1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 36 #ifdef CONFIG_UBIFS_FS_DEBUG 37 38 DEFINE_SPINLOCK(dbg_lock); 39 40 static char dbg_key_buf0[128]; 41 static char dbg_key_buf1[128]; 42 43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 45 unsigned int ubifs_tst_flags; 46 47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 50 51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 52 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 54 55 static const char *get_key_fmt(int fmt) 56 { 57 switch (fmt) { 58 case UBIFS_SIMPLE_KEY_FMT: 59 return "simple"; 60 default: 61 return "unknown/invalid format"; 62 } 63 } 64 65 static const char *get_key_hash(int hash) 66 { 67 switch (hash) { 68 case UBIFS_KEY_HASH_R5: 69 return "R5"; 70 case UBIFS_KEY_HASH_TEST: 71 return "test"; 72 default: 73 return "unknown/invalid name hash"; 74 } 75 } 76 77 static const char *get_key_type(int type) 78 { 79 switch (type) { 80 case UBIFS_INO_KEY: 81 return "inode"; 82 case UBIFS_DENT_KEY: 83 return "direntry"; 84 case UBIFS_XENT_KEY: 85 return "xentry"; 86 case UBIFS_DATA_KEY: 87 return "data"; 88 case UBIFS_TRUN_KEY: 89 return "truncate"; 90 default: 91 return "unknown/invalid key"; 92 } 93 } 94 95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 96 char *buffer) 97 { 98 char *p = buffer; 99 int type = key_type(c, key); 100 101 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 102 switch (type) { 103 case UBIFS_INO_KEY: 104 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 105 get_key_type(type)); 106 break; 107 case UBIFS_DENT_KEY: 108 case UBIFS_XENT_KEY: 109 sprintf(p, "(%lu, %s, %#08x)", 110 (unsigned long)key_inum(c, key), 111 get_key_type(type), key_hash(c, key)); 112 break; 113 case UBIFS_DATA_KEY: 114 sprintf(p, "(%lu, %s, %u)", 115 (unsigned long)key_inum(c, key), 116 get_key_type(type), key_block(c, key)); 117 break; 118 case UBIFS_TRUN_KEY: 119 sprintf(p, "(%lu, %s)", 120 (unsigned long)key_inum(c, key), 121 get_key_type(type)); 122 break; 123 default: 124 sprintf(p, "(bad key type: %#08x, %#08x)", 125 key->u32[0], key->u32[1]); 126 } 127 } else 128 sprintf(p, "bad key format %d", c->key_fmt); 129 } 130 131 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 132 { 133 /* dbg_lock must be held */ 134 sprintf_key(c, key, dbg_key_buf0); 135 return dbg_key_buf0; 136 } 137 138 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 139 { 140 /* dbg_lock must be held */ 141 sprintf_key(c, key, dbg_key_buf1); 142 return dbg_key_buf1; 143 } 144 145 const char *dbg_ntype(int type) 146 { 147 switch (type) { 148 case UBIFS_PAD_NODE: 149 return "padding node"; 150 case UBIFS_SB_NODE: 151 return "superblock node"; 152 case UBIFS_MST_NODE: 153 return "master node"; 154 case UBIFS_REF_NODE: 155 return "reference node"; 156 case UBIFS_INO_NODE: 157 return "inode node"; 158 case UBIFS_DENT_NODE: 159 return "direntry node"; 160 case UBIFS_XENT_NODE: 161 return "xentry node"; 162 case UBIFS_DATA_NODE: 163 return "data node"; 164 case UBIFS_TRUN_NODE: 165 return "truncate node"; 166 case UBIFS_IDX_NODE: 167 return "indexing node"; 168 case UBIFS_CS_NODE: 169 return "commit start node"; 170 case UBIFS_ORPH_NODE: 171 return "orphan node"; 172 default: 173 return "unknown node"; 174 } 175 } 176 177 static const char *dbg_gtype(int type) 178 { 179 switch (type) { 180 case UBIFS_NO_NODE_GROUP: 181 return "no node group"; 182 case UBIFS_IN_NODE_GROUP: 183 return "in node group"; 184 case UBIFS_LAST_OF_NODE_GROUP: 185 return "last of node group"; 186 default: 187 return "unknown"; 188 } 189 } 190 191 const char *dbg_cstate(int cmt_state) 192 { 193 switch (cmt_state) { 194 case COMMIT_RESTING: 195 return "commit resting"; 196 case COMMIT_BACKGROUND: 197 return "background commit requested"; 198 case COMMIT_REQUIRED: 199 return "commit required"; 200 case COMMIT_RUNNING_BACKGROUND: 201 return "BACKGROUND commit running"; 202 case COMMIT_RUNNING_REQUIRED: 203 return "commit running and required"; 204 case COMMIT_BROKEN: 205 return "broken commit"; 206 default: 207 return "unknown commit state"; 208 } 209 } 210 211 static void dump_ch(const struct ubifs_ch *ch) 212 { 213 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 214 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 215 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 216 dbg_ntype(ch->node_type)); 217 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 218 dbg_gtype(ch->group_type)); 219 printk(KERN_DEBUG "\tsqnum %llu\n", 220 (unsigned long long)le64_to_cpu(ch->sqnum)); 221 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 222 } 223 224 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 225 { 226 const struct ubifs_inode *ui = ubifs_inode(inode); 227 228 printk(KERN_DEBUG "Dump in-memory inode:"); 229 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 230 printk(KERN_DEBUG "\tsize %llu\n", 231 (unsigned long long)i_size_read(inode)); 232 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 233 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 234 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 235 printk(KERN_DEBUG "\tatime %u.%u\n", 236 (unsigned int)inode->i_atime.tv_sec, 237 (unsigned int)inode->i_atime.tv_nsec); 238 printk(KERN_DEBUG "\tmtime %u.%u\n", 239 (unsigned int)inode->i_mtime.tv_sec, 240 (unsigned int)inode->i_mtime.tv_nsec); 241 printk(KERN_DEBUG "\tctime %u.%u\n", 242 (unsigned int)inode->i_ctime.tv_sec, 243 (unsigned int)inode->i_ctime.tv_nsec); 244 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 245 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 246 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 247 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 248 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 249 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 250 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 251 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 252 (unsigned long long)ui->synced_i_size); 253 printk(KERN_DEBUG "\tui_size %llu\n", 254 (unsigned long long)ui->ui_size); 255 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 256 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 257 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 258 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 259 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 260 } 261 262 void dbg_dump_node(const struct ubifs_info *c, const void *node) 263 { 264 int i, n; 265 union ubifs_key key; 266 const struct ubifs_ch *ch = node; 267 268 if (dbg_failure_mode) 269 return; 270 271 /* If the magic is incorrect, just hexdump the first bytes */ 272 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 273 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 274 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 275 (void *)node, UBIFS_CH_SZ, 1); 276 return; 277 } 278 279 spin_lock(&dbg_lock); 280 dump_ch(node); 281 282 switch (ch->node_type) { 283 case UBIFS_PAD_NODE: 284 { 285 const struct ubifs_pad_node *pad = node; 286 287 printk(KERN_DEBUG "\tpad_len %u\n", 288 le32_to_cpu(pad->pad_len)); 289 break; 290 } 291 case UBIFS_SB_NODE: 292 { 293 const struct ubifs_sb_node *sup = node; 294 unsigned int sup_flags = le32_to_cpu(sup->flags); 295 296 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 297 (int)sup->key_hash, get_key_hash(sup->key_hash)); 298 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 299 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 300 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 301 printk(KERN_DEBUG "\t big_lpt %u\n", 302 !!(sup_flags & UBIFS_FLG_BIGLPT)); 303 printk(KERN_DEBUG "\tmin_io_size %u\n", 304 le32_to_cpu(sup->min_io_size)); 305 printk(KERN_DEBUG "\tleb_size %u\n", 306 le32_to_cpu(sup->leb_size)); 307 printk(KERN_DEBUG "\tleb_cnt %u\n", 308 le32_to_cpu(sup->leb_cnt)); 309 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 310 le32_to_cpu(sup->max_leb_cnt)); 311 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 312 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 313 printk(KERN_DEBUG "\tlog_lebs %u\n", 314 le32_to_cpu(sup->log_lebs)); 315 printk(KERN_DEBUG "\tlpt_lebs %u\n", 316 le32_to_cpu(sup->lpt_lebs)); 317 printk(KERN_DEBUG "\torph_lebs %u\n", 318 le32_to_cpu(sup->orph_lebs)); 319 printk(KERN_DEBUG "\tjhead_cnt %u\n", 320 le32_to_cpu(sup->jhead_cnt)); 321 printk(KERN_DEBUG "\tfanout %u\n", 322 le32_to_cpu(sup->fanout)); 323 printk(KERN_DEBUG "\tlsave_cnt %u\n", 324 le32_to_cpu(sup->lsave_cnt)); 325 printk(KERN_DEBUG "\tdefault_compr %u\n", 326 (int)le16_to_cpu(sup->default_compr)); 327 printk(KERN_DEBUG "\trp_size %llu\n", 328 (unsigned long long)le64_to_cpu(sup->rp_size)); 329 printk(KERN_DEBUG "\trp_uid %u\n", 330 le32_to_cpu(sup->rp_uid)); 331 printk(KERN_DEBUG "\trp_gid %u\n", 332 le32_to_cpu(sup->rp_gid)); 333 printk(KERN_DEBUG "\tfmt_version %u\n", 334 le32_to_cpu(sup->fmt_version)); 335 printk(KERN_DEBUG "\ttime_gran %u\n", 336 le32_to_cpu(sup->time_gran)); 337 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" 338 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", 339 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], 340 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], 341 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], 342 sup->uuid[12], sup->uuid[13], sup->uuid[14], 343 sup->uuid[15]); 344 break; 345 } 346 case UBIFS_MST_NODE: 347 { 348 const struct ubifs_mst_node *mst = node; 349 350 printk(KERN_DEBUG "\thighest_inum %llu\n", 351 (unsigned long long)le64_to_cpu(mst->highest_inum)); 352 printk(KERN_DEBUG "\tcommit number %llu\n", 353 (unsigned long long)le64_to_cpu(mst->cmt_no)); 354 printk(KERN_DEBUG "\tflags %#x\n", 355 le32_to_cpu(mst->flags)); 356 printk(KERN_DEBUG "\tlog_lnum %u\n", 357 le32_to_cpu(mst->log_lnum)); 358 printk(KERN_DEBUG "\troot_lnum %u\n", 359 le32_to_cpu(mst->root_lnum)); 360 printk(KERN_DEBUG "\troot_offs %u\n", 361 le32_to_cpu(mst->root_offs)); 362 printk(KERN_DEBUG "\troot_len %u\n", 363 le32_to_cpu(mst->root_len)); 364 printk(KERN_DEBUG "\tgc_lnum %u\n", 365 le32_to_cpu(mst->gc_lnum)); 366 printk(KERN_DEBUG "\tihead_lnum %u\n", 367 le32_to_cpu(mst->ihead_lnum)); 368 printk(KERN_DEBUG "\tihead_offs %u\n", 369 le32_to_cpu(mst->ihead_offs)); 370 printk(KERN_DEBUG "\tindex_size %llu\n", 371 (unsigned long long)le64_to_cpu(mst->index_size)); 372 printk(KERN_DEBUG "\tlpt_lnum %u\n", 373 le32_to_cpu(mst->lpt_lnum)); 374 printk(KERN_DEBUG "\tlpt_offs %u\n", 375 le32_to_cpu(mst->lpt_offs)); 376 printk(KERN_DEBUG "\tnhead_lnum %u\n", 377 le32_to_cpu(mst->nhead_lnum)); 378 printk(KERN_DEBUG "\tnhead_offs %u\n", 379 le32_to_cpu(mst->nhead_offs)); 380 printk(KERN_DEBUG "\tltab_lnum %u\n", 381 le32_to_cpu(mst->ltab_lnum)); 382 printk(KERN_DEBUG "\tltab_offs %u\n", 383 le32_to_cpu(mst->ltab_offs)); 384 printk(KERN_DEBUG "\tlsave_lnum %u\n", 385 le32_to_cpu(mst->lsave_lnum)); 386 printk(KERN_DEBUG "\tlsave_offs %u\n", 387 le32_to_cpu(mst->lsave_offs)); 388 printk(KERN_DEBUG "\tlscan_lnum %u\n", 389 le32_to_cpu(mst->lscan_lnum)); 390 printk(KERN_DEBUG "\tleb_cnt %u\n", 391 le32_to_cpu(mst->leb_cnt)); 392 printk(KERN_DEBUG "\tempty_lebs %u\n", 393 le32_to_cpu(mst->empty_lebs)); 394 printk(KERN_DEBUG "\tidx_lebs %u\n", 395 le32_to_cpu(mst->idx_lebs)); 396 printk(KERN_DEBUG "\ttotal_free %llu\n", 397 (unsigned long long)le64_to_cpu(mst->total_free)); 398 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_dirty)); 400 printk(KERN_DEBUG "\ttotal_used %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_used)); 402 printk(KERN_DEBUG "\ttotal_dead %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_dead)); 404 printk(KERN_DEBUG "\ttotal_dark %llu\n", 405 (unsigned long long)le64_to_cpu(mst->total_dark)); 406 break; 407 } 408 case UBIFS_REF_NODE: 409 { 410 const struct ubifs_ref_node *ref = node; 411 412 printk(KERN_DEBUG "\tlnum %u\n", 413 le32_to_cpu(ref->lnum)); 414 printk(KERN_DEBUG "\toffs %u\n", 415 le32_to_cpu(ref->offs)); 416 printk(KERN_DEBUG "\tjhead %u\n", 417 le32_to_cpu(ref->jhead)); 418 break; 419 } 420 case UBIFS_INO_NODE: 421 { 422 const struct ubifs_ino_node *ino = node; 423 424 key_read(c, &ino->key, &key); 425 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 426 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 427 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 428 printk(KERN_DEBUG "\tsize %llu\n", 429 (unsigned long long)le64_to_cpu(ino->size)); 430 printk(KERN_DEBUG "\tnlink %u\n", 431 le32_to_cpu(ino->nlink)); 432 printk(KERN_DEBUG "\tatime %lld.%u\n", 433 (long long)le64_to_cpu(ino->atime_sec), 434 le32_to_cpu(ino->atime_nsec)); 435 printk(KERN_DEBUG "\tmtime %lld.%u\n", 436 (long long)le64_to_cpu(ino->mtime_sec), 437 le32_to_cpu(ino->mtime_nsec)); 438 printk(KERN_DEBUG "\tctime %lld.%u\n", 439 (long long)le64_to_cpu(ino->ctime_sec), 440 le32_to_cpu(ino->ctime_nsec)); 441 printk(KERN_DEBUG "\tuid %u\n", 442 le32_to_cpu(ino->uid)); 443 printk(KERN_DEBUG "\tgid %u\n", 444 le32_to_cpu(ino->gid)); 445 printk(KERN_DEBUG "\tmode %u\n", 446 le32_to_cpu(ino->mode)); 447 printk(KERN_DEBUG "\tflags %#x\n", 448 le32_to_cpu(ino->flags)); 449 printk(KERN_DEBUG "\txattr_cnt %u\n", 450 le32_to_cpu(ino->xattr_cnt)); 451 printk(KERN_DEBUG "\txattr_size %u\n", 452 le32_to_cpu(ino->xattr_size)); 453 printk(KERN_DEBUG "\txattr_names %u\n", 454 le32_to_cpu(ino->xattr_names)); 455 printk(KERN_DEBUG "\tcompr_type %#x\n", 456 (int)le16_to_cpu(ino->compr_type)); 457 printk(KERN_DEBUG "\tdata len %u\n", 458 le32_to_cpu(ino->data_len)); 459 break; 460 } 461 case UBIFS_DENT_NODE: 462 case UBIFS_XENT_NODE: 463 { 464 const struct ubifs_dent_node *dent = node; 465 int nlen = le16_to_cpu(dent->nlen); 466 467 key_read(c, &dent->key, &key); 468 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 469 printk(KERN_DEBUG "\tinum %llu\n", 470 (unsigned long long)le64_to_cpu(dent->inum)); 471 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 472 printk(KERN_DEBUG "\tnlen %d\n", nlen); 473 printk(KERN_DEBUG "\tname "); 474 475 if (nlen > UBIFS_MAX_NLEN) 476 printk(KERN_DEBUG "(bad name length, not printing, " 477 "bad or corrupted node)"); 478 else { 479 for (i = 0; i < nlen && dent->name[i]; i++) 480 printk("%c", dent->name[i]); 481 } 482 printk("\n"); 483 484 break; 485 } 486 case UBIFS_DATA_NODE: 487 { 488 const struct ubifs_data_node *dn = node; 489 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 490 491 key_read(c, &dn->key, &key); 492 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 493 printk(KERN_DEBUG "\tsize %u\n", 494 le32_to_cpu(dn->size)); 495 printk(KERN_DEBUG "\tcompr_typ %d\n", 496 (int)le16_to_cpu(dn->compr_type)); 497 printk(KERN_DEBUG "\tdata size %d\n", 498 dlen); 499 printk(KERN_DEBUG "\tdata:\n"); 500 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 501 (void *)&dn->data, dlen, 0); 502 break; 503 } 504 case UBIFS_TRUN_NODE: 505 { 506 const struct ubifs_trun_node *trun = node; 507 508 printk(KERN_DEBUG "\tinum %u\n", 509 le32_to_cpu(trun->inum)); 510 printk(KERN_DEBUG "\told_size %llu\n", 511 (unsigned long long)le64_to_cpu(trun->old_size)); 512 printk(KERN_DEBUG "\tnew_size %llu\n", 513 (unsigned long long)le64_to_cpu(trun->new_size)); 514 break; 515 } 516 case UBIFS_IDX_NODE: 517 { 518 const struct ubifs_idx_node *idx = node; 519 520 n = le16_to_cpu(idx->child_cnt); 521 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 522 printk(KERN_DEBUG "\tlevel %d\n", 523 (int)le16_to_cpu(idx->level)); 524 printk(KERN_DEBUG "\tBranches:\n"); 525 526 for (i = 0; i < n && i < c->fanout - 1; i++) { 527 const struct ubifs_branch *br; 528 529 br = ubifs_idx_branch(c, idx, i); 530 key_read(c, &br->key, &key); 531 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 532 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 533 le32_to_cpu(br->len), DBGKEY(&key)); 534 } 535 break; 536 } 537 case UBIFS_CS_NODE: 538 break; 539 case UBIFS_ORPH_NODE: 540 { 541 const struct ubifs_orph_node *orph = node; 542 543 printk(KERN_DEBUG "\tcommit number %llu\n", 544 (unsigned long long) 545 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 546 printk(KERN_DEBUG "\tlast node flag %llu\n", 547 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 548 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 549 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 550 for (i = 0; i < n; i++) 551 printk(KERN_DEBUG "\t ino %llu\n", 552 (unsigned long long)le64_to_cpu(orph->inos[i])); 553 break; 554 } 555 default: 556 printk(KERN_DEBUG "node type %d was not recognized\n", 557 (int)ch->node_type); 558 } 559 spin_unlock(&dbg_lock); 560 } 561 562 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 563 { 564 spin_lock(&dbg_lock); 565 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 566 req->new_ino, req->dirtied_ino); 567 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 568 req->new_ino_d, req->dirtied_ino_d); 569 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 570 req->new_page, req->dirtied_page); 571 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 572 req->new_dent, req->mod_dent); 573 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 574 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 575 req->data_growth, req->dd_growth); 576 spin_unlock(&dbg_lock); 577 } 578 579 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 580 { 581 spin_lock(&dbg_lock); 582 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 583 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 584 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 585 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 586 lst->total_dirty); 587 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 588 "total_dead %lld\n", lst->total_used, lst->total_dark, 589 lst->total_dead); 590 spin_unlock(&dbg_lock); 591 } 592 593 void dbg_dump_budg(struct ubifs_info *c) 594 { 595 int i; 596 struct rb_node *rb; 597 struct ubifs_bud *bud; 598 struct ubifs_gced_idx_leb *idx_gc; 599 600 spin_lock(&dbg_lock); 601 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 602 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 603 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 604 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 605 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 606 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 607 c->freeable_cnt); 608 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 609 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 610 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 611 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 612 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 613 atomic_long_read(&c->dirty_zn_cnt), 614 atomic_long_read(&c->clean_zn_cnt)); 615 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 616 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 617 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 618 c->gc_lnum, c->ihead_lnum); 619 for (i = 0; i < c->jhead_cnt; i++) 620 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", 621 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); 622 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 623 bud = rb_entry(rb, struct ubifs_bud, rb); 624 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 625 } 626 list_for_each_entry(bud, &c->old_buds, list) 627 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 628 list_for_each_entry(idx_gc, &c->idx_gc, list) 629 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 630 idx_gc->lnum, idx_gc->unmap); 631 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 632 spin_unlock(&dbg_lock); 633 } 634 635 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 636 { 637 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " 638 "flags %#x\n", lp->lnum, lp->free, lp->dirty, 639 c->leb_size - lp->free - lp->dirty, lp->flags); 640 } 641 642 void dbg_dump_lprops(struct ubifs_info *c) 643 { 644 int lnum, err; 645 struct ubifs_lprops lp; 646 struct ubifs_lp_stats lst; 647 648 printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid); 649 ubifs_get_lp_stats(c, &lst); 650 dbg_dump_lstats(&lst); 651 652 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 653 err = ubifs_read_one_lp(c, lnum, &lp); 654 if (err) 655 ubifs_err("cannot read lprops for LEB %d", lnum); 656 657 dbg_dump_lprop(c, &lp); 658 } 659 } 660 661 void dbg_dump_lpt_info(struct ubifs_info *c) 662 { 663 int i; 664 665 spin_lock(&dbg_lock); 666 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 667 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 668 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 669 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 670 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 671 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 672 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 673 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 674 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 675 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 676 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 677 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 678 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 679 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 680 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 681 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 682 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 683 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 684 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 685 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 686 c->nhead_lnum, c->nhead_offs); 687 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs); 688 if (c->big_lpt) 689 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 690 c->lsave_lnum, c->lsave_offs); 691 for (i = 0; i < c->lpt_lebs; i++) 692 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 693 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 694 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 695 spin_unlock(&dbg_lock); 696 } 697 698 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 699 { 700 struct ubifs_scan_leb *sleb; 701 struct ubifs_scan_node *snod; 702 703 if (dbg_failure_mode) 704 return; 705 706 printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum); 707 708 sleb = ubifs_scan(c, lnum, 0, c->dbg_buf); 709 if (IS_ERR(sleb)) { 710 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 711 return; 712 } 713 714 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 715 sleb->nodes_cnt, sleb->endpt); 716 717 list_for_each_entry(snod, &sleb->nodes, list) { 718 cond_resched(); 719 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 720 snod->offs, snod->len); 721 dbg_dump_node(c, snod->node); 722 } 723 724 ubifs_scan_destroy(sleb); 725 return; 726 } 727 728 void dbg_dump_znode(const struct ubifs_info *c, 729 const struct ubifs_znode *znode) 730 { 731 int n; 732 const struct ubifs_zbranch *zbr; 733 734 spin_lock(&dbg_lock); 735 if (znode->parent) 736 zbr = &znode->parent->zbranch[znode->iip]; 737 else 738 zbr = &c->zroot; 739 740 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 741 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 742 zbr->len, znode->parent, znode->iip, znode->level, 743 znode->child_cnt, znode->flags); 744 745 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 746 spin_unlock(&dbg_lock); 747 return; 748 } 749 750 printk(KERN_DEBUG "zbranches:\n"); 751 for (n = 0; n < znode->child_cnt; n++) { 752 zbr = &znode->zbranch[n]; 753 if (znode->level > 0) 754 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 755 "%s\n", n, zbr->znode, zbr->lnum, 756 zbr->offs, zbr->len, 757 DBGKEY(&zbr->key)); 758 else 759 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 760 "%s\n", n, zbr->znode, zbr->lnum, 761 zbr->offs, zbr->len, 762 DBGKEY(&zbr->key)); 763 } 764 spin_unlock(&dbg_lock); 765 } 766 767 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 768 { 769 int i; 770 771 printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n", 772 current->pid, cat, heap->cnt); 773 for (i = 0; i < heap->cnt; i++) { 774 struct ubifs_lprops *lprops = heap->arr[i]; 775 776 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 777 "flags %d\n", i, lprops->lnum, lprops->hpos, 778 lprops->free, lprops->dirty, lprops->flags); 779 } 780 } 781 782 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 783 struct ubifs_nnode *parent, int iip) 784 { 785 int i; 786 787 printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid); 788 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 789 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 790 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 791 pnode->flags, iip, pnode->level, pnode->num); 792 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 793 struct ubifs_lprops *lp = &pnode->lprops[i]; 794 795 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 796 i, lp->free, lp->dirty, lp->flags, lp->lnum); 797 } 798 } 799 800 void dbg_dump_tnc(struct ubifs_info *c) 801 { 802 struct ubifs_znode *znode; 803 int level; 804 805 printk(KERN_DEBUG "\n"); 806 printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid); 807 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 808 level = znode->level; 809 printk(KERN_DEBUG "== Level %d ==\n", level); 810 while (znode) { 811 if (level != znode->level) { 812 level = znode->level; 813 printk(KERN_DEBUG "== Level %d ==\n", level); 814 } 815 dbg_dump_znode(c, znode); 816 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 817 } 818 819 printk(KERN_DEBUG "\n"); 820 } 821 822 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 823 void *priv) 824 { 825 dbg_dump_znode(c, znode); 826 return 0; 827 } 828 829 /** 830 * dbg_dump_index - dump the on-flash index. 831 * @c: UBIFS file-system description object 832 * 833 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 834 * which dumps only in-memory znodes and does not read znodes which from flash. 835 */ 836 void dbg_dump_index(struct ubifs_info *c) 837 { 838 dbg_walk_index(c, NULL, dump_znode, NULL); 839 } 840 841 /** 842 * dbg_check_synced_i_size - check synchronized inode size. 843 * @inode: inode to check 844 * 845 * If inode is clean, synchronized inode size has to be equivalent to current 846 * inode size. This function has to be called only for locked inodes (@i_mutex 847 * has to be locked). Returns %0 if synchronized inode size if correct, and 848 * %-EINVAL if not. 849 */ 850 int dbg_check_synced_i_size(struct inode *inode) 851 { 852 int err = 0; 853 struct ubifs_inode *ui = ubifs_inode(inode); 854 855 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 856 return 0; 857 if (!S_ISREG(inode->i_mode)) 858 return 0; 859 860 mutex_lock(&ui->ui_mutex); 861 spin_lock(&ui->ui_lock); 862 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 863 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 864 "is clean", ui->ui_size, ui->synced_i_size); 865 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 866 inode->i_mode, i_size_read(inode)); 867 dbg_dump_stack(); 868 err = -EINVAL; 869 } 870 spin_unlock(&ui->ui_lock); 871 mutex_unlock(&ui->ui_mutex); 872 return err; 873 } 874 875 /* 876 * dbg_check_dir - check directory inode size and link count. 877 * @c: UBIFS file-system description object 878 * @dir: the directory to calculate size for 879 * @size: the result is returned here 880 * 881 * This function makes sure that directory size and link count are correct. 882 * Returns zero in case of success and a negative error code in case of 883 * failure. 884 * 885 * Note, it is good idea to make sure the @dir->i_mutex is locked before 886 * calling this function. 887 */ 888 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 889 { 890 unsigned int nlink = 2; 891 union ubifs_key key; 892 struct ubifs_dent_node *dent, *pdent = NULL; 893 struct qstr nm = { .name = NULL }; 894 loff_t size = UBIFS_INO_NODE_SZ; 895 896 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 897 return 0; 898 899 if (!S_ISDIR(dir->i_mode)) 900 return 0; 901 902 lowest_dent_key(c, &key, dir->i_ino); 903 while (1) { 904 int err; 905 906 dent = ubifs_tnc_next_ent(c, &key, &nm); 907 if (IS_ERR(dent)) { 908 err = PTR_ERR(dent); 909 if (err == -ENOENT) 910 break; 911 return err; 912 } 913 914 nm.name = dent->name; 915 nm.len = le16_to_cpu(dent->nlen); 916 size += CALC_DENT_SIZE(nm.len); 917 if (dent->type == UBIFS_ITYPE_DIR) 918 nlink += 1; 919 kfree(pdent); 920 pdent = dent; 921 key_read(c, &dent->key, &key); 922 } 923 kfree(pdent); 924 925 if (i_size_read(dir) != size) { 926 ubifs_err("directory inode %lu has size %llu, " 927 "but calculated size is %llu", dir->i_ino, 928 (unsigned long long)i_size_read(dir), 929 (unsigned long long)size); 930 dump_stack(); 931 return -EINVAL; 932 } 933 if (dir->i_nlink != nlink) { 934 ubifs_err("directory inode %lu has nlink %u, but calculated " 935 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 936 dump_stack(); 937 return -EINVAL; 938 } 939 940 return 0; 941 } 942 943 /** 944 * dbg_check_key_order - make sure that colliding keys are properly ordered. 945 * @c: UBIFS file-system description object 946 * @zbr1: first zbranch 947 * @zbr2: following zbranch 948 * 949 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 950 * names of the direntries/xentries which are referred by the keys. This 951 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 952 * sure the name of direntry/xentry referred by @zbr1 is less than 953 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 954 * and a negative error code in case of failure. 955 */ 956 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 957 struct ubifs_zbranch *zbr2) 958 { 959 int err, nlen1, nlen2, cmp; 960 struct ubifs_dent_node *dent1, *dent2; 961 union ubifs_key key; 962 963 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 964 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 965 if (!dent1) 966 return -ENOMEM; 967 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 968 if (!dent2) { 969 err = -ENOMEM; 970 goto out_free; 971 } 972 973 err = ubifs_tnc_read_node(c, zbr1, dent1); 974 if (err) 975 goto out_free; 976 err = ubifs_validate_entry(c, dent1); 977 if (err) 978 goto out_free; 979 980 err = ubifs_tnc_read_node(c, zbr2, dent2); 981 if (err) 982 goto out_free; 983 err = ubifs_validate_entry(c, dent2); 984 if (err) 985 goto out_free; 986 987 /* Make sure node keys are the same as in zbranch */ 988 err = 1; 989 key_read(c, &dent1->key, &key); 990 if (keys_cmp(c, &zbr1->key, &key)) { 991 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 992 zbr1->offs, DBGKEY(&key)); 993 dbg_err("but it should have key %s according to tnc", 994 DBGKEY(&zbr1->key)); 995 dbg_dump_node(c, dent1); 996 goto out_free; 997 } 998 999 key_read(c, &dent2->key, &key); 1000 if (keys_cmp(c, &zbr2->key, &key)) { 1001 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1002 zbr1->offs, DBGKEY(&key)); 1003 dbg_err("but it should have key %s according to tnc", 1004 DBGKEY(&zbr2->key)); 1005 dbg_dump_node(c, dent2); 1006 goto out_free; 1007 } 1008 1009 nlen1 = le16_to_cpu(dent1->nlen); 1010 nlen2 = le16_to_cpu(dent2->nlen); 1011 1012 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1013 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1014 err = 0; 1015 goto out_free; 1016 } 1017 if (cmp == 0 && nlen1 == nlen2) 1018 dbg_err("2 xent/dent nodes with the same name"); 1019 else 1020 dbg_err("bad order of colliding key %s", 1021 DBGKEY(&key)); 1022 1023 dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1024 dbg_dump_node(c, dent1); 1025 dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1026 dbg_dump_node(c, dent2); 1027 1028 out_free: 1029 kfree(dent2); 1030 kfree(dent1); 1031 return err; 1032 } 1033 1034 /** 1035 * dbg_check_znode - check if znode is all right. 1036 * @c: UBIFS file-system description object 1037 * @zbr: zbranch which points to this znode 1038 * 1039 * This function makes sure that znode referred to by @zbr is all right. 1040 * Returns zero if it is, and %-EINVAL if it is not. 1041 */ 1042 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1043 { 1044 struct ubifs_znode *znode = zbr->znode; 1045 struct ubifs_znode *zp = znode->parent; 1046 int n, err, cmp; 1047 1048 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1049 err = 1; 1050 goto out; 1051 } 1052 if (znode->level < 0) { 1053 err = 2; 1054 goto out; 1055 } 1056 if (znode->iip < 0 || znode->iip >= c->fanout) { 1057 err = 3; 1058 goto out; 1059 } 1060 1061 if (zbr->len == 0) 1062 /* Only dirty zbranch may have no on-flash nodes */ 1063 if (!ubifs_zn_dirty(znode)) { 1064 err = 4; 1065 goto out; 1066 } 1067 1068 if (ubifs_zn_dirty(znode)) { 1069 /* 1070 * If znode is dirty, its parent has to be dirty as well. The 1071 * order of the operation is important, so we have to have 1072 * memory barriers. 1073 */ 1074 smp_mb(); 1075 if (zp && !ubifs_zn_dirty(zp)) { 1076 /* 1077 * The dirty flag is atomic and is cleared outside the 1078 * TNC mutex, so znode's dirty flag may now have 1079 * been cleared. The child is always cleared before the 1080 * parent, so we just need to check again. 1081 */ 1082 smp_mb(); 1083 if (ubifs_zn_dirty(znode)) { 1084 err = 5; 1085 goto out; 1086 } 1087 } 1088 } 1089 1090 if (zp) { 1091 const union ubifs_key *min, *max; 1092 1093 if (znode->level != zp->level - 1) { 1094 err = 6; 1095 goto out; 1096 } 1097 1098 /* Make sure the 'parent' pointer in our znode is correct */ 1099 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1100 if (!err) { 1101 /* This zbranch does not exist in the parent */ 1102 err = 7; 1103 goto out; 1104 } 1105 1106 if (znode->iip >= zp->child_cnt) { 1107 err = 8; 1108 goto out; 1109 } 1110 1111 if (znode->iip != n) { 1112 /* This may happen only in case of collisions */ 1113 if (keys_cmp(c, &zp->zbranch[n].key, 1114 &zp->zbranch[znode->iip].key)) { 1115 err = 9; 1116 goto out; 1117 } 1118 n = znode->iip; 1119 } 1120 1121 /* 1122 * Make sure that the first key in our znode is greater than or 1123 * equal to the key in the pointing zbranch. 1124 */ 1125 min = &zbr->key; 1126 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1127 if (cmp == 1) { 1128 err = 10; 1129 goto out; 1130 } 1131 1132 if (n + 1 < zp->child_cnt) { 1133 max = &zp->zbranch[n + 1].key; 1134 1135 /* 1136 * Make sure the last key in our znode is less or 1137 * equivalent than the the key in zbranch which goes 1138 * after our pointing zbranch. 1139 */ 1140 cmp = keys_cmp(c, max, 1141 &znode->zbranch[znode->child_cnt - 1].key); 1142 if (cmp == -1) { 1143 err = 11; 1144 goto out; 1145 } 1146 } 1147 } else { 1148 /* This may only be root znode */ 1149 if (zbr != &c->zroot) { 1150 err = 12; 1151 goto out; 1152 } 1153 } 1154 1155 /* 1156 * Make sure that next key is greater or equivalent then the previous 1157 * one. 1158 */ 1159 for (n = 1; n < znode->child_cnt; n++) { 1160 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1161 &znode->zbranch[n].key); 1162 if (cmp > 0) { 1163 err = 13; 1164 goto out; 1165 } 1166 if (cmp == 0) { 1167 /* This can only be keys with colliding hash */ 1168 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1169 err = 14; 1170 goto out; 1171 } 1172 1173 if (znode->level != 0 || c->replaying) 1174 continue; 1175 1176 /* 1177 * Colliding keys should follow binary order of 1178 * corresponding xentry/dentry names. 1179 */ 1180 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1181 &znode->zbranch[n]); 1182 if (err < 0) 1183 return err; 1184 if (err) { 1185 err = 15; 1186 goto out; 1187 } 1188 } 1189 } 1190 1191 for (n = 0; n < znode->child_cnt; n++) { 1192 if (!znode->zbranch[n].znode && 1193 (znode->zbranch[n].lnum == 0 || 1194 znode->zbranch[n].len == 0)) { 1195 err = 16; 1196 goto out; 1197 } 1198 1199 if (znode->zbranch[n].lnum != 0 && 1200 znode->zbranch[n].len == 0) { 1201 err = 17; 1202 goto out; 1203 } 1204 1205 if (znode->zbranch[n].lnum == 0 && 1206 znode->zbranch[n].len != 0) { 1207 err = 18; 1208 goto out; 1209 } 1210 1211 if (znode->zbranch[n].lnum == 0 && 1212 znode->zbranch[n].offs != 0) { 1213 err = 19; 1214 goto out; 1215 } 1216 1217 if (znode->level != 0 && znode->zbranch[n].znode) 1218 if (znode->zbranch[n].znode->parent != znode) { 1219 err = 20; 1220 goto out; 1221 } 1222 } 1223 1224 return 0; 1225 1226 out: 1227 ubifs_err("failed, error %d", err); 1228 ubifs_msg("dump of the znode"); 1229 dbg_dump_znode(c, znode); 1230 if (zp) { 1231 ubifs_msg("dump of the parent znode"); 1232 dbg_dump_znode(c, zp); 1233 } 1234 dump_stack(); 1235 return -EINVAL; 1236 } 1237 1238 /** 1239 * dbg_check_tnc - check TNC tree. 1240 * @c: UBIFS file-system description object 1241 * @extra: do extra checks that are possible at start commit 1242 * 1243 * This function traverses whole TNC tree and checks every znode. Returns zero 1244 * if everything is all right and %-EINVAL if something is wrong with TNC. 1245 */ 1246 int dbg_check_tnc(struct ubifs_info *c, int extra) 1247 { 1248 struct ubifs_znode *znode; 1249 long clean_cnt = 0, dirty_cnt = 0; 1250 int err, last; 1251 1252 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1253 return 0; 1254 1255 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1256 if (!c->zroot.znode) 1257 return 0; 1258 1259 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1260 while (1) { 1261 struct ubifs_znode *prev; 1262 struct ubifs_zbranch *zbr; 1263 1264 if (!znode->parent) 1265 zbr = &c->zroot; 1266 else 1267 zbr = &znode->parent->zbranch[znode->iip]; 1268 1269 err = dbg_check_znode(c, zbr); 1270 if (err) 1271 return err; 1272 1273 if (extra) { 1274 if (ubifs_zn_dirty(znode)) 1275 dirty_cnt += 1; 1276 else 1277 clean_cnt += 1; 1278 } 1279 1280 prev = znode; 1281 znode = ubifs_tnc_postorder_next(znode); 1282 if (!znode) 1283 break; 1284 1285 /* 1286 * If the last key of this znode is equivalent to the first key 1287 * of the next znode (collision), then check order of the keys. 1288 */ 1289 last = prev->child_cnt - 1; 1290 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1291 !keys_cmp(c, &prev->zbranch[last].key, 1292 &znode->zbranch[0].key)) { 1293 err = dbg_check_key_order(c, &prev->zbranch[last], 1294 &znode->zbranch[0]); 1295 if (err < 0) 1296 return err; 1297 if (err) { 1298 ubifs_msg("first znode"); 1299 dbg_dump_znode(c, prev); 1300 ubifs_msg("second znode"); 1301 dbg_dump_znode(c, znode); 1302 return -EINVAL; 1303 } 1304 } 1305 } 1306 1307 if (extra) { 1308 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1309 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1310 atomic_long_read(&c->clean_zn_cnt), 1311 clean_cnt); 1312 return -EINVAL; 1313 } 1314 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1315 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1316 atomic_long_read(&c->dirty_zn_cnt), 1317 dirty_cnt); 1318 return -EINVAL; 1319 } 1320 } 1321 1322 return 0; 1323 } 1324 1325 /** 1326 * dbg_walk_index - walk the on-flash index. 1327 * @c: UBIFS file-system description object 1328 * @leaf_cb: called for each leaf node 1329 * @znode_cb: called for each indexing node 1330 * @priv: private date which is passed to callbacks 1331 * 1332 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1333 * node and @znode_cb for each indexing node. Returns zero in case of success 1334 * and a negative error code in case of failure. 1335 * 1336 * It would be better if this function removed every znode it pulled to into 1337 * the TNC, so that the behavior more closely matched the non-debugging 1338 * behavior. 1339 */ 1340 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1341 dbg_znode_callback znode_cb, void *priv) 1342 { 1343 int err; 1344 struct ubifs_zbranch *zbr; 1345 struct ubifs_znode *znode, *child; 1346 1347 mutex_lock(&c->tnc_mutex); 1348 /* If the root indexing node is not in TNC - pull it */ 1349 if (!c->zroot.znode) { 1350 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1351 if (IS_ERR(c->zroot.znode)) { 1352 err = PTR_ERR(c->zroot.znode); 1353 c->zroot.znode = NULL; 1354 goto out_unlock; 1355 } 1356 } 1357 1358 /* 1359 * We are going to traverse the indexing tree in the postorder manner. 1360 * Go down and find the leftmost indexing node where we are going to 1361 * start from. 1362 */ 1363 znode = c->zroot.znode; 1364 while (znode->level > 0) { 1365 zbr = &znode->zbranch[0]; 1366 child = zbr->znode; 1367 if (!child) { 1368 child = ubifs_load_znode(c, zbr, znode, 0); 1369 if (IS_ERR(child)) { 1370 err = PTR_ERR(child); 1371 goto out_unlock; 1372 } 1373 zbr->znode = child; 1374 } 1375 1376 znode = child; 1377 } 1378 1379 /* Iterate over all indexing nodes */ 1380 while (1) { 1381 int idx; 1382 1383 cond_resched(); 1384 1385 if (znode_cb) { 1386 err = znode_cb(c, znode, priv); 1387 if (err) { 1388 ubifs_err("znode checking function returned " 1389 "error %d", err); 1390 dbg_dump_znode(c, znode); 1391 goto out_dump; 1392 } 1393 } 1394 if (leaf_cb && znode->level == 0) { 1395 for (idx = 0; idx < znode->child_cnt; idx++) { 1396 zbr = &znode->zbranch[idx]; 1397 err = leaf_cb(c, zbr, priv); 1398 if (err) { 1399 ubifs_err("leaf checking function " 1400 "returned error %d, for leaf " 1401 "at LEB %d:%d", 1402 err, zbr->lnum, zbr->offs); 1403 goto out_dump; 1404 } 1405 } 1406 } 1407 1408 if (!znode->parent) 1409 break; 1410 1411 idx = znode->iip + 1; 1412 znode = znode->parent; 1413 if (idx < znode->child_cnt) { 1414 /* Switch to the next index in the parent */ 1415 zbr = &znode->zbranch[idx]; 1416 child = zbr->znode; 1417 if (!child) { 1418 child = ubifs_load_znode(c, zbr, znode, idx); 1419 if (IS_ERR(child)) { 1420 err = PTR_ERR(child); 1421 goto out_unlock; 1422 } 1423 zbr->znode = child; 1424 } 1425 znode = child; 1426 } else 1427 /* 1428 * This is the last child, switch to the parent and 1429 * continue. 1430 */ 1431 continue; 1432 1433 /* Go to the lowest leftmost znode in the new sub-tree */ 1434 while (znode->level > 0) { 1435 zbr = &znode->zbranch[0]; 1436 child = zbr->znode; 1437 if (!child) { 1438 child = ubifs_load_znode(c, zbr, znode, 0); 1439 if (IS_ERR(child)) { 1440 err = PTR_ERR(child); 1441 goto out_unlock; 1442 } 1443 zbr->znode = child; 1444 } 1445 znode = child; 1446 } 1447 } 1448 1449 mutex_unlock(&c->tnc_mutex); 1450 return 0; 1451 1452 out_dump: 1453 if (znode->parent) 1454 zbr = &znode->parent->zbranch[znode->iip]; 1455 else 1456 zbr = &c->zroot; 1457 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1458 dbg_dump_znode(c, znode); 1459 out_unlock: 1460 mutex_unlock(&c->tnc_mutex); 1461 return err; 1462 } 1463 1464 /** 1465 * add_size - add znode size to partially calculated index size. 1466 * @c: UBIFS file-system description object 1467 * @znode: znode to add size for 1468 * @priv: partially calculated index size 1469 * 1470 * This is a helper function for 'dbg_check_idx_size()' which is called for 1471 * every indexing node and adds its size to the 'long long' variable pointed to 1472 * by @priv. 1473 */ 1474 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1475 { 1476 long long *idx_size = priv; 1477 int add; 1478 1479 add = ubifs_idx_node_sz(c, znode->child_cnt); 1480 add = ALIGN(add, 8); 1481 *idx_size += add; 1482 return 0; 1483 } 1484 1485 /** 1486 * dbg_check_idx_size - check index size. 1487 * @c: UBIFS file-system description object 1488 * @idx_size: size to check 1489 * 1490 * This function walks the UBIFS index, calculates its size and checks that the 1491 * size is equivalent to @idx_size. Returns zero in case of success and a 1492 * negative error code in case of failure. 1493 */ 1494 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1495 { 1496 int err; 1497 long long calc = 0; 1498 1499 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1500 return 0; 1501 1502 err = dbg_walk_index(c, NULL, add_size, &calc); 1503 if (err) { 1504 ubifs_err("error %d while walking the index", err); 1505 return err; 1506 } 1507 1508 if (calc != idx_size) { 1509 ubifs_err("index size check failed: calculated size is %lld, " 1510 "should be %lld", calc, idx_size); 1511 dump_stack(); 1512 return -EINVAL; 1513 } 1514 1515 return 0; 1516 } 1517 1518 /** 1519 * struct fsck_inode - information about an inode used when checking the file-system. 1520 * @rb: link in the RB-tree of inodes 1521 * @inum: inode number 1522 * @mode: inode type, permissions, etc 1523 * @nlink: inode link count 1524 * @xattr_cnt: count of extended attributes 1525 * @references: how many directory/xattr entries refer this inode (calculated 1526 * while walking the index) 1527 * @calc_cnt: for directory inode count of child directories 1528 * @size: inode size (read from on-flash inode) 1529 * @xattr_sz: summary size of all extended attributes (read from on-flash 1530 * inode) 1531 * @calc_sz: for directories calculated directory size 1532 * @calc_xcnt: count of extended attributes 1533 * @calc_xsz: calculated summary size of all extended attributes 1534 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1535 * inode (read from on-flash inode) 1536 * @calc_xnms: calculated sum of lengths of all extended attribute names 1537 */ 1538 struct fsck_inode { 1539 struct rb_node rb; 1540 ino_t inum; 1541 umode_t mode; 1542 unsigned int nlink; 1543 unsigned int xattr_cnt; 1544 int references; 1545 int calc_cnt; 1546 long long size; 1547 unsigned int xattr_sz; 1548 long long calc_sz; 1549 long long calc_xcnt; 1550 long long calc_xsz; 1551 unsigned int xattr_nms; 1552 long long calc_xnms; 1553 }; 1554 1555 /** 1556 * struct fsck_data - private FS checking information. 1557 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1558 */ 1559 struct fsck_data { 1560 struct rb_root inodes; 1561 }; 1562 1563 /** 1564 * add_inode - add inode information to RB-tree of inodes. 1565 * @c: UBIFS file-system description object 1566 * @fsckd: FS checking information 1567 * @ino: raw UBIFS inode to add 1568 * 1569 * This is a helper function for 'check_leaf()' which adds information about 1570 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1571 * case of success and a negative error code in case of failure. 1572 */ 1573 static struct fsck_inode *add_inode(struct ubifs_info *c, 1574 struct fsck_data *fsckd, 1575 struct ubifs_ino_node *ino) 1576 { 1577 struct rb_node **p, *parent = NULL; 1578 struct fsck_inode *fscki; 1579 ino_t inum = key_inum_flash(c, &ino->key); 1580 1581 p = &fsckd->inodes.rb_node; 1582 while (*p) { 1583 parent = *p; 1584 fscki = rb_entry(parent, struct fsck_inode, rb); 1585 if (inum < fscki->inum) 1586 p = &(*p)->rb_left; 1587 else if (inum > fscki->inum) 1588 p = &(*p)->rb_right; 1589 else 1590 return fscki; 1591 } 1592 1593 if (inum > c->highest_inum) { 1594 ubifs_err("too high inode number, max. is %lu", 1595 (unsigned long)c->highest_inum); 1596 return ERR_PTR(-EINVAL); 1597 } 1598 1599 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1600 if (!fscki) 1601 return ERR_PTR(-ENOMEM); 1602 1603 fscki->inum = inum; 1604 fscki->nlink = le32_to_cpu(ino->nlink); 1605 fscki->size = le64_to_cpu(ino->size); 1606 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1607 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1608 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1609 fscki->mode = le32_to_cpu(ino->mode); 1610 if (S_ISDIR(fscki->mode)) { 1611 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1612 fscki->calc_cnt = 2; 1613 } 1614 rb_link_node(&fscki->rb, parent, p); 1615 rb_insert_color(&fscki->rb, &fsckd->inodes); 1616 return fscki; 1617 } 1618 1619 /** 1620 * search_inode - search inode in the RB-tree of inodes. 1621 * @fsckd: FS checking information 1622 * @inum: inode number to search 1623 * 1624 * This is a helper function for 'check_leaf()' which searches inode @inum in 1625 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1626 * the inode was not found. 1627 */ 1628 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1629 { 1630 struct rb_node *p; 1631 struct fsck_inode *fscki; 1632 1633 p = fsckd->inodes.rb_node; 1634 while (p) { 1635 fscki = rb_entry(p, struct fsck_inode, rb); 1636 if (inum < fscki->inum) 1637 p = p->rb_left; 1638 else if (inum > fscki->inum) 1639 p = p->rb_right; 1640 else 1641 return fscki; 1642 } 1643 return NULL; 1644 } 1645 1646 /** 1647 * read_add_inode - read inode node and add it to RB-tree of inodes. 1648 * @c: UBIFS file-system description object 1649 * @fsckd: FS checking information 1650 * @inum: inode number to read 1651 * 1652 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1653 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1654 * information pointer in case of success and a negative error code in case of 1655 * failure. 1656 */ 1657 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1658 struct fsck_data *fsckd, ino_t inum) 1659 { 1660 int n, err; 1661 union ubifs_key key; 1662 struct ubifs_znode *znode; 1663 struct ubifs_zbranch *zbr; 1664 struct ubifs_ino_node *ino; 1665 struct fsck_inode *fscki; 1666 1667 fscki = search_inode(fsckd, inum); 1668 if (fscki) 1669 return fscki; 1670 1671 ino_key_init(c, &key, inum); 1672 err = ubifs_lookup_level0(c, &key, &znode, &n); 1673 if (!err) { 1674 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1675 return ERR_PTR(-ENOENT); 1676 } else if (err < 0) { 1677 ubifs_err("error %d while looking up inode %lu", 1678 err, (unsigned long)inum); 1679 return ERR_PTR(err); 1680 } 1681 1682 zbr = &znode->zbranch[n]; 1683 if (zbr->len < UBIFS_INO_NODE_SZ) { 1684 ubifs_err("bad node %lu node length %d", 1685 (unsigned long)inum, zbr->len); 1686 return ERR_PTR(-EINVAL); 1687 } 1688 1689 ino = kmalloc(zbr->len, GFP_NOFS); 1690 if (!ino) 1691 return ERR_PTR(-ENOMEM); 1692 1693 err = ubifs_tnc_read_node(c, zbr, ino); 1694 if (err) { 1695 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1696 zbr->lnum, zbr->offs, err); 1697 kfree(ino); 1698 return ERR_PTR(err); 1699 } 1700 1701 fscki = add_inode(c, fsckd, ino); 1702 kfree(ino); 1703 if (IS_ERR(fscki)) { 1704 ubifs_err("error %ld while adding inode %lu node", 1705 PTR_ERR(fscki), (unsigned long)inum); 1706 return fscki; 1707 } 1708 1709 return fscki; 1710 } 1711 1712 /** 1713 * check_leaf - check leaf node. 1714 * @c: UBIFS file-system description object 1715 * @zbr: zbranch of the leaf node to check 1716 * @priv: FS checking information 1717 * 1718 * This is a helper function for 'dbg_check_filesystem()' which is called for 1719 * every single leaf node while walking the indexing tree. It checks that the 1720 * leaf node referred from the indexing tree exists, has correct CRC, and does 1721 * some other basic validation. This function is also responsible for building 1722 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1723 * calculates reference count, size, etc for each inode in order to later 1724 * compare them to the information stored inside the inodes and detect possible 1725 * inconsistencies. Returns zero in case of success and a negative error code 1726 * in case of failure. 1727 */ 1728 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1729 void *priv) 1730 { 1731 ino_t inum; 1732 void *node; 1733 struct ubifs_ch *ch; 1734 int err, type = key_type(c, &zbr->key); 1735 struct fsck_inode *fscki; 1736 1737 if (zbr->len < UBIFS_CH_SZ) { 1738 ubifs_err("bad leaf length %d (LEB %d:%d)", 1739 zbr->len, zbr->lnum, zbr->offs); 1740 return -EINVAL; 1741 } 1742 1743 node = kmalloc(zbr->len, GFP_NOFS); 1744 if (!node) 1745 return -ENOMEM; 1746 1747 err = ubifs_tnc_read_node(c, zbr, node); 1748 if (err) { 1749 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1750 zbr->lnum, zbr->offs, err); 1751 goto out_free; 1752 } 1753 1754 /* If this is an inode node, add it to RB-tree of inodes */ 1755 if (type == UBIFS_INO_KEY) { 1756 fscki = add_inode(c, priv, node); 1757 if (IS_ERR(fscki)) { 1758 err = PTR_ERR(fscki); 1759 ubifs_err("error %d while adding inode node", err); 1760 goto out_dump; 1761 } 1762 goto out; 1763 } 1764 1765 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1766 type != UBIFS_DATA_KEY) { 1767 ubifs_err("unexpected node type %d at LEB %d:%d", 1768 type, zbr->lnum, zbr->offs); 1769 err = -EINVAL; 1770 goto out_free; 1771 } 1772 1773 ch = node; 1774 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1775 ubifs_err("too high sequence number, max. is %llu", 1776 c->max_sqnum); 1777 err = -EINVAL; 1778 goto out_dump; 1779 } 1780 1781 if (type == UBIFS_DATA_KEY) { 1782 long long blk_offs; 1783 struct ubifs_data_node *dn = node; 1784 1785 /* 1786 * Search the inode node this data node belongs to and insert 1787 * it to the RB-tree of inodes. 1788 */ 1789 inum = key_inum_flash(c, &dn->key); 1790 fscki = read_add_inode(c, priv, inum); 1791 if (IS_ERR(fscki)) { 1792 err = PTR_ERR(fscki); 1793 ubifs_err("error %d while processing data node and " 1794 "trying to find inode node %lu", 1795 err, (unsigned long)inum); 1796 goto out_dump; 1797 } 1798 1799 /* Make sure the data node is within inode size */ 1800 blk_offs = key_block_flash(c, &dn->key); 1801 blk_offs <<= UBIFS_BLOCK_SHIFT; 1802 blk_offs += le32_to_cpu(dn->size); 1803 if (blk_offs > fscki->size) { 1804 ubifs_err("data node at LEB %d:%d is not within inode " 1805 "size %lld", zbr->lnum, zbr->offs, 1806 fscki->size); 1807 err = -EINVAL; 1808 goto out_dump; 1809 } 1810 } else { 1811 int nlen; 1812 struct ubifs_dent_node *dent = node; 1813 struct fsck_inode *fscki1; 1814 1815 err = ubifs_validate_entry(c, dent); 1816 if (err) 1817 goto out_dump; 1818 1819 /* 1820 * Search the inode node this entry refers to and the parent 1821 * inode node and insert them to the RB-tree of inodes. 1822 */ 1823 inum = le64_to_cpu(dent->inum); 1824 fscki = read_add_inode(c, priv, inum); 1825 if (IS_ERR(fscki)) { 1826 err = PTR_ERR(fscki); 1827 ubifs_err("error %d while processing entry node and " 1828 "trying to find inode node %lu", 1829 err, (unsigned long)inum); 1830 goto out_dump; 1831 } 1832 1833 /* Count how many direntries or xentries refers this inode */ 1834 fscki->references += 1; 1835 1836 inum = key_inum_flash(c, &dent->key); 1837 fscki1 = read_add_inode(c, priv, inum); 1838 if (IS_ERR(fscki1)) { 1839 err = PTR_ERR(fscki); 1840 ubifs_err("error %d while processing entry node and " 1841 "trying to find parent inode node %lu", 1842 err, (unsigned long)inum); 1843 goto out_dump; 1844 } 1845 1846 nlen = le16_to_cpu(dent->nlen); 1847 if (type == UBIFS_XENT_KEY) { 1848 fscki1->calc_xcnt += 1; 1849 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 1850 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 1851 fscki1->calc_xnms += nlen; 1852 } else { 1853 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 1854 if (dent->type == UBIFS_ITYPE_DIR) 1855 fscki1->calc_cnt += 1; 1856 } 1857 } 1858 1859 out: 1860 kfree(node); 1861 return 0; 1862 1863 out_dump: 1864 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 1865 dbg_dump_node(c, node); 1866 out_free: 1867 kfree(node); 1868 return err; 1869 } 1870 1871 /** 1872 * free_inodes - free RB-tree of inodes. 1873 * @fsckd: FS checking information 1874 */ 1875 static void free_inodes(struct fsck_data *fsckd) 1876 { 1877 struct rb_node *this = fsckd->inodes.rb_node; 1878 struct fsck_inode *fscki; 1879 1880 while (this) { 1881 if (this->rb_left) 1882 this = this->rb_left; 1883 else if (this->rb_right) 1884 this = this->rb_right; 1885 else { 1886 fscki = rb_entry(this, struct fsck_inode, rb); 1887 this = rb_parent(this); 1888 if (this) { 1889 if (this->rb_left == &fscki->rb) 1890 this->rb_left = NULL; 1891 else 1892 this->rb_right = NULL; 1893 } 1894 kfree(fscki); 1895 } 1896 } 1897 } 1898 1899 /** 1900 * check_inodes - checks all inodes. 1901 * @c: UBIFS file-system description object 1902 * @fsckd: FS checking information 1903 * 1904 * This is a helper function for 'dbg_check_filesystem()' which walks the 1905 * RB-tree of inodes after the index scan has been finished, and checks that 1906 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 1907 * %-EINVAL if not, and a negative error code in case of failure. 1908 */ 1909 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 1910 { 1911 int n, err; 1912 union ubifs_key key; 1913 struct ubifs_znode *znode; 1914 struct ubifs_zbranch *zbr; 1915 struct ubifs_ino_node *ino; 1916 struct fsck_inode *fscki; 1917 struct rb_node *this = rb_first(&fsckd->inodes); 1918 1919 while (this) { 1920 fscki = rb_entry(this, struct fsck_inode, rb); 1921 this = rb_next(this); 1922 1923 if (S_ISDIR(fscki->mode)) { 1924 /* 1925 * Directories have to have exactly one reference (they 1926 * cannot have hardlinks), although root inode is an 1927 * exception. 1928 */ 1929 if (fscki->inum != UBIFS_ROOT_INO && 1930 fscki->references != 1) { 1931 ubifs_err("directory inode %lu has %d " 1932 "direntries which refer it, but " 1933 "should be 1", 1934 (unsigned long)fscki->inum, 1935 fscki->references); 1936 goto out_dump; 1937 } 1938 if (fscki->inum == UBIFS_ROOT_INO && 1939 fscki->references != 0) { 1940 ubifs_err("root inode %lu has non-zero (%d) " 1941 "direntries which refer it", 1942 (unsigned long)fscki->inum, 1943 fscki->references); 1944 goto out_dump; 1945 } 1946 if (fscki->calc_sz != fscki->size) { 1947 ubifs_err("directory inode %lu size is %lld, " 1948 "but calculated size is %lld", 1949 (unsigned long)fscki->inum, 1950 fscki->size, fscki->calc_sz); 1951 goto out_dump; 1952 } 1953 if (fscki->calc_cnt != fscki->nlink) { 1954 ubifs_err("directory inode %lu nlink is %d, " 1955 "but calculated nlink is %d", 1956 (unsigned long)fscki->inum, 1957 fscki->nlink, fscki->calc_cnt); 1958 goto out_dump; 1959 } 1960 } else { 1961 if (fscki->references != fscki->nlink) { 1962 ubifs_err("inode %lu nlink is %d, but " 1963 "calculated nlink is %d", 1964 (unsigned long)fscki->inum, 1965 fscki->nlink, fscki->references); 1966 goto out_dump; 1967 } 1968 } 1969 if (fscki->xattr_sz != fscki->calc_xsz) { 1970 ubifs_err("inode %lu has xattr size %u, but " 1971 "calculated size is %lld", 1972 (unsigned long)fscki->inum, fscki->xattr_sz, 1973 fscki->calc_xsz); 1974 goto out_dump; 1975 } 1976 if (fscki->xattr_cnt != fscki->calc_xcnt) { 1977 ubifs_err("inode %lu has %u xattrs, but " 1978 "calculated count is %lld", 1979 (unsigned long)fscki->inum, 1980 fscki->xattr_cnt, fscki->calc_xcnt); 1981 goto out_dump; 1982 } 1983 if (fscki->xattr_nms != fscki->calc_xnms) { 1984 ubifs_err("inode %lu has xattr names' size %u, but " 1985 "calculated names' size is %lld", 1986 (unsigned long)fscki->inum, fscki->xattr_nms, 1987 fscki->calc_xnms); 1988 goto out_dump; 1989 } 1990 } 1991 1992 return 0; 1993 1994 out_dump: 1995 /* Read the bad inode and dump it */ 1996 ino_key_init(c, &key, fscki->inum); 1997 err = ubifs_lookup_level0(c, &key, &znode, &n); 1998 if (!err) { 1999 ubifs_err("inode %lu not found in index", 2000 (unsigned long)fscki->inum); 2001 return -ENOENT; 2002 } else if (err < 0) { 2003 ubifs_err("error %d while looking up inode %lu", 2004 err, (unsigned long)fscki->inum); 2005 return err; 2006 } 2007 2008 zbr = &znode->zbranch[n]; 2009 ino = kmalloc(zbr->len, GFP_NOFS); 2010 if (!ino) 2011 return -ENOMEM; 2012 2013 err = ubifs_tnc_read_node(c, zbr, ino); 2014 if (err) { 2015 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2016 zbr->lnum, zbr->offs, err); 2017 kfree(ino); 2018 return err; 2019 } 2020 2021 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2022 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2023 dbg_dump_node(c, ino); 2024 kfree(ino); 2025 return -EINVAL; 2026 } 2027 2028 /** 2029 * dbg_check_filesystem - check the file-system. 2030 * @c: UBIFS file-system description object 2031 * 2032 * This function checks the file system, namely: 2033 * o makes sure that all leaf nodes exist and their CRCs are correct; 2034 * o makes sure inode nlink, size, xattr size/count are correct (for all 2035 * inodes). 2036 * 2037 * The function reads whole indexing tree and all nodes, so it is pretty 2038 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2039 * not, and a negative error code in case of failure. 2040 */ 2041 int dbg_check_filesystem(struct ubifs_info *c) 2042 { 2043 int err; 2044 struct fsck_data fsckd; 2045 2046 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2047 return 0; 2048 2049 fsckd.inodes = RB_ROOT; 2050 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2051 if (err) 2052 goto out_free; 2053 2054 err = check_inodes(c, &fsckd); 2055 if (err) 2056 goto out_free; 2057 2058 free_inodes(&fsckd); 2059 return 0; 2060 2061 out_free: 2062 ubifs_err("file-system check failed with error %d", err); 2063 dump_stack(); 2064 free_inodes(&fsckd); 2065 return err; 2066 } 2067 2068 static int invocation_cnt; 2069 2070 int dbg_force_in_the_gaps(void) 2071 { 2072 if (!dbg_force_in_the_gaps_enabled) 2073 return 0; 2074 /* Force in-the-gaps every 8th commit */ 2075 return !((invocation_cnt++) & 0x7); 2076 } 2077 2078 /* Failure mode for recovery testing */ 2079 2080 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2081 2082 struct failure_mode_info { 2083 struct list_head list; 2084 struct ubifs_info *c; 2085 }; 2086 2087 static LIST_HEAD(fmi_list); 2088 static DEFINE_SPINLOCK(fmi_lock); 2089 2090 static unsigned int next; 2091 2092 static int simple_rand(void) 2093 { 2094 if (next == 0) 2095 next = current->pid; 2096 next = next * 1103515245 + 12345; 2097 return (next >> 16) & 32767; 2098 } 2099 2100 void dbg_failure_mode_registration(struct ubifs_info *c) 2101 { 2102 struct failure_mode_info *fmi; 2103 2104 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2105 if (!fmi) { 2106 dbg_err("Failed to register failure mode - no memory"); 2107 return; 2108 } 2109 fmi->c = c; 2110 spin_lock(&fmi_lock); 2111 list_add_tail(&fmi->list, &fmi_list); 2112 spin_unlock(&fmi_lock); 2113 } 2114 2115 void dbg_failure_mode_deregistration(struct ubifs_info *c) 2116 { 2117 struct failure_mode_info *fmi, *tmp; 2118 2119 spin_lock(&fmi_lock); 2120 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2121 if (fmi->c == c) { 2122 list_del(&fmi->list); 2123 kfree(fmi); 2124 } 2125 spin_unlock(&fmi_lock); 2126 } 2127 2128 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2129 { 2130 struct failure_mode_info *fmi; 2131 2132 spin_lock(&fmi_lock); 2133 list_for_each_entry(fmi, &fmi_list, list) 2134 if (fmi->c->ubi == desc) { 2135 struct ubifs_info *c = fmi->c; 2136 2137 spin_unlock(&fmi_lock); 2138 return c; 2139 } 2140 spin_unlock(&fmi_lock); 2141 return NULL; 2142 } 2143 2144 static int in_failure_mode(struct ubi_volume_desc *desc) 2145 { 2146 struct ubifs_info *c = dbg_find_info(desc); 2147 2148 if (c && dbg_failure_mode) 2149 return c->failure_mode; 2150 return 0; 2151 } 2152 2153 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2154 { 2155 struct ubifs_info *c = dbg_find_info(desc); 2156 2157 if (!c || !dbg_failure_mode) 2158 return 0; 2159 if (c->failure_mode) 2160 return 1; 2161 if (!c->fail_cnt) { 2162 /* First call - decide delay to failure */ 2163 if (chance(1, 2)) { 2164 unsigned int delay = 1 << (simple_rand() >> 11); 2165 2166 if (chance(1, 2)) { 2167 c->fail_delay = 1; 2168 c->fail_timeout = jiffies + 2169 msecs_to_jiffies(delay); 2170 dbg_rcvry("failing after %ums", delay); 2171 } else { 2172 c->fail_delay = 2; 2173 c->fail_cnt_max = delay; 2174 dbg_rcvry("failing after %u calls", delay); 2175 } 2176 } 2177 c->fail_cnt += 1; 2178 } 2179 /* Determine if failure delay has expired */ 2180 if (c->fail_delay == 1) { 2181 if (time_before(jiffies, c->fail_timeout)) 2182 return 0; 2183 } else if (c->fail_delay == 2) 2184 if (c->fail_cnt++ < c->fail_cnt_max) 2185 return 0; 2186 if (lnum == UBIFS_SB_LNUM) { 2187 if (write) { 2188 if (chance(1, 2)) 2189 return 0; 2190 } else if (chance(19, 20)) 2191 return 0; 2192 dbg_rcvry("failing in super block LEB %d", lnum); 2193 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2194 if (chance(19, 20)) 2195 return 0; 2196 dbg_rcvry("failing in master LEB %d", lnum); 2197 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2198 if (write) { 2199 if (chance(99, 100)) 2200 return 0; 2201 } else if (chance(399, 400)) 2202 return 0; 2203 dbg_rcvry("failing in log LEB %d", lnum); 2204 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2205 if (write) { 2206 if (chance(7, 8)) 2207 return 0; 2208 } else if (chance(19, 20)) 2209 return 0; 2210 dbg_rcvry("failing in LPT LEB %d", lnum); 2211 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2212 if (write) { 2213 if (chance(1, 2)) 2214 return 0; 2215 } else if (chance(9, 10)) 2216 return 0; 2217 dbg_rcvry("failing in orphan LEB %d", lnum); 2218 } else if (lnum == c->ihead_lnum) { 2219 if (chance(99, 100)) 2220 return 0; 2221 dbg_rcvry("failing in index head LEB %d", lnum); 2222 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2223 if (chance(9, 10)) 2224 return 0; 2225 dbg_rcvry("failing in GC head LEB %d", lnum); 2226 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2227 !ubifs_search_bud(c, lnum)) { 2228 if (chance(19, 20)) 2229 return 0; 2230 dbg_rcvry("failing in non-bud LEB %d", lnum); 2231 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2232 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2233 if (chance(999, 1000)) 2234 return 0; 2235 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2236 } else { 2237 if (chance(9999, 10000)) 2238 return 0; 2239 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2240 } 2241 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2242 c->failure_mode = 1; 2243 dump_stack(); 2244 return 1; 2245 } 2246 2247 static void cut_data(const void *buf, int len) 2248 { 2249 int flen, i; 2250 unsigned char *p = (void *)buf; 2251 2252 flen = (len * (long long)simple_rand()) >> 15; 2253 for (i = flen; i < len; i++) 2254 p[i] = 0xff; 2255 } 2256 2257 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2258 int len, int check) 2259 { 2260 if (in_failure_mode(desc)) 2261 return -EIO; 2262 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2263 } 2264 2265 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2266 int offset, int len, int dtype) 2267 { 2268 int err, failing; 2269 2270 if (in_failure_mode(desc)) 2271 return -EIO; 2272 failing = do_fail(desc, lnum, 1); 2273 if (failing) 2274 cut_data(buf, len); 2275 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2276 if (err) 2277 return err; 2278 if (failing) 2279 return -EIO; 2280 return 0; 2281 } 2282 2283 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2284 int len, int dtype) 2285 { 2286 int err; 2287 2288 if (do_fail(desc, lnum, 1)) 2289 return -EIO; 2290 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2291 if (err) 2292 return err; 2293 if (do_fail(desc, lnum, 1)) 2294 return -EIO; 2295 return 0; 2296 } 2297 2298 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2299 { 2300 int err; 2301 2302 if (do_fail(desc, lnum, 0)) 2303 return -EIO; 2304 err = ubi_leb_erase(desc, lnum); 2305 if (err) 2306 return err; 2307 if (do_fail(desc, lnum, 0)) 2308 return -EIO; 2309 return 0; 2310 } 2311 2312 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2313 { 2314 int err; 2315 2316 if (do_fail(desc, lnum, 0)) 2317 return -EIO; 2318 err = ubi_leb_unmap(desc, lnum); 2319 if (err) 2320 return err; 2321 if (do_fail(desc, lnum, 0)) 2322 return -EIO; 2323 return 0; 2324 } 2325 2326 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2327 { 2328 if (in_failure_mode(desc)) 2329 return -EIO; 2330 return ubi_is_mapped(desc, lnum); 2331 } 2332 2333 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2334 { 2335 int err; 2336 2337 if (do_fail(desc, lnum, 0)) 2338 return -EIO; 2339 err = ubi_leb_map(desc, lnum, dtype); 2340 if (err) 2341 return err; 2342 if (do_fail(desc, lnum, 0)) 2343 return -EIO; 2344 return 0; 2345 } 2346 2347 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2348