp_size)); 380 pr_err("\trp_uid %u\n", le32_to_cpu(sup->rp_uid)); 381 pr_err("\trp_gid %u\n", le32_to_cpu(sup->rp_gid)); 382 pr_err("\tfmt_version %u\n", le32_to_cpu(sup->fmt_version)); 383 pr_err("\ttime_gran %u\n", le32_to_cpu(sup->time_gran)); 384 pr_err("\tUUID %pUB\n", sup->uuid); 385 break; 386 } 387 case UBIFS_MST_NODE: 388 { 389 const struct ubifs_mst_node *mst = node; 390 391 pr_err("\thighest_inum %llu\n", 392 (unsigned long long)le64_to_cpu(mst->highest_inum)); 393 pr_err("\tcommit number %llu\n", 394 (unsigned long long)le64_to_cpu(mst->cmt_no)); 395 pr_err("\tflags %#x\n", le32_to_cpu(mst->flags)); 396 pr_err("\tlog_lnum %u\n", le32_to_cpu(mst->log_lnum)); 397 pr_err("\troot_lnum %u\n", le32_to_cpu(mst->root_lnum)); 398 pr_err("\troot_offs %u\n", le32_to_cpu(mst->root_offs)); 399 pr_err("\troot_len %u\n", le32_to_cpu(mst->root_len)); 400 pr_err("\tgc_lnum %u\n", le32_to_cpu(mst->gc_lnum)); 401 pr_err("\tihead_lnum %u\n", le32_to_cpu(mst->ihead_lnum)); 402 pr_err("\tihead_offs %u\n", le32_to_cpu(mst->ihead_offs)); 403 pr_err("\tindex_size %llu\n", 404 (unsigned long long)le64_to_cpu(mst->index_size)); 405 pr_err("\tlpt_lnum %u\n", le32_to_cpu(mst->lpt_lnum)); 406 pr_err("\tlpt_offs %u\n", le32_to_cpu(mst->lpt_offs)); 407 pr_err("\tnhead_lnum %u\n", le32_to_cpu(mst->nhead_lnum)); 408 pr_err("\tnhead_offs %u\n", le32_to_cpu(mst->nhead_offs)); 409 pr_err("\tltab_lnum %u\n", le32_to_cpu(mst->ltab_lnum)); 410 pr_err("\tltab_offs %u\n", le32_to_cpu(mst->ltab_offs)); 411 pr_err("\tlsave_lnum %u\n", le32_to_cpu(mst->lsave_lnum)); 412 pr_err("\tlsave_offs %u\n", le32_to_cpu(mst->lsave_offs)); 413 pr_err("\tlscan_lnum %u\n", le32_to_cpu(mst->lscan_lnum)); 414 pr_err("\tleb_cnt %u\n", le32_to_cpu(mst->leb_cnt)); 415 pr_err("\tempty_lebs %u\n", le32_to_cpu(mst->empty_lebs)); 416 pr_err("\tidx_lebs %u\n", le32_to_cpu(mst->idx_lebs)); 417 pr_err("\ttotal_free %llu\n", 418 (unsigned long long)le64_to_cpu(mst->total_free)); 419 pr_err("\ttotal_dirty %llu\n", 420 (unsigned long long)le64_to_cpu(mst->total_dirty)); 421 pr_err("\ttotal_used %llu\n", 422 (unsigned long long)le64_to_cpu(mst->total_used)); 423 pr_err("\ttotal_dead %llu\n", 424 (unsigned long long)le64_to_cpu(mst->total_dead)); 425 pr_err("\ttotal_dark %llu\n", 426 (unsigned long long)le64_to_cpu(mst->total_dark)); 427 break; 428 } 429 case UBIFS_REF_NODE: 430 { 431 const struct ubifs_ref_node *ref = node; 432 433 pr_err("\tlnum %u\n", le32_to_cpu(ref->lnum)); 434 pr_err("\toffs %u\n", le32_to_cpu(ref->offs)); 435 pr_err("\tjhead %u\n", le32_to_cpu(ref->jhead)); 436 break; 437 } 438 case UBIFS_INO_NODE: 439 { 440 const struct ubifs_ino_node *ino = node; 441 442 key_read(c, &ino->key, &key); 443 pr_err("\tkey %s\n", 444 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 445 pr_err("\tcreat_sqnum %llu\n", 446 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 447 pr_err("\tsize %llu\n", 448 (unsigned long long)le64_to_cpu(ino->size)); 449 pr_err("\tnlink %u\n", le32_to_cpu(ino->nlink)); 450 pr_err("\tatime %lld.%u\n", 451 (long long)le64_to_cpu(ino->atime_sec), 452 le32_to_cpu(ino->atime_nsec)); 453 pr_err("\tmtime %lld.%u\n", 454 (long long)le64_to_cpu(ino->mtime_sec), 455 le32_to_cpu(ino->mtime_nsec)); 456 pr_err("\tctime %lld.%u\n", 457 (long long)le64_to_cpu(ino->ctime_sec), 458 le32_to_cpu(ino->ctime_nsec)); 459 pr_err("\tuid %u\n", le32_to_cpu(ino->uid)); 460 pr_err("\tgid %u\n", le32_to_cpu(ino->gid)); 461 pr_err("\tmode %u\n", le32_to_cpu(ino->mode)); 462 pr_err("\tflags %#x\n", le32_to_cpu(ino->flags)); 463 pr_err("\txattr_cnt %u\n", le32_to_cpu(ino->xattr_cnt)); 464 pr_err("\txattr_size %u\n", le32_to_cpu(ino->xattr_size)); 465 pr_err("\txattr_names %u\n", le32_to_cpu(ino->xattr_names)); 466 pr_err("\tcompr_type %#x\n", 467 (int)le16_to_cpu(ino->compr_type)); 468 pr_err("\tdata len %u\n", le32_to_cpu(ino->data_len)); 469 break; 470 } 471 case UBIFS_DENT_NODE: 472 case UBIFS_XENT_NODE: 473 { 474 const struct ubifs_dent_node *dent = node; 475 int nlen = le16_to_cpu(dent->nlen); 476 477 key_read(c, &dent->key, &key); 478 pr_err("\tkey %s\n", 479 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 480 pr_err("\tinum %llu\n", 481 (unsigned long long)le64_to_cpu(dent->inum)); 482 pr_err("\ttype %d\n", (int)dent->type); 483 pr_err("\tnlen %d\n", nlen); 484 pr_err("\tname "); 485 486 if (nlen > UBIFS_MAX_NLEN || 487 nlen > safe_len - UBIFS_DENT_NODE_SZ) 488 pr_err("(bad name length, not printing, bad or corrupted node)"); 489 else { 490 for (i = 0; i < nlen && dent->name[i]; i++) 491 pr_cont("%c", isprint(dent->name[i]) ? 492 dent->name[i] : '?'); 493 } 494 pr_cont("\n"); 495 496 break; 497 } 498 case UBIFS_DATA_NODE: 499 { 500 const struct ubifs_data_node *dn = node; 501 502 key_read(c, &dn->key, &key); 503 pr_err("\tkey %s\n", 504 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 505 pr_err("\tsize %u\n", le32_to_cpu(dn->size)); 506 pr_err("\tcompr_typ %d\n", 507 (int)le16_to_cpu(dn->compr_type)); 508 pr_err("\tdata size %u\n", 509 le32_to_cpu(ch->len) - (unsigned int)UBIFS_DATA_NODE_SZ); 510 pr_err("\tdata (length = %d):\n", 511 safe_len - (int)UBIFS_DATA_NODE_SZ); 512 print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1, 513 (void *)&dn->data, 514 safe_len - (int)UBIFS_DATA_NODE_SZ, 0); 515 break; 516 } 517 case UBIFS_TRUN_NODE: 518 { 519 const struct ubifs_trun_node *trun = node; 520 521 pr_err("\tinum %u\n", le32_to_cpu(trun->inum)); 522 pr_err("\told_size %llu\n", 523 (unsigned long long)le64_to_cpu(trun->old_size)); 524 pr_err("\tnew_size %llu\n", 525 (unsigned long long)le64_to_cpu(trun->new_size)); 526 break; 527 } 528 case UBIFS_IDX_NODE: 529 { 530 const struct ubifs_idx_node *idx = node; 531 int max_child_cnt = (safe_len - UBIFS_IDX_NODE_SZ) / 532 (ubifs_idx_node_sz(c, 1) - 533 UBIFS_IDX_NODE_SZ); 534 535 n = min_t(int, le16_to_cpu(idx->child_cnt), max_child_cnt); 536 pr_err("\tchild_cnt %d\n", (int)le16_to_cpu(idx->child_cnt)); 537 pr_err("\tlevel %d\n", (int)le16_to_cpu(idx->level)); 538 pr_err("\tBranches:\n"); 539 540 for (i = 0; i < n && i < c->fanout; i++) { 541 const struct ubifs_branch *br; 542 543 br = ubifs_idx_branch(c, idx, i); 544 key_read(c, &br->key, &key); 545 pr_err("\t%d: LEB %d:%d len %d key %s\n", 546 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 547 le32_to_cpu(br->len), 548 dbg_snprintf_key(c, &key, key_buf, 549 DBG_KEY_BUF_LEN)); 550 } 551 break; 552 } 553 case UBIFS_CS_NODE: 554 break; 555 case UBIFS_ORPH_NODE: 556 { 557 const struct ubifs_orph_node *orph = node; 558 559 pr_err("\tcommit number %llu\n", 560 (unsigned long long) 561 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 562 pr_err("\tlast node flag %llu\n", 563 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 564 n = (safe_len - UBIFS_ORPH_NODE_SZ) >> 3; 565 pr_err("\t%d orphan inode numbers:\n", n); 566 for (i = 0; i < n; i++) 567 pr_err("\t ino %llu\n", 568 (unsigned long long)le64_to_cpu(orph->inos[i])); 569 break; 570 } 571 case UBIFS_AUTH_NODE: 572 { 573 break; 574 } 575 default: 576 pr_err("node type %d was not recognized\n", type); 577 } 578 579 out_unlock: 580 spin_unlock(&dbg_lock); 581 } 582 583 void ubifs_dump_budget_req(const struct ubifs_budget_req *req) 584 { 585 spin_lock(&dbg_lock); 586 pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n", 587 req->new_ino, req->dirtied_ino); 588 pr_err("\tnew_ino_d %d, dirtied_ino_d %d\n", 589 req->new_ino_d, req->dirtied_ino_d); 590 pr_err("\tnew_page %d, dirtied_page %d\n", 591 req->new_page, req->dirtied_page); 592 pr_err("\tnew_dent %d, mod_dent %d\n", 593 req->new_dent, req->mod_dent); 594 pr_err("\tidx_growth %d\n", req->idx_growth); 595 pr_err("\tdata_growth %d dd_growth %d\n", 596 req->data_growth, req->dd_growth); 597 spin_unlock(&dbg_lock); 598 } 599 600 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst) 601 { 602 spin_lock(&dbg_lock); 603 pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs %d\n", 604 current->pid, lst->empty_lebs, lst->idx_lebs); 605 pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n", 606 lst->taken_empty_lebs, lst->total_free, lst->total_dirty); 607 pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n", 608 lst->total_used, lst->total_dark, lst->total_dead); 609 spin_unlock(&dbg_lock); 610 } 611 612 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi) 613 { 614 int i; 615 struct rb_node *rb; 616 struct ubifs_bud *bud; 617 struct ubifs_gced_idx_leb *idx_gc; 618 long long available, outstanding, free; 619 620 spin_lock(&c->space_lock); 621 spin_lock(&dbg_lock); 622 pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n", 623 current->pid, bi->data_growth + bi->dd_growth, 624 bi->data_growth + bi->dd_growth + bi->idx_growth); 625 pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n", 626 bi->data_growth, bi->dd_growth, bi->idx_growth); 627 pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n", 628 bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx); 629 pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n", 630 bi->page_budget, bi->inode_budget, bi->dent_budget); 631 pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp); 632 pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 633 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 634 635 if (bi != &c->bi) 636 /* 637 * If we are dumping saved budgeting data, do not print 638 * additional information which is about the current state, not 639 * the old one which corresponded to the saved budgeting data. 640 */ 641 goto out_unlock; 642 643 pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n", 644 c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt); 645 pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n", 646 atomic_long_read(&c->dirty_pg_cnt), 647 atomic_long_read(&c->dirty_zn_cnt), 648 atomic_long_read(&c->clean_zn_cnt)); 649 pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum); 650 651 /* If we are in R/O mode, journal heads do not exist */ 652 if (c->jheads) 653 for (i = 0; i < c->jhead_cnt; i++) 654 pr_err("\tjhead %s\t LEB %d\n", 655 dbg_jhead(c->jheads[i].wbuf.jhead), 656 c->jheads[i].wbuf.lnum); 657 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 658 bud = rb_entry(rb, struct ubifs_bud, rb); 659 pr_err("\tbud LEB %d\n", bud->lnum); 660 } 661 list_for_each_entry(bud, &c->old_buds, list) 662 pr_err("\told bud LEB %d\n", bud->lnum); 663 list_for_each_entry(idx_gc, &c->idx_gc, list) 664 pr_err("\tGC'ed idx LEB %d unmap %d\n", 665 idx_gc->lnum, idx_gc->unmap); 666 pr_err("\tcommit state %d\n", c->cmt_state); 667 668 /* Print budgeting predictions */ 669 available = ubifs_calc_available(c, c->bi.min_idx_lebs); 670 outstanding = c->bi.data_growth + c->bi.dd_growth; 671 free = ubifs_get_free_space_nolock(c); 672 pr_err("Budgeting predictions:\n"); 673 pr_err("\tavailable: %lld, outstanding %lld, free %lld\n", 674 available, outstanding, free); 675 out_unlock: 676 spin_unlock(&dbg_lock); 677 spin_unlock(&c->space_lock); 678 } 679 680 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 681 { 682 int i, spc, dark = 0, dead = 0; 683 struct rb_node *rb; 684 struct ubifs_bud *bud; 685 686 spc = lp->free + lp->dirty; 687 if (spc < c->dead_wm) 688 dead = spc; 689 else 690 dark = ubifs_calc_dark(c, spc); 691 692 if (lp->flags & LPROPS_INDEX) 693 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (", 694 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 695 lp->flags); 696 else 697 pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (", 698 lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc, 699 dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 700 701 if (lp->flags & LPROPS_TAKEN) { 702 if (lp->flags & LPROPS_INDEX) 703 pr_cont("index, taken"); 704 else 705 pr_cont("taken"); 706 } else { 707 const char *s; 708 709 if (lp->flags & LPROPS_INDEX) { 710 switch (lp->flags & LPROPS_CAT_MASK) { 711 case LPROPS_DIRTY_IDX: 712 s = "dirty index"; 713 break; 714 case LPROPS_FRDI_IDX: 715 s = "freeable index"; 716 break; 717 default: 718 s = "index"; 719 } 720 } else { 721 switch (lp->flags & LPROPS_CAT_MASK) { 722 case LPROPS_UNCAT: 723 s = "not categorized"; 724 break; 725 case LPROPS_DIRTY: 726 s = "dirty"; 727 break; 728 case LPROPS_FREE: 729 s = "free"; 730 break; 731 case LPROPS_EMPTY: 732 s = "empty"; 733 break; 734 case LPROPS_FREEABLE: 735 s = "freeable"; 736 break; 737 default: 738 s = NULL; 739 break; 740 } 741 } 742 pr_cont("%s", s); 743 } 744 745 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 746 bud = rb_entry(rb, struct ubifs_bud, rb); 747 if (bud->lnum == lp->lnum) { 748 int head = 0; 749 for (i = 0; i < c->jhead_cnt; i++) { 750 /* 751 * Note, if we are in R/O mode or in the middle 752 * of mounting/re-mounting, the write-buffers do 753 * not exist. 754 */ 755 if (c->jheads && 756 lp->lnum == c->jheads[i].wbuf.lnum) { 757 pr_cont(", jhead %s", dbg_jhead(i)); 758 head = 1; 759 } 760 } 761 if (!head) 762 pr_cont(", bud of jhead %s", 763 dbg_jhead(bud->jhead)); 764 } 765 } 766 if (lp->lnum == c->gc_lnum) 767 pr_cont(", GC LEB"); 768 pr_cont(")\n"); 769 } 770 771 void ubifs_dump_lprops(struct ubifs_info *c) 772 { 773 int lnum, err; 774 struct ubifs_lprops lp; 775 struct ubifs_lp_stats lst; 776 777 pr_err("(pid %d) start dumping LEB properties\n", current->pid); 778 ubifs_get_lp_stats(c, &lst); 779 ubifs_dump_lstats(&lst); 780 781 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 782 err = ubifs_read_one_lp(c, lnum, &lp); 783 if (err) { 784 ubifs_err(c, "cannot read lprops for LEB %d", lnum); 785 continue; 786 } 787 788 ubifs_dump_lprop(c, &lp); 789 } 790 pr_err("(pid %d) finish dumping LEB properties\n", current->pid); 791 } 792 793 void ubifs_dump_lpt_info(struct ubifs_info *c) 794 { 795 int i; 796 797 spin_lock(&dbg_lock); 798 pr_err("(pid %d) dumping LPT information\n", current->pid); 799 pr_err("\tlpt_sz: %lld\n", c->lpt_sz); 800 pr_err("\tpnode_sz: %d\n", c->pnode_sz); 801 pr_err("\tnnode_sz: %d\n", c->nnode_sz); 802 pr_err("\tltab_sz: %d\n", c->ltab_sz); 803 pr_err("\tlsave_sz: %d\n", c->lsave_sz); 804 pr_err("\tbig_lpt: %u\n", c->big_lpt); 805 pr_err("\tlpt_hght: %d\n", c->lpt_hght); 806 pr_err("\tpnode_cnt: %d\n", c->pnode_cnt); 807 pr_err("\tnnode_cnt: %d\n", c->nnode_cnt); 808 pr_err("\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 809 pr_err("\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 810 pr_err("\tlsave_cnt: %d\n", c->lsave_cnt); 811 pr_err("\tspace_bits: %d\n", c->space_bits); 812 pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 813 pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 814 pr_err("\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 815 pr_err("\tpcnt_bits: %d\n", c->pcnt_bits); 816 pr_err("\tlnum_bits: %d\n", c->lnum_bits); 817 pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 818 pr_err("\tLPT head is at %d:%d\n", 819 c->nhead_lnum, c->nhead_offs); 820 pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 821 if (c->big_lpt) 822 pr_err("\tLPT lsave is at %d:%d\n", 823 c->lsave_lnum, c->lsave_offs); 824 for (i = 0; i < c->lpt_lebs; i++) 825 pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n", 826 i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty, 827 c->ltab[i].tgc, c->ltab[i].cmt); 828 spin_unlock(&dbg_lock); 829 } 830 831 void ubifs_dump_leb(const struct ubifs_info *c, int lnum) 832 { 833 struct ubifs_scan_leb *sleb; 834 struct ubifs_scan_node *snod; 835 void *buf; 836 837 pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum); 838 839 buf = __vmalloc(c->leb_size, GFP_NOFS); 840 if (!buf) { 841 ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum); 842 return; 843 } 844 845 sleb = ubifs_scan(c, lnum, 0, buf, 0); 846 if (IS_ERR(sleb)) { 847 ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb)); 848 goto out; 849 } 850 851 pr_err("LEB %d has %d nodes ending at %d\n", lnum, 852 sleb->nodes_cnt, sleb->endpt); 853 854 list_for_each_entry(snod, &sleb->nodes, list) { 855 cond_resched(); 856 pr_err("Dumping node at LEB %d:%d len %d\n", lnum, 857 snod->offs, snod->len); 858 ubifs_dump_node(c, snod->node, c->leb_size - snod->offs); 859 } 860 861 pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum); 862 ubifs_scan_destroy(sleb); 863 864 out: 865 vfree(buf); 866 return; 867 } 868 869 void ubifs_dump_znode(const struct ubifs_info *c, 870 const struct ubifs_znode *znode) 871 { 872 int n; 873 const struct ubifs_zbranch *zbr; 874 char key_buf[DBG_KEY_BUF_LEN]; 875 876 spin_lock(&dbg_lock); 877 if (znode->parent) 878 zbr = &znode->parent->zbranch[znode->iip]; 879 else 880 zbr = &c->zroot; 881 882 pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n", 883 znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip, 884 znode->level, znode->child_cnt, znode->flags); 885 886 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 887 spin_unlock(&dbg_lock); 888 return; 889 } 890 891 pr_err("zbranches:\n"); 892 for (n = 0; n < znode->child_cnt; n++) { 893 zbr = &znode->zbranch[n]; 894 if (znode->level > 0) 895 pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n", 896 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 897 dbg_snprintf_key(c, &zbr->key, key_buf, 898 DBG_KEY_BUF_LEN)); 899 else 900 pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n", 901 n, zbr->znode, zbr->lnum, zbr->offs, zbr->len, 902 dbg_snprintf_key(c, &zbr->key, key_buf, 903 DBG_KEY_BUF_LEN)); 904 } 905 spin_unlock(&dbg_lock); 906 } 907 908 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 909 { 910 int i; 911 912 pr_err("(pid %d) start dumping heap cat %d (%d elements)\n", 913 current->pid, cat, heap->cnt); 914 for (i = 0; i < heap->cnt; i++) { 915 struct ubifs_lprops *lprops = heap->arr[i]; 916 917 pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n", 918 i, lprops->lnum, lprops->hpos, lprops->free, 919 lprops->dirty, lprops->flags); 920 } 921 pr_err("(pid %d) finish dumping heap\n", current->pid); 922 } 923 924 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 925 struct ubifs_nnode *parent, int iip) 926 { 927 int i; 928 929 pr_err("(pid %d) dumping pnode:\n", current->pid); 930 pr_err("\taddress %zx parent %zx cnext %zx\n", 931 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 932 pr_err("\tflags %lu iip %d level %d num %d\n", 933 pnode->flags, iip, pnode->level, pnode->num); 934 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 935 struct ubifs_lprops *lp = &pnode->lprops[i]; 936 937 pr_err("\t%d: free %d dirty %d flags %d lnum %d\n", 938 i, lp->free, lp->dirty, lp->flags, lp->lnum); 939 } 940 } 941 942 void ubifs_dump_tnc(struct ubifs_info *c) 943 { 944 struct ubifs_znode *znode; 945 int level; 946 947 pr_err("\n"); 948 pr_err("(pid %d) start dumping TNC tree\n", current->pid); 949 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL); 950 level = znode->level; 951 pr_err("== Level %d ==\n", level); 952 while (znode) { 953 if (level != znode->level) { 954 level = znode->level; 955 pr_err("== Level %d ==\n", level); 956 } 957 ubifs_dump_znode(c, znode); 958 znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode); 959 } 960 pr_err("(pid %d) finish dumping TNC tree\n", current->pid); 961 } 962 963 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 964 void *priv) 965 { 966 ubifs_dump_znode(c, znode); 967 return 0; 968 } 969 970 /** 971 * ubifs_dump_index - dump the on-flash index. 972 * @c: UBIFS file-system description object 973 * 974 * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()' 975 * which dumps only in-memory znodes and does not read znodes which from flash. 976 */ 977 void ubifs_dump_index(struct ubifs_info *c) 978 { 979 dbg_walk_index(c, NULL, dump_znode, NULL); 980 } 981 982 /** 983 * dbg_save_space_info - save information about flash space. 984 * @c: UBIFS file-system description object 985 * 986 * This function saves information about UBIFS free space, dirty space, etc, in 987 * order to check it later. 988 */ 989 void dbg_save_space_info(struct ubifs_info *c) 990 { 991 struct ubifs_debug_info *d = c->dbg; 992 int freeable_cnt; 993 994 spin_lock(&c->space_lock); 995 memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats)); 996 memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info)); 997 d->saved_idx_gc_cnt = c->idx_gc_cnt; 998 999 /* 1000 * We use a dirty hack here and zero out @c->freeable_cnt, because it 1001 * affects the free space calculations, and UBIFS might not know about 1002 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks 1003 * only when we read their lprops, and we do this only lazily, upon the 1004 * need. So at any given point of time @c->freeable_cnt might be not 1005 * exactly accurate. 1006 * 1007 * Just one example about the issue we hit when we did not zero 1008 * @c->freeable_cnt. 1009 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the 1010 * amount of free space in @d->saved_free 1011 * 2. We re-mount R/W, which makes UBIFS to read the "lsave" 1012 * information from flash, where we cache LEBs from various 1013 * categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()' 1014 * -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()' 1015 * -> 'ubifs_get_pnode()' -> 'update_cats()' 1016 * -> 'ubifs_add_to_cat()'). 1017 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt 1018 * becomes %1. 1019 * 4. We calculate the amount of free space when the re-mount is 1020 * finished in 'dbg_check_space_info()' and it does not match 1021 * @d->saved_free. 1022 */ 1023 freeable_cnt = c->freeable_cnt; 1024 c->freeable_cnt = 0; 1025 d->saved_free = ubifs_get_free_space_nolock(c); 1026 c->freeable_cnt = freeable_cnt; 1027 spin_unlock(&c->space_lock); 1028 } 1029 1030 /** 1031 * dbg_check_space_info - check flash space information. 1032 * @c: UBIFS file-system description object 1033 * 1034 * This function compares current flash space information with the information 1035 * which was saved when the 'dbg_save_space_info()' function was called. 1036 * Returns zero if the information has not changed, and %-EINVAL if it has 1037 * changed. 1038 */ 1039 int dbg_check_space_info(struct ubifs_info *c) 1040 { 1041 struct ubifs_debug_info *d = c->dbg; 1042 struct ubifs_lp_stats lst; 1043 long long free; 1044 int freeable_cnt; 1045 1046 spin_lock(&c->space_lock); 1047 freeable_cnt = c->freeable_cnt; 1048 c->freeable_cnt = 0; 1049 free = ubifs_get_free_space_nolock(c); 1050 c->freeable_cnt = freeable_cnt; 1051 spin_unlock(&c->space_lock); 1052 1053 if (free != d->saved_free) { 1054 ubifs_err(c, "free space changed from %lld to %lld", 1055 d->saved_free, free); 1056 goto out; 1057 } 1058 1059 return 0; 1060 1061 out: 1062 ubifs_msg(c, "saved lprops statistics dump"); 1063 ubifs_dump_lstats(&d->saved_lst); 1064 ubifs_msg(c, "saved budgeting info dump"); 1065 ubifs_dump_budg(c, &d->saved_bi); 1066 ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt); 1067 ubifs_msg(c, "current lprops statistics dump"); 1068 ubifs_get_lp_stats(c, &lst); 1069 ubifs_dump_lstats(&lst); 1070 ubifs_msg(c, "current budgeting info dump"); 1071 ubifs_dump_budg(c, &c->bi); 1072 dump_stack(); 1073 return -EINVAL; 1074 } 1075 1076 /** 1077 * dbg_check_synced_i_size - check synchronized inode size. 1078 * @c: UBIFS file-system description object 1079 * @inode: inode to check 1080 * 1081 * If inode is clean, synchronized inode size has to be equivalent to current 1082 * inode size. This function has to be called only for locked inodes (@i_mutex 1083 * has to be locked). Returns %0 if synchronized inode size if correct, and 1084 * %-EINVAL if not. 1085 */ 1086 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode) 1087 { 1088 int err = 0; 1089 struct ubifs_inode *ui = ubifs_inode(inode); 1090 1091 if (!dbg_is_chk_gen(c)) 1092 return 0; 1093 if (!S_ISREG(inode->i_mode)) 1094 return 0; 1095 1096 mutex_lock(&ui->ui_mutex); 1097 spin_lock(&ui->ui_lock); 1098 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1099 ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean", 1100 ui->ui_size, ui->synced_i_size); 1101 ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1102 inode->i_mode, i_size_read(inode)); 1103 dump_stack(); 1104 err = -EINVAL; 1105 } 1106 spin_unlock(&ui->ui_lock); 1107 mutex_unlock(&ui->ui_mutex); 1108 return err; 1109 } 1110 1111 /* 1112 * dbg_check_dir - check directory inode size and link count. 1113 * @c: UBIFS file-system description object 1114 * @dir: the directory to calculate size for 1115 * @size: the result is returned here 1116 * 1117 * This function makes sure that directory size and link count are correct. 1118 * Returns zero in case of success and a negative error code in case of 1119 * failure. 1120 * 1121 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1122 * calling this function. 1123 */ 1124 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir) 1125 { 1126 unsigned int nlink = 2; 1127 union ubifs_key key; 1128 struct ubifs_dent_node *dent, *pdent = NULL; 1129 struct fscrypt_name nm = {0}; 1130 loff_t size = UBIFS_INO_NODE_SZ; 1131 1132 if (!dbg_is_chk_gen(c)) 1133 return 0; 1134 1135 if (!S_ISDIR(dir->i_mode)) 1136 return 0; 1137 1138 lowest_dent_key(c, &key, dir->i_ino); 1139 while (1) { 1140 int err; 1141 1142 dent = ubifs_tnc_next_ent(c, &key, &nm); 1143 if (IS_ERR(dent)) { 1144 err = PTR_ERR(dent); 1145 if (err == -ENOENT) 1146 break; 1147 kfree(pdent); 1148 return err; 1149 } 1150 1151 fname_name(&nm) = dent->name; 1152 fname_len(&nm) = le16_to_cpu(dent->nlen); 1153 size += CALC_DENT_SIZE(fname_len(&nm)); 1154 if (dent->type == UBIFS_ITYPE_DIR) 1155 nlink += 1; 1156 kfree(pdent); 1157 pdent = dent; 1158 key_read(c, &dent->key, &key); 1159 } 1160 kfree(pdent); 1161 1162 if (i_size_read(dir) != size) { 1163 ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu", 1164 dir->i_ino, (unsigned long long)i_size_read(dir), 1165 (unsigned long long)size); 1166 ubifs_dump_inode(c, dir); 1167 dump_stack(); 1168 return -EINVAL; 1169 } 1170 if (dir->i_nlink != nlink) { 1171 ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u", 1172 dir->i_ino, dir->i_nlink, nlink); 1173 ubifs_dump_inode(c, dir); 1174 dump_stack(); 1175 return -EINVAL; 1176 } 1177 1178 return 0; 1179 } 1180 1181 /** 1182 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1183 * @c: UBIFS file-system description object 1184 * @zbr1: first zbranch 1185 * @zbr2: following zbranch 1186 * 1187 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1188 * names of the direntries/xentries which are referred by the keys. This 1189 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1190 * sure the name of direntry/xentry referred by @zbr1 is less than 1191 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1192 * and a negative error code in case of failure. 1193 */ 1194 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1195 struct ubifs_zbranch *zbr2) 1196 { 1197 int err, nlen1, nlen2, cmp; 1198 struct ubifs_dent_node *dent1, *dent2; 1199 union ubifs_key key; 1200 char key_buf[DBG_KEY_BUF_LEN]; 1201 1202 ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key)); 1203 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1204 if (!dent1) 1205 return -ENOMEM; 1206 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1207 if (!dent2) { 1208 err = -ENOMEM; 1209 goto out_free; 1210 } 1211 1212 err = ubifs_tnc_read_node(c, zbr1, dent1); 1213 if (err) 1214 goto out_free; 1215 err = ubifs_validate_entry(c, dent1); 1216 if (err) 1217 goto out_free; 1218 1219 err = ubifs_tnc_read_node(c, zbr2, dent2); 1220 if (err) 1221 goto out_free; 1222 err = ubifs_validate_entry(c, dent2); 1223 if (err) 1224 goto out_free; 1225 1226 /* Make sure node keys are the same as in zbranch */ 1227 err = 1; 1228 key_read(c, &dent1->key, &key); 1229 if (keys_cmp(c, &zbr1->key, &key)) { 1230 ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum, 1231 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1232 DBG_KEY_BUF_LEN)); 1233 ubifs_err(c, "but it should have key %s according to tnc", 1234 dbg_snprintf_key(c, &zbr1->key, key_buf, 1235 DBG_KEY_BUF_LEN)); 1236 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ); 1237 goto out_free; 1238 } 1239 1240 key_read(c, &dent2->key, &key); 1241 if (keys_cmp(c, &zbr2->key, &key)) { 1242 ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum, 1243 zbr1->offs, dbg_snprintf_key(c, &key, key_buf, 1244 DBG_KEY_BUF_LEN)); 1245 ubifs_err(c, "but it should have key %s according to tnc", 1246 dbg_snprintf_key(c, &zbr2->key, key_buf, 1247 DBG_KEY_BUF_LEN)); 1248 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ); 1249 goto out_free; 1250 } 1251 1252 nlen1 = le16_to_cpu(dent1->nlen); 1253 nlen2 = le16_to_cpu(dent2->nlen); 1254 1255 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1256 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1257 err = 0; 1258 goto out_free; 1259 } 1260 if (cmp == 0 && nlen1 == nlen2) 1261 ubifs_err(c, "2 xent/dent nodes with the same name"); 1262 else 1263 ubifs_err(c, "bad order of colliding key %s", 1264 dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN)); 1265 1266 ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1267 ubifs_dump_node(c, dent1, UBIFS_MAX_DENT_NODE_SZ); 1268 ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1269 ubifs_dump_node(c, dent2, UBIFS_MAX_DENT_NODE_SZ); 1270 1271 out_free: 1272 kfree(dent2); 1273 kfree(dent1); 1274 return err; 1275 } 1276 1277 /** 1278 * dbg_check_znode - check if znode is all right. 1279 * @c: UBIFS file-system description object 1280 * @zbr: zbranch which points to this znode 1281 * 1282 * This function makes sure that znode referred to by @zbr is all right. 1283 * Returns zero if it is, and %-EINVAL if it is not. 1284 */ 1285 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1286 { 1287 struct ubifs_znode *znode = zbr->znode; 1288 struct ubifs_znode *zp = znode->parent; 1289 int n, err, cmp; 1290 1291 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1292 err = 1; 1293 goto out; 1294 } 1295 if (znode->level < 0) { 1296 err = 2; 1297 goto out; 1298 } 1299 if (znode->iip < 0 || znode->iip >= c->fanout) { 1300 err = 3; 1301 goto out; 1302 } 1303 1304 if (zbr->len == 0) 1305 /* Only dirty zbranch may have no on-flash nodes */ 1306 if (!ubifs_zn_dirty(znode)) { 1307 err = 4; 1308 goto out; 1309 } 1310 1311 if (ubifs_zn_dirty(znode)) { 1312 /* 1313 * If znode is dirty, its parent has to be dirty as well. The 1314 * order of the operation is important, so we have to have 1315 * memory barriers. 1316 */ 1317 smp_mb(); 1318 if (zp && !ubifs_zn_dirty(zp)) { 1319 /* 1320 * The dirty flag is atomic and is cleared outside the 1321 * TNC mutex, so znode's dirty flag may now have 1322 * been cleared. The child is always cleared before the 1323 * parent, so we just need to check again. 1324 */ 1325 smp_mb(); 1326 if (ubifs_zn_dirty(znode)) { 1327 err = 5; 1328 goto out; 1329 } 1330 } 1331 } 1332 1333 if (zp) { 1334 const union ubifs_key *min, *max; 1335 1336 if (znode->level != zp->level - 1) { 1337 err = 6; 1338 goto out; 1339 } 1340 1341 /* Make sure the 'parent' pointer in our znode is correct */ 1342 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1343 if (!err) { 1344 /* This zbranch does not exist in the parent */ 1345 err = 7; 1346 goto out; 1347 } 1348 1349 if (znode->iip >= zp->child_cnt) { 1350 err = 8; 1351 goto out; 1352 } 1353 1354 if (znode->iip != n) { 1355 /* This may happen only in case of collisions */ 1356 if (keys_cmp(c, &zp->zbranch[n].key, 1357 &zp->zbranch[znode->iip].key)) { 1358 err = 9; 1359 goto out; 1360 } 1361 n = znode->iip; 1362 } 1363 1364 /* 1365 * Make sure that the first key in our znode is greater than or 1366 * equal to the key in the pointing zbranch. 1367 */ 1368 min = &zbr->key; 1369 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1370 if (cmp == 1) { 1371 err = 10; 1372 goto out; 1373 } 1374 1375 if (n + 1 < zp->child_cnt) { 1376 max = &zp->zbranch[n + 1].key; 1377 1378 /* 1379 * Make sure the last key in our znode is less or 1380 * equivalent than the key in the zbranch which goes 1381 * after our pointing zbranch. 1382 */ 1383 cmp = keys_cmp(c, max, 1384 &znode->zbranch[znode->child_cnt - 1].key); 1385 if (cmp == -1) { 1386 err = 11; 1387 goto out; 1388 } 1389 } 1390 } else { 1391 /* This may only be root znode */ 1392 if (zbr != &c->zroot) { 1393 err = 12; 1394 goto out; 1395 } 1396 } 1397 1398 /* 1399 * Make sure that next key is greater or equivalent then the previous 1400 * one. 1401 */ 1402 for (n = 1; n < znode->child_cnt; n++) { 1403 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1404 &znode->zbranch[n].key); 1405 if (cmp > 0) { 1406 err = 13; 1407 goto out; 1408 } 1409 if (cmp == 0) { 1410 /* This can only be keys with colliding hash */ 1411 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1412 err = 14; 1413 goto out; 1414 } 1415 1416 if (znode->level != 0 || c->replaying) 1417 continue; 1418 1419 /* 1420 * Colliding keys should follow binary order of 1421 * corresponding xentry/dentry names. 1422 */ 1423 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1424 &znode->zbranch[n]); 1425 if (err < 0) 1426 return err; 1427 if (err) { 1428 err = 15; 1429 goto out; 1430 } 1431 } 1432 } 1433 1434 for (n = 0; n < znode->child_cnt; n++) { 1435 if (!znode->zbranch[n].znode && 1436 (znode->zbranch[n].lnum == 0 || 1437 znode->zbranch[n].len == 0)) { 1438 err = 16; 1439 goto out; 1440 } 1441 1442 if (znode->zbranch[n].lnum != 0 && 1443 znode->zbranch[n].len == 0) { 1444 err = 17; 1445 goto out; 1446 } 1447 1448 if (znode->zbranch[n].lnum == 0 && 1449 znode->zbranch[n].len != 0) { 1450 err = 18; 1451 goto out; 1452 } 1453 1454 if (znode->zbranch[n].lnum == 0 && 1455 znode->zbranch[n].offs != 0) { 1456 err = 19; 1457 goto out; 1458 } 1459 1460 if (znode->level != 0 && znode->zbranch[n].znode) 1461 if (znode->zbranch[n].znode->parent != znode) { 1462 err = 20; 1463 goto out; 1464 } 1465 } 1466 1467 return 0; 1468 1469 out: 1470 ubifs_err(c, "failed, error %d", err); 1471 ubifs_msg(c, "dump of the znode"); 1472 ubifs_dump_znode(c, znode); 1473 if (zp) { 1474 ubifs_msg(c, "dump of the parent znode"); 1475 ubifs_dump_znode(c, zp); 1476 } 1477 dump_stack(); 1478 return -EINVAL; 1479 } 1480 1481 /** 1482 * dbg_check_tnc - check TNC tree. 1483 * @c: UBIFS file-system description object 1484 * @extra: do extra checks that are possible at start commit 1485 * 1486 * This function traverses whole TNC tree and checks every znode. Returns zero 1487 * if everything is all right and %-EINVAL if something is wrong with TNC. 1488 */ 1489 int dbg_check_tnc(struct ubifs_info *c, int extra) 1490 { 1491 struct ubifs_znode *znode; 1492 long clean_cnt = 0, dirty_cnt = 0; 1493 int err, last; 1494 1495 if (!dbg_is_chk_index(c)) 1496 return 0; 1497 1498 ubifs_assert(c, mutex_is_locked(&c->tnc_mutex)); 1499 if (!c->zroot.znode) 1500 return 0; 1501 1502 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1503 while (1) { 1504 struct ubifs_znode *prev; 1505 struct ubifs_zbranch *zbr; 1506 1507 if (!znode->parent) 1508 zbr = &c->zroot; 1509 else 1510 zbr = &znode->parent->zbranch[znode->iip]; 1511 1512 err = dbg_check_znode(c, zbr); 1513 if (err) 1514 return err; 1515 1516 if (extra) { 1517 if (ubifs_zn_dirty(znode)) 1518 dirty_cnt += 1; 1519 else 1520 clean_cnt += 1; 1521 } 1522 1523 prev = znode; 1524 znode = ubifs_tnc_postorder_next(c, znode); 1525 if (!znode) 1526 break; 1527 1528 /* 1529 * If the last key of this znode is equivalent to the first key 1530 * of the next znode (collision), then check order of the keys. 1531 */ 1532 last = prev->child_cnt - 1; 1533 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1534 !keys_cmp(c, &prev->zbranch[last].key, 1535 &znode->zbranch[0].key)) { 1536 err = dbg_check_key_order(c, &prev->zbranch[last], 1537 &znode->zbranch[0]); 1538 if (err < 0) 1539 return err; 1540 if (err) { 1541 ubifs_msg(c, "first znode"); 1542 ubifs_dump_znode(c, prev); 1543 ubifs_msg(c, "second znode"); 1544 ubifs_dump_znode(c, znode); 1545 return -EINVAL; 1546 } 1547 } 1548 } 1549 1550 if (extra) { 1551 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1552 ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld", 1553 atomic_long_read(&c->clean_zn_cnt), 1554 clean_cnt); 1555 return -EINVAL; 1556 } 1557 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1558 ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld", 1559 atomic_long_read(&c->dirty_zn_cnt), 1560 dirty_cnt); 1561 return -EINVAL; 1562 } 1563 } 1564 1565 return 0; 1566 } 1567 1568 /** 1569 * dbg_walk_index - walk the on-flash index. 1570 * @c: UBIFS file-system description object 1571 * @leaf_cb: called for each leaf node 1572 * @znode_cb: called for each indexing node 1573 * @priv: private data which is passed to callbacks 1574 * 1575 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1576 * node and @znode_cb for each indexing node. Returns zero in case of success 1577 * and a negative error code in case of failure. 1578 * 1579 * It would be better if this function removed every znode it pulled to into 1580 * the TNC, so that the behavior more closely matched the non-debugging 1581 * behavior. 1582 */ 1583 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1584 dbg_znode_callback znode_cb, void *priv) 1585 { 1586 int err; 1587 struct ubifs_zbranch *zbr; 1588 struct ubifs_znode *znode, *child; 1589 1590 mutex_lock(&c->tnc_mutex); 1591 /* If the root indexing node is not in TNC - pull it */ 1592 if (!c->zroot.znode) { 1593 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1594 if (IS_ERR(c->zroot.znode)) { 1595 err = PTR_ERR(c->zroot.znode); 1596 c->zroot.znode = NULL; 1597 goto out_unlock; 1598 } 1599 } 1600 1601 /* 1602 * We are going to traverse the indexing tree in the postorder manner. 1603 * Go down and find the leftmost indexing node where we are going to 1604 * start from. 1605 */ 1606 znode = c->zroot.znode; 1607 while (znode->level > 0) { 1608 zbr = &znode->zbranch[0]; 1609 child = zbr->znode; 1610 if (!child) { 1611 child = ubifs_load_znode(c, zbr, znode, 0); 1612 if (IS_ERR(child)) { 1613 err = PTR_ERR(child); 1614 goto out_unlock; 1615 } 1616 } 1617 1618 znode = child; 1619 } 1620 1621 /* Iterate over all indexing nodes */ 1622 while (1) { 1623 int idx; 1624 1625 cond_resched(); 1626 1627 if (znode_cb) { 1628 err = znode_cb(c, znode, priv); 1629 if (err) { 1630 ubifs_err(c, "znode checking function returned error %d", 1631 err); 1632 ubifs_dump_znode(c, znode); 1633 goto out_dump; 1634 } 1635 } 1636 if (leaf_cb && znode->level == 0) { 1637 for (idx = 0; idx < znode->child_cnt; idx++) { 1638 zbr = &znode->zbranch[idx]; 1639 err = leaf_cb(c, zbr, priv); 1640 if (err) { 1641 ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d", 1642 err, zbr->lnum, zbr->offs); 1643 goto out_dump; 1644 } 1645 } 1646 } 1647 1648 if (!znode->parent) 1649 break; 1650 1651 idx = znode->iip + 1; 1652 znode = znode->parent; 1653 if (idx < znode->child_cnt) { 1654 /* Switch to the next index in the parent */ 1655 zbr = &znode->zbranch[idx]; 1656 child = zbr->znode; 1657 if (!child) { 1658 child = ubifs_load_znode(c, zbr, znode, idx); 1659 if (IS_ERR(child)) { 1660 err = PTR_ERR(child); 1661 goto out_unlock; 1662 } 1663 zbr->znode = child; 1664 } 1665 znode = child; 1666 } else 1667 /* 1668 * This is the last child, switch to the parent and 1669 * continue. 1670 */ 1671 continue; 1672 1673 /* Go to the lowest leftmost znode in the new sub-tree */ 1674 while (znode->level > 0) { 1675 zbr = &znode->zbranch[0]; 1676 child = zbr->znode; 1677 if (!child) { 1678 child = ubifs_load_znode(c, zbr, znode, 0); 1679 if (IS_ERR(child)) { 1680 err = PTR_ERR(child); 1681 goto out_unlock; 1682 } 1683 zbr->znode = child; 1684 } 1685 znode = child; 1686 } 1687 } 1688 1689 mutex_unlock(&c->tnc_mutex); 1690 return 0; 1691 1692 out_dump: 1693 if (znode->parent) 1694 zbr = &znode->parent->zbranch[znode->iip]; 1695 else 1696 zbr = &c->zroot; 1697 ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1698 ubifs_dump_znode(c, znode); 1699 out_unlock: 1700 mutex_unlock(&c->tnc_mutex); 1701 return err; 1702 } 1703 1704 /** 1705 * add_size - add znode size to partially calculated index size. 1706 * @c: UBIFS file-system description object 1707 * @znode: znode to add size for 1708 * @priv: partially calculated index size 1709 * 1710 * This is a helper function for 'dbg_check_idx_size()' which is called for 1711 * every indexing node and adds its size to the 'long long' variable pointed to 1712 * by @priv. 1713 */ 1714 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1715 { 1716 long long *idx_size = priv; 1717 int add; 1718 1719 add = ubifs_idx_node_sz(c, znode->child_cnt); 1720 add = ALIGN(add, 8); 1721 *idx_size += add; 1722 return 0; 1723 } 1724 1725 /** 1726 * dbg_check_idx_size - check index size. 1727 * @c: UBIFS file-system description object 1728 * @idx_size: size to check 1729 * 1730 * This function walks the UBIFS index, calculates its size and checks that the 1731 * size is equivalent to @idx_size. Returns zero in case of success and a 1732 * negative error code in case of failure. 1733 */ 1734 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1735 { 1736 int err; 1737 long long calc = 0; 1738 1739 if (!dbg_is_chk_index(c)) 1740 return 0; 1741 1742 err = dbg_walk_index(c, NULL, add_size, &calc); 1743 if (err) { 1744 ubifs_err(c, "error %d while walking the index", err); 1745 goto out_err; 1746 } 1747 1748 if (calc != idx_size) { 1749 ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld", 1750 calc, idx_size); 1751 dump_stack(); 1752 err = -EINVAL; 1753 goto out_err; 1754 } 1755 1756 return 0; 1757 1758 out_err: 1759 ubifs_destroy_tnc_tree(c); 1760 return err; 1761 } 1762 1763 /** 1764 * struct fsck_inode - information about an inode used when checking the file-system. 1765 * @rb: link in the RB-tree of inodes 1766 * @inum: inode number 1767 * @mode: inode type, permissions, etc 1768 * @nlink: inode link count 1769 * @xattr_cnt: count of extended attributes 1770 * @references: how many directory/xattr entries refer this inode (calculated 1771 * while walking the index) 1772 * @calc_cnt: for directory inode count of child directories 1773 * @size: inode size (read from on-flash inode) 1774 * @xattr_sz: summary size of all extended attributes (read from on-flash 1775 * inode) 1776 * @calc_sz: for directories calculated directory size 1777 * @calc_xcnt: count of extended attributes 1778 * @calc_xsz: calculated summary size of all extended attributes 1779 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1780 * inode (read from on-flash inode) 1781 * @calc_xnms: calculated sum of lengths of all extended attribute names 1782 */ 1783 struct fsck_inode { 1784 struct rb_node rb; 1785 ino_t inum; 1786 umode_t mode; 1787 unsigned int nlink; 1788 unsigned int xattr_cnt; 1789 int references; 1790 int calc_cnt; 1791 long long size; 1792 unsigned int xattr_sz; 1793 long long calc_sz; 1794 long long calc_xcnt; 1795 long long calc_xsz; 1796 unsigned int xattr_nms; 1797 long long calc_xnms; 1798 }; 1799 1800 /** 1801 * struct fsck_data - private FS checking information. 1802 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1803 */ 1804 struct fsck_data { 1805 struct rb_root inodes; 1806 }; 1807 1808 /** 1809 * add_inode - add inode information to RB-tree of inodes. 1810 * @c: UBIFS file-system description object 1811 * @fsckd: FS checking information 1812 * @ino: raw UBIFS inode to add 1813 * 1814 * This is a helper function for 'check_leaf()' which adds information about 1815 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1816 * case of success and a negative error code in case of failure. 1817 */ 1818 static struct fsck_inode *add_inode(struct ubifs_info *c, 1819 struct fsck_data *fsckd, 1820 struct ubifs_ino_node *ino) 1821 { 1822 struct rb_node **p, *parent = NULL; 1823 struct fsck_inode *fscki; 1824 ino_t inum = key_inum_flash(c, &ino->key); 1825 struct inode *inode; 1826 struct ubifs_inode *ui; 1827 1828 p = &fsckd->inodes.rb_node; 1829 while (*p) { 1830 parent = *p; 1831 fscki = rb_entry(parent, struct fsck_inode, rb); 1832 if (inum < fscki->inum) 1833 p = &(*p)->rb_left; 1834 else if (inum > fscki->inum) 1835 p = &(*p)->rb_right; 1836 else 1837 return fscki; 1838 } 1839 1840 if (inum > c->highest_inum) { 1841 ubifs_err(c, "too high inode number, max. is %lu", 1842 (unsigned long)c->highest_inum); 1843 return ERR_PTR(-EINVAL); 1844 } 1845 1846 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1847 if (!fscki) 1848 return ERR_PTR(-ENOMEM); 1849 1850 inode = ilookup(c->vfs_sb, inum); 1851 1852 fscki->inum = inum; 1853 /* 1854 * If the inode is present in the VFS inode cache, use it instead of 1855 * the on-flash inode which might be out-of-date. E.g., the size might 1856 * be out-of-date. If we do not do this, the following may happen, for 1857 * example: 1858 * 1. A power cut happens 1859 * 2. We mount the file-system R/O, the replay process fixes up the 1860 * inode size in the VFS cache, but on on-flash. 1861 * 3. 'check_leaf()' fails because it hits a data node beyond inode 1862 * size. 1863 */ 1864 if (!inode) { 1865 fscki->nlink = le32_to_cpu(ino->nlink); 1866 fscki->size = le64_to_cpu(ino->size); 1867 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1868 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1869 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1870 fscki->mode = le32_to_cpu(ino->mode); 1871 } else { 1872 ui = ubifs_inode(inode); 1873 fscki->nlink = inode->i_nlink; 1874 fscki->size = inode->i_size; 1875 fscki->xattr_cnt = ui->xattr_cnt; 1876 fscki->xattr_sz = ui->xattr_size; 1877 fscki->xattr_nms = ui->xattr_names; 1878 fscki->mode = inode->i_mode; 1879 iput(inode); 1880 } 1881 1882 if (S_ISDIR(fscki->mode)) { 1883 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1884 fscki->calc_cnt = 2; 1885 } 1886 1887 rb_link_node(&fscki->rb, parent, p); 1888 rb_insert_color(&fscki->rb, &fsckd->inodes); 1889 1890 return fscki; 1891 } 1892 1893 /** 1894 * search_inode - search inode in the RB-tree of inodes. 1895 * @fsckd: FS checking information 1896 * @inum: inode number to search 1897 * 1898 * This is a helper function for 'check_leaf()' which searches inode @inum in 1899 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1900 * the inode was not found. 1901 */ 1902 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1903 { 1904 struct rb_node *p; 1905 struct fsck_inode *fscki; 1906 1907 p = fsckd->inodes.rb_node; 1908 while (p) { 1909 fscki = rb_entry(p, struct fsck_inode, rb); 1910 if (inum < fscki->inum) 1911 p = p->rb_left; 1912 else if (inum > fscki->inum) 1913 p = p->rb_right; 1914 else 1915 return fscki; 1916 } 1917 return NULL; 1918 } 1919 1920 /** 1921 * read_add_inode - read inode node and add it to RB-tree of inodes. 1922 * @c: UBIFS file-system description object 1923 * @fsckd: FS checking information 1924 * @inum: inode number to read 1925 * 1926 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1927 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1928 * information pointer in case of success and a negative error code in case of 1929 * failure. 1930 */ 1931 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1932 struct fsck_data *fsckd, ino_t inum) 1933 { 1934 int n, err; 1935 union ubifs_key key; 1936 struct ubifs_znode *znode; 1937 struct ubifs_zbranch *zbr; 1938 struct ubifs_ino_node *ino; 1939 struct fsck_inode *fscki; 1940 1941 fscki = search_inode(fsckd, inum); 1942 if (fscki) 1943 return fscki; 1944 1945 ino_key_init(c, &key, inum); 1946 err = ubifs_lookup_level0(c, &key, &znode, &n); 1947 if (!err) { 1948 ubifs_err(c, "inode %lu not found in index", (unsigned long)inum); 1949 return ERR_PTR(-ENOENT); 1950 } else if (err < 0) { 1951 ubifs_err(c, "error %d while looking up inode %lu", 1952 err, (unsigned long)inum); 1953 return ERR_PTR(err); 1954 } 1955 1956 zbr = &znode->zbranch[n]; 1957 if (zbr->len < UBIFS_INO_NODE_SZ) { 1958 ubifs_err(c, "bad node %lu node length %d", 1959 (unsigned long)inum, zbr->len); 1960 return ERR_PTR(-EINVAL); 1961 } 1962 1963 ino = kmalloc(zbr->len, GFP_NOFS); 1964 if (!ino) 1965 return ERR_PTR(-ENOMEM); 1966 1967 err = ubifs_tnc_read_node(c, zbr, ino); 1968 if (err) { 1969 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 1970 zbr->lnum, zbr->offs, err); 1971 kfree(ino); 1972 return ERR_PTR(err); 1973 } 1974 1975 fscki = add_inode(c, fsckd, ino); 1976 kfree(ino); 1977 if (IS_ERR(fscki)) { 1978 ubifs_err(c, "error %ld while adding inode %lu node", 1979 PTR_ERR(fscki), (unsigned long)inum); 1980 return fscki; 1981 } 1982 1983 return fscki; 1984 } 1985 1986 /** 1987 * check_leaf - check leaf node. 1988 * @c: UBIFS file-system description object 1989 * @zbr: zbranch of the leaf node to check 1990 * @priv: FS checking information 1991 * 1992 * This is a helper function for 'dbg_check_filesystem()' which is called for 1993 * every single leaf node while walking the indexing tree. It checks that the 1994 * leaf node referred from the indexing tree exists, has correct CRC, and does 1995 * some other basic validation. This function is also responsible for building 1996 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1997 * calculates reference count, size, etc for each inode in order to later 1998 * compare them to the information stored inside the inodes and detect possible 1999 * inconsistencies. Returns zero in case of success and a negative error code 2000 * in case of failure. 2001 */ 2002 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 2003 void *priv) 2004 { 2005 ino_t inum; 2006 void *node; 2007 struct ubifs_ch *ch; 2008 int err, type = key_type(c, &zbr->key); 2009 struct fsck_inode *fscki; 2010 2011 if (zbr->len < UBIFS_CH_SZ) { 2012 ubifs_err(c, "bad leaf length %d (LEB %d:%d)", 2013 zbr->len, zbr->lnum, zbr->offs); 2014 return -EINVAL; 2015 } 2016 2017 node = kmalloc(zbr->len, GFP_NOFS); 2018 if (!node) 2019 return -ENOMEM; 2020 2021 err = ubifs_tnc_read_node(c, zbr, node); 2022 if (err) { 2023 ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d", 2024 zbr->lnum, zbr->offs, err); 2025 goto out_free; 2026 } 2027 2028 /* If this is an inode node, add it to RB-tree of inodes */ 2029 if (type == UBIFS_INO_KEY) { 2030 fscki = add_inode(c, priv, node); 2031 if (IS_ERR(fscki)) { 2032 err = PTR_ERR(fscki); 2033 ubifs_err(c, "error %d while adding inode node", err); 2034 goto out_dump; 2035 } 2036 goto out; 2037 } 2038 2039 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 2040 type != UBIFS_DATA_KEY) { 2041 ubifs_err(c, "unexpected node type %d at LEB %d:%d", 2042 type, zbr->lnum, zbr->offs); 2043 err = -EINVAL; 2044 goto out_free; 2045 } 2046 2047 ch = node; 2048 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 2049 ubifs_err(c, "too high sequence number, max. is %llu", 2050 c->max_sqnum); 2051 err = -EINVAL; 2052 goto out_dump; 2053 } 2054 2055 if (type == UBIFS_DATA_KEY) { 2056 long long blk_offs; 2057 struct ubifs_data_node *dn = node; 2058 2059 ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ); 2060 2061 /* 2062 * Search the inode node this data node belongs to and insert 2063 * it to the RB-tree of inodes. 2064 */ 2065 inum = key_inum_flash(c, &dn->key); 2066 fscki = read_add_inode(c, priv, inum); 2067 if (IS_ERR(fscki)) { 2068 err = PTR_ERR(fscki); 2069 ubifs_err(c, "error %d while processing data node and trying to find inode node %lu", 2070 err, (unsigned long)inum); 2071 goto out_dump; 2072 } 2073 2074 /* Make sure the data node is within inode size */ 2075 blk_offs = key_block_flash(c, &dn->key); 2076 blk_offs <<= UBIFS_BLOCK_SHIFT; 2077 blk_offs += le32_to_cpu(dn->size); 2078 if (blk_offs > fscki->size) { 2079 ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld", 2080 zbr->lnum, zbr->offs, fscki->size); 2081 err = -EINVAL; 2082 goto out_dump; 2083 } 2084 } else { 2085 int nlen; 2086 struct ubifs_dent_node *dent = node; 2087 struct fsck_inode *fscki1; 2088 2089 ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ); 2090 2091 err = ubifs_validate_entry(c, dent); 2092 if (err) 2093 goto out_dump; 2094 2095 /* 2096 * Search the inode node this entry refers to and the parent 2097 * inode node and insert them to the RB-tree of inodes. 2098 */ 2099 inum = le64_to_cpu(dent->inum); 2100 fscki = read_add_inode(c, priv, inum); 2101 if (IS_ERR(fscki)) { 2102 err = PTR_ERR(fscki); 2103 ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu", 2104 err, (unsigned long)inum); 2105 goto out_dump; 2106 } 2107 2108 /* Count how many direntries or xentries refers this inode */ 2109 fscki->references += 1; 2110 2111 inum = key_inum_flash(c, &dent->key); 2112 fscki1 = read_add_inode(c, priv, inum); 2113 if (IS_ERR(fscki1)) { 2114 err = PTR_ERR(fscki1); 2115 ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu", 2116 err, (unsigned long)inum); 2117 goto out_dump; 2118 } 2119 2120 nlen = le16_to_cpu(dent->nlen); 2121 if (type == UBIFS_XENT_KEY) { 2122 fscki1->calc_xcnt += 1; 2123 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2124 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2125 fscki1->calc_xnms += nlen; 2126 } else { 2127 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2128 if (dent->type == UBIFS_ITYPE_DIR) 2129 fscki1->calc_cnt += 1; 2130 } 2131 } 2132 2133 out: 2134 kfree(node); 2135 return 0; 2136 2137 out_dump: 2138 ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2139 ubifs_dump_node(c, node, zbr->len); 2140 out_free: 2141 kfree(node); 2142 return err; 2143 } 2144 2145 /** 2146 * free_inodes - free RB-tree of inodes. 2147 * @fsckd: FS checking information 2148 */ 2149 static void free_inodes(struct fsck_data *fsckd) 2150 { 2151 struct fsck_inode *fscki, *n; 2152 2153 rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb) 2154 kfree(fscki); 2155 } 2156 2157 /** 2158 * check_inodes - checks all inodes. 2159 * @c: UBIFS file-system description object 2160 * @fsckd: FS checking information 2161 * 2162 * This is a helper function for 'dbg_check_filesystem()' which walks the 2163 * RB-tree of inodes after the index scan has been finished, and checks that 2164 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2165 * %-EINVAL if not, and a negative error code in case of failure. 2166 */ 2167 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2168 { 2169 int n, err; 2170 union ubifs_key key; 2171 struct ubifs_znode *znode; 2172 struct ubifs_zbranch *zbr; 2173 struct ubifs_ino_node *ino; 2174 struct fsck_inode *fscki; 2175 struct rb_node *this = rb_first(&fsckd->inodes); 2176 2177 while (this) { 2178 fscki = rb_entry(this, struct fsck_inode, rb); 2179 this = rb_next(this); 2180 2181 if (S_ISDIR(fscki->mode)) { 2182 /* 2183 * Directories have to have exactly one reference (they 2184 * cannot have hardlinks), although root inode is an 2185 * exception. 2186 */ 2187 if (fscki->inum != UBIFS_ROOT_INO && 2188 fscki->references != 1) { 2189 ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1", 2190 (unsigned long)fscki->inum, 2191 fscki->references); 2192 goto out_dump; 2193 } 2194 if (fscki->inum == UBIFS_ROOT_INO && 2195 fscki->references != 0) { 2196 ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it", 2197 (unsigned long)fscki->inum, 2198 fscki->references); 2199 goto out_dump; 2200 } 2201 if (fscki->calc_sz != fscki->size) { 2202 ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld", 2203 (unsigned long)fscki->inum, 2204 fscki->size, fscki->calc_sz); 2205 goto out_dump; 2206 } 2207 if (fscki->calc_cnt != fscki->nlink) { 2208 ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d", 2209 (unsigned long)fscki->inum, 2210 fscki->nlink, fscki->calc_cnt); 2211 goto out_dump; 2212 } 2213 } else { 2214 if (fscki->references != fscki->nlink) { 2215 ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d", 2216 (unsigned long)fscki->inum, 2217 fscki->nlink, fscki->references); 2218 goto out_dump; 2219 } 2220 } 2221 if (fscki->xattr_sz != fscki->calc_xsz) { 2222 ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld", 2223 (unsigned long)fscki->inum, fscki->xattr_sz, 2224 fscki->calc_xsz); 2225 goto out_dump; 2226 } 2227 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2228 ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld", 2229 (unsigned long)fscki->inum, 2230 fscki->xattr_cnt, fscki->calc_xcnt); 2231 goto out_dump; 2232 } 2233 if (fscki->xattr_nms != fscki->calc_xnms) { 2234 ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld", 2235 (unsigned long)fscki->inum, fscki->xattr_nms, 2236 fscki->calc_xnms); 2237 goto out_dump; 2238 } 2239 } 2240 2241 return 0; 2242 2243 out_dump: 2244 /* Read the bad inode and dump it */ 2245 ino_key_init(c, &key, fscki->inum); 2246 err = ubifs_lookup_level0(c, &key, &znode, &n); 2247 if (!err) { 2248 ubifs_err(c, "inode %lu not found in index", 2249 (unsigned long)fscki->inum); 2250 return -ENOENT; 2251 } else if (err < 0) { 2252 ubifs_err(c, "error %d while looking up inode %lu", 2253 err, (unsigned long)fscki->inum); 2254 return err; 2255 } 2256 2257 zbr = &znode->zbranch[n]; 2258 ino = kmalloc(zbr->len, GFP_NOFS); 2259 if (!ino) 2260 return -ENOMEM; 2261 2262 err = ubifs_tnc_read_node(c, zbr, ino); 2263 if (err) { 2264 ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d", 2265 zbr->lnum, zbr->offs, err); 2266 kfree(ino); 2267 return err; 2268 } 2269 2270 ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d", 2271 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2272 ubifs_dump_node(c, ino, zbr->len); 2273 kfree(ino); 2274 return -EINVAL; 2275 } 2276 2277 /** 2278 * dbg_check_filesystem - check the file-system. 2279 * @c: UBIFS file-system description object 2280 * 2281 * This function checks the file system, namely: 2282 * o makes sure that all leaf nodes exist and their CRCs are correct; 2283 * o makes sure inode nlink, size, xattr size/count are correct (for all 2284 * inodes). 2285 * 2286 * The function reads whole indexing tree and all nodes, so it is pretty 2287 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2288 * not, and a negative error code in case of failure. 2289 */ 2290 int dbg_check_filesystem(struct ubifs_info *c) 2291 { 2292 int err; 2293 struct fsck_data fsckd; 2294 2295 if (!dbg_is_chk_fs(c)) 2296 return 0; 2297 2298 fsckd.inodes = RB_ROOT; 2299 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2300 if (err) 2301 goto out_free; 2302 2303 err = check_inodes(c, &fsckd); 2304 if (err) 2305 goto out_free; 2306 2307 free_inodes(&fsckd); 2308 return 0; 2309 2310 out_free: 2311 ubifs_err(c, "file-system check failed with error %d", err); 2312 dump_stack(); 2313 free_inodes(&fsckd); 2314 return err; 2315 } 2316 2317 /** 2318 * dbg_check_data_nodes_order - check that list of data nodes is sorted. 2319 * @c: UBIFS file-system description object 2320 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2321 * 2322 * This function returns zero if the list of data nodes is sorted correctly, 2323 * and %-EINVAL if not. 2324 */ 2325 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head) 2326 { 2327 struct list_head *cur; 2328 struct ubifs_scan_node *sa, *sb; 2329 2330 if (!dbg_is_chk_gen(c)) 2331 return 0; 2332 2333 for (cur = head->next; cur->next != head; cur = cur->next) { 2334 ino_t inuma, inumb; 2335 uint32_t blka, blkb; 2336 2337 cond_resched(); 2338 sa = container_of(cur, struct ubifs_scan_node, list); 2339 sb = container_of(cur->next, struct ubifs_scan_node, list); 2340 2341 if (sa->type != UBIFS_DATA_NODE) { 2342 ubifs_err(c, "bad node type %d", sa->type); 2343 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2344 return -EINVAL; 2345 } 2346 if (sb->type != UBIFS_DATA_NODE) { 2347 ubifs_err(c, "bad node type %d", sb->type); 2348 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2349 return -EINVAL; 2350 } 2351 2352 inuma = key_inum(c, &sa->key); 2353 inumb = key_inum(c, &sb->key); 2354 2355 if (inuma < inumb) 2356 continue; 2357 if (inuma > inumb) { 2358 ubifs_err(c, "larger inum %lu goes before inum %lu", 2359 (unsigned long)inuma, (unsigned long)inumb); 2360 goto error_dump; 2361 } 2362 2363 blka = key_block(c, &sa->key); 2364 blkb = key_block(c, &sb->key); 2365 2366 if (blka > blkb) { 2367 ubifs_err(c, "larger block %u goes before %u", blka, blkb); 2368 goto error_dump; 2369 } 2370 if (blka == blkb) { 2371 ubifs_err(c, "two data nodes for the same block"); 2372 goto error_dump; 2373 } 2374 } 2375 2376 return 0; 2377 2378 error_dump: 2379 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2380 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2381 return -EINVAL; 2382 } 2383 2384 /** 2385 * dbg_check_nondata_nodes_order - check that list of data nodes is sorted. 2386 * @c: UBIFS file-system description object 2387 * @head: the list of nodes ('struct ubifs_scan_node' objects) 2388 * 2389 * This function returns zero if the list of non-data nodes is sorted correctly, 2390 * and %-EINVAL if not. 2391 */ 2392 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head) 2393 { 2394 struct list_head *cur; 2395 struct ubifs_scan_node *sa, *sb; 2396 2397 if (!dbg_is_chk_gen(c)) 2398 return 0; 2399 2400 for (cur = head->next; cur->next != head; cur = cur->next) { 2401 ino_t inuma, inumb; 2402 uint32_t hasha, hashb; 2403 2404 cond_resched(); 2405 sa = container_of(cur, struct ubifs_scan_node, list); 2406 sb = container_of(cur->next, struct ubifs_scan_node, list); 2407 2408 if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE && 2409 sa->type != UBIFS_XENT_NODE) { 2410 ubifs_err(c, "bad node type %d", sa->type); 2411 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2412 return -EINVAL; 2413 } 2414 if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE && 2415 sb->type != UBIFS_XENT_NODE) { 2416 ubifs_err(c, "bad node type %d", sb->type); 2417 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2418 return -EINVAL; 2419 } 2420 2421 if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2422 ubifs_err(c, "non-inode node goes before inode node"); 2423 goto error_dump; 2424 } 2425 2426 if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE) 2427 continue; 2428 2429 if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) { 2430 /* Inode nodes are sorted in descending size order */ 2431 if (sa->len < sb->len) { 2432 ubifs_err(c, "smaller inode node goes first"); 2433 goto error_dump; 2434 } 2435 continue; 2436 } 2437 2438 /* 2439 * This is either a dentry or xentry, which should be sorted in 2440 * ascending (parent ino, hash) order. 2441 */ 2442 inuma = key_inum(c, &sa->key); 2443 inumb = key_inum(c, &sb->key); 2444 2445 if (inuma < inumb) 2446 continue; 2447 if (inuma > inumb) { 2448 ubifs_err(c, "larger inum %lu goes before inum %lu", 2449 (unsigned long)inuma, (unsigned long)inumb); 2450 goto error_dump; 2451 } 2452 2453 hasha = key_block(c, &sa->key); 2454 hashb = key_block(c, &sb->key); 2455 2456 if (hasha > hashb) { 2457 ubifs_err(c, "larger hash %u goes before %u", 2458 hasha, hashb); 2459 goto error_dump; 2460 } 2461 } 2462 2463 return 0; 2464 2465 error_dump: 2466 ubifs_msg(c, "dumping first node"); 2467 ubifs_dump_node(c, sa->node, c->leb_size - sa->offs); 2468 ubifs_msg(c, "dumping second node"); 2469 ubifs_dump_node(c, sb->node, c->leb_size - sb->offs); 2470 return -EINVAL; 2471 } 2472 2473 static inline int chance(unsigned int n, unsigned int out_of) 2474 { 2475 return !!(get_random_u32_below(out_of) + 1 <= n); 2476 2477 } 2478 2479 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write) 2480 { 2481 struct ubifs_debug_info *d = c->dbg; 2482 2483 ubifs_assert(c, dbg_is_tst_rcvry(c)); 2484 2485 if (!d->pc_cnt) { 2486 /* First call - decide delay to the power cut */ 2487 if (chance(1, 2)) { 2488 unsigned long delay; 2489 2490 if (chance(1, 2)) { 2491 d->pc_delay = 1; 2492 /* Fail within 1 minute */ 2493 delay = get_random_u32_below(60000); 2494 d->pc_timeout = jiffies; 2495 d->pc_timeout += msecs_to_jiffies(delay); 2496 ubifs_warn(c, "failing after %lums", delay); 2497 } else { 2498 d->pc_delay = 2; 2499 delay = get_random_u32_below(10000); 2500 /* Fail within 10000 operations */ 2501 d->pc_cnt_max = delay; 2502 ubifs_warn(c, "failing after %lu calls", delay); 2503 } 2504 } 2505 2506 d->pc_cnt += 1; 2507 } 2508 2509 /* Determine if failure delay has expired */ 2510 if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout)) 2511 return 0; 2512 if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max) 2513 return 0; 2514 2515 if (lnum == UBIFS_SB_LNUM) { 2516 if (write && chance(1, 2)) 2517 return 0; 2518 if (chance(19, 20)) 2519 return 0; 2520 ubifs_warn(c, "failing in super block LEB %d", lnum); 2521 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2522 if (chance(19, 20)) 2523 return 0; 2524 ubifs_warn(c, "failing in master LEB %d", lnum); 2525 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2526 if (write && chance(99, 100)) 2527 return 0; 2528 if (chance(399, 400)) 2529 return 0; 2530 ubifs_warn(c, "failing in log LEB %d", lnum); 2531 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2532 if (write && chance(7, 8)) 2533 return 0; 2534 if (chance(19, 20)) 2535 return 0; 2536 ubifs_warn(c, "failing in LPT LEB %d", lnum); 2537 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2538 if (write && chance(1, 2)) 2539 return 0; 2540 if (chance(9, 10)) 2541 return 0; 2542 ubifs_warn(c, "failing in orphan LEB %d", lnum); 2543 } else if (lnum == c->ihead_lnum) { 2544 if (chance(99, 100)) 2545 return 0; 2546 ubifs_warn(c, "failing in index head LEB %d", lnum); 2547 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2548 if (chance(9, 10)) 2549 return 0; 2550 ubifs_warn(c, "failing in GC head LEB %d", lnum); 2551 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2552 !ubifs_search_bud(c, lnum)) { 2553 if (chance(19, 20)) 2554 return 0; 2555 ubifs_warn(c, "failing in non-bud LEB %d", lnum); 2556 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2557 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2558 if (chance(999, 1000)) 2559 return 0; 2560 ubifs_warn(c, "failing in bud LEB %d commit running", lnum); 2561 } else { 2562 if (chance(9999, 10000)) 2563 return 0; 2564 ubifs_warn(c, "failing in bud LEB %d commit not running", lnum); 2565 } 2566 2567 d->pc_happened = 1; 2568 ubifs_warn(c, "========== Power cut emulated =========="); 2569 dump_stack(); 2570 return 1; 2571 } 2572 2573 static int corrupt_data(const struct ubifs_info *c, const void *buf, 2574 unsigned int len) 2575 { 2576 unsigned int from, to, ffs = chance(1, 2); 2577 unsigned char *p = (void *)buf; 2578 2579 from = get_random_u32_below(len); 2580 /* Corruption span max to end of write unit */ 2581 to = min(len, ALIGN(from + 1, c->max_write_size)); 2582 2583 ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1, 2584 ffs ? "0xFFs" : "random data"); 2585 2586 if (ffs) 2587 memset(p + from, 0xFF, to - from); 2588 else 2589 get_random_bytes(p + from, to - from); 2590 2591 return to; 2592 } 2593 2594 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf, 2595 int offs, int len) 2596 { 2597 int err, failing; 2598 2599 if (dbg_is_power_cut(c)) 2600 return -EROFS; 2601 2602 failing = power_cut_emulated(c, lnum, 1); 2603 if (failing) { 2604 len = corrupt_data(c, buf, len); 2605 ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)", 2606 len, lnum, offs); 2607 } 2608 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 2609 if (err) 2610 return err; 2611 if (failing) 2612 return -EROFS; 2613 return 0; 2614 } 2615 2616 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf, 2617 int len) 2618 { 2619 int err; 2620 2621 if (dbg_is_power_cut(c)) 2622 return -EROFS; 2623 if (power_cut_emulated(c, lnum, 1)) 2624 return -EROFS; 2625 err = ubi_leb_change(c->ubi, lnum, buf, len); 2626 if (err) 2627 return err; 2628 if (power_cut_emulated(c, lnum, 1)) 2629 return -EROFS; 2630 return 0; 2631 } 2632 2633 int dbg_leb_unmap(struct ubifs_info *c, int lnum) 2634 { 2635 int err; 2636 2637 if (dbg_is_power_cut(c)) 2638 return -EROFS; 2639 if (power_cut_emulated(c, lnum, 0)) 2640 return -EROFS; 2641 err = ubi_leb_unmap(c->ubi, lnum); 2642 if (err) 2643 return err; 2644 if (power_cut_emulated(c, lnum, 0)) 2645 return -EROFS; 2646 return 0; 2647 } 2648 2649 int dbg_leb_map(struct ubifs_info *c, int lnum) 2650 { 2651 int err; 2652 2653 if (dbg_is_power_cut(c)) 2654 return -EROFS; 2655 if (power_cut_emulated(c, lnum, 0)) 2656 return -EROFS; 2657 err = ubi_leb_map(c->ubi, lnum); 2658 if (err) 2659 return err; 2660 if (power_cut_emulated(c, lnum, 0)) 2661 return -EROFS; 2662 return 0; 2663 } 2664 2665 /* 2666 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2667 * contain the stuff specific to particular file-system mounts. 2668 */ 2669 static struct dentry *dfs_rootdir; 2670 2671 static int dfs_file_open(struct inode *inode, struct file *file) 2672 { 2673 file->private_data = inode->i_private; 2674 return nonseekable_open(inode, file); 2675 } 2676 2677 /** 2678 * provide_user_output - provide output to the user reading a debugfs file. 2679 * @val: boolean value for the answer 2680 * @u: the buffer to store the answer at 2681 * @count: size of the buffer 2682 * @ppos: position in the @u output buffer 2683 * 2684 * This is a simple helper function which stores @val boolean value in the user 2685 * buffer when the user reads one of UBIFS debugfs files. Returns amount of 2686 * bytes written to @u in case of success and a negative error code in case of 2687 * failure. 2688 */ 2689 static int provide_user_output(int val, char __user *u, size_t count, 2690 loff_t *ppos) 2691 { 2692 char buf[3]; 2693 2694 if (val) 2695 buf[0] = '1'; 2696 else 2697 buf[0] = '0'; 2698 buf[1] = '\n'; 2699 buf[2] = 0x00; 2700 2701 return simple_read_from_buffer(u, count, ppos, buf, 2); 2702 } 2703 2704 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count, 2705 loff_t *ppos) 2706 { 2707 struct dentry *dent = file->f_path.dentry; 2708 struct ubifs_info *c = file->private_data; 2709 struct ubifs_debug_info *d = c->dbg; 2710 int val; 2711 2712 if (dent == d->dfs_chk_gen) 2713 val = d->chk_gen; 2714 else if (dent == d->dfs_chk_index) 2715 val = d->chk_index; 2716 else if (dent == d->dfs_chk_orph) 2717 val = d->chk_orph; 2718 else if (dent == d->dfs_chk_lprops) 2719 val = d->chk_lprops; 2720 else if (dent == d->dfs_chk_fs) 2721 val = d->chk_fs; 2722 else if (dent == d->dfs_tst_rcvry) 2723 val = d->tst_rcvry; 2724 else if (dent == d->dfs_ro_error) 2725 val = c->ro_error; 2726 else 2727 return -EINVAL; 2728 2729 return provide_user_output(val, u, count, ppos); 2730 } 2731 2732 /** 2733 * interpret_user_input - interpret user debugfs file input. 2734 * @u: user-provided buffer with the input 2735 * @count: buffer size 2736 * 2737 * This is a helper function which interpret user input to a boolean UBIFS 2738 * debugfs file. Returns %0 or %1 in case of success and a negative error code 2739 * in case of failure. 2740 */ 2741 static int interpret_user_input(const char __user *u, size_t count) 2742 { 2743 size_t buf_size; 2744 char buf[8]; 2745 2746 buf_size = min_t(size_t, count, (sizeof(buf) - 1)); 2747 if (copy_from_user(buf, u, buf_size)) 2748 return -EFAULT; 2749 2750 if (buf[0] == '1') 2751 return 1; 2752 else if (buf[0] == '0') 2753 return 0; 2754 2755 return -EINVAL; 2756 } 2757 2758 static ssize_t dfs_file_write(struct file *file, const char __user *u, 2759 size_t count, loff_t *ppos) 2760 { 2761 struct ubifs_info *c = file->private_data; 2762 struct ubifs_debug_info *d = c->dbg; 2763 struct dentry *dent = file->f_path.dentry; 2764 int val; 2765 2766 if (file->f_path.dentry == d->dfs_dump_lprops) { 2767 ubifs_dump_lprops(c); 2768 return count; 2769 } 2770 if (file->f_path.dentry == d->dfs_dump_budg) { 2771 ubifs_dump_budg(c, &c->bi); 2772 return count; 2773 } 2774 if (file->f_path.dentry == d->dfs_dump_tnc) { 2775 mutex_lock(&c->tnc_mutex); 2776 ubifs_dump_tnc(c); 2777 mutex_unlock(&c->tnc_mutex); 2778 return count; 2779 } 2780 2781 val = interpret_user_input(u, count); 2782 if (val < 0) 2783 return val; 2784 2785 if (dent == d->dfs_chk_gen) 2786 d->chk_gen = val; 2787 else if (dent == d->dfs_chk_index) 2788 d->chk_index = val; 2789 else if (dent == d->dfs_chk_orph) 2790 d->chk_orph = val; 2791 else if (dent == d->dfs_chk_lprops) 2792 d->chk_lprops = val; 2793 else if (dent == d->dfs_chk_fs) 2794 d->chk_fs = val; 2795 else if (dent == d->dfs_tst_rcvry) 2796 d->tst_rcvry = val; 2797 else if (dent == d->dfs_ro_error) 2798 c->ro_error = !!val; 2799 else 2800 return -EINVAL; 2801 2802 return count; 2803 } 2804 2805 static const struct file_operations dfs_fops = { 2806 .open = dfs_file_open, 2807 .read = dfs_file_read, 2808 .write = dfs_file_write, 2809 .owner = THIS_MODULE, 2810 }; 2811 2812 /** 2813 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2814 * @c: UBIFS file-system description object 2815 * 2816 * This function creates all debugfs files for this instance of UBIFS. 2817 * 2818 * Note, the only reason we have not merged this function with the 2819 * 'ubifs_debugging_init()' function is because it is better to initialize 2820 * debugfs interfaces at the very end of the mount process, and remove them at 2821 * the very beginning of the mount process. 2822 */ 2823 void dbg_debugfs_init_fs(struct ubifs_info *c) 2824 { 2825 int n; 2826 const char *fname; 2827 struct ubifs_debug_info *d = c->dbg; 2828 2829 n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN, UBIFS_DFS_DIR_NAME, 2830 c->vi.ubi_num, c->vi.vol_id); 2831 if (n >= UBIFS_DFS_DIR_LEN) { 2832 /* The array size is too small */ 2833 return; 2834 } 2835 2836 fname = d->dfs_dir_name; 2837 d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir); 2838 2839 fname = "dump_lprops"; 2840 d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2841 &dfs_fops); 2842 2843 fname = "dump_budg"; 2844 d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2845 &dfs_fops); 2846 2847 fname = "dump_tnc"; 2848 d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c, 2849 &dfs_fops); 2850 2851 fname = "chk_general"; 2852 d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2853 d->dfs_dir, c, &dfs_fops); 2854 2855 fname = "chk_index"; 2856 d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2857 d->dfs_dir, c, &dfs_fops); 2858 2859 fname = "chk_orphans"; 2860 d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2861 d->dfs_dir, c, &dfs_fops); 2862 2863 fname = "chk_lprops"; 2864 d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2865 d->dfs_dir, c, &dfs_fops); 2866 2867 fname = "chk_fs"; 2868 d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2869 d->dfs_dir, c, &dfs_fops); 2870 2871 fname = "tst_recovery"; 2872 d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2873 d->dfs_dir, c, &dfs_fops); 2874 2875 fname = "ro_error"; 2876 d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2877 d->dfs_dir, c, &dfs_fops); 2878 } 2879 2880 /** 2881 * dbg_debugfs_exit_fs - remove all debugfs files. 2882 * @c: UBIFS file-system description object 2883 */ 2884 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2885 { 2886 debugfs_remove_recursive(c->dbg->dfs_dir); 2887 } 2888 2889 struct ubifs_global_debug_info ubifs_dbg; 2890 2891 static struct dentry *dfs_chk_gen; 2892 static struct dentry *dfs_chk_index; 2893 static struct dentry *dfs_chk_orph; 2894 static struct dentry *dfs_chk_lprops; 2895 static struct dentry *dfs_chk_fs; 2896 static struct dentry *dfs_tst_rcvry; 2897 2898 static ssize_t dfs_global_file_read(struct file *file, char __user *u, 2899 size_t count, loff_t *ppos) 2900 { 2901 struct dentry *dent = file->f_path.dentry; 2902 int val; 2903 2904 if (dent == dfs_chk_gen) 2905 val = ubifs_dbg.chk_gen; 2906 else if (dent == dfs_chk_index) 2907 val = ubifs_dbg.chk_index; 2908 else if (dent == dfs_chk_orph) 2909 val = ubifs_dbg.chk_orph; 2910 else if (dent == dfs_chk_lprops) 2911 val = ubifs_dbg.chk_lprops; 2912 else if (dent == dfs_chk_fs) 2913 val = ubifs_dbg.chk_fs; 2914 else if (dent == dfs_tst_rcvry) 2915 val = ubifs_dbg.tst_rcvry; 2916 else 2917 return -EINVAL; 2918 2919 return provide_user_output(val, u, count, ppos); 2920 } 2921 2922 static ssize_t dfs_global_file_write(struct file *file, const char __user *u, 2923 size_t count, loff_t *ppos) 2924 { 2925 struct dentry *dent = file->f_path.dentry; 2926 int val; 2927 2928 val = interpret_user_input(u, count); 2929 if (val < 0) 2930 return val; 2931 2932 if (dent == dfs_chk_gen) 2933 ubifs_dbg.chk_gen = val; 2934 else if (dent == dfs_chk_index) 2935 ubifs_dbg.chk_index = val; 2936 else if (dent == dfs_chk_orph) 2937 ubifs_dbg.chk_orph = val; 2938 else if (dent == dfs_chk_lprops) 2939 ubifs_dbg.chk_lprops = val; 2940 else if (dent == dfs_chk_fs) 2941 ubifs_dbg.chk_fs = val; 2942 else if (dent == dfs_tst_rcvry) 2943 ubifs_dbg.tst_rcvry = val; 2944 else 2945 return -EINVAL; 2946 2947 return count; 2948 } 2949 2950 static const struct file_operations dfs_global_fops = { 2951 .read = dfs_global_file_read, 2952 .write = dfs_global_file_write, 2953 .owner = THIS_MODULE, 2954 }; 2955 2956 /** 2957 * dbg_debugfs_init - initialize debugfs file-system. 2958 * 2959 * UBIFS uses debugfs file-system to expose various debugging knobs to 2960 * user-space. This function creates "ubifs" directory in the debugfs 2961 * file-system. 2962 */ 2963 void dbg_debugfs_init(void) 2964 { 2965 const char *fname; 2966 2967 fname = "ubifs"; 2968 dfs_rootdir = debugfs_create_dir(fname, NULL); 2969 2970 fname = "chk_general"; 2971 dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2972 NULL, &dfs_global_fops); 2973 2974 fname = "chk_index"; 2975 dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2976 dfs_rootdir, NULL, &dfs_global_fops); 2977 2978 fname = "chk_orphans"; 2979 dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2980 dfs_rootdir, NULL, &dfs_global_fops); 2981 2982 fname = "chk_lprops"; 2983 dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2984 dfs_rootdir, NULL, &dfs_global_fops); 2985 2986 fname = "chk_fs"; 2987 dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir, 2988 NULL, &dfs_global_fops); 2989 2990 fname = "tst_recovery"; 2991 dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR, 2992 dfs_rootdir, NULL, &dfs_global_fops); 2993 } 2994 2995 /** 2996 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2997 */ 2998 void dbg_debugfs_exit(void) 2999 { 3000 debugfs_remove_recursive(dfs_rootdir); 3001 } 3002 3003 void ubifs_assert_failed(struct ubifs_info *c, const char *expr, 3004 const char *file, int line) 3005 { 3006 ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line); 3007 3008 switch (c->assert_action) { 3009 case ASSACT_PANIC: 3010 BUG(); 3011 break; 3012 3013 case ASSACT_RO: 3014 ubifs_ro_mode(c, -EINVAL); 3015 break; 3016 3017 case ASSACT_REPORT: 3018 default: 3019 dump_stack(); 3020 break; 3021 3022 } 3023 } 3024 3025 /** 3026 * ubifs_debugging_init - initialize UBIFS debugging. 3027 * @c: UBIFS file-system description object 3028 * 3029 * This function initializes debugging-related data for the file system. 3030 * Returns zero in case of success and a negative error code in case of 3031 * failure. 3032 */ 3033 int ubifs_debugging_init(struct ubifs_info *c) 3034 { 3035 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 3036 if (!c->dbg) 3037 return -ENOMEM; 3038 3039 return 0; 3040 } 3041 3042 /** 3043 * ubifs_debugging_exit - free debugging data. 3044 * @c: UBIFS file-system description object 3045 */ 3046 void ubifs_debugging_exit(struct ubifs_info *c) 3047 { 3048 kfree(c->dbg); 3049 } 3050