xref: /linux/fs/ubifs/debug.c (revision 93d546399c2b7d66a54d5fbd5eee17de19246bf6)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 
36 #ifdef CONFIG_UBIFS_FS_DEBUG
37 
38 DEFINE_SPINLOCK(dbg_lock);
39 
40 static char dbg_key_buf0[128];
41 static char dbg_key_buf1[128];
42 
43 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
44 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
45 unsigned int ubifs_tst_flags;
46 
47 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
48 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
49 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
50 
51 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
52 MODULE_PARM_DESC(debug_chks, "Debug check flags");
53 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
54 
55 static const char *get_key_fmt(int fmt)
56 {
57 	switch (fmt) {
58 	case UBIFS_SIMPLE_KEY_FMT:
59 		return "simple";
60 	default:
61 		return "unknown/invalid format";
62 	}
63 }
64 
65 static const char *get_key_hash(int hash)
66 {
67 	switch (hash) {
68 	case UBIFS_KEY_HASH_R5:
69 		return "R5";
70 	case UBIFS_KEY_HASH_TEST:
71 		return "test";
72 	default:
73 		return "unknown/invalid name hash";
74 	}
75 }
76 
77 static const char *get_key_type(int type)
78 {
79 	switch (type) {
80 	case UBIFS_INO_KEY:
81 		return "inode";
82 	case UBIFS_DENT_KEY:
83 		return "direntry";
84 	case UBIFS_XENT_KEY:
85 		return "xentry";
86 	case UBIFS_DATA_KEY:
87 		return "data";
88 	case UBIFS_TRUN_KEY:
89 		return "truncate";
90 	default:
91 		return "unknown/invalid key";
92 	}
93 }
94 
95 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
96 			char *buffer)
97 {
98 	char *p = buffer;
99 	int type = key_type(c, key);
100 
101 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
102 		switch (type) {
103 		case UBIFS_INO_KEY:
104 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
105 			       get_key_type(type));
106 			break;
107 		case UBIFS_DENT_KEY:
108 		case UBIFS_XENT_KEY:
109 			sprintf(p, "(%lu, %s, %#08x)",
110 				(unsigned long)key_inum(c, key),
111 				get_key_type(type), key_hash(c, key));
112 			break;
113 		case UBIFS_DATA_KEY:
114 			sprintf(p, "(%lu, %s, %u)",
115 				(unsigned long)key_inum(c, key),
116 				get_key_type(type), key_block(c, key));
117 			break;
118 		case UBIFS_TRUN_KEY:
119 			sprintf(p, "(%lu, %s)",
120 				(unsigned long)key_inum(c, key),
121 				get_key_type(type));
122 			break;
123 		default:
124 			sprintf(p, "(bad key type: %#08x, %#08x)",
125 				key->u32[0], key->u32[1]);
126 		}
127 	} else
128 		sprintf(p, "bad key format %d", c->key_fmt);
129 }
130 
131 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
132 {
133 	/* dbg_lock must be held */
134 	sprintf_key(c, key, dbg_key_buf0);
135 	return dbg_key_buf0;
136 }
137 
138 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
139 {
140 	/* dbg_lock must be held */
141 	sprintf_key(c, key, dbg_key_buf1);
142 	return dbg_key_buf1;
143 }
144 
145 const char *dbg_ntype(int type)
146 {
147 	switch (type) {
148 	case UBIFS_PAD_NODE:
149 		return "padding node";
150 	case UBIFS_SB_NODE:
151 		return "superblock node";
152 	case UBIFS_MST_NODE:
153 		return "master node";
154 	case UBIFS_REF_NODE:
155 		return "reference node";
156 	case UBIFS_INO_NODE:
157 		return "inode node";
158 	case UBIFS_DENT_NODE:
159 		return "direntry node";
160 	case UBIFS_XENT_NODE:
161 		return "xentry node";
162 	case UBIFS_DATA_NODE:
163 		return "data node";
164 	case UBIFS_TRUN_NODE:
165 		return "truncate node";
166 	case UBIFS_IDX_NODE:
167 		return "indexing node";
168 	case UBIFS_CS_NODE:
169 		return "commit start node";
170 	case UBIFS_ORPH_NODE:
171 		return "orphan node";
172 	default:
173 		return "unknown node";
174 	}
175 }
176 
177 static const char *dbg_gtype(int type)
178 {
179 	switch (type) {
180 	case UBIFS_NO_NODE_GROUP:
181 		return "no node group";
182 	case UBIFS_IN_NODE_GROUP:
183 		return "in node group";
184 	case UBIFS_LAST_OF_NODE_GROUP:
185 		return "last of node group";
186 	default:
187 		return "unknown";
188 	}
189 }
190 
191 const char *dbg_cstate(int cmt_state)
192 {
193 	switch (cmt_state) {
194 	case COMMIT_RESTING:
195 		return "commit resting";
196 	case COMMIT_BACKGROUND:
197 		return "background commit requested";
198 	case COMMIT_REQUIRED:
199 		return "commit required";
200 	case COMMIT_RUNNING_BACKGROUND:
201 		return "BACKGROUND commit running";
202 	case COMMIT_RUNNING_REQUIRED:
203 		return "commit running and required";
204 	case COMMIT_BROKEN:
205 		return "broken commit";
206 	default:
207 		return "unknown commit state";
208 	}
209 }
210 
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	printk(KERN_DEBUG "\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
224 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 
228 	printk(KERN_DEBUG "Dump in-memory inode:");
229 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
230 	printk(KERN_DEBUG "\tsize           %llu\n",
231 	       (unsigned long long)i_size_read(inode));
232 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
233 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
234 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
235 	printk(KERN_DEBUG "\tatime          %u.%u\n",
236 	       (unsigned int)inode->i_atime.tv_sec,
237 	       (unsigned int)inode->i_atime.tv_nsec);
238 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
239 	       (unsigned int)inode->i_mtime.tv_sec,
240 	       (unsigned int)inode->i_mtime.tv_nsec);
241 	printk(KERN_DEBUG "\tctime          %u.%u\n",
242 	       (unsigned int)inode->i_ctime.tv_sec,
243 	       (unsigned int)inode->i_ctime.tv_nsec);
244 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
245 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
246 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
247 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
248 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
249 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
250 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
251 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
252 	       (unsigned long long)ui->synced_i_size);
253 	printk(KERN_DEBUG "\tui_size        %llu\n",
254 	       (unsigned long long)ui->ui_size);
255 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
256 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
257 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
258 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
259 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
260 }
261 
262 void dbg_dump_node(const struct ubifs_info *c, const void *node)
263 {
264 	int i, n;
265 	union ubifs_key key;
266 	const struct ubifs_ch *ch = node;
267 
268 	if (dbg_failure_mode)
269 		return;
270 
271 	/* If the magic is incorrect, just hexdump the first bytes */
272 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
273 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
274 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
275 			       (void *)node, UBIFS_CH_SZ, 1);
276 		return;
277 	}
278 
279 	spin_lock(&dbg_lock);
280 	dump_ch(node);
281 
282 	switch (ch->node_type) {
283 	case UBIFS_PAD_NODE:
284 	{
285 		const struct ubifs_pad_node *pad = node;
286 
287 		printk(KERN_DEBUG "\tpad_len        %u\n",
288 		       le32_to_cpu(pad->pad_len));
289 		break;
290 	}
291 	case UBIFS_SB_NODE:
292 	{
293 		const struct ubifs_sb_node *sup = node;
294 		unsigned int sup_flags = le32_to_cpu(sup->flags);
295 
296 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
297 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
298 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
299 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
300 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
301 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
302 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
303 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
304 		       le32_to_cpu(sup->min_io_size));
305 		printk(KERN_DEBUG "\tleb_size       %u\n",
306 		       le32_to_cpu(sup->leb_size));
307 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
308 		       le32_to_cpu(sup->leb_cnt));
309 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
310 		       le32_to_cpu(sup->max_leb_cnt));
311 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
312 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
313 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
314 		       le32_to_cpu(sup->log_lebs));
315 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
316 		       le32_to_cpu(sup->lpt_lebs));
317 		printk(KERN_DEBUG "\torph_lebs      %u\n",
318 		       le32_to_cpu(sup->orph_lebs));
319 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
320 		       le32_to_cpu(sup->jhead_cnt));
321 		printk(KERN_DEBUG "\tfanout         %u\n",
322 		       le32_to_cpu(sup->fanout));
323 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
324 		       le32_to_cpu(sup->lsave_cnt));
325 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
326 		       (int)le16_to_cpu(sup->default_compr));
327 		printk(KERN_DEBUG "\trp_size        %llu\n",
328 		       (unsigned long long)le64_to_cpu(sup->rp_size));
329 		printk(KERN_DEBUG "\trp_uid         %u\n",
330 		       le32_to_cpu(sup->rp_uid));
331 		printk(KERN_DEBUG "\trp_gid         %u\n",
332 		       le32_to_cpu(sup->rp_gid));
333 		printk(KERN_DEBUG "\tfmt_version    %u\n",
334 		       le32_to_cpu(sup->fmt_version));
335 		printk(KERN_DEBUG "\ttime_gran      %u\n",
336 		       le32_to_cpu(sup->time_gran));
337 		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
338 		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
339 		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
340 		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
341 		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
342 		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
343 		       sup->uuid[15]);
344 		break;
345 	}
346 	case UBIFS_MST_NODE:
347 	{
348 		const struct ubifs_mst_node *mst = node;
349 
350 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
351 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
352 		printk(KERN_DEBUG "\tcommit number  %llu\n",
353 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
354 		printk(KERN_DEBUG "\tflags          %#x\n",
355 		       le32_to_cpu(mst->flags));
356 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
357 		       le32_to_cpu(mst->log_lnum));
358 		printk(KERN_DEBUG "\troot_lnum      %u\n",
359 		       le32_to_cpu(mst->root_lnum));
360 		printk(KERN_DEBUG "\troot_offs      %u\n",
361 		       le32_to_cpu(mst->root_offs));
362 		printk(KERN_DEBUG "\troot_len       %u\n",
363 		       le32_to_cpu(mst->root_len));
364 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
365 		       le32_to_cpu(mst->gc_lnum));
366 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
367 		       le32_to_cpu(mst->ihead_lnum));
368 		printk(KERN_DEBUG "\tihead_offs     %u\n",
369 		       le32_to_cpu(mst->ihead_offs));
370 		printk(KERN_DEBUG "\tindex_size     %llu\n",
371 		       (unsigned long long)le64_to_cpu(mst->index_size));
372 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
373 		       le32_to_cpu(mst->lpt_lnum));
374 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
375 		       le32_to_cpu(mst->lpt_offs));
376 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
377 		       le32_to_cpu(mst->nhead_lnum));
378 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
379 		       le32_to_cpu(mst->nhead_offs));
380 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
381 		       le32_to_cpu(mst->ltab_lnum));
382 		printk(KERN_DEBUG "\tltab_offs      %u\n",
383 		       le32_to_cpu(mst->ltab_offs));
384 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
385 		       le32_to_cpu(mst->lsave_lnum));
386 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
387 		       le32_to_cpu(mst->lsave_offs));
388 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
389 		       le32_to_cpu(mst->lscan_lnum));
390 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
391 		       le32_to_cpu(mst->leb_cnt));
392 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
393 		       le32_to_cpu(mst->empty_lebs));
394 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
395 		       le32_to_cpu(mst->idx_lebs));
396 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
397 		       (unsigned long long)le64_to_cpu(mst->total_free));
398 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
399 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
400 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
401 		       (unsigned long long)le64_to_cpu(mst->total_used));
402 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
403 		       (unsigned long long)le64_to_cpu(mst->total_dead));
404 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
405 		       (unsigned long long)le64_to_cpu(mst->total_dark));
406 		break;
407 	}
408 	case UBIFS_REF_NODE:
409 	{
410 		const struct ubifs_ref_node *ref = node;
411 
412 		printk(KERN_DEBUG "\tlnum           %u\n",
413 		       le32_to_cpu(ref->lnum));
414 		printk(KERN_DEBUG "\toffs           %u\n",
415 		       le32_to_cpu(ref->offs));
416 		printk(KERN_DEBUG "\tjhead          %u\n",
417 		       le32_to_cpu(ref->jhead));
418 		break;
419 	}
420 	case UBIFS_INO_NODE:
421 	{
422 		const struct ubifs_ino_node *ino = node;
423 
424 		key_read(c, &ino->key, &key);
425 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
426 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
427 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
428 		printk(KERN_DEBUG "\tsize           %llu\n",
429 		       (unsigned long long)le64_to_cpu(ino->size));
430 		printk(KERN_DEBUG "\tnlink          %u\n",
431 		       le32_to_cpu(ino->nlink));
432 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
433 		       (long long)le64_to_cpu(ino->atime_sec),
434 		       le32_to_cpu(ino->atime_nsec));
435 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
436 		       (long long)le64_to_cpu(ino->mtime_sec),
437 		       le32_to_cpu(ino->mtime_nsec));
438 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
439 		       (long long)le64_to_cpu(ino->ctime_sec),
440 		       le32_to_cpu(ino->ctime_nsec));
441 		printk(KERN_DEBUG "\tuid            %u\n",
442 		       le32_to_cpu(ino->uid));
443 		printk(KERN_DEBUG "\tgid            %u\n",
444 		       le32_to_cpu(ino->gid));
445 		printk(KERN_DEBUG "\tmode           %u\n",
446 		       le32_to_cpu(ino->mode));
447 		printk(KERN_DEBUG "\tflags          %#x\n",
448 		       le32_to_cpu(ino->flags));
449 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
450 		       le32_to_cpu(ino->xattr_cnt));
451 		printk(KERN_DEBUG "\txattr_size     %u\n",
452 		       le32_to_cpu(ino->xattr_size));
453 		printk(KERN_DEBUG "\txattr_names    %u\n",
454 		       le32_to_cpu(ino->xattr_names));
455 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
456 		       (int)le16_to_cpu(ino->compr_type));
457 		printk(KERN_DEBUG "\tdata len       %u\n",
458 		       le32_to_cpu(ino->data_len));
459 		break;
460 	}
461 	case UBIFS_DENT_NODE:
462 	case UBIFS_XENT_NODE:
463 	{
464 		const struct ubifs_dent_node *dent = node;
465 		int nlen = le16_to_cpu(dent->nlen);
466 
467 		key_read(c, &dent->key, &key);
468 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
469 		printk(KERN_DEBUG "\tinum           %llu\n",
470 		       (unsigned long long)le64_to_cpu(dent->inum));
471 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
472 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
473 		printk(KERN_DEBUG "\tname           ");
474 
475 		if (nlen > UBIFS_MAX_NLEN)
476 			printk(KERN_DEBUG "(bad name length, not printing, "
477 					  "bad or corrupted node)");
478 		else {
479 			for (i = 0; i < nlen && dent->name[i]; i++)
480 				printk("%c", dent->name[i]);
481 		}
482 		printk("\n");
483 
484 		break;
485 	}
486 	case UBIFS_DATA_NODE:
487 	{
488 		const struct ubifs_data_node *dn = node;
489 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
490 
491 		key_read(c, &dn->key, &key);
492 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
493 		printk(KERN_DEBUG "\tsize           %u\n",
494 		       le32_to_cpu(dn->size));
495 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
496 		       (int)le16_to_cpu(dn->compr_type));
497 		printk(KERN_DEBUG "\tdata size      %d\n",
498 		       dlen);
499 		printk(KERN_DEBUG "\tdata:\n");
500 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
501 			       (void *)&dn->data, dlen, 0);
502 		break;
503 	}
504 	case UBIFS_TRUN_NODE:
505 	{
506 		const struct ubifs_trun_node *trun = node;
507 
508 		printk(KERN_DEBUG "\tinum           %u\n",
509 		       le32_to_cpu(trun->inum));
510 		printk(KERN_DEBUG "\told_size       %llu\n",
511 		       (unsigned long long)le64_to_cpu(trun->old_size));
512 		printk(KERN_DEBUG "\tnew_size       %llu\n",
513 		       (unsigned long long)le64_to_cpu(trun->new_size));
514 		break;
515 	}
516 	case UBIFS_IDX_NODE:
517 	{
518 		const struct ubifs_idx_node *idx = node;
519 
520 		n = le16_to_cpu(idx->child_cnt);
521 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
522 		printk(KERN_DEBUG "\tlevel          %d\n",
523 		       (int)le16_to_cpu(idx->level));
524 		printk(KERN_DEBUG "\tBranches:\n");
525 
526 		for (i = 0; i < n && i < c->fanout - 1; i++) {
527 			const struct ubifs_branch *br;
528 
529 			br = ubifs_idx_branch(c, idx, i);
530 			key_read(c, &br->key, &key);
531 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
532 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
533 			       le32_to_cpu(br->len), DBGKEY(&key));
534 		}
535 		break;
536 	}
537 	case UBIFS_CS_NODE:
538 		break;
539 	case UBIFS_ORPH_NODE:
540 	{
541 		const struct ubifs_orph_node *orph = node;
542 
543 		printk(KERN_DEBUG "\tcommit number  %llu\n",
544 		       (unsigned long long)
545 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
546 		printk(KERN_DEBUG "\tlast node flag %llu\n",
547 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
548 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
549 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
550 		for (i = 0; i < n; i++)
551 			printk(KERN_DEBUG "\t  ino %llu\n",
552 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
553 		break;
554 	}
555 	default:
556 		printk(KERN_DEBUG "node type %d was not recognized\n",
557 		       (int)ch->node_type);
558 	}
559 	spin_unlock(&dbg_lock);
560 }
561 
562 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
563 {
564 	spin_lock(&dbg_lock);
565 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
566 	       req->new_ino, req->dirtied_ino);
567 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
568 	       req->new_ino_d, req->dirtied_ino_d);
569 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
570 	       req->new_page, req->dirtied_page);
571 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
572 	       req->new_dent, req->mod_dent);
573 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
574 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
575 	       req->data_growth, req->dd_growth);
576 	spin_unlock(&dbg_lock);
577 }
578 
579 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
580 {
581 	spin_lock(&dbg_lock);
582 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
583 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
584 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
585 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
586 	       lst->total_dirty);
587 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
588 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
589 	       lst->total_dead);
590 	spin_unlock(&dbg_lock);
591 }
592 
593 void dbg_dump_budg(struct ubifs_info *c)
594 {
595 	int i;
596 	struct rb_node *rb;
597 	struct ubifs_bud *bud;
598 	struct ubifs_gced_idx_leb *idx_gc;
599 
600 	spin_lock(&dbg_lock);
601 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
602 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
603 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
604 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
605 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
606 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
607 	       c->freeable_cnt);
608 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
609 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
610 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
611 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
612 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
613 	       atomic_long_read(&c->dirty_zn_cnt),
614 	       atomic_long_read(&c->clean_zn_cnt));
615 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
616 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
617 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
618 	       c->gc_lnum, c->ihead_lnum);
619 	for (i = 0; i < c->jhead_cnt; i++)
620 		printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
621 		       c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
622 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
623 		bud = rb_entry(rb, struct ubifs_bud, rb);
624 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
625 	}
626 	list_for_each_entry(bud, &c->old_buds, list)
627 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
628 	list_for_each_entry(idx_gc, &c->idx_gc, list)
629 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
630 		       idx_gc->lnum, idx_gc->unmap);
631 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
632 	spin_unlock(&dbg_lock);
633 }
634 
635 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
636 {
637 	printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
638 	       "flags %#x\n", lp->lnum, lp->free, lp->dirty,
639 	       c->leb_size - lp->free - lp->dirty, lp->flags);
640 }
641 
642 void dbg_dump_lprops(struct ubifs_info *c)
643 {
644 	int lnum, err;
645 	struct ubifs_lprops lp;
646 	struct ubifs_lp_stats lst;
647 
648 	printk(KERN_DEBUG "(pid %d) Dumping LEB properties\n", current->pid);
649 	ubifs_get_lp_stats(c, &lst);
650 	dbg_dump_lstats(&lst);
651 
652 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
653 		err = ubifs_read_one_lp(c, lnum, &lp);
654 		if (err)
655 			ubifs_err("cannot read lprops for LEB %d", lnum);
656 
657 		dbg_dump_lprop(c, &lp);
658 	}
659 }
660 
661 void dbg_dump_lpt_info(struct ubifs_info *c)
662 {
663 	int i;
664 
665 	spin_lock(&dbg_lock);
666 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
667 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
668 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
669 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
670 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
671 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
672 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
673 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
674 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
675 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
676 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
677 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
678 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
679 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
680 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
681 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
682 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
683 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
684 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
685 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
686 	       c->nhead_lnum, c->nhead_offs);
687 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
688 	if (c->big_lpt)
689 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
690 		       c->lsave_lnum, c->lsave_offs);
691 	for (i = 0; i < c->lpt_lebs; i++)
692 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
693 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
694 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
695 	spin_unlock(&dbg_lock);
696 }
697 
698 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
699 {
700 	struct ubifs_scan_leb *sleb;
701 	struct ubifs_scan_node *snod;
702 
703 	if (dbg_failure_mode)
704 		return;
705 
706 	printk(KERN_DEBUG "(pid %d) Dumping LEB %d\n", current->pid, lnum);
707 
708 	sleb = ubifs_scan(c, lnum, 0, c->dbg_buf);
709 	if (IS_ERR(sleb)) {
710 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
711 		return;
712 	}
713 
714 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
715 	       sleb->nodes_cnt, sleb->endpt);
716 
717 	list_for_each_entry(snod, &sleb->nodes, list) {
718 		cond_resched();
719 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
720 		       snod->offs, snod->len);
721 		dbg_dump_node(c, snod->node);
722 	}
723 
724 	ubifs_scan_destroy(sleb);
725 	return;
726 }
727 
728 void dbg_dump_znode(const struct ubifs_info *c,
729 		    const struct ubifs_znode *znode)
730 {
731 	int n;
732 	const struct ubifs_zbranch *zbr;
733 
734 	spin_lock(&dbg_lock);
735 	if (znode->parent)
736 		zbr = &znode->parent->zbranch[znode->iip];
737 	else
738 		zbr = &c->zroot;
739 
740 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
741 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
742 	       zbr->len, znode->parent, znode->iip, znode->level,
743 	       znode->child_cnt, znode->flags);
744 
745 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
746 		spin_unlock(&dbg_lock);
747 		return;
748 	}
749 
750 	printk(KERN_DEBUG "zbranches:\n");
751 	for (n = 0; n < znode->child_cnt; n++) {
752 		zbr = &znode->zbranch[n];
753 		if (znode->level > 0)
754 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
755 					  "%s\n", n, zbr->znode, zbr->lnum,
756 					  zbr->offs, zbr->len,
757 					  DBGKEY(&zbr->key));
758 		else
759 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
760 					  "%s\n", n, zbr->znode, zbr->lnum,
761 					  zbr->offs, zbr->len,
762 					  DBGKEY(&zbr->key));
763 	}
764 	spin_unlock(&dbg_lock);
765 }
766 
767 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
768 {
769 	int i;
770 
771 	printk(KERN_DEBUG "(pid %d) Dumping heap cat %d (%d elements)\n",
772 	       current->pid, cat, heap->cnt);
773 	for (i = 0; i < heap->cnt; i++) {
774 		struct ubifs_lprops *lprops = heap->arr[i];
775 
776 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
777 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
778 		       lprops->free, lprops->dirty, lprops->flags);
779 	}
780 }
781 
782 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
783 		    struct ubifs_nnode *parent, int iip)
784 {
785 	int i;
786 
787 	printk(KERN_DEBUG "(pid %d) Dumping pnode:\n", current->pid);
788 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
789 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
790 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
791 	       pnode->flags, iip, pnode->level, pnode->num);
792 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
793 		struct ubifs_lprops *lp = &pnode->lprops[i];
794 
795 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
796 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
797 	}
798 }
799 
800 void dbg_dump_tnc(struct ubifs_info *c)
801 {
802 	struct ubifs_znode *znode;
803 	int level;
804 
805 	printk(KERN_DEBUG "\n");
806 	printk(KERN_DEBUG "(pid %d) Dumping the TNC tree\n", current->pid);
807 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
808 	level = znode->level;
809 	printk(KERN_DEBUG "== Level %d ==\n", level);
810 	while (znode) {
811 		if (level != znode->level) {
812 			level = znode->level;
813 			printk(KERN_DEBUG "== Level %d ==\n", level);
814 		}
815 		dbg_dump_znode(c, znode);
816 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
817 	}
818 
819 	printk(KERN_DEBUG "\n");
820 }
821 
822 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
823 		      void *priv)
824 {
825 	dbg_dump_znode(c, znode);
826 	return 0;
827 }
828 
829 /**
830  * dbg_dump_index - dump the on-flash index.
831  * @c: UBIFS file-system description object
832  *
833  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
834  * which dumps only in-memory znodes and does not read znodes which from flash.
835  */
836 void dbg_dump_index(struct ubifs_info *c)
837 {
838 	dbg_walk_index(c, NULL, dump_znode, NULL);
839 }
840 
841 /**
842  * dbg_check_synced_i_size - check synchronized inode size.
843  * @inode: inode to check
844  *
845  * If inode is clean, synchronized inode size has to be equivalent to current
846  * inode size. This function has to be called only for locked inodes (@i_mutex
847  * has to be locked). Returns %0 if synchronized inode size if correct, and
848  * %-EINVAL if not.
849  */
850 int dbg_check_synced_i_size(struct inode *inode)
851 {
852 	int err = 0;
853 	struct ubifs_inode *ui = ubifs_inode(inode);
854 
855 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
856 		return 0;
857 	if (!S_ISREG(inode->i_mode))
858 		return 0;
859 
860 	mutex_lock(&ui->ui_mutex);
861 	spin_lock(&ui->ui_lock);
862 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
863 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
864 			  "is clean", ui->ui_size, ui->synced_i_size);
865 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
866 			  inode->i_mode, i_size_read(inode));
867 		dbg_dump_stack();
868 		err = -EINVAL;
869 	}
870 	spin_unlock(&ui->ui_lock);
871 	mutex_unlock(&ui->ui_mutex);
872 	return err;
873 }
874 
875 /*
876  * dbg_check_dir - check directory inode size and link count.
877  * @c: UBIFS file-system description object
878  * @dir: the directory to calculate size for
879  * @size: the result is returned here
880  *
881  * This function makes sure that directory size and link count are correct.
882  * Returns zero in case of success and a negative error code in case of
883  * failure.
884  *
885  * Note, it is good idea to make sure the @dir->i_mutex is locked before
886  * calling this function.
887  */
888 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
889 {
890 	unsigned int nlink = 2;
891 	union ubifs_key key;
892 	struct ubifs_dent_node *dent, *pdent = NULL;
893 	struct qstr nm = { .name = NULL };
894 	loff_t size = UBIFS_INO_NODE_SZ;
895 
896 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
897 		return 0;
898 
899 	if (!S_ISDIR(dir->i_mode))
900 		return 0;
901 
902 	lowest_dent_key(c, &key, dir->i_ino);
903 	while (1) {
904 		int err;
905 
906 		dent = ubifs_tnc_next_ent(c, &key, &nm);
907 		if (IS_ERR(dent)) {
908 			err = PTR_ERR(dent);
909 			if (err == -ENOENT)
910 				break;
911 			return err;
912 		}
913 
914 		nm.name = dent->name;
915 		nm.len = le16_to_cpu(dent->nlen);
916 		size += CALC_DENT_SIZE(nm.len);
917 		if (dent->type == UBIFS_ITYPE_DIR)
918 			nlink += 1;
919 		kfree(pdent);
920 		pdent = dent;
921 		key_read(c, &dent->key, &key);
922 	}
923 	kfree(pdent);
924 
925 	if (i_size_read(dir) != size) {
926 		ubifs_err("directory inode %lu has size %llu, "
927 			  "but calculated size is %llu", dir->i_ino,
928 			  (unsigned long long)i_size_read(dir),
929 			  (unsigned long long)size);
930 		dump_stack();
931 		return -EINVAL;
932 	}
933 	if (dir->i_nlink != nlink) {
934 		ubifs_err("directory inode %lu has nlink %u, but calculated "
935 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
936 		dump_stack();
937 		return -EINVAL;
938 	}
939 
940 	return 0;
941 }
942 
943 /**
944  * dbg_check_key_order - make sure that colliding keys are properly ordered.
945  * @c: UBIFS file-system description object
946  * @zbr1: first zbranch
947  * @zbr2: following zbranch
948  *
949  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
950  * names of the direntries/xentries which are referred by the keys. This
951  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
952  * sure the name of direntry/xentry referred by @zbr1 is less than
953  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
954  * and a negative error code in case of failure.
955  */
956 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
957 			       struct ubifs_zbranch *zbr2)
958 {
959 	int err, nlen1, nlen2, cmp;
960 	struct ubifs_dent_node *dent1, *dent2;
961 	union ubifs_key key;
962 
963 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
964 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
965 	if (!dent1)
966 		return -ENOMEM;
967 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
968 	if (!dent2) {
969 		err = -ENOMEM;
970 		goto out_free;
971 	}
972 
973 	err = ubifs_tnc_read_node(c, zbr1, dent1);
974 	if (err)
975 		goto out_free;
976 	err = ubifs_validate_entry(c, dent1);
977 	if (err)
978 		goto out_free;
979 
980 	err = ubifs_tnc_read_node(c, zbr2, dent2);
981 	if (err)
982 		goto out_free;
983 	err = ubifs_validate_entry(c, dent2);
984 	if (err)
985 		goto out_free;
986 
987 	/* Make sure node keys are the same as in zbranch */
988 	err = 1;
989 	key_read(c, &dent1->key, &key);
990 	if (keys_cmp(c, &zbr1->key, &key)) {
991 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
992 			zbr1->offs, DBGKEY(&key));
993 		dbg_err("but it should have key %s according to tnc",
994 			DBGKEY(&zbr1->key));
995 			dbg_dump_node(c, dent1);
996 			goto out_free;
997 	}
998 
999 	key_read(c, &dent2->key, &key);
1000 	if (keys_cmp(c, &zbr2->key, &key)) {
1001 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1002 			zbr1->offs, DBGKEY(&key));
1003 		dbg_err("but it should have key %s according to tnc",
1004 			DBGKEY(&zbr2->key));
1005 			dbg_dump_node(c, dent2);
1006 			goto out_free;
1007 	}
1008 
1009 	nlen1 = le16_to_cpu(dent1->nlen);
1010 	nlen2 = le16_to_cpu(dent2->nlen);
1011 
1012 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1013 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1014 		err = 0;
1015 		goto out_free;
1016 	}
1017 	if (cmp == 0 && nlen1 == nlen2)
1018 		dbg_err("2 xent/dent nodes with the same name");
1019 	else
1020 		dbg_err("bad order of colliding key %s",
1021 			DBGKEY(&key));
1022 
1023 	dbg_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1024 	dbg_dump_node(c, dent1);
1025 	dbg_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1026 	dbg_dump_node(c, dent2);
1027 
1028 out_free:
1029 	kfree(dent2);
1030 	kfree(dent1);
1031 	return err;
1032 }
1033 
1034 /**
1035  * dbg_check_znode - check if znode is all right.
1036  * @c: UBIFS file-system description object
1037  * @zbr: zbranch which points to this znode
1038  *
1039  * This function makes sure that znode referred to by @zbr is all right.
1040  * Returns zero if it is, and %-EINVAL if it is not.
1041  */
1042 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1043 {
1044 	struct ubifs_znode *znode = zbr->znode;
1045 	struct ubifs_znode *zp = znode->parent;
1046 	int n, err, cmp;
1047 
1048 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1049 		err = 1;
1050 		goto out;
1051 	}
1052 	if (znode->level < 0) {
1053 		err = 2;
1054 		goto out;
1055 	}
1056 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1057 		err = 3;
1058 		goto out;
1059 	}
1060 
1061 	if (zbr->len == 0)
1062 		/* Only dirty zbranch may have no on-flash nodes */
1063 		if (!ubifs_zn_dirty(znode)) {
1064 			err = 4;
1065 			goto out;
1066 		}
1067 
1068 	if (ubifs_zn_dirty(znode)) {
1069 		/*
1070 		 * If znode is dirty, its parent has to be dirty as well. The
1071 		 * order of the operation is important, so we have to have
1072 		 * memory barriers.
1073 		 */
1074 		smp_mb();
1075 		if (zp && !ubifs_zn_dirty(zp)) {
1076 			/*
1077 			 * The dirty flag is atomic and is cleared outside the
1078 			 * TNC mutex, so znode's dirty flag may now have
1079 			 * been cleared. The child is always cleared before the
1080 			 * parent, so we just need to check again.
1081 			 */
1082 			smp_mb();
1083 			if (ubifs_zn_dirty(znode)) {
1084 				err = 5;
1085 				goto out;
1086 			}
1087 		}
1088 	}
1089 
1090 	if (zp) {
1091 		const union ubifs_key *min, *max;
1092 
1093 		if (znode->level != zp->level - 1) {
1094 			err = 6;
1095 			goto out;
1096 		}
1097 
1098 		/* Make sure the 'parent' pointer in our znode is correct */
1099 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1100 		if (!err) {
1101 			/* This zbranch does not exist in the parent */
1102 			err = 7;
1103 			goto out;
1104 		}
1105 
1106 		if (znode->iip >= zp->child_cnt) {
1107 			err = 8;
1108 			goto out;
1109 		}
1110 
1111 		if (znode->iip != n) {
1112 			/* This may happen only in case of collisions */
1113 			if (keys_cmp(c, &zp->zbranch[n].key,
1114 				     &zp->zbranch[znode->iip].key)) {
1115 				err = 9;
1116 				goto out;
1117 			}
1118 			n = znode->iip;
1119 		}
1120 
1121 		/*
1122 		 * Make sure that the first key in our znode is greater than or
1123 		 * equal to the key in the pointing zbranch.
1124 		 */
1125 		min = &zbr->key;
1126 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1127 		if (cmp == 1) {
1128 			err = 10;
1129 			goto out;
1130 		}
1131 
1132 		if (n + 1 < zp->child_cnt) {
1133 			max = &zp->zbranch[n + 1].key;
1134 
1135 			/*
1136 			 * Make sure the last key in our znode is less or
1137 			 * equivalent than the the key in zbranch which goes
1138 			 * after our pointing zbranch.
1139 			 */
1140 			cmp = keys_cmp(c, max,
1141 				&znode->zbranch[znode->child_cnt - 1].key);
1142 			if (cmp == -1) {
1143 				err = 11;
1144 				goto out;
1145 			}
1146 		}
1147 	} else {
1148 		/* This may only be root znode */
1149 		if (zbr != &c->zroot) {
1150 			err = 12;
1151 			goto out;
1152 		}
1153 	}
1154 
1155 	/*
1156 	 * Make sure that next key is greater or equivalent then the previous
1157 	 * one.
1158 	 */
1159 	for (n = 1; n < znode->child_cnt; n++) {
1160 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1161 			       &znode->zbranch[n].key);
1162 		if (cmp > 0) {
1163 			err = 13;
1164 			goto out;
1165 		}
1166 		if (cmp == 0) {
1167 			/* This can only be keys with colliding hash */
1168 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1169 				err = 14;
1170 				goto out;
1171 			}
1172 
1173 			if (znode->level != 0 || c->replaying)
1174 				continue;
1175 
1176 			/*
1177 			 * Colliding keys should follow binary order of
1178 			 * corresponding xentry/dentry names.
1179 			 */
1180 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1181 						  &znode->zbranch[n]);
1182 			if (err < 0)
1183 				return err;
1184 			if (err) {
1185 				err = 15;
1186 				goto out;
1187 			}
1188 		}
1189 	}
1190 
1191 	for (n = 0; n < znode->child_cnt; n++) {
1192 		if (!znode->zbranch[n].znode &&
1193 		    (znode->zbranch[n].lnum == 0 ||
1194 		     znode->zbranch[n].len == 0)) {
1195 			err = 16;
1196 			goto out;
1197 		}
1198 
1199 		if (znode->zbranch[n].lnum != 0 &&
1200 		    znode->zbranch[n].len == 0) {
1201 			err = 17;
1202 			goto out;
1203 		}
1204 
1205 		if (znode->zbranch[n].lnum == 0 &&
1206 		    znode->zbranch[n].len != 0) {
1207 			err = 18;
1208 			goto out;
1209 		}
1210 
1211 		if (znode->zbranch[n].lnum == 0 &&
1212 		    znode->zbranch[n].offs != 0) {
1213 			err = 19;
1214 			goto out;
1215 		}
1216 
1217 		if (znode->level != 0 && znode->zbranch[n].znode)
1218 			if (znode->zbranch[n].znode->parent != znode) {
1219 				err = 20;
1220 				goto out;
1221 			}
1222 	}
1223 
1224 	return 0;
1225 
1226 out:
1227 	ubifs_err("failed, error %d", err);
1228 	ubifs_msg("dump of the znode");
1229 	dbg_dump_znode(c, znode);
1230 	if (zp) {
1231 		ubifs_msg("dump of the parent znode");
1232 		dbg_dump_znode(c, zp);
1233 	}
1234 	dump_stack();
1235 	return -EINVAL;
1236 }
1237 
1238 /**
1239  * dbg_check_tnc - check TNC tree.
1240  * @c: UBIFS file-system description object
1241  * @extra: do extra checks that are possible at start commit
1242  *
1243  * This function traverses whole TNC tree and checks every znode. Returns zero
1244  * if everything is all right and %-EINVAL if something is wrong with TNC.
1245  */
1246 int dbg_check_tnc(struct ubifs_info *c, int extra)
1247 {
1248 	struct ubifs_znode *znode;
1249 	long clean_cnt = 0, dirty_cnt = 0;
1250 	int err, last;
1251 
1252 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1253 		return 0;
1254 
1255 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1256 	if (!c->zroot.znode)
1257 		return 0;
1258 
1259 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1260 	while (1) {
1261 		struct ubifs_znode *prev;
1262 		struct ubifs_zbranch *zbr;
1263 
1264 		if (!znode->parent)
1265 			zbr = &c->zroot;
1266 		else
1267 			zbr = &znode->parent->zbranch[znode->iip];
1268 
1269 		err = dbg_check_znode(c, zbr);
1270 		if (err)
1271 			return err;
1272 
1273 		if (extra) {
1274 			if (ubifs_zn_dirty(znode))
1275 				dirty_cnt += 1;
1276 			else
1277 				clean_cnt += 1;
1278 		}
1279 
1280 		prev = znode;
1281 		znode = ubifs_tnc_postorder_next(znode);
1282 		if (!znode)
1283 			break;
1284 
1285 		/*
1286 		 * If the last key of this znode is equivalent to the first key
1287 		 * of the next znode (collision), then check order of the keys.
1288 		 */
1289 		last = prev->child_cnt - 1;
1290 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1291 		    !keys_cmp(c, &prev->zbranch[last].key,
1292 			      &znode->zbranch[0].key)) {
1293 			err = dbg_check_key_order(c, &prev->zbranch[last],
1294 						  &znode->zbranch[0]);
1295 			if (err < 0)
1296 				return err;
1297 			if (err) {
1298 				ubifs_msg("first znode");
1299 				dbg_dump_znode(c, prev);
1300 				ubifs_msg("second znode");
1301 				dbg_dump_znode(c, znode);
1302 				return -EINVAL;
1303 			}
1304 		}
1305 	}
1306 
1307 	if (extra) {
1308 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1309 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1310 				  atomic_long_read(&c->clean_zn_cnt),
1311 				  clean_cnt);
1312 			return -EINVAL;
1313 		}
1314 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1315 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1316 				  atomic_long_read(&c->dirty_zn_cnt),
1317 				  dirty_cnt);
1318 			return -EINVAL;
1319 		}
1320 	}
1321 
1322 	return 0;
1323 }
1324 
1325 /**
1326  * dbg_walk_index - walk the on-flash index.
1327  * @c: UBIFS file-system description object
1328  * @leaf_cb: called for each leaf node
1329  * @znode_cb: called for each indexing node
1330  * @priv: private date which is passed to callbacks
1331  *
1332  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1333  * node and @znode_cb for each indexing node. Returns zero in case of success
1334  * and a negative error code in case of failure.
1335  *
1336  * It would be better if this function removed every znode it pulled to into
1337  * the TNC, so that the behavior more closely matched the non-debugging
1338  * behavior.
1339  */
1340 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1341 		   dbg_znode_callback znode_cb, void *priv)
1342 {
1343 	int err;
1344 	struct ubifs_zbranch *zbr;
1345 	struct ubifs_znode *znode, *child;
1346 
1347 	mutex_lock(&c->tnc_mutex);
1348 	/* If the root indexing node is not in TNC - pull it */
1349 	if (!c->zroot.znode) {
1350 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1351 		if (IS_ERR(c->zroot.znode)) {
1352 			err = PTR_ERR(c->zroot.znode);
1353 			c->zroot.znode = NULL;
1354 			goto out_unlock;
1355 		}
1356 	}
1357 
1358 	/*
1359 	 * We are going to traverse the indexing tree in the postorder manner.
1360 	 * Go down and find the leftmost indexing node where we are going to
1361 	 * start from.
1362 	 */
1363 	znode = c->zroot.znode;
1364 	while (znode->level > 0) {
1365 		zbr = &znode->zbranch[0];
1366 		child = zbr->znode;
1367 		if (!child) {
1368 			child = ubifs_load_znode(c, zbr, znode, 0);
1369 			if (IS_ERR(child)) {
1370 				err = PTR_ERR(child);
1371 				goto out_unlock;
1372 			}
1373 			zbr->znode = child;
1374 		}
1375 
1376 		znode = child;
1377 	}
1378 
1379 	/* Iterate over all indexing nodes */
1380 	while (1) {
1381 		int idx;
1382 
1383 		cond_resched();
1384 
1385 		if (znode_cb) {
1386 			err = znode_cb(c, znode, priv);
1387 			if (err) {
1388 				ubifs_err("znode checking function returned "
1389 					  "error %d", err);
1390 				dbg_dump_znode(c, znode);
1391 				goto out_dump;
1392 			}
1393 		}
1394 		if (leaf_cb && znode->level == 0) {
1395 			for (idx = 0; idx < znode->child_cnt; idx++) {
1396 				zbr = &znode->zbranch[idx];
1397 				err = leaf_cb(c, zbr, priv);
1398 				if (err) {
1399 					ubifs_err("leaf checking function "
1400 						  "returned error %d, for leaf "
1401 						  "at LEB %d:%d",
1402 						  err, zbr->lnum, zbr->offs);
1403 					goto out_dump;
1404 				}
1405 			}
1406 		}
1407 
1408 		if (!znode->parent)
1409 			break;
1410 
1411 		idx = znode->iip + 1;
1412 		znode = znode->parent;
1413 		if (idx < znode->child_cnt) {
1414 			/* Switch to the next index in the parent */
1415 			zbr = &znode->zbranch[idx];
1416 			child = zbr->znode;
1417 			if (!child) {
1418 				child = ubifs_load_znode(c, zbr, znode, idx);
1419 				if (IS_ERR(child)) {
1420 					err = PTR_ERR(child);
1421 					goto out_unlock;
1422 				}
1423 				zbr->znode = child;
1424 			}
1425 			znode = child;
1426 		} else
1427 			/*
1428 			 * This is the last child, switch to the parent and
1429 			 * continue.
1430 			 */
1431 			continue;
1432 
1433 		/* Go to the lowest leftmost znode in the new sub-tree */
1434 		while (znode->level > 0) {
1435 			zbr = &znode->zbranch[0];
1436 			child = zbr->znode;
1437 			if (!child) {
1438 				child = ubifs_load_znode(c, zbr, znode, 0);
1439 				if (IS_ERR(child)) {
1440 					err = PTR_ERR(child);
1441 					goto out_unlock;
1442 				}
1443 				zbr->znode = child;
1444 			}
1445 			znode = child;
1446 		}
1447 	}
1448 
1449 	mutex_unlock(&c->tnc_mutex);
1450 	return 0;
1451 
1452 out_dump:
1453 	if (znode->parent)
1454 		zbr = &znode->parent->zbranch[znode->iip];
1455 	else
1456 		zbr = &c->zroot;
1457 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1458 	dbg_dump_znode(c, znode);
1459 out_unlock:
1460 	mutex_unlock(&c->tnc_mutex);
1461 	return err;
1462 }
1463 
1464 /**
1465  * add_size - add znode size to partially calculated index size.
1466  * @c: UBIFS file-system description object
1467  * @znode: znode to add size for
1468  * @priv: partially calculated index size
1469  *
1470  * This is a helper function for 'dbg_check_idx_size()' which is called for
1471  * every indexing node and adds its size to the 'long long' variable pointed to
1472  * by @priv.
1473  */
1474 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1475 {
1476 	long long *idx_size = priv;
1477 	int add;
1478 
1479 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1480 	add = ALIGN(add, 8);
1481 	*idx_size += add;
1482 	return 0;
1483 }
1484 
1485 /**
1486  * dbg_check_idx_size - check index size.
1487  * @c: UBIFS file-system description object
1488  * @idx_size: size to check
1489  *
1490  * This function walks the UBIFS index, calculates its size and checks that the
1491  * size is equivalent to @idx_size. Returns zero in case of success and a
1492  * negative error code in case of failure.
1493  */
1494 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1495 {
1496 	int err;
1497 	long long calc = 0;
1498 
1499 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1500 		return 0;
1501 
1502 	err = dbg_walk_index(c, NULL, add_size, &calc);
1503 	if (err) {
1504 		ubifs_err("error %d while walking the index", err);
1505 		return err;
1506 	}
1507 
1508 	if (calc != idx_size) {
1509 		ubifs_err("index size check failed: calculated size is %lld, "
1510 			  "should be %lld", calc, idx_size);
1511 		dump_stack();
1512 		return -EINVAL;
1513 	}
1514 
1515 	return 0;
1516 }
1517 
1518 /**
1519  * struct fsck_inode - information about an inode used when checking the file-system.
1520  * @rb: link in the RB-tree of inodes
1521  * @inum: inode number
1522  * @mode: inode type, permissions, etc
1523  * @nlink: inode link count
1524  * @xattr_cnt: count of extended attributes
1525  * @references: how many directory/xattr entries refer this inode (calculated
1526  *              while walking the index)
1527  * @calc_cnt: for directory inode count of child directories
1528  * @size: inode size (read from on-flash inode)
1529  * @xattr_sz: summary size of all extended attributes (read from on-flash
1530  *            inode)
1531  * @calc_sz: for directories calculated directory size
1532  * @calc_xcnt: count of extended attributes
1533  * @calc_xsz: calculated summary size of all extended attributes
1534  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1535  *             inode (read from on-flash inode)
1536  * @calc_xnms: calculated sum of lengths of all extended attribute names
1537  */
1538 struct fsck_inode {
1539 	struct rb_node rb;
1540 	ino_t inum;
1541 	umode_t mode;
1542 	unsigned int nlink;
1543 	unsigned int xattr_cnt;
1544 	int references;
1545 	int calc_cnt;
1546 	long long size;
1547 	unsigned int xattr_sz;
1548 	long long calc_sz;
1549 	long long calc_xcnt;
1550 	long long calc_xsz;
1551 	unsigned int xattr_nms;
1552 	long long calc_xnms;
1553 };
1554 
1555 /**
1556  * struct fsck_data - private FS checking information.
1557  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1558  */
1559 struct fsck_data {
1560 	struct rb_root inodes;
1561 };
1562 
1563 /**
1564  * add_inode - add inode information to RB-tree of inodes.
1565  * @c: UBIFS file-system description object
1566  * @fsckd: FS checking information
1567  * @ino: raw UBIFS inode to add
1568  *
1569  * This is a helper function for 'check_leaf()' which adds information about
1570  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1571  * case of success and a negative error code in case of failure.
1572  */
1573 static struct fsck_inode *add_inode(struct ubifs_info *c,
1574 				    struct fsck_data *fsckd,
1575 				    struct ubifs_ino_node *ino)
1576 {
1577 	struct rb_node **p, *parent = NULL;
1578 	struct fsck_inode *fscki;
1579 	ino_t inum = key_inum_flash(c, &ino->key);
1580 
1581 	p = &fsckd->inodes.rb_node;
1582 	while (*p) {
1583 		parent = *p;
1584 		fscki = rb_entry(parent, struct fsck_inode, rb);
1585 		if (inum < fscki->inum)
1586 			p = &(*p)->rb_left;
1587 		else if (inum > fscki->inum)
1588 			p = &(*p)->rb_right;
1589 		else
1590 			return fscki;
1591 	}
1592 
1593 	if (inum > c->highest_inum) {
1594 		ubifs_err("too high inode number, max. is %lu",
1595 			  (unsigned long)c->highest_inum);
1596 		return ERR_PTR(-EINVAL);
1597 	}
1598 
1599 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1600 	if (!fscki)
1601 		return ERR_PTR(-ENOMEM);
1602 
1603 	fscki->inum = inum;
1604 	fscki->nlink = le32_to_cpu(ino->nlink);
1605 	fscki->size = le64_to_cpu(ino->size);
1606 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1607 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1608 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1609 	fscki->mode = le32_to_cpu(ino->mode);
1610 	if (S_ISDIR(fscki->mode)) {
1611 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1612 		fscki->calc_cnt = 2;
1613 	}
1614 	rb_link_node(&fscki->rb, parent, p);
1615 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1616 	return fscki;
1617 }
1618 
1619 /**
1620  * search_inode - search inode in the RB-tree of inodes.
1621  * @fsckd: FS checking information
1622  * @inum: inode number to search
1623  *
1624  * This is a helper function for 'check_leaf()' which searches inode @inum in
1625  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1626  * the inode was not found.
1627  */
1628 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1629 {
1630 	struct rb_node *p;
1631 	struct fsck_inode *fscki;
1632 
1633 	p = fsckd->inodes.rb_node;
1634 	while (p) {
1635 		fscki = rb_entry(p, struct fsck_inode, rb);
1636 		if (inum < fscki->inum)
1637 			p = p->rb_left;
1638 		else if (inum > fscki->inum)
1639 			p = p->rb_right;
1640 		else
1641 			return fscki;
1642 	}
1643 	return NULL;
1644 }
1645 
1646 /**
1647  * read_add_inode - read inode node and add it to RB-tree of inodes.
1648  * @c: UBIFS file-system description object
1649  * @fsckd: FS checking information
1650  * @inum: inode number to read
1651  *
1652  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1653  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1654  * information pointer in case of success and a negative error code in case of
1655  * failure.
1656  */
1657 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1658 					 struct fsck_data *fsckd, ino_t inum)
1659 {
1660 	int n, err;
1661 	union ubifs_key key;
1662 	struct ubifs_znode *znode;
1663 	struct ubifs_zbranch *zbr;
1664 	struct ubifs_ino_node *ino;
1665 	struct fsck_inode *fscki;
1666 
1667 	fscki = search_inode(fsckd, inum);
1668 	if (fscki)
1669 		return fscki;
1670 
1671 	ino_key_init(c, &key, inum);
1672 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1673 	if (!err) {
1674 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1675 		return ERR_PTR(-ENOENT);
1676 	} else if (err < 0) {
1677 		ubifs_err("error %d while looking up inode %lu",
1678 			  err, (unsigned long)inum);
1679 		return ERR_PTR(err);
1680 	}
1681 
1682 	zbr = &znode->zbranch[n];
1683 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1684 		ubifs_err("bad node %lu node length %d",
1685 			  (unsigned long)inum, zbr->len);
1686 		return ERR_PTR(-EINVAL);
1687 	}
1688 
1689 	ino = kmalloc(zbr->len, GFP_NOFS);
1690 	if (!ino)
1691 		return ERR_PTR(-ENOMEM);
1692 
1693 	err = ubifs_tnc_read_node(c, zbr, ino);
1694 	if (err) {
1695 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1696 			  zbr->lnum, zbr->offs, err);
1697 		kfree(ino);
1698 		return ERR_PTR(err);
1699 	}
1700 
1701 	fscki = add_inode(c, fsckd, ino);
1702 	kfree(ino);
1703 	if (IS_ERR(fscki)) {
1704 		ubifs_err("error %ld while adding inode %lu node",
1705 			  PTR_ERR(fscki), (unsigned long)inum);
1706 		return fscki;
1707 	}
1708 
1709 	return fscki;
1710 }
1711 
1712 /**
1713  * check_leaf - check leaf node.
1714  * @c: UBIFS file-system description object
1715  * @zbr: zbranch of the leaf node to check
1716  * @priv: FS checking information
1717  *
1718  * This is a helper function for 'dbg_check_filesystem()' which is called for
1719  * every single leaf node while walking the indexing tree. It checks that the
1720  * leaf node referred from the indexing tree exists, has correct CRC, and does
1721  * some other basic validation. This function is also responsible for building
1722  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1723  * calculates reference count, size, etc for each inode in order to later
1724  * compare them to the information stored inside the inodes and detect possible
1725  * inconsistencies. Returns zero in case of success and a negative error code
1726  * in case of failure.
1727  */
1728 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1729 		      void *priv)
1730 {
1731 	ino_t inum;
1732 	void *node;
1733 	struct ubifs_ch *ch;
1734 	int err, type = key_type(c, &zbr->key);
1735 	struct fsck_inode *fscki;
1736 
1737 	if (zbr->len < UBIFS_CH_SZ) {
1738 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1739 			  zbr->len, zbr->lnum, zbr->offs);
1740 		return -EINVAL;
1741 	}
1742 
1743 	node = kmalloc(zbr->len, GFP_NOFS);
1744 	if (!node)
1745 		return -ENOMEM;
1746 
1747 	err = ubifs_tnc_read_node(c, zbr, node);
1748 	if (err) {
1749 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1750 			  zbr->lnum, zbr->offs, err);
1751 		goto out_free;
1752 	}
1753 
1754 	/* If this is an inode node, add it to RB-tree of inodes */
1755 	if (type == UBIFS_INO_KEY) {
1756 		fscki = add_inode(c, priv, node);
1757 		if (IS_ERR(fscki)) {
1758 			err = PTR_ERR(fscki);
1759 			ubifs_err("error %d while adding inode node", err);
1760 			goto out_dump;
1761 		}
1762 		goto out;
1763 	}
1764 
1765 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1766 	    type != UBIFS_DATA_KEY) {
1767 		ubifs_err("unexpected node type %d at LEB %d:%d",
1768 			  type, zbr->lnum, zbr->offs);
1769 		err = -EINVAL;
1770 		goto out_free;
1771 	}
1772 
1773 	ch = node;
1774 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1775 		ubifs_err("too high sequence number, max. is %llu",
1776 			  c->max_sqnum);
1777 		err = -EINVAL;
1778 		goto out_dump;
1779 	}
1780 
1781 	if (type == UBIFS_DATA_KEY) {
1782 		long long blk_offs;
1783 		struct ubifs_data_node *dn = node;
1784 
1785 		/*
1786 		 * Search the inode node this data node belongs to and insert
1787 		 * it to the RB-tree of inodes.
1788 		 */
1789 		inum = key_inum_flash(c, &dn->key);
1790 		fscki = read_add_inode(c, priv, inum);
1791 		if (IS_ERR(fscki)) {
1792 			err = PTR_ERR(fscki);
1793 			ubifs_err("error %d while processing data node and "
1794 				  "trying to find inode node %lu",
1795 				  err, (unsigned long)inum);
1796 			goto out_dump;
1797 		}
1798 
1799 		/* Make sure the data node is within inode size */
1800 		blk_offs = key_block_flash(c, &dn->key);
1801 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1802 		blk_offs += le32_to_cpu(dn->size);
1803 		if (blk_offs > fscki->size) {
1804 			ubifs_err("data node at LEB %d:%d is not within inode "
1805 				  "size %lld", zbr->lnum, zbr->offs,
1806 				  fscki->size);
1807 			err = -EINVAL;
1808 			goto out_dump;
1809 		}
1810 	} else {
1811 		int nlen;
1812 		struct ubifs_dent_node *dent = node;
1813 		struct fsck_inode *fscki1;
1814 
1815 		err = ubifs_validate_entry(c, dent);
1816 		if (err)
1817 			goto out_dump;
1818 
1819 		/*
1820 		 * Search the inode node this entry refers to and the parent
1821 		 * inode node and insert them to the RB-tree of inodes.
1822 		 */
1823 		inum = le64_to_cpu(dent->inum);
1824 		fscki = read_add_inode(c, priv, inum);
1825 		if (IS_ERR(fscki)) {
1826 			err = PTR_ERR(fscki);
1827 			ubifs_err("error %d while processing entry node and "
1828 				  "trying to find inode node %lu",
1829 				  err, (unsigned long)inum);
1830 			goto out_dump;
1831 		}
1832 
1833 		/* Count how many direntries or xentries refers this inode */
1834 		fscki->references += 1;
1835 
1836 		inum = key_inum_flash(c, &dent->key);
1837 		fscki1 = read_add_inode(c, priv, inum);
1838 		if (IS_ERR(fscki1)) {
1839 			err = PTR_ERR(fscki);
1840 			ubifs_err("error %d while processing entry node and "
1841 				  "trying to find parent inode node %lu",
1842 				  err, (unsigned long)inum);
1843 			goto out_dump;
1844 		}
1845 
1846 		nlen = le16_to_cpu(dent->nlen);
1847 		if (type == UBIFS_XENT_KEY) {
1848 			fscki1->calc_xcnt += 1;
1849 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1850 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1851 			fscki1->calc_xnms += nlen;
1852 		} else {
1853 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1854 			if (dent->type == UBIFS_ITYPE_DIR)
1855 				fscki1->calc_cnt += 1;
1856 		}
1857 	}
1858 
1859 out:
1860 	kfree(node);
1861 	return 0;
1862 
1863 out_dump:
1864 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1865 	dbg_dump_node(c, node);
1866 out_free:
1867 	kfree(node);
1868 	return err;
1869 }
1870 
1871 /**
1872  * free_inodes - free RB-tree of inodes.
1873  * @fsckd: FS checking information
1874  */
1875 static void free_inodes(struct fsck_data *fsckd)
1876 {
1877 	struct rb_node *this = fsckd->inodes.rb_node;
1878 	struct fsck_inode *fscki;
1879 
1880 	while (this) {
1881 		if (this->rb_left)
1882 			this = this->rb_left;
1883 		else if (this->rb_right)
1884 			this = this->rb_right;
1885 		else {
1886 			fscki = rb_entry(this, struct fsck_inode, rb);
1887 			this = rb_parent(this);
1888 			if (this) {
1889 				if (this->rb_left == &fscki->rb)
1890 					this->rb_left = NULL;
1891 				else
1892 					this->rb_right = NULL;
1893 			}
1894 			kfree(fscki);
1895 		}
1896 	}
1897 }
1898 
1899 /**
1900  * check_inodes - checks all inodes.
1901  * @c: UBIFS file-system description object
1902  * @fsckd: FS checking information
1903  *
1904  * This is a helper function for 'dbg_check_filesystem()' which walks the
1905  * RB-tree of inodes after the index scan has been finished, and checks that
1906  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1907  * %-EINVAL if not, and a negative error code in case of failure.
1908  */
1909 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1910 {
1911 	int n, err;
1912 	union ubifs_key key;
1913 	struct ubifs_znode *znode;
1914 	struct ubifs_zbranch *zbr;
1915 	struct ubifs_ino_node *ino;
1916 	struct fsck_inode *fscki;
1917 	struct rb_node *this = rb_first(&fsckd->inodes);
1918 
1919 	while (this) {
1920 		fscki = rb_entry(this, struct fsck_inode, rb);
1921 		this = rb_next(this);
1922 
1923 		if (S_ISDIR(fscki->mode)) {
1924 			/*
1925 			 * Directories have to have exactly one reference (they
1926 			 * cannot have hardlinks), although root inode is an
1927 			 * exception.
1928 			 */
1929 			if (fscki->inum != UBIFS_ROOT_INO &&
1930 			    fscki->references != 1) {
1931 				ubifs_err("directory inode %lu has %d "
1932 					  "direntries which refer it, but "
1933 					  "should be 1",
1934 					  (unsigned long)fscki->inum,
1935 					  fscki->references);
1936 				goto out_dump;
1937 			}
1938 			if (fscki->inum == UBIFS_ROOT_INO &&
1939 			    fscki->references != 0) {
1940 				ubifs_err("root inode %lu has non-zero (%d) "
1941 					  "direntries which refer it",
1942 					  (unsigned long)fscki->inum,
1943 					  fscki->references);
1944 				goto out_dump;
1945 			}
1946 			if (fscki->calc_sz != fscki->size) {
1947 				ubifs_err("directory inode %lu size is %lld, "
1948 					  "but calculated size is %lld",
1949 					  (unsigned long)fscki->inum,
1950 					  fscki->size, fscki->calc_sz);
1951 				goto out_dump;
1952 			}
1953 			if (fscki->calc_cnt != fscki->nlink) {
1954 				ubifs_err("directory inode %lu nlink is %d, "
1955 					  "but calculated nlink is %d",
1956 					  (unsigned long)fscki->inum,
1957 					  fscki->nlink, fscki->calc_cnt);
1958 				goto out_dump;
1959 			}
1960 		} else {
1961 			if (fscki->references != fscki->nlink) {
1962 				ubifs_err("inode %lu nlink is %d, but "
1963 					  "calculated nlink is %d",
1964 					  (unsigned long)fscki->inum,
1965 					  fscki->nlink, fscki->references);
1966 				goto out_dump;
1967 			}
1968 		}
1969 		if (fscki->xattr_sz != fscki->calc_xsz) {
1970 			ubifs_err("inode %lu has xattr size %u, but "
1971 				  "calculated size is %lld",
1972 				  (unsigned long)fscki->inum, fscki->xattr_sz,
1973 				  fscki->calc_xsz);
1974 			goto out_dump;
1975 		}
1976 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
1977 			ubifs_err("inode %lu has %u xattrs, but "
1978 				  "calculated count is %lld",
1979 				  (unsigned long)fscki->inum,
1980 				  fscki->xattr_cnt, fscki->calc_xcnt);
1981 			goto out_dump;
1982 		}
1983 		if (fscki->xattr_nms != fscki->calc_xnms) {
1984 			ubifs_err("inode %lu has xattr names' size %u, but "
1985 				  "calculated names' size is %lld",
1986 				  (unsigned long)fscki->inum, fscki->xattr_nms,
1987 				  fscki->calc_xnms);
1988 			goto out_dump;
1989 		}
1990 	}
1991 
1992 	return 0;
1993 
1994 out_dump:
1995 	/* Read the bad inode and dump it */
1996 	ino_key_init(c, &key, fscki->inum);
1997 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1998 	if (!err) {
1999 		ubifs_err("inode %lu not found in index",
2000 			  (unsigned long)fscki->inum);
2001 		return -ENOENT;
2002 	} else if (err < 0) {
2003 		ubifs_err("error %d while looking up inode %lu",
2004 			  err, (unsigned long)fscki->inum);
2005 		return err;
2006 	}
2007 
2008 	zbr = &znode->zbranch[n];
2009 	ino = kmalloc(zbr->len, GFP_NOFS);
2010 	if (!ino)
2011 		return -ENOMEM;
2012 
2013 	err = ubifs_tnc_read_node(c, zbr, ino);
2014 	if (err) {
2015 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2016 			  zbr->lnum, zbr->offs, err);
2017 		kfree(ino);
2018 		return err;
2019 	}
2020 
2021 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2022 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2023 	dbg_dump_node(c, ino);
2024 	kfree(ino);
2025 	return -EINVAL;
2026 }
2027 
2028 /**
2029  * dbg_check_filesystem - check the file-system.
2030  * @c: UBIFS file-system description object
2031  *
2032  * This function checks the file system, namely:
2033  * o makes sure that all leaf nodes exist and their CRCs are correct;
2034  * o makes sure inode nlink, size, xattr size/count are correct (for all
2035  *   inodes).
2036  *
2037  * The function reads whole indexing tree and all nodes, so it is pretty
2038  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2039  * not, and a negative error code in case of failure.
2040  */
2041 int dbg_check_filesystem(struct ubifs_info *c)
2042 {
2043 	int err;
2044 	struct fsck_data fsckd;
2045 
2046 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2047 		return 0;
2048 
2049 	fsckd.inodes = RB_ROOT;
2050 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2051 	if (err)
2052 		goto out_free;
2053 
2054 	err = check_inodes(c, &fsckd);
2055 	if (err)
2056 		goto out_free;
2057 
2058 	free_inodes(&fsckd);
2059 	return 0;
2060 
2061 out_free:
2062 	ubifs_err("file-system check failed with error %d", err);
2063 	dump_stack();
2064 	free_inodes(&fsckd);
2065 	return err;
2066 }
2067 
2068 static int invocation_cnt;
2069 
2070 int dbg_force_in_the_gaps(void)
2071 {
2072 	if (!dbg_force_in_the_gaps_enabled)
2073 		return 0;
2074 	/* Force in-the-gaps every 8th commit */
2075 	return !((invocation_cnt++) & 0x7);
2076 }
2077 
2078 /* Failure mode for recovery testing */
2079 
2080 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2081 
2082 struct failure_mode_info {
2083 	struct list_head list;
2084 	struct ubifs_info *c;
2085 };
2086 
2087 static LIST_HEAD(fmi_list);
2088 static DEFINE_SPINLOCK(fmi_lock);
2089 
2090 static unsigned int next;
2091 
2092 static int simple_rand(void)
2093 {
2094 	if (next == 0)
2095 		next = current->pid;
2096 	next = next * 1103515245 + 12345;
2097 	return (next >> 16) & 32767;
2098 }
2099 
2100 void dbg_failure_mode_registration(struct ubifs_info *c)
2101 {
2102 	struct failure_mode_info *fmi;
2103 
2104 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2105 	if (!fmi) {
2106 		dbg_err("Failed to register failure mode - no memory");
2107 		return;
2108 	}
2109 	fmi->c = c;
2110 	spin_lock(&fmi_lock);
2111 	list_add_tail(&fmi->list, &fmi_list);
2112 	spin_unlock(&fmi_lock);
2113 }
2114 
2115 void dbg_failure_mode_deregistration(struct ubifs_info *c)
2116 {
2117 	struct failure_mode_info *fmi, *tmp;
2118 
2119 	spin_lock(&fmi_lock);
2120 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2121 		if (fmi->c == c) {
2122 			list_del(&fmi->list);
2123 			kfree(fmi);
2124 		}
2125 	spin_unlock(&fmi_lock);
2126 }
2127 
2128 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2129 {
2130 	struct failure_mode_info *fmi;
2131 
2132 	spin_lock(&fmi_lock);
2133 	list_for_each_entry(fmi, &fmi_list, list)
2134 		if (fmi->c->ubi == desc) {
2135 			struct ubifs_info *c = fmi->c;
2136 
2137 			spin_unlock(&fmi_lock);
2138 			return c;
2139 		}
2140 	spin_unlock(&fmi_lock);
2141 	return NULL;
2142 }
2143 
2144 static int in_failure_mode(struct ubi_volume_desc *desc)
2145 {
2146 	struct ubifs_info *c = dbg_find_info(desc);
2147 
2148 	if (c && dbg_failure_mode)
2149 		return c->failure_mode;
2150 	return 0;
2151 }
2152 
2153 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2154 {
2155 	struct ubifs_info *c = dbg_find_info(desc);
2156 
2157 	if (!c || !dbg_failure_mode)
2158 		return 0;
2159 	if (c->failure_mode)
2160 		return 1;
2161 	if (!c->fail_cnt) {
2162 		/* First call - decide delay to failure */
2163 		if (chance(1, 2)) {
2164 			unsigned int delay = 1 << (simple_rand() >> 11);
2165 
2166 			if (chance(1, 2)) {
2167 				c->fail_delay = 1;
2168 				c->fail_timeout = jiffies +
2169 						  msecs_to_jiffies(delay);
2170 				dbg_rcvry("failing after %ums", delay);
2171 			} else {
2172 				c->fail_delay = 2;
2173 				c->fail_cnt_max = delay;
2174 				dbg_rcvry("failing after %u calls", delay);
2175 			}
2176 		}
2177 		c->fail_cnt += 1;
2178 	}
2179 	/* Determine if failure delay has expired */
2180 	if (c->fail_delay == 1) {
2181 		if (time_before(jiffies, c->fail_timeout))
2182 			return 0;
2183 	} else if (c->fail_delay == 2)
2184 		if (c->fail_cnt++ < c->fail_cnt_max)
2185 			return 0;
2186 	if (lnum == UBIFS_SB_LNUM) {
2187 		if (write) {
2188 			if (chance(1, 2))
2189 				return 0;
2190 		} else if (chance(19, 20))
2191 			return 0;
2192 		dbg_rcvry("failing in super block LEB %d", lnum);
2193 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2194 		if (chance(19, 20))
2195 			return 0;
2196 		dbg_rcvry("failing in master LEB %d", lnum);
2197 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2198 		if (write) {
2199 			if (chance(99, 100))
2200 				return 0;
2201 		} else if (chance(399, 400))
2202 			return 0;
2203 		dbg_rcvry("failing in log LEB %d", lnum);
2204 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2205 		if (write) {
2206 			if (chance(7, 8))
2207 				return 0;
2208 		} else if (chance(19, 20))
2209 			return 0;
2210 		dbg_rcvry("failing in LPT LEB %d", lnum);
2211 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2212 		if (write) {
2213 			if (chance(1, 2))
2214 				return 0;
2215 		} else if (chance(9, 10))
2216 			return 0;
2217 		dbg_rcvry("failing in orphan LEB %d", lnum);
2218 	} else if (lnum == c->ihead_lnum) {
2219 		if (chance(99, 100))
2220 			return 0;
2221 		dbg_rcvry("failing in index head LEB %d", lnum);
2222 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2223 		if (chance(9, 10))
2224 			return 0;
2225 		dbg_rcvry("failing in GC head LEB %d", lnum);
2226 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2227 		   !ubifs_search_bud(c, lnum)) {
2228 		if (chance(19, 20))
2229 			return 0;
2230 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2231 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2232 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2233 		if (chance(999, 1000))
2234 			return 0;
2235 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2236 	} else {
2237 		if (chance(9999, 10000))
2238 			return 0;
2239 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2240 	}
2241 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2242 	c->failure_mode = 1;
2243 	dump_stack();
2244 	return 1;
2245 }
2246 
2247 static void cut_data(const void *buf, int len)
2248 {
2249 	int flen, i;
2250 	unsigned char *p = (void *)buf;
2251 
2252 	flen = (len * (long long)simple_rand()) >> 15;
2253 	for (i = flen; i < len; i++)
2254 		p[i] = 0xff;
2255 }
2256 
2257 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2258 		 int len, int check)
2259 {
2260 	if (in_failure_mode(desc))
2261 		return -EIO;
2262 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2263 }
2264 
2265 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2266 		  int offset, int len, int dtype)
2267 {
2268 	int err, failing;
2269 
2270 	if (in_failure_mode(desc))
2271 		return -EIO;
2272 	failing = do_fail(desc, lnum, 1);
2273 	if (failing)
2274 		cut_data(buf, len);
2275 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2276 	if (err)
2277 		return err;
2278 	if (failing)
2279 		return -EIO;
2280 	return 0;
2281 }
2282 
2283 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2284 		   int len, int dtype)
2285 {
2286 	int err;
2287 
2288 	if (do_fail(desc, lnum, 1))
2289 		return -EIO;
2290 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2291 	if (err)
2292 		return err;
2293 	if (do_fail(desc, lnum, 1))
2294 		return -EIO;
2295 	return 0;
2296 }
2297 
2298 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2299 {
2300 	int err;
2301 
2302 	if (do_fail(desc, lnum, 0))
2303 		return -EIO;
2304 	err = ubi_leb_erase(desc, lnum);
2305 	if (err)
2306 		return err;
2307 	if (do_fail(desc, lnum, 0))
2308 		return -EIO;
2309 	return 0;
2310 }
2311 
2312 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2313 {
2314 	int err;
2315 
2316 	if (do_fail(desc, lnum, 0))
2317 		return -EIO;
2318 	err = ubi_leb_unmap(desc, lnum);
2319 	if (err)
2320 		return err;
2321 	if (do_fail(desc, lnum, 0))
2322 		return -EIO;
2323 	return 0;
2324 }
2325 
2326 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2327 {
2328 	if (in_failure_mode(desc))
2329 		return -EIO;
2330 	return ubi_is_mapped(desc, lnum);
2331 }
2332 
2333 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2334 {
2335 	int err;
2336 
2337 	if (do_fail(desc, lnum, 0))
2338 		return -EIO;
2339 	err = ubi_leb_map(desc, lnum, dtype);
2340 	if (err)
2341 		return err;
2342 	if (do_fail(desc, lnum, 0))
2343 		return -EIO;
2344 	return 0;
2345 }
2346 
2347 #endif /* CONFIG_UBIFS_FS_DEBUG */
2348