xref: /linux/fs/ubifs/debug.c (revision 7ec7fb394298c212c30e063c57e0aa895efe9439)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Artem Bityutskiy (Битюцкий Артём)
20  *          Adrian Hunter
21  */
22 
23 /*
24  * This file implements most of the debugging stuff which is compiled in only
25  * when it is enabled. But some debugging check functions are implemented in
26  * corresponding subsystem, just because they are closely related and utilize
27  * various local functions of those subsystems.
28  */
29 
30 #define UBIFS_DBG_PRESERVE_UBI
31 
32 #include "ubifs.h"
33 #include <linux/module.h>
34 #include <linux/moduleparam.h>
35 #include <linux/debugfs.h>
36 #include <linux/math64.h>
37 
38 #ifdef CONFIG_UBIFS_FS_DEBUG
39 
40 DEFINE_SPINLOCK(dbg_lock);
41 
42 static char dbg_key_buf0[128];
43 static char dbg_key_buf1[128];
44 
45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT;
46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT;
47 unsigned int ubifs_tst_flags;
48 
49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR);
50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR);
51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR);
52 
53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags");
54 MODULE_PARM_DESC(debug_chks, "Debug check flags");
55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags");
56 
57 static const char *get_key_fmt(int fmt)
58 {
59 	switch (fmt) {
60 	case UBIFS_SIMPLE_KEY_FMT:
61 		return "simple";
62 	default:
63 		return "unknown/invalid format";
64 	}
65 }
66 
67 static const char *get_key_hash(int hash)
68 {
69 	switch (hash) {
70 	case UBIFS_KEY_HASH_R5:
71 		return "R5";
72 	case UBIFS_KEY_HASH_TEST:
73 		return "test";
74 	default:
75 		return "unknown/invalid name hash";
76 	}
77 }
78 
79 static const char *get_key_type(int type)
80 {
81 	switch (type) {
82 	case UBIFS_INO_KEY:
83 		return "inode";
84 	case UBIFS_DENT_KEY:
85 		return "direntry";
86 	case UBIFS_XENT_KEY:
87 		return "xentry";
88 	case UBIFS_DATA_KEY:
89 		return "data";
90 	case UBIFS_TRUN_KEY:
91 		return "truncate";
92 	default:
93 		return "unknown/invalid key";
94 	}
95 }
96 
97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key,
98 			char *buffer)
99 {
100 	char *p = buffer;
101 	int type = key_type(c, key);
102 
103 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
104 		switch (type) {
105 		case UBIFS_INO_KEY:
106 			sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key),
107 			       get_key_type(type));
108 			break;
109 		case UBIFS_DENT_KEY:
110 		case UBIFS_XENT_KEY:
111 			sprintf(p, "(%lu, %s, %#08x)",
112 				(unsigned long)key_inum(c, key),
113 				get_key_type(type), key_hash(c, key));
114 			break;
115 		case UBIFS_DATA_KEY:
116 			sprintf(p, "(%lu, %s, %u)",
117 				(unsigned long)key_inum(c, key),
118 				get_key_type(type), key_block(c, key));
119 			break;
120 		case UBIFS_TRUN_KEY:
121 			sprintf(p, "(%lu, %s)",
122 				(unsigned long)key_inum(c, key),
123 				get_key_type(type));
124 			break;
125 		default:
126 			sprintf(p, "(bad key type: %#08x, %#08x)",
127 				key->u32[0], key->u32[1]);
128 		}
129 	} else
130 		sprintf(p, "bad key format %d", c->key_fmt);
131 }
132 
133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key)
134 {
135 	/* dbg_lock must be held */
136 	sprintf_key(c, key, dbg_key_buf0);
137 	return dbg_key_buf0;
138 }
139 
140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key)
141 {
142 	/* dbg_lock must be held */
143 	sprintf_key(c, key, dbg_key_buf1);
144 	return dbg_key_buf1;
145 }
146 
147 const char *dbg_ntype(int type)
148 {
149 	switch (type) {
150 	case UBIFS_PAD_NODE:
151 		return "padding node";
152 	case UBIFS_SB_NODE:
153 		return "superblock node";
154 	case UBIFS_MST_NODE:
155 		return "master node";
156 	case UBIFS_REF_NODE:
157 		return "reference node";
158 	case UBIFS_INO_NODE:
159 		return "inode node";
160 	case UBIFS_DENT_NODE:
161 		return "direntry node";
162 	case UBIFS_XENT_NODE:
163 		return "xentry node";
164 	case UBIFS_DATA_NODE:
165 		return "data node";
166 	case UBIFS_TRUN_NODE:
167 		return "truncate node";
168 	case UBIFS_IDX_NODE:
169 		return "indexing node";
170 	case UBIFS_CS_NODE:
171 		return "commit start node";
172 	case UBIFS_ORPH_NODE:
173 		return "orphan node";
174 	default:
175 		return "unknown node";
176 	}
177 }
178 
179 static const char *dbg_gtype(int type)
180 {
181 	switch (type) {
182 	case UBIFS_NO_NODE_GROUP:
183 		return "no node group";
184 	case UBIFS_IN_NODE_GROUP:
185 		return "in node group";
186 	case UBIFS_LAST_OF_NODE_GROUP:
187 		return "last of node group";
188 	default:
189 		return "unknown";
190 	}
191 }
192 
193 const char *dbg_cstate(int cmt_state)
194 {
195 	switch (cmt_state) {
196 	case COMMIT_RESTING:
197 		return "commit resting";
198 	case COMMIT_BACKGROUND:
199 		return "background commit requested";
200 	case COMMIT_REQUIRED:
201 		return "commit required";
202 	case COMMIT_RUNNING_BACKGROUND:
203 		return "BACKGROUND commit running";
204 	case COMMIT_RUNNING_REQUIRED:
205 		return "commit running and required";
206 	case COMMIT_BROKEN:
207 		return "broken commit";
208 	default:
209 		return "unknown commit state";
210 	}
211 }
212 
213 static void dump_ch(const struct ubifs_ch *ch)
214 {
215 	printk(KERN_DEBUG "\tmagic          %#x\n", le32_to_cpu(ch->magic));
216 	printk(KERN_DEBUG "\tcrc            %#x\n", le32_to_cpu(ch->crc));
217 	printk(KERN_DEBUG "\tnode_type      %d (%s)\n", ch->node_type,
218 	       dbg_ntype(ch->node_type));
219 	printk(KERN_DEBUG "\tgroup_type     %d (%s)\n", ch->group_type,
220 	       dbg_gtype(ch->group_type));
221 	printk(KERN_DEBUG "\tsqnum          %llu\n",
222 	       (unsigned long long)le64_to_cpu(ch->sqnum));
223 	printk(KERN_DEBUG "\tlen            %u\n", le32_to_cpu(ch->len));
224 }
225 
226 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode)
227 {
228 	const struct ubifs_inode *ui = ubifs_inode(inode);
229 
230 	printk(KERN_DEBUG "Dump in-memory inode:");
231 	printk(KERN_DEBUG "\tinode          %lu\n", inode->i_ino);
232 	printk(KERN_DEBUG "\tsize           %llu\n",
233 	       (unsigned long long)i_size_read(inode));
234 	printk(KERN_DEBUG "\tnlink          %u\n", inode->i_nlink);
235 	printk(KERN_DEBUG "\tuid            %u\n", (unsigned int)inode->i_uid);
236 	printk(KERN_DEBUG "\tgid            %u\n", (unsigned int)inode->i_gid);
237 	printk(KERN_DEBUG "\tatime          %u.%u\n",
238 	       (unsigned int)inode->i_atime.tv_sec,
239 	       (unsigned int)inode->i_atime.tv_nsec);
240 	printk(KERN_DEBUG "\tmtime          %u.%u\n",
241 	       (unsigned int)inode->i_mtime.tv_sec,
242 	       (unsigned int)inode->i_mtime.tv_nsec);
243 	printk(KERN_DEBUG "\tctime          %u.%u\n",
244 	       (unsigned int)inode->i_ctime.tv_sec,
245 	       (unsigned int)inode->i_ctime.tv_nsec);
246 	printk(KERN_DEBUG "\tcreat_sqnum    %llu\n", ui->creat_sqnum);
247 	printk(KERN_DEBUG "\txattr_size     %u\n", ui->xattr_size);
248 	printk(KERN_DEBUG "\txattr_cnt      %u\n", ui->xattr_cnt);
249 	printk(KERN_DEBUG "\txattr_names    %u\n", ui->xattr_names);
250 	printk(KERN_DEBUG "\tdirty          %u\n", ui->dirty);
251 	printk(KERN_DEBUG "\txattr          %u\n", ui->xattr);
252 	printk(KERN_DEBUG "\tbulk_read      %u\n", ui->xattr);
253 	printk(KERN_DEBUG "\tsynced_i_size  %llu\n",
254 	       (unsigned long long)ui->synced_i_size);
255 	printk(KERN_DEBUG "\tui_size        %llu\n",
256 	       (unsigned long long)ui->ui_size);
257 	printk(KERN_DEBUG "\tflags          %d\n", ui->flags);
258 	printk(KERN_DEBUG "\tcompr_type     %d\n", ui->compr_type);
259 	printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read);
260 	printk(KERN_DEBUG "\tread_in_a_row  %lu\n", ui->read_in_a_row);
261 	printk(KERN_DEBUG "\tdata_len       %d\n", ui->data_len);
262 }
263 
264 void dbg_dump_node(const struct ubifs_info *c, const void *node)
265 {
266 	int i, n;
267 	union ubifs_key key;
268 	const struct ubifs_ch *ch = node;
269 
270 	if (dbg_failure_mode)
271 		return;
272 
273 	/* If the magic is incorrect, just hexdump the first bytes */
274 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
275 		printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ);
276 		print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1,
277 			       (void *)node, UBIFS_CH_SZ, 1);
278 		return;
279 	}
280 
281 	spin_lock(&dbg_lock);
282 	dump_ch(node);
283 
284 	switch (ch->node_type) {
285 	case UBIFS_PAD_NODE:
286 	{
287 		const struct ubifs_pad_node *pad = node;
288 
289 		printk(KERN_DEBUG "\tpad_len        %u\n",
290 		       le32_to_cpu(pad->pad_len));
291 		break;
292 	}
293 	case UBIFS_SB_NODE:
294 	{
295 		const struct ubifs_sb_node *sup = node;
296 		unsigned int sup_flags = le32_to_cpu(sup->flags);
297 
298 		printk(KERN_DEBUG "\tkey_hash       %d (%s)\n",
299 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
300 		printk(KERN_DEBUG "\tkey_fmt        %d (%s)\n",
301 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
302 		printk(KERN_DEBUG "\tflags          %#x\n", sup_flags);
303 		printk(KERN_DEBUG "\t  big_lpt      %u\n",
304 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
305 		printk(KERN_DEBUG "\tmin_io_size    %u\n",
306 		       le32_to_cpu(sup->min_io_size));
307 		printk(KERN_DEBUG "\tleb_size       %u\n",
308 		       le32_to_cpu(sup->leb_size));
309 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
310 		       le32_to_cpu(sup->leb_cnt));
311 		printk(KERN_DEBUG "\tmax_leb_cnt    %u\n",
312 		       le32_to_cpu(sup->max_leb_cnt));
313 		printk(KERN_DEBUG "\tmax_bud_bytes  %llu\n",
314 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
315 		printk(KERN_DEBUG "\tlog_lebs       %u\n",
316 		       le32_to_cpu(sup->log_lebs));
317 		printk(KERN_DEBUG "\tlpt_lebs       %u\n",
318 		       le32_to_cpu(sup->lpt_lebs));
319 		printk(KERN_DEBUG "\torph_lebs      %u\n",
320 		       le32_to_cpu(sup->orph_lebs));
321 		printk(KERN_DEBUG "\tjhead_cnt      %u\n",
322 		       le32_to_cpu(sup->jhead_cnt));
323 		printk(KERN_DEBUG "\tfanout         %u\n",
324 		       le32_to_cpu(sup->fanout));
325 		printk(KERN_DEBUG "\tlsave_cnt      %u\n",
326 		       le32_to_cpu(sup->lsave_cnt));
327 		printk(KERN_DEBUG "\tdefault_compr  %u\n",
328 		       (int)le16_to_cpu(sup->default_compr));
329 		printk(KERN_DEBUG "\trp_size        %llu\n",
330 		       (unsigned long long)le64_to_cpu(sup->rp_size));
331 		printk(KERN_DEBUG "\trp_uid         %u\n",
332 		       le32_to_cpu(sup->rp_uid));
333 		printk(KERN_DEBUG "\trp_gid         %u\n",
334 		       le32_to_cpu(sup->rp_gid));
335 		printk(KERN_DEBUG "\tfmt_version    %u\n",
336 		       le32_to_cpu(sup->fmt_version));
337 		printk(KERN_DEBUG "\ttime_gran      %u\n",
338 		       le32_to_cpu(sup->time_gran));
339 		printk(KERN_DEBUG "\tUUID           %02X%02X%02X%02X-%02X%02X"
340 		       "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n",
341 		       sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3],
342 		       sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7],
343 		       sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11],
344 		       sup->uuid[12], sup->uuid[13], sup->uuid[14],
345 		       sup->uuid[15]);
346 		break;
347 	}
348 	case UBIFS_MST_NODE:
349 	{
350 		const struct ubifs_mst_node *mst = node;
351 
352 		printk(KERN_DEBUG "\thighest_inum   %llu\n",
353 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
354 		printk(KERN_DEBUG "\tcommit number  %llu\n",
355 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
356 		printk(KERN_DEBUG "\tflags          %#x\n",
357 		       le32_to_cpu(mst->flags));
358 		printk(KERN_DEBUG "\tlog_lnum       %u\n",
359 		       le32_to_cpu(mst->log_lnum));
360 		printk(KERN_DEBUG "\troot_lnum      %u\n",
361 		       le32_to_cpu(mst->root_lnum));
362 		printk(KERN_DEBUG "\troot_offs      %u\n",
363 		       le32_to_cpu(mst->root_offs));
364 		printk(KERN_DEBUG "\troot_len       %u\n",
365 		       le32_to_cpu(mst->root_len));
366 		printk(KERN_DEBUG "\tgc_lnum        %u\n",
367 		       le32_to_cpu(mst->gc_lnum));
368 		printk(KERN_DEBUG "\tihead_lnum     %u\n",
369 		       le32_to_cpu(mst->ihead_lnum));
370 		printk(KERN_DEBUG "\tihead_offs     %u\n",
371 		       le32_to_cpu(mst->ihead_offs));
372 		printk(KERN_DEBUG "\tindex_size     %llu\n",
373 		       (unsigned long long)le64_to_cpu(mst->index_size));
374 		printk(KERN_DEBUG "\tlpt_lnum       %u\n",
375 		       le32_to_cpu(mst->lpt_lnum));
376 		printk(KERN_DEBUG "\tlpt_offs       %u\n",
377 		       le32_to_cpu(mst->lpt_offs));
378 		printk(KERN_DEBUG "\tnhead_lnum     %u\n",
379 		       le32_to_cpu(mst->nhead_lnum));
380 		printk(KERN_DEBUG "\tnhead_offs     %u\n",
381 		       le32_to_cpu(mst->nhead_offs));
382 		printk(KERN_DEBUG "\tltab_lnum      %u\n",
383 		       le32_to_cpu(mst->ltab_lnum));
384 		printk(KERN_DEBUG "\tltab_offs      %u\n",
385 		       le32_to_cpu(mst->ltab_offs));
386 		printk(KERN_DEBUG "\tlsave_lnum     %u\n",
387 		       le32_to_cpu(mst->lsave_lnum));
388 		printk(KERN_DEBUG "\tlsave_offs     %u\n",
389 		       le32_to_cpu(mst->lsave_offs));
390 		printk(KERN_DEBUG "\tlscan_lnum     %u\n",
391 		       le32_to_cpu(mst->lscan_lnum));
392 		printk(KERN_DEBUG "\tleb_cnt        %u\n",
393 		       le32_to_cpu(mst->leb_cnt));
394 		printk(KERN_DEBUG "\tempty_lebs     %u\n",
395 		       le32_to_cpu(mst->empty_lebs));
396 		printk(KERN_DEBUG "\tidx_lebs       %u\n",
397 		       le32_to_cpu(mst->idx_lebs));
398 		printk(KERN_DEBUG "\ttotal_free     %llu\n",
399 		       (unsigned long long)le64_to_cpu(mst->total_free));
400 		printk(KERN_DEBUG "\ttotal_dirty    %llu\n",
401 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
402 		printk(KERN_DEBUG "\ttotal_used     %llu\n",
403 		       (unsigned long long)le64_to_cpu(mst->total_used));
404 		printk(KERN_DEBUG "\ttotal_dead     %llu\n",
405 		       (unsigned long long)le64_to_cpu(mst->total_dead));
406 		printk(KERN_DEBUG "\ttotal_dark     %llu\n",
407 		       (unsigned long long)le64_to_cpu(mst->total_dark));
408 		break;
409 	}
410 	case UBIFS_REF_NODE:
411 	{
412 		const struct ubifs_ref_node *ref = node;
413 
414 		printk(KERN_DEBUG "\tlnum           %u\n",
415 		       le32_to_cpu(ref->lnum));
416 		printk(KERN_DEBUG "\toffs           %u\n",
417 		       le32_to_cpu(ref->offs));
418 		printk(KERN_DEBUG "\tjhead          %u\n",
419 		       le32_to_cpu(ref->jhead));
420 		break;
421 	}
422 	case UBIFS_INO_NODE:
423 	{
424 		const struct ubifs_ino_node *ino = node;
425 
426 		key_read(c, &ino->key, &key);
427 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
428 		printk(KERN_DEBUG "\tcreat_sqnum    %llu\n",
429 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
430 		printk(KERN_DEBUG "\tsize           %llu\n",
431 		       (unsigned long long)le64_to_cpu(ino->size));
432 		printk(KERN_DEBUG "\tnlink          %u\n",
433 		       le32_to_cpu(ino->nlink));
434 		printk(KERN_DEBUG "\tatime          %lld.%u\n",
435 		       (long long)le64_to_cpu(ino->atime_sec),
436 		       le32_to_cpu(ino->atime_nsec));
437 		printk(KERN_DEBUG "\tmtime          %lld.%u\n",
438 		       (long long)le64_to_cpu(ino->mtime_sec),
439 		       le32_to_cpu(ino->mtime_nsec));
440 		printk(KERN_DEBUG "\tctime          %lld.%u\n",
441 		       (long long)le64_to_cpu(ino->ctime_sec),
442 		       le32_to_cpu(ino->ctime_nsec));
443 		printk(KERN_DEBUG "\tuid            %u\n",
444 		       le32_to_cpu(ino->uid));
445 		printk(KERN_DEBUG "\tgid            %u\n",
446 		       le32_to_cpu(ino->gid));
447 		printk(KERN_DEBUG "\tmode           %u\n",
448 		       le32_to_cpu(ino->mode));
449 		printk(KERN_DEBUG "\tflags          %#x\n",
450 		       le32_to_cpu(ino->flags));
451 		printk(KERN_DEBUG "\txattr_cnt      %u\n",
452 		       le32_to_cpu(ino->xattr_cnt));
453 		printk(KERN_DEBUG "\txattr_size     %u\n",
454 		       le32_to_cpu(ino->xattr_size));
455 		printk(KERN_DEBUG "\txattr_names    %u\n",
456 		       le32_to_cpu(ino->xattr_names));
457 		printk(KERN_DEBUG "\tcompr_type     %#x\n",
458 		       (int)le16_to_cpu(ino->compr_type));
459 		printk(KERN_DEBUG "\tdata len       %u\n",
460 		       le32_to_cpu(ino->data_len));
461 		break;
462 	}
463 	case UBIFS_DENT_NODE:
464 	case UBIFS_XENT_NODE:
465 	{
466 		const struct ubifs_dent_node *dent = node;
467 		int nlen = le16_to_cpu(dent->nlen);
468 
469 		key_read(c, &dent->key, &key);
470 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
471 		printk(KERN_DEBUG "\tinum           %llu\n",
472 		       (unsigned long long)le64_to_cpu(dent->inum));
473 		printk(KERN_DEBUG "\ttype           %d\n", (int)dent->type);
474 		printk(KERN_DEBUG "\tnlen           %d\n", nlen);
475 		printk(KERN_DEBUG "\tname           ");
476 
477 		if (nlen > UBIFS_MAX_NLEN)
478 			printk(KERN_DEBUG "(bad name length, not printing, "
479 					  "bad or corrupted node)");
480 		else {
481 			for (i = 0; i < nlen && dent->name[i]; i++)
482 				printk("%c", dent->name[i]);
483 		}
484 		printk("\n");
485 
486 		break;
487 	}
488 	case UBIFS_DATA_NODE:
489 	{
490 		const struct ubifs_data_node *dn = node;
491 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
492 
493 		key_read(c, &dn->key, &key);
494 		printk(KERN_DEBUG "\tkey            %s\n", DBGKEY(&key));
495 		printk(KERN_DEBUG "\tsize           %u\n",
496 		       le32_to_cpu(dn->size));
497 		printk(KERN_DEBUG "\tcompr_typ      %d\n",
498 		       (int)le16_to_cpu(dn->compr_type));
499 		printk(KERN_DEBUG "\tdata size      %d\n",
500 		       dlen);
501 		printk(KERN_DEBUG "\tdata:\n");
502 		print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1,
503 			       (void *)&dn->data, dlen, 0);
504 		break;
505 	}
506 	case UBIFS_TRUN_NODE:
507 	{
508 		const struct ubifs_trun_node *trun = node;
509 
510 		printk(KERN_DEBUG "\tinum           %u\n",
511 		       le32_to_cpu(trun->inum));
512 		printk(KERN_DEBUG "\told_size       %llu\n",
513 		       (unsigned long long)le64_to_cpu(trun->old_size));
514 		printk(KERN_DEBUG "\tnew_size       %llu\n",
515 		       (unsigned long long)le64_to_cpu(trun->new_size));
516 		break;
517 	}
518 	case UBIFS_IDX_NODE:
519 	{
520 		const struct ubifs_idx_node *idx = node;
521 
522 		n = le16_to_cpu(idx->child_cnt);
523 		printk(KERN_DEBUG "\tchild_cnt      %d\n", n);
524 		printk(KERN_DEBUG "\tlevel          %d\n",
525 		       (int)le16_to_cpu(idx->level));
526 		printk(KERN_DEBUG "\tBranches:\n");
527 
528 		for (i = 0; i < n && i < c->fanout - 1; i++) {
529 			const struct ubifs_branch *br;
530 
531 			br = ubifs_idx_branch(c, idx, i);
532 			key_read(c, &br->key, &key);
533 			printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n",
534 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
535 			       le32_to_cpu(br->len), DBGKEY(&key));
536 		}
537 		break;
538 	}
539 	case UBIFS_CS_NODE:
540 		break;
541 	case UBIFS_ORPH_NODE:
542 	{
543 		const struct ubifs_orph_node *orph = node;
544 
545 		printk(KERN_DEBUG "\tcommit number  %llu\n",
546 		       (unsigned long long)
547 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
548 		printk(KERN_DEBUG "\tlast node flag %llu\n",
549 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
550 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
551 		printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n);
552 		for (i = 0; i < n; i++)
553 			printk(KERN_DEBUG "\t  ino %llu\n",
554 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
555 		break;
556 	}
557 	default:
558 		printk(KERN_DEBUG "node type %d was not recognized\n",
559 		       (int)ch->node_type);
560 	}
561 	spin_unlock(&dbg_lock);
562 }
563 
564 void dbg_dump_budget_req(const struct ubifs_budget_req *req)
565 {
566 	spin_lock(&dbg_lock);
567 	printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n",
568 	       req->new_ino, req->dirtied_ino);
569 	printk(KERN_DEBUG "\tnew_ino_d   %d, dirtied_ino_d %d\n",
570 	       req->new_ino_d, req->dirtied_ino_d);
571 	printk(KERN_DEBUG "\tnew_page    %d, dirtied_page %d\n",
572 	       req->new_page, req->dirtied_page);
573 	printk(KERN_DEBUG "\tnew_dent    %d, mod_dent     %d\n",
574 	       req->new_dent, req->mod_dent);
575 	printk(KERN_DEBUG "\tidx_growth  %d\n", req->idx_growth);
576 	printk(KERN_DEBUG "\tdata_growth %d dd_growth     %d\n",
577 	       req->data_growth, req->dd_growth);
578 	spin_unlock(&dbg_lock);
579 }
580 
581 void dbg_dump_lstats(const struct ubifs_lp_stats *lst)
582 {
583 	spin_lock(&dbg_lock);
584 	printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, "
585 	       "idx_lebs  %d\n", current->pid, lst->empty_lebs, lst->idx_lebs);
586 	printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, "
587 	       "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free,
588 	       lst->total_dirty);
589 	printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, "
590 	       "total_dead %lld\n", lst->total_used, lst->total_dark,
591 	       lst->total_dead);
592 	spin_unlock(&dbg_lock);
593 }
594 
595 void dbg_dump_budg(struct ubifs_info *c)
596 {
597 	int i;
598 	struct rb_node *rb;
599 	struct ubifs_bud *bud;
600 	struct ubifs_gced_idx_leb *idx_gc;
601 	long long available, outstanding, free;
602 
603 	ubifs_assert(spin_is_locked(&c->space_lock));
604 	spin_lock(&dbg_lock);
605 	printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, "
606 	       "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid,
607 	       c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth);
608 	printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, "
609 	       "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth,
610 	       c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth,
611 	       c->freeable_cnt);
612 	printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, "
613 	       "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs,
614 	       c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt);
615 	printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, "
616 	       "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt),
617 	       atomic_long_read(&c->dirty_zn_cnt),
618 	       atomic_long_read(&c->clean_zn_cnt));
619 	printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
620 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
621 	printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n",
622 	       c->gc_lnum, c->ihead_lnum);
623 	for (i = 0; i < c->jhead_cnt; i++)
624 		printk(KERN_DEBUG "\tjhead %d\t LEB %d\n",
625 		       c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum);
626 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
627 		bud = rb_entry(rb, struct ubifs_bud, rb);
628 		printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum);
629 	}
630 	list_for_each_entry(bud, &c->old_buds, list)
631 		printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum);
632 	list_for_each_entry(idx_gc, &c->idx_gc, list)
633 		printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n",
634 		       idx_gc->lnum, idx_gc->unmap);
635 	printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state);
636 
637 	/* Print budgeting predictions */
638 	available = ubifs_calc_available(c, c->min_idx_lebs);
639 	outstanding = c->budg_data_growth + c->budg_dd_growth;
640 	if (available > outstanding)
641 		free = ubifs_reported_space(c, available - outstanding);
642 	else
643 		free = 0;
644 	printk(KERN_DEBUG "Budgeting predictions:\n");
645 	printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n",
646 	       available, outstanding, free);
647 	spin_unlock(&dbg_lock);
648 }
649 
650 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
651 {
652 	printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), "
653 	       "flags %#x\n", lp->lnum, lp->free, lp->dirty,
654 	       c->leb_size - lp->free - lp->dirty, lp->flags);
655 }
656 
657 void dbg_dump_lprops(struct ubifs_info *c)
658 {
659 	int lnum, err;
660 	struct ubifs_lprops lp;
661 	struct ubifs_lp_stats lst;
662 
663 	printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n",
664 	       current->pid);
665 	ubifs_get_lp_stats(c, &lst);
666 	dbg_dump_lstats(&lst);
667 
668 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
669 		err = ubifs_read_one_lp(c, lnum, &lp);
670 		if (err)
671 			ubifs_err("cannot read lprops for LEB %d", lnum);
672 
673 		dbg_dump_lprop(c, &lp);
674 	}
675 	printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n",
676 	       current->pid);
677 }
678 
679 void dbg_dump_lpt_info(struct ubifs_info *c)
680 {
681 	int i;
682 
683 	spin_lock(&dbg_lock);
684 	printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid);
685 	printk(KERN_DEBUG "\tlpt_sz:        %lld\n", c->lpt_sz);
686 	printk(KERN_DEBUG "\tpnode_sz:      %d\n", c->pnode_sz);
687 	printk(KERN_DEBUG "\tnnode_sz:      %d\n", c->nnode_sz);
688 	printk(KERN_DEBUG "\tltab_sz:       %d\n", c->ltab_sz);
689 	printk(KERN_DEBUG "\tlsave_sz:      %d\n", c->lsave_sz);
690 	printk(KERN_DEBUG "\tbig_lpt:       %d\n", c->big_lpt);
691 	printk(KERN_DEBUG "\tlpt_hght:      %d\n", c->lpt_hght);
692 	printk(KERN_DEBUG "\tpnode_cnt:     %d\n", c->pnode_cnt);
693 	printk(KERN_DEBUG "\tnnode_cnt:     %d\n", c->nnode_cnt);
694 	printk(KERN_DEBUG "\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
695 	printk(KERN_DEBUG "\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
696 	printk(KERN_DEBUG "\tlsave_cnt:     %d\n", c->lsave_cnt);
697 	printk(KERN_DEBUG "\tspace_bits:    %d\n", c->space_bits);
698 	printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
699 	printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
700 	printk(KERN_DEBUG "\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
701 	printk(KERN_DEBUG "\tpcnt_bits:     %d\n", c->pcnt_bits);
702 	printk(KERN_DEBUG "\tlnum_bits:     %d\n", c->lnum_bits);
703 	printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
704 	printk(KERN_DEBUG "\tLPT head is at %d:%d\n",
705 	       c->nhead_lnum, c->nhead_offs);
706 	printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n",
707 	       c->ltab_lnum, c->ltab_offs);
708 	if (c->big_lpt)
709 		printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n",
710 		       c->lsave_lnum, c->lsave_offs);
711 	for (i = 0; i < c->lpt_lebs; i++)
712 		printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d "
713 		       "cmt %d\n", i + c->lpt_first, c->ltab[i].free,
714 		       c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt);
715 	spin_unlock(&dbg_lock);
716 }
717 
718 void dbg_dump_leb(const struct ubifs_info *c, int lnum)
719 {
720 	struct ubifs_scan_leb *sleb;
721 	struct ubifs_scan_node *snod;
722 
723 	if (dbg_failure_mode)
724 		return;
725 
726 	printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n",
727 	       current->pid, lnum);
728 	sleb = ubifs_scan(c, lnum, 0, c->dbg->buf);
729 	if (IS_ERR(sleb)) {
730 		ubifs_err("scan error %d", (int)PTR_ERR(sleb));
731 		return;
732 	}
733 
734 	printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum,
735 	       sleb->nodes_cnt, sleb->endpt);
736 
737 	list_for_each_entry(snod, &sleb->nodes, list) {
738 		cond_resched();
739 		printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum,
740 		       snod->offs, snod->len);
741 		dbg_dump_node(c, snod->node);
742 	}
743 
744 	printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n",
745 	       current->pid, lnum);
746 	ubifs_scan_destroy(sleb);
747 	return;
748 }
749 
750 void dbg_dump_znode(const struct ubifs_info *c,
751 		    const struct ubifs_znode *znode)
752 {
753 	int n;
754 	const struct ubifs_zbranch *zbr;
755 
756 	spin_lock(&dbg_lock);
757 	if (znode->parent)
758 		zbr = &znode->parent->zbranch[znode->iip];
759 	else
760 		zbr = &c->zroot;
761 
762 	printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d"
763 	       " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs,
764 	       zbr->len, znode->parent, znode->iip, znode->level,
765 	       znode->child_cnt, znode->flags);
766 
767 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
768 		spin_unlock(&dbg_lock);
769 		return;
770 	}
771 
772 	printk(KERN_DEBUG "zbranches:\n");
773 	for (n = 0; n < znode->child_cnt; n++) {
774 		zbr = &znode->zbranch[n];
775 		if (znode->level > 0)
776 			printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key "
777 					  "%s\n", n, zbr->znode, zbr->lnum,
778 					  zbr->offs, zbr->len,
779 					  DBGKEY(&zbr->key));
780 		else
781 			printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key "
782 					  "%s\n", n, zbr->znode, zbr->lnum,
783 					  zbr->offs, zbr->len,
784 					  DBGKEY(&zbr->key));
785 	}
786 	spin_unlock(&dbg_lock);
787 }
788 
789 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
790 {
791 	int i;
792 
793 	printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n",
794 	       current->pid, cat, heap->cnt);
795 	for (i = 0; i < heap->cnt; i++) {
796 		struct ubifs_lprops *lprops = heap->arr[i];
797 
798 		printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d "
799 		       "flags %d\n", i, lprops->lnum, lprops->hpos,
800 		       lprops->free, lprops->dirty, lprops->flags);
801 	}
802 	printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid);
803 }
804 
805 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
806 		    struct ubifs_nnode *parent, int iip)
807 {
808 	int i;
809 
810 	printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid);
811 	printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n",
812 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
813 	printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n",
814 	       pnode->flags, iip, pnode->level, pnode->num);
815 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
816 		struct ubifs_lprops *lp = &pnode->lprops[i];
817 
818 		printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n",
819 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
820 	}
821 }
822 
823 void dbg_dump_tnc(struct ubifs_info *c)
824 {
825 	struct ubifs_znode *znode;
826 	int level;
827 
828 	printk(KERN_DEBUG "\n");
829 	printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid);
830 	znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL);
831 	level = znode->level;
832 	printk(KERN_DEBUG "== Level %d ==\n", level);
833 	while (znode) {
834 		if (level != znode->level) {
835 			level = znode->level;
836 			printk(KERN_DEBUG "== Level %d ==\n", level);
837 		}
838 		dbg_dump_znode(c, znode);
839 		znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode);
840 	}
841 	printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid);
842 }
843 
844 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
845 		      void *priv)
846 {
847 	dbg_dump_znode(c, znode);
848 	return 0;
849 }
850 
851 /**
852  * dbg_dump_index - dump the on-flash index.
853  * @c: UBIFS file-system description object
854  *
855  * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()'
856  * which dumps only in-memory znodes and does not read znodes which from flash.
857  */
858 void dbg_dump_index(struct ubifs_info *c)
859 {
860 	dbg_walk_index(c, NULL, dump_znode, NULL);
861 }
862 
863 /**
864  * dbg_check_synced_i_size - check synchronized inode size.
865  * @inode: inode to check
866  *
867  * If inode is clean, synchronized inode size has to be equivalent to current
868  * inode size. This function has to be called only for locked inodes (@i_mutex
869  * has to be locked). Returns %0 if synchronized inode size if correct, and
870  * %-EINVAL if not.
871  */
872 int dbg_check_synced_i_size(struct inode *inode)
873 {
874 	int err = 0;
875 	struct ubifs_inode *ui = ubifs_inode(inode);
876 
877 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
878 		return 0;
879 	if (!S_ISREG(inode->i_mode))
880 		return 0;
881 
882 	mutex_lock(&ui->ui_mutex);
883 	spin_lock(&ui->ui_lock);
884 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
885 		ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode "
886 			  "is clean", ui->ui_size, ui->synced_i_size);
887 		ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
888 			  inode->i_mode, i_size_read(inode));
889 		dbg_dump_stack();
890 		err = -EINVAL;
891 	}
892 	spin_unlock(&ui->ui_lock);
893 	mutex_unlock(&ui->ui_mutex);
894 	return err;
895 }
896 
897 /*
898  * dbg_check_dir - check directory inode size and link count.
899  * @c: UBIFS file-system description object
900  * @dir: the directory to calculate size for
901  * @size: the result is returned here
902  *
903  * This function makes sure that directory size and link count are correct.
904  * Returns zero in case of success and a negative error code in case of
905  * failure.
906  *
907  * Note, it is good idea to make sure the @dir->i_mutex is locked before
908  * calling this function.
909  */
910 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir)
911 {
912 	unsigned int nlink = 2;
913 	union ubifs_key key;
914 	struct ubifs_dent_node *dent, *pdent = NULL;
915 	struct qstr nm = { .name = NULL };
916 	loff_t size = UBIFS_INO_NODE_SZ;
917 
918 	if (!(ubifs_chk_flags & UBIFS_CHK_GEN))
919 		return 0;
920 
921 	if (!S_ISDIR(dir->i_mode))
922 		return 0;
923 
924 	lowest_dent_key(c, &key, dir->i_ino);
925 	while (1) {
926 		int err;
927 
928 		dent = ubifs_tnc_next_ent(c, &key, &nm);
929 		if (IS_ERR(dent)) {
930 			err = PTR_ERR(dent);
931 			if (err == -ENOENT)
932 				break;
933 			return err;
934 		}
935 
936 		nm.name = dent->name;
937 		nm.len = le16_to_cpu(dent->nlen);
938 		size += CALC_DENT_SIZE(nm.len);
939 		if (dent->type == UBIFS_ITYPE_DIR)
940 			nlink += 1;
941 		kfree(pdent);
942 		pdent = dent;
943 		key_read(c, &dent->key, &key);
944 	}
945 	kfree(pdent);
946 
947 	if (i_size_read(dir) != size) {
948 		ubifs_err("directory inode %lu has size %llu, "
949 			  "but calculated size is %llu", dir->i_ino,
950 			  (unsigned long long)i_size_read(dir),
951 			  (unsigned long long)size);
952 		dump_stack();
953 		return -EINVAL;
954 	}
955 	if (dir->i_nlink != nlink) {
956 		ubifs_err("directory inode %lu has nlink %u, but calculated "
957 			  "nlink is %u", dir->i_ino, dir->i_nlink, nlink);
958 		dump_stack();
959 		return -EINVAL;
960 	}
961 
962 	return 0;
963 }
964 
965 /**
966  * dbg_check_key_order - make sure that colliding keys are properly ordered.
967  * @c: UBIFS file-system description object
968  * @zbr1: first zbranch
969  * @zbr2: following zbranch
970  *
971  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
972  * names of the direntries/xentries which are referred by the keys. This
973  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
974  * sure the name of direntry/xentry referred by @zbr1 is less than
975  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
976  * and a negative error code in case of failure.
977  */
978 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
979 			       struct ubifs_zbranch *zbr2)
980 {
981 	int err, nlen1, nlen2, cmp;
982 	struct ubifs_dent_node *dent1, *dent2;
983 	union ubifs_key key;
984 
985 	ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key));
986 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
987 	if (!dent1)
988 		return -ENOMEM;
989 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
990 	if (!dent2) {
991 		err = -ENOMEM;
992 		goto out_free;
993 	}
994 
995 	err = ubifs_tnc_read_node(c, zbr1, dent1);
996 	if (err)
997 		goto out_free;
998 	err = ubifs_validate_entry(c, dent1);
999 	if (err)
1000 		goto out_free;
1001 
1002 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1003 	if (err)
1004 		goto out_free;
1005 	err = ubifs_validate_entry(c, dent2);
1006 	if (err)
1007 		goto out_free;
1008 
1009 	/* Make sure node keys are the same as in zbranch */
1010 	err = 1;
1011 	key_read(c, &dent1->key, &key);
1012 	if (keys_cmp(c, &zbr1->key, &key)) {
1013 		dbg_err("1st entry at %d:%d has key %s", zbr1->lnum,
1014 			zbr1->offs, DBGKEY(&key));
1015 		dbg_err("but it should have key %s according to tnc",
1016 			DBGKEY(&zbr1->key));
1017 		dbg_dump_node(c, dent1);
1018 		goto out_free;
1019 	}
1020 
1021 	key_read(c, &dent2->key, &key);
1022 	if (keys_cmp(c, &zbr2->key, &key)) {
1023 		dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum,
1024 			zbr1->offs, DBGKEY(&key));
1025 		dbg_err("but it should have key %s according to tnc",
1026 			DBGKEY(&zbr2->key));
1027 		dbg_dump_node(c, dent2);
1028 		goto out_free;
1029 	}
1030 
1031 	nlen1 = le16_to_cpu(dent1->nlen);
1032 	nlen2 = le16_to_cpu(dent2->nlen);
1033 
1034 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1035 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1036 		err = 0;
1037 		goto out_free;
1038 	}
1039 	if (cmp == 0 && nlen1 == nlen2)
1040 		dbg_err("2 xent/dent nodes with the same name");
1041 	else
1042 		dbg_err("bad order of colliding key %s",
1043 			DBGKEY(&key));
1044 
1045 	ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1046 	dbg_dump_node(c, dent1);
1047 	ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1048 	dbg_dump_node(c, dent2);
1049 
1050 out_free:
1051 	kfree(dent2);
1052 	kfree(dent1);
1053 	return err;
1054 }
1055 
1056 /**
1057  * dbg_check_znode - check if znode is all right.
1058  * @c: UBIFS file-system description object
1059  * @zbr: zbranch which points to this znode
1060  *
1061  * This function makes sure that znode referred to by @zbr is all right.
1062  * Returns zero if it is, and %-EINVAL if it is not.
1063  */
1064 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1065 {
1066 	struct ubifs_znode *znode = zbr->znode;
1067 	struct ubifs_znode *zp = znode->parent;
1068 	int n, err, cmp;
1069 
1070 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1071 		err = 1;
1072 		goto out;
1073 	}
1074 	if (znode->level < 0) {
1075 		err = 2;
1076 		goto out;
1077 	}
1078 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1079 		err = 3;
1080 		goto out;
1081 	}
1082 
1083 	if (zbr->len == 0)
1084 		/* Only dirty zbranch may have no on-flash nodes */
1085 		if (!ubifs_zn_dirty(znode)) {
1086 			err = 4;
1087 			goto out;
1088 		}
1089 
1090 	if (ubifs_zn_dirty(znode)) {
1091 		/*
1092 		 * If znode is dirty, its parent has to be dirty as well. The
1093 		 * order of the operation is important, so we have to have
1094 		 * memory barriers.
1095 		 */
1096 		smp_mb();
1097 		if (zp && !ubifs_zn_dirty(zp)) {
1098 			/*
1099 			 * The dirty flag is atomic and is cleared outside the
1100 			 * TNC mutex, so znode's dirty flag may now have
1101 			 * been cleared. The child is always cleared before the
1102 			 * parent, so we just need to check again.
1103 			 */
1104 			smp_mb();
1105 			if (ubifs_zn_dirty(znode)) {
1106 				err = 5;
1107 				goto out;
1108 			}
1109 		}
1110 	}
1111 
1112 	if (zp) {
1113 		const union ubifs_key *min, *max;
1114 
1115 		if (znode->level != zp->level - 1) {
1116 			err = 6;
1117 			goto out;
1118 		}
1119 
1120 		/* Make sure the 'parent' pointer in our znode is correct */
1121 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1122 		if (!err) {
1123 			/* This zbranch does not exist in the parent */
1124 			err = 7;
1125 			goto out;
1126 		}
1127 
1128 		if (znode->iip >= zp->child_cnt) {
1129 			err = 8;
1130 			goto out;
1131 		}
1132 
1133 		if (znode->iip != n) {
1134 			/* This may happen only in case of collisions */
1135 			if (keys_cmp(c, &zp->zbranch[n].key,
1136 				     &zp->zbranch[znode->iip].key)) {
1137 				err = 9;
1138 				goto out;
1139 			}
1140 			n = znode->iip;
1141 		}
1142 
1143 		/*
1144 		 * Make sure that the first key in our znode is greater than or
1145 		 * equal to the key in the pointing zbranch.
1146 		 */
1147 		min = &zbr->key;
1148 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1149 		if (cmp == 1) {
1150 			err = 10;
1151 			goto out;
1152 		}
1153 
1154 		if (n + 1 < zp->child_cnt) {
1155 			max = &zp->zbranch[n + 1].key;
1156 
1157 			/*
1158 			 * Make sure the last key in our znode is less or
1159 			 * equivalent than the the key in zbranch which goes
1160 			 * after our pointing zbranch.
1161 			 */
1162 			cmp = keys_cmp(c, max,
1163 				&znode->zbranch[znode->child_cnt - 1].key);
1164 			if (cmp == -1) {
1165 				err = 11;
1166 				goto out;
1167 			}
1168 		}
1169 	} else {
1170 		/* This may only be root znode */
1171 		if (zbr != &c->zroot) {
1172 			err = 12;
1173 			goto out;
1174 		}
1175 	}
1176 
1177 	/*
1178 	 * Make sure that next key is greater or equivalent then the previous
1179 	 * one.
1180 	 */
1181 	for (n = 1; n < znode->child_cnt; n++) {
1182 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1183 			       &znode->zbranch[n].key);
1184 		if (cmp > 0) {
1185 			err = 13;
1186 			goto out;
1187 		}
1188 		if (cmp == 0) {
1189 			/* This can only be keys with colliding hash */
1190 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1191 				err = 14;
1192 				goto out;
1193 			}
1194 
1195 			if (znode->level != 0 || c->replaying)
1196 				continue;
1197 
1198 			/*
1199 			 * Colliding keys should follow binary order of
1200 			 * corresponding xentry/dentry names.
1201 			 */
1202 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1203 						  &znode->zbranch[n]);
1204 			if (err < 0)
1205 				return err;
1206 			if (err) {
1207 				err = 15;
1208 				goto out;
1209 			}
1210 		}
1211 	}
1212 
1213 	for (n = 0; n < znode->child_cnt; n++) {
1214 		if (!znode->zbranch[n].znode &&
1215 		    (znode->zbranch[n].lnum == 0 ||
1216 		     znode->zbranch[n].len == 0)) {
1217 			err = 16;
1218 			goto out;
1219 		}
1220 
1221 		if (znode->zbranch[n].lnum != 0 &&
1222 		    znode->zbranch[n].len == 0) {
1223 			err = 17;
1224 			goto out;
1225 		}
1226 
1227 		if (znode->zbranch[n].lnum == 0 &&
1228 		    znode->zbranch[n].len != 0) {
1229 			err = 18;
1230 			goto out;
1231 		}
1232 
1233 		if (znode->zbranch[n].lnum == 0 &&
1234 		    znode->zbranch[n].offs != 0) {
1235 			err = 19;
1236 			goto out;
1237 		}
1238 
1239 		if (znode->level != 0 && znode->zbranch[n].znode)
1240 			if (znode->zbranch[n].znode->parent != znode) {
1241 				err = 20;
1242 				goto out;
1243 			}
1244 	}
1245 
1246 	return 0;
1247 
1248 out:
1249 	ubifs_err("failed, error %d", err);
1250 	ubifs_msg("dump of the znode");
1251 	dbg_dump_znode(c, znode);
1252 	if (zp) {
1253 		ubifs_msg("dump of the parent znode");
1254 		dbg_dump_znode(c, zp);
1255 	}
1256 	dump_stack();
1257 	return -EINVAL;
1258 }
1259 
1260 /**
1261  * dbg_check_tnc - check TNC tree.
1262  * @c: UBIFS file-system description object
1263  * @extra: do extra checks that are possible at start commit
1264  *
1265  * This function traverses whole TNC tree and checks every znode. Returns zero
1266  * if everything is all right and %-EINVAL if something is wrong with TNC.
1267  */
1268 int dbg_check_tnc(struct ubifs_info *c, int extra)
1269 {
1270 	struct ubifs_znode *znode;
1271 	long clean_cnt = 0, dirty_cnt = 0;
1272 	int err, last;
1273 
1274 	if (!(ubifs_chk_flags & UBIFS_CHK_TNC))
1275 		return 0;
1276 
1277 	ubifs_assert(mutex_is_locked(&c->tnc_mutex));
1278 	if (!c->zroot.znode)
1279 		return 0;
1280 
1281 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1282 	while (1) {
1283 		struct ubifs_znode *prev;
1284 		struct ubifs_zbranch *zbr;
1285 
1286 		if (!znode->parent)
1287 			zbr = &c->zroot;
1288 		else
1289 			zbr = &znode->parent->zbranch[znode->iip];
1290 
1291 		err = dbg_check_znode(c, zbr);
1292 		if (err)
1293 			return err;
1294 
1295 		if (extra) {
1296 			if (ubifs_zn_dirty(znode))
1297 				dirty_cnt += 1;
1298 			else
1299 				clean_cnt += 1;
1300 		}
1301 
1302 		prev = znode;
1303 		znode = ubifs_tnc_postorder_next(znode);
1304 		if (!znode)
1305 			break;
1306 
1307 		/*
1308 		 * If the last key of this znode is equivalent to the first key
1309 		 * of the next znode (collision), then check order of the keys.
1310 		 */
1311 		last = prev->child_cnt - 1;
1312 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1313 		    !keys_cmp(c, &prev->zbranch[last].key,
1314 			      &znode->zbranch[0].key)) {
1315 			err = dbg_check_key_order(c, &prev->zbranch[last],
1316 						  &znode->zbranch[0]);
1317 			if (err < 0)
1318 				return err;
1319 			if (err) {
1320 				ubifs_msg("first znode");
1321 				dbg_dump_znode(c, prev);
1322 				ubifs_msg("second znode");
1323 				dbg_dump_znode(c, znode);
1324 				return -EINVAL;
1325 			}
1326 		}
1327 	}
1328 
1329 	if (extra) {
1330 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1331 			ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld",
1332 				  atomic_long_read(&c->clean_zn_cnt),
1333 				  clean_cnt);
1334 			return -EINVAL;
1335 		}
1336 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1337 			ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld",
1338 				  atomic_long_read(&c->dirty_zn_cnt),
1339 				  dirty_cnt);
1340 			return -EINVAL;
1341 		}
1342 	}
1343 
1344 	return 0;
1345 }
1346 
1347 /**
1348  * dbg_walk_index - walk the on-flash index.
1349  * @c: UBIFS file-system description object
1350  * @leaf_cb: called for each leaf node
1351  * @znode_cb: called for each indexing node
1352  * @priv: private date which is passed to callbacks
1353  *
1354  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1355  * node and @znode_cb for each indexing node. Returns zero in case of success
1356  * and a negative error code in case of failure.
1357  *
1358  * It would be better if this function removed every znode it pulled to into
1359  * the TNC, so that the behavior more closely matched the non-debugging
1360  * behavior.
1361  */
1362 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1363 		   dbg_znode_callback znode_cb, void *priv)
1364 {
1365 	int err;
1366 	struct ubifs_zbranch *zbr;
1367 	struct ubifs_znode *znode, *child;
1368 
1369 	mutex_lock(&c->tnc_mutex);
1370 	/* If the root indexing node is not in TNC - pull it */
1371 	if (!c->zroot.znode) {
1372 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1373 		if (IS_ERR(c->zroot.znode)) {
1374 			err = PTR_ERR(c->zroot.znode);
1375 			c->zroot.znode = NULL;
1376 			goto out_unlock;
1377 		}
1378 	}
1379 
1380 	/*
1381 	 * We are going to traverse the indexing tree in the postorder manner.
1382 	 * Go down and find the leftmost indexing node where we are going to
1383 	 * start from.
1384 	 */
1385 	znode = c->zroot.znode;
1386 	while (znode->level > 0) {
1387 		zbr = &znode->zbranch[0];
1388 		child = zbr->znode;
1389 		if (!child) {
1390 			child = ubifs_load_znode(c, zbr, znode, 0);
1391 			if (IS_ERR(child)) {
1392 				err = PTR_ERR(child);
1393 				goto out_unlock;
1394 			}
1395 			zbr->znode = child;
1396 		}
1397 
1398 		znode = child;
1399 	}
1400 
1401 	/* Iterate over all indexing nodes */
1402 	while (1) {
1403 		int idx;
1404 
1405 		cond_resched();
1406 
1407 		if (znode_cb) {
1408 			err = znode_cb(c, znode, priv);
1409 			if (err) {
1410 				ubifs_err("znode checking function returned "
1411 					  "error %d", err);
1412 				dbg_dump_znode(c, znode);
1413 				goto out_dump;
1414 			}
1415 		}
1416 		if (leaf_cb && znode->level == 0) {
1417 			for (idx = 0; idx < znode->child_cnt; idx++) {
1418 				zbr = &znode->zbranch[idx];
1419 				err = leaf_cb(c, zbr, priv);
1420 				if (err) {
1421 					ubifs_err("leaf checking function "
1422 						  "returned error %d, for leaf "
1423 						  "at LEB %d:%d",
1424 						  err, zbr->lnum, zbr->offs);
1425 					goto out_dump;
1426 				}
1427 			}
1428 		}
1429 
1430 		if (!znode->parent)
1431 			break;
1432 
1433 		idx = znode->iip + 1;
1434 		znode = znode->parent;
1435 		if (idx < znode->child_cnt) {
1436 			/* Switch to the next index in the parent */
1437 			zbr = &znode->zbranch[idx];
1438 			child = zbr->znode;
1439 			if (!child) {
1440 				child = ubifs_load_znode(c, zbr, znode, idx);
1441 				if (IS_ERR(child)) {
1442 					err = PTR_ERR(child);
1443 					goto out_unlock;
1444 				}
1445 				zbr->znode = child;
1446 			}
1447 			znode = child;
1448 		} else
1449 			/*
1450 			 * This is the last child, switch to the parent and
1451 			 * continue.
1452 			 */
1453 			continue;
1454 
1455 		/* Go to the lowest leftmost znode in the new sub-tree */
1456 		while (znode->level > 0) {
1457 			zbr = &znode->zbranch[0];
1458 			child = zbr->znode;
1459 			if (!child) {
1460 				child = ubifs_load_znode(c, zbr, znode, 0);
1461 				if (IS_ERR(child)) {
1462 					err = PTR_ERR(child);
1463 					goto out_unlock;
1464 				}
1465 				zbr->znode = child;
1466 			}
1467 			znode = child;
1468 		}
1469 	}
1470 
1471 	mutex_unlock(&c->tnc_mutex);
1472 	return 0;
1473 
1474 out_dump:
1475 	if (znode->parent)
1476 		zbr = &znode->parent->zbranch[znode->iip];
1477 	else
1478 		zbr = &c->zroot;
1479 	ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1480 	dbg_dump_znode(c, znode);
1481 out_unlock:
1482 	mutex_unlock(&c->tnc_mutex);
1483 	return err;
1484 }
1485 
1486 /**
1487  * add_size - add znode size to partially calculated index size.
1488  * @c: UBIFS file-system description object
1489  * @znode: znode to add size for
1490  * @priv: partially calculated index size
1491  *
1492  * This is a helper function for 'dbg_check_idx_size()' which is called for
1493  * every indexing node and adds its size to the 'long long' variable pointed to
1494  * by @priv.
1495  */
1496 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1497 {
1498 	long long *idx_size = priv;
1499 	int add;
1500 
1501 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1502 	add = ALIGN(add, 8);
1503 	*idx_size += add;
1504 	return 0;
1505 }
1506 
1507 /**
1508  * dbg_check_idx_size - check index size.
1509  * @c: UBIFS file-system description object
1510  * @idx_size: size to check
1511  *
1512  * This function walks the UBIFS index, calculates its size and checks that the
1513  * size is equivalent to @idx_size. Returns zero in case of success and a
1514  * negative error code in case of failure.
1515  */
1516 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1517 {
1518 	int err;
1519 	long long calc = 0;
1520 
1521 	if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ))
1522 		return 0;
1523 
1524 	err = dbg_walk_index(c, NULL, add_size, &calc);
1525 	if (err) {
1526 		ubifs_err("error %d while walking the index", err);
1527 		return err;
1528 	}
1529 
1530 	if (calc != idx_size) {
1531 		ubifs_err("index size check failed: calculated size is %lld, "
1532 			  "should be %lld", calc, idx_size);
1533 		dump_stack();
1534 		return -EINVAL;
1535 	}
1536 
1537 	return 0;
1538 }
1539 
1540 /**
1541  * struct fsck_inode - information about an inode used when checking the file-system.
1542  * @rb: link in the RB-tree of inodes
1543  * @inum: inode number
1544  * @mode: inode type, permissions, etc
1545  * @nlink: inode link count
1546  * @xattr_cnt: count of extended attributes
1547  * @references: how many directory/xattr entries refer this inode (calculated
1548  *              while walking the index)
1549  * @calc_cnt: for directory inode count of child directories
1550  * @size: inode size (read from on-flash inode)
1551  * @xattr_sz: summary size of all extended attributes (read from on-flash
1552  *            inode)
1553  * @calc_sz: for directories calculated directory size
1554  * @calc_xcnt: count of extended attributes
1555  * @calc_xsz: calculated summary size of all extended attributes
1556  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1557  *             inode (read from on-flash inode)
1558  * @calc_xnms: calculated sum of lengths of all extended attribute names
1559  */
1560 struct fsck_inode {
1561 	struct rb_node rb;
1562 	ino_t inum;
1563 	umode_t mode;
1564 	unsigned int nlink;
1565 	unsigned int xattr_cnt;
1566 	int references;
1567 	int calc_cnt;
1568 	long long size;
1569 	unsigned int xattr_sz;
1570 	long long calc_sz;
1571 	long long calc_xcnt;
1572 	long long calc_xsz;
1573 	unsigned int xattr_nms;
1574 	long long calc_xnms;
1575 };
1576 
1577 /**
1578  * struct fsck_data - private FS checking information.
1579  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1580  */
1581 struct fsck_data {
1582 	struct rb_root inodes;
1583 };
1584 
1585 /**
1586  * add_inode - add inode information to RB-tree of inodes.
1587  * @c: UBIFS file-system description object
1588  * @fsckd: FS checking information
1589  * @ino: raw UBIFS inode to add
1590  *
1591  * This is a helper function for 'check_leaf()' which adds information about
1592  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1593  * case of success and a negative error code in case of failure.
1594  */
1595 static struct fsck_inode *add_inode(struct ubifs_info *c,
1596 				    struct fsck_data *fsckd,
1597 				    struct ubifs_ino_node *ino)
1598 {
1599 	struct rb_node **p, *parent = NULL;
1600 	struct fsck_inode *fscki;
1601 	ino_t inum = key_inum_flash(c, &ino->key);
1602 
1603 	p = &fsckd->inodes.rb_node;
1604 	while (*p) {
1605 		parent = *p;
1606 		fscki = rb_entry(parent, struct fsck_inode, rb);
1607 		if (inum < fscki->inum)
1608 			p = &(*p)->rb_left;
1609 		else if (inum > fscki->inum)
1610 			p = &(*p)->rb_right;
1611 		else
1612 			return fscki;
1613 	}
1614 
1615 	if (inum > c->highest_inum) {
1616 		ubifs_err("too high inode number, max. is %lu",
1617 			  (unsigned long)c->highest_inum);
1618 		return ERR_PTR(-EINVAL);
1619 	}
1620 
1621 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1622 	if (!fscki)
1623 		return ERR_PTR(-ENOMEM);
1624 
1625 	fscki->inum = inum;
1626 	fscki->nlink = le32_to_cpu(ino->nlink);
1627 	fscki->size = le64_to_cpu(ino->size);
1628 	fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1629 	fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1630 	fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1631 	fscki->mode = le32_to_cpu(ino->mode);
1632 	if (S_ISDIR(fscki->mode)) {
1633 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1634 		fscki->calc_cnt = 2;
1635 	}
1636 	rb_link_node(&fscki->rb, parent, p);
1637 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1638 	return fscki;
1639 }
1640 
1641 /**
1642  * search_inode - search inode in the RB-tree of inodes.
1643  * @fsckd: FS checking information
1644  * @inum: inode number to search
1645  *
1646  * This is a helper function for 'check_leaf()' which searches inode @inum in
1647  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1648  * the inode was not found.
1649  */
1650 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1651 {
1652 	struct rb_node *p;
1653 	struct fsck_inode *fscki;
1654 
1655 	p = fsckd->inodes.rb_node;
1656 	while (p) {
1657 		fscki = rb_entry(p, struct fsck_inode, rb);
1658 		if (inum < fscki->inum)
1659 			p = p->rb_left;
1660 		else if (inum > fscki->inum)
1661 			p = p->rb_right;
1662 		else
1663 			return fscki;
1664 	}
1665 	return NULL;
1666 }
1667 
1668 /**
1669  * read_add_inode - read inode node and add it to RB-tree of inodes.
1670  * @c: UBIFS file-system description object
1671  * @fsckd: FS checking information
1672  * @inum: inode number to read
1673  *
1674  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1675  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1676  * information pointer in case of success and a negative error code in case of
1677  * failure.
1678  */
1679 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1680 					 struct fsck_data *fsckd, ino_t inum)
1681 {
1682 	int n, err;
1683 	union ubifs_key key;
1684 	struct ubifs_znode *znode;
1685 	struct ubifs_zbranch *zbr;
1686 	struct ubifs_ino_node *ino;
1687 	struct fsck_inode *fscki;
1688 
1689 	fscki = search_inode(fsckd, inum);
1690 	if (fscki)
1691 		return fscki;
1692 
1693 	ino_key_init(c, &key, inum);
1694 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1695 	if (!err) {
1696 		ubifs_err("inode %lu not found in index", (unsigned long)inum);
1697 		return ERR_PTR(-ENOENT);
1698 	} else if (err < 0) {
1699 		ubifs_err("error %d while looking up inode %lu",
1700 			  err, (unsigned long)inum);
1701 		return ERR_PTR(err);
1702 	}
1703 
1704 	zbr = &znode->zbranch[n];
1705 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1706 		ubifs_err("bad node %lu node length %d",
1707 			  (unsigned long)inum, zbr->len);
1708 		return ERR_PTR(-EINVAL);
1709 	}
1710 
1711 	ino = kmalloc(zbr->len, GFP_NOFS);
1712 	if (!ino)
1713 		return ERR_PTR(-ENOMEM);
1714 
1715 	err = ubifs_tnc_read_node(c, zbr, ino);
1716 	if (err) {
1717 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
1718 			  zbr->lnum, zbr->offs, err);
1719 		kfree(ino);
1720 		return ERR_PTR(err);
1721 	}
1722 
1723 	fscki = add_inode(c, fsckd, ino);
1724 	kfree(ino);
1725 	if (IS_ERR(fscki)) {
1726 		ubifs_err("error %ld while adding inode %lu node",
1727 			  PTR_ERR(fscki), (unsigned long)inum);
1728 		return fscki;
1729 	}
1730 
1731 	return fscki;
1732 }
1733 
1734 /**
1735  * check_leaf - check leaf node.
1736  * @c: UBIFS file-system description object
1737  * @zbr: zbranch of the leaf node to check
1738  * @priv: FS checking information
1739  *
1740  * This is a helper function for 'dbg_check_filesystem()' which is called for
1741  * every single leaf node while walking the indexing tree. It checks that the
1742  * leaf node referred from the indexing tree exists, has correct CRC, and does
1743  * some other basic validation. This function is also responsible for building
1744  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1745  * calculates reference count, size, etc for each inode in order to later
1746  * compare them to the information stored inside the inodes and detect possible
1747  * inconsistencies. Returns zero in case of success and a negative error code
1748  * in case of failure.
1749  */
1750 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1751 		      void *priv)
1752 {
1753 	ino_t inum;
1754 	void *node;
1755 	struct ubifs_ch *ch;
1756 	int err, type = key_type(c, &zbr->key);
1757 	struct fsck_inode *fscki;
1758 
1759 	if (zbr->len < UBIFS_CH_SZ) {
1760 		ubifs_err("bad leaf length %d (LEB %d:%d)",
1761 			  zbr->len, zbr->lnum, zbr->offs);
1762 		return -EINVAL;
1763 	}
1764 
1765 	node = kmalloc(zbr->len, GFP_NOFS);
1766 	if (!node)
1767 		return -ENOMEM;
1768 
1769 	err = ubifs_tnc_read_node(c, zbr, node);
1770 	if (err) {
1771 		ubifs_err("cannot read leaf node at LEB %d:%d, error %d",
1772 			  zbr->lnum, zbr->offs, err);
1773 		goto out_free;
1774 	}
1775 
1776 	/* If this is an inode node, add it to RB-tree of inodes */
1777 	if (type == UBIFS_INO_KEY) {
1778 		fscki = add_inode(c, priv, node);
1779 		if (IS_ERR(fscki)) {
1780 			err = PTR_ERR(fscki);
1781 			ubifs_err("error %d while adding inode node", err);
1782 			goto out_dump;
1783 		}
1784 		goto out;
1785 	}
1786 
1787 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
1788 	    type != UBIFS_DATA_KEY) {
1789 		ubifs_err("unexpected node type %d at LEB %d:%d",
1790 			  type, zbr->lnum, zbr->offs);
1791 		err = -EINVAL;
1792 		goto out_free;
1793 	}
1794 
1795 	ch = node;
1796 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
1797 		ubifs_err("too high sequence number, max. is %llu",
1798 			  c->max_sqnum);
1799 		err = -EINVAL;
1800 		goto out_dump;
1801 	}
1802 
1803 	if (type == UBIFS_DATA_KEY) {
1804 		long long blk_offs;
1805 		struct ubifs_data_node *dn = node;
1806 
1807 		/*
1808 		 * Search the inode node this data node belongs to and insert
1809 		 * it to the RB-tree of inodes.
1810 		 */
1811 		inum = key_inum_flash(c, &dn->key);
1812 		fscki = read_add_inode(c, priv, inum);
1813 		if (IS_ERR(fscki)) {
1814 			err = PTR_ERR(fscki);
1815 			ubifs_err("error %d while processing data node and "
1816 				  "trying to find inode node %lu",
1817 				  err, (unsigned long)inum);
1818 			goto out_dump;
1819 		}
1820 
1821 		/* Make sure the data node is within inode size */
1822 		blk_offs = key_block_flash(c, &dn->key);
1823 		blk_offs <<= UBIFS_BLOCK_SHIFT;
1824 		blk_offs += le32_to_cpu(dn->size);
1825 		if (blk_offs > fscki->size) {
1826 			ubifs_err("data node at LEB %d:%d is not within inode "
1827 				  "size %lld", zbr->lnum, zbr->offs,
1828 				  fscki->size);
1829 			err = -EINVAL;
1830 			goto out_dump;
1831 		}
1832 	} else {
1833 		int nlen;
1834 		struct ubifs_dent_node *dent = node;
1835 		struct fsck_inode *fscki1;
1836 
1837 		err = ubifs_validate_entry(c, dent);
1838 		if (err)
1839 			goto out_dump;
1840 
1841 		/*
1842 		 * Search the inode node this entry refers to and the parent
1843 		 * inode node and insert them to the RB-tree of inodes.
1844 		 */
1845 		inum = le64_to_cpu(dent->inum);
1846 		fscki = read_add_inode(c, priv, inum);
1847 		if (IS_ERR(fscki)) {
1848 			err = PTR_ERR(fscki);
1849 			ubifs_err("error %d while processing entry node and "
1850 				  "trying to find inode node %lu",
1851 				  err, (unsigned long)inum);
1852 			goto out_dump;
1853 		}
1854 
1855 		/* Count how many direntries or xentries refers this inode */
1856 		fscki->references += 1;
1857 
1858 		inum = key_inum_flash(c, &dent->key);
1859 		fscki1 = read_add_inode(c, priv, inum);
1860 		if (IS_ERR(fscki1)) {
1861 			err = PTR_ERR(fscki);
1862 			ubifs_err("error %d while processing entry node and "
1863 				  "trying to find parent inode node %lu",
1864 				  err, (unsigned long)inum);
1865 			goto out_dump;
1866 		}
1867 
1868 		nlen = le16_to_cpu(dent->nlen);
1869 		if (type == UBIFS_XENT_KEY) {
1870 			fscki1->calc_xcnt += 1;
1871 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
1872 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
1873 			fscki1->calc_xnms += nlen;
1874 		} else {
1875 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
1876 			if (dent->type == UBIFS_ITYPE_DIR)
1877 				fscki1->calc_cnt += 1;
1878 		}
1879 	}
1880 
1881 out:
1882 	kfree(node);
1883 	return 0;
1884 
1885 out_dump:
1886 	ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
1887 	dbg_dump_node(c, node);
1888 out_free:
1889 	kfree(node);
1890 	return err;
1891 }
1892 
1893 /**
1894  * free_inodes - free RB-tree of inodes.
1895  * @fsckd: FS checking information
1896  */
1897 static void free_inodes(struct fsck_data *fsckd)
1898 {
1899 	struct rb_node *this = fsckd->inodes.rb_node;
1900 	struct fsck_inode *fscki;
1901 
1902 	while (this) {
1903 		if (this->rb_left)
1904 			this = this->rb_left;
1905 		else if (this->rb_right)
1906 			this = this->rb_right;
1907 		else {
1908 			fscki = rb_entry(this, struct fsck_inode, rb);
1909 			this = rb_parent(this);
1910 			if (this) {
1911 				if (this->rb_left == &fscki->rb)
1912 					this->rb_left = NULL;
1913 				else
1914 					this->rb_right = NULL;
1915 			}
1916 			kfree(fscki);
1917 		}
1918 	}
1919 }
1920 
1921 /**
1922  * check_inodes - checks all inodes.
1923  * @c: UBIFS file-system description object
1924  * @fsckd: FS checking information
1925  *
1926  * This is a helper function for 'dbg_check_filesystem()' which walks the
1927  * RB-tree of inodes after the index scan has been finished, and checks that
1928  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
1929  * %-EINVAL if not, and a negative error code in case of failure.
1930  */
1931 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
1932 {
1933 	int n, err;
1934 	union ubifs_key key;
1935 	struct ubifs_znode *znode;
1936 	struct ubifs_zbranch *zbr;
1937 	struct ubifs_ino_node *ino;
1938 	struct fsck_inode *fscki;
1939 	struct rb_node *this = rb_first(&fsckd->inodes);
1940 
1941 	while (this) {
1942 		fscki = rb_entry(this, struct fsck_inode, rb);
1943 		this = rb_next(this);
1944 
1945 		if (S_ISDIR(fscki->mode)) {
1946 			/*
1947 			 * Directories have to have exactly one reference (they
1948 			 * cannot have hardlinks), although root inode is an
1949 			 * exception.
1950 			 */
1951 			if (fscki->inum != UBIFS_ROOT_INO &&
1952 			    fscki->references != 1) {
1953 				ubifs_err("directory inode %lu has %d "
1954 					  "direntries which refer it, but "
1955 					  "should be 1",
1956 					  (unsigned long)fscki->inum,
1957 					  fscki->references);
1958 				goto out_dump;
1959 			}
1960 			if (fscki->inum == UBIFS_ROOT_INO &&
1961 			    fscki->references != 0) {
1962 				ubifs_err("root inode %lu has non-zero (%d) "
1963 					  "direntries which refer it",
1964 					  (unsigned long)fscki->inum,
1965 					  fscki->references);
1966 				goto out_dump;
1967 			}
1968 			if (fscki->calc_sz != fscki->size) {
1969 				ubifs_err("directory inode %lu size is %lld, "
1970 					  "but calculated size is %lld",
1971 					  (unsigned long)fscki->inum,
1972 					  fscki->size, fscki->calc_sz);
1973 				goto out_dump;
1974 			}
1975 			if (fscki->calc_cnt != fscki->nlink) {
1976 				ubifs_err("directory inode %lu nlink is %d, "
1977 					  "but calculated nlink is %d",
1978 					  (unsigned long)fscki->inum,
1979 					  fscki->nlink, fscki->calc_cnt);
1980 				goto out_dump;
1981 			}
1982 		} else {
1983 			if (fscki->references != fscki->nlink) {
1984 				ubifs_err("inode %lu nlink is %d, but "
1985 					  "calculated nlink is %d",
1986 					  (unsigned long)fscki->inum,
1987 					  fscki->nlink, fscki->references);
1988 				goto out_dump;
1989 			}
1990 		}
1991 		if (fscki->xattr_sz != fscki->calc_xsz) {
1992 			ubifs_err("inode %lu has xattr size %u, but "
1993 				  "calculated size is %lld",
1994 				  (unsigned long)fscki->inum, fscki->xattr_sz,
1995 				  fscki->calc_xsz);
1996 			goto out_dump;
1997 		}
1998 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
1999 			ubifs_err("inode %lu has %u xattrs, but "
2000 				  "calculated count is %lld",
2001 				  (unsigned long)fscki->inum,
2002 				  fscki->xattr_cnt, fscki->calc_xcnt);
2003 			goto out_dump;
2004 		}
2005 		if (fscki->xattr_nms != fscki->calc_xnms) {
2006 			ubifs_err("inode %lu has xattr names' size %u, but "
2007 				  "calculated names' size is %lld",
2008 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2009 				  fscki->calc_xnms);
2010 			goto out_dump;
2011 		}
2012 	}
2013 
2014 	return 0;
2015 
2016 out_dump:
2017 	/* Read the bad inode and dump it */
2018 	ino_key_init(c, &key, fscki->inum);
2019 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2020 	if (!err) {
2021 		ubifs_err("inode %lu not found in index",
2022 			  (unsigned long)fscki->inum);
2023 		return -ENOENT;
2024 	} else if (err < 0) {
2025 		ubifs_err("error %d while looking up inode %lu",
2026 			  err, (unsigned long)fscki->inum);
2027 		return err;
2028 	}
2029 
2030 	zbr = &znode->zbranch[n];
2031 	ino = kmalloc(zbr->len, GFP_NOFS);
2032 	if (!ino)
2033 		return -ENOMEM;
2034 
2035 	err = ubifs_tnc_read_node(c, zbr, ino);
2036 	if (err) {
2037 		ubifs_err("cannot read inode node at LEB %d:%d, error %d",
2038 			  zbr->lnum, zbr->offs, err);
2039 		kfree(ino);
2040 		return err;
2041 	}
2042 
2043 	ubifs_msg("dump of the inode %lu sitting in LEB %d:%d",
2044 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2045 	dbg_dump_node(c, ino);
2046 	kfree(ino);
2047 	return -EINVAL;
2048 }
2049 
2050 /**
2051  * dbg_check_filesystem - check the file-system.
2052  * @c: UBIFS file-system description object
2053  *
2054  * This function checks the file system, namely:
2055  * o makes sure that all leaf nodes exist and their CRCs are correct;
2056  * o makes sure inode nlink, size, xattr size/count are correct (for all
2057  *   inodes).
2058  *
2059  * The function reads whole indexing tree and all nodes, so it is pretty
2060  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2061  * not, and a negative error code in case of failure.
2062  */
2063 int dbg_check_filesystem(struct ubifs_info *c)
2064 {
2065 	int err;
2066 	struct fsck_data fsckd;
2067 
2068 	if (!(ubifs_chk_flags & UBIFS_CHK_FS))
2069 		return 0;
2070 
2071 	fsckd.inodes = RB_ROOT;
2072 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2073 	if (err)
2074 		goto out_free;
2075 
2076 	err = check_inodes(c, &fsckd);
2077 	if (err)
2078 		goto out_free;
2079 
2080 	free_inodes(&fsckd);
2081 	return 0;
2082 
2083 out_free:
2084 	ubifs_err("file-system check failed with error %d", err);
2085 	dump_stack();
2086 	free_inodes(&fsckd);
2087 	return err;
2088 }
2089 
2090 static int invocation_cnt;
2091 
2092 int dbg_force_in_the_gaps(void)
2093 {
2094 	if (!dbg_force_in_the_gaps_enabled)
2095 		return 0;
2096 	/* Force in-the-gaps every 8th commit */
2097 	return !((invocation_cnt++) & 0x7);
2098 }
2099 
2100 /* Failure mode for recovery testing */
2101 
2102 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d))
2103 
2104 struct failure_mode_info {
2105 	struct list_head list;
2106 	struct ubifs_info *c;
2107 };
2108 
2109 static LIST_HEAD(fmi_list);
2110 static DEFINE_SPINLOCK(fmi_lock);
2111 
2112 static unsigned int next;
2113 
2114 static int simple_rand(void)
2115 {
2116 	if (next == 0)
2117 		next = current->pid;
2118 	next = next * 1103515245 + 12345;
2119 	return (next >> 16) & 32767;
2120 }
2121 
2122 static void failure_mode_init(struct ubifs_info *c)
2123 {
2124 	struct failure_mode_info *fmi;
2125 
2126 	fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS);
2127 	if (!fmi) {
2128 		ubifs_err("Failed to register failure mode - no memory");
2129 		return;
2130 	}
2131 	fmi->c = c;
2132 	spin_lock(&fmi_lock);
2133 	list_add_tail(&fmi->list, &fmi_list);
2134 	spin_unlock(&fmi_lock);
2135 }
2136 
2137 static void failure_mode_exit(struct ubifs_info *c)
2138 {
2139 	struct failure_mode_info *fmi, *tmp;
2140 
2141 	spin_lock(&fmi_lock);
2142 	list_for_each_entry_safe(fmi, tmp, &fmi_list, list)
2143 		if (fmi->c == c) {
2144 			list_del(&fmi->list);
2145 			kfree(fmi);
2146 		}
2147 	spin_unlock(&fmi_lock);
2148 }
2149 
2150 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc)
2151 {
2152 	struct failure_mode_info *fmi;
2153 
2154 	spin_lock(&fmi_lock);
2155 	list_for_each_entry(fmi, &fmi_list, list)
2156 		if (fmi->c->ubi == desc) {
2157 			struct ubifs_info *c = fmi->c;
2158 
2159 			spin_unlock(&fmi_lock);
2160 			return c;
2161 		}
2162 	spin_unlock(&fmi_lock);
2163 	return NULL;
2164 }
2165 
2166 static int in_failure_mode(struct ubi_volume_desc *desc)
2167 {
2168 	struct ubifs_info *c = dbg_find_info(desc);
2169 
2170 	if (c && dbg_failure_mode)
2171 		return c->dbg->failure_mode;
2172 	return 0;
2173 }
2174 
2175 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write)
2176 {
2177 	struct ubifs_info *c = dbg_find_info(desc);
2178 	struct ubifs_debug_info *d;
2179 
2180 	if (!c || !dbg_failure_mode)
2181 		return 0;
2182 	d = c->dbg;
2183 	if (d->failure_mode)
2184 		return 1;
2185 	if (!d->fail_cnt) {
2186 		/* First call - decide delay to failure */
2187 		if (chance(1, 2)) {
2188 			unsigned int delay = 1 << (simple_rand() >> 11);
2189 
2190 			if (chance(1, 2)) {
2191 				d->fail_delay = 1;
2192 				d->fail_timeout = jiffies +
2193 						  msecs_to_jiffies(delay);
2194 				dbg_rcvry("failing after %ums", delay);
2195 			} else {
2196 				d->fail_delay = 2;
2197 				d->fail_cnt_max = delay;
2198 				dbg_rcvry("failing after %u calls", delay);
2199 			}
2200 		}
2201 		d->fail_cnt += 1;
2202 	}
2203 	/* Determine if failure delay has expired */
2204 	if (d->fail_delay == 1) {
2205 		if (time_before(jiffies, d->fail_timeout))
2206 			return 0;
2207 	} else if (d->fail_delay == 2)
2208 		if (d->fail_cnt++ < d->fail_cnt_max)
2209 			return 0;
2210 	if (lnum == UBIFS_SB_LNUM) {
2211 		if (write) {
2212 			if (chance(1, 2))
2213 				return 0;
2214 		} else if (chance(19, 20))
2215 			return 0;
2216 		dbg_rcvry("failing in super block LEB %d", lnum);
2217 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2218 		if (chance(19, 20))
2219 			return 0;
2220 		dbg_rcvry("failing in master LEB %d", lnum);
2221 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2222 		if (write) {
2223 			if (chance(99, 100))
2224 				return 0;
2225 		} else if (chance(399, 400))
2226 			return 0;
2227 		dbg_rcvry("failing in log LEB %d", lnum);
2228 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2229 		if (write) {
2230 			if (chance(7, 8))
2231 				return 0;
2232 		} else if (chance(19, 20))
2233 			return 0;
2234 		dbg_rcvry("failing in LPT LEB %d", lnum);
2235 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2236 		if (write) {
2237 			if (chance(1, 2))
2238 				return 0;
2239 		} else if (chance(9, 10))
2240 			return 0;
2241 		dbg_rcvry("failing in orphan LEB %d", lnum);
2242 	} else if (lnum == c->ihead_lnum) {
2243 		if (chance(99, 100))
2244 			return 0;
2245 		dbg_rcvry("failing in index head LEB %d", lnum);
2246 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2247 		if (chance(9, 10))
2248 			return 0;
2249 		dbg_rcvry("failing in GC head LEB %d", lnum);
2250 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2251 		   !ubifs_search_bud(c, lnum)) {
2252 		if (chance(19, 20))
2253 			return 0;
2254 		dbg_rcvry("failing in non-bud LEB %d", lnum);
2255 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2256 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2257 		if (chance(999, 1000))
2258 			return 0;
2259 		dbg_rcvry("failing in bud LEB %d commit running", lnum);
2260 	} else {
2261 		if (chance(9999, 10000))
2262 			return 0;
2263 		dbg_rcvry("failing in bud LEB %d commit not running", lnum);
2264 	}
2265 	ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum);
2266 	d->failure_mode = 1;
2267 	dump_stack();
2268 	return 1;
2269 }
2270 
2271 static void cut_data(const void *buf, int len)
2272 {
2273 	int flen, i;
2274 	unsigned char *p = (void *)buf;
2275 
2276 	flen = (len * (long long)simple_rand()) >> 15;
2277 	for (i = flen; i < len; i++)
2278 		p[i] = 0xff;
2279 }
2280 
2281 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset,
2282 		 int len, int check)
2283 {
2284 	if (in_failure_mode(desc))
2285 		return -EIO;
2286 	return ubi_leb_read(desc, lnum, buf, offset, len, check);
2287 }
2288 
2289 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf,
2290 		  int offset, int len, int dtype)
2291 {
2292 	int err, failing;
2293 
2294 	if (in_failure_mode(desc))
2295 		return -EIO;
2296 	failing = do_fail(desc, lnum, 1);
2297 	if (failing)
2298 		cut_data(buf, len);
2299 	err = ubi_leb_write(desc, lnum, buf, offset, len, dtype);
2300 	if (err)
2301 		return err;
2302 	if (failing)
2303 		return -EIO;
2304 	return 0;
2305 }
2306 
2307 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf,
2308 		   int len, int dtype)
2309 {
2310 	int err;
2311 
2312 	if (do_fail(desc, lnum, 1))
2313 		return -EIO;
2314 	err = ubi_leb_change(desc, lnum, buf, len, dtype);
2315 	if (err)
2316 		return err;
2317 	if (do_fail(desc, lnum, 1))
2318 		return -EIO;
2319 	return 0;
2320 }
2321 
2322 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum)
2323 {
2324 	int err;
2325 
2326 	if (do_fail(desc, lnum, 0))
2327 		return -EIO;
2328 	err = ubi_leb_erase(desc, lnum);
2329 	if (err)
2330 		return err;
2331 	if (do_fail(desc, lnum, 0))
2332 		return -EIO;
2333 	return 0;
2334 }
2335 
2336 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum)
2337 {
2338 	int err;
2339 
2340 	if (do_fail(desc, lnum, 0))
2341 		return -EIO;
2342 	err = ubi_leb_unmap(desc, lnum);
2343 	if (err)
2344 		return err;
2345 	if (do_fail(desc, lnum, 0))
2346 		return -EIO;
2347 	return 0;
2348 }
2349 
2350 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum)
2351 {
2352 	if (in_failure_mode(desc))
2353 		return -EIO;
2354 	return ubi_is_mapped(desc, lnum);
2355 }
2356 
2357 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype)
2358 {
2359 	int err;
2360 
2361 	if (do_fail(desc, lnum, 0))
2362 		return -EIO;
2363 	err = ubi_leb_map(desc, lnum, dtype);
2364 	if (err)
2365 		return err;
2366 	if (do_fail(desc, lnum, 0))
2367 		return -EIO;
2368 	return 0;
2369 }
2370 
2371 /**
2372  * ubifs_debugging_init - initialize UBIFS debugging.
2373  * @c: UBIFS file-system description object
2374  *
2375  * This function initializes debugging-related data for the file system.
2376  * Returns zero in case of success and a negative error code in case of
2377  * failure.
2378  */
2379 int ubifs_debugging_init(struct ubifs_info *c)
2380 {
2381 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
2382 	if (!c->dbg)
2383 		return -ENOMEM;
2384 
2385 	c->dbg->buf = vmalloc(c->leb_size);
2386 	if (!c->dbg->buf)
2387 		goto out;
2388 
2389 	failure_mode_init(c);
2390 	return 0;
2391 
2392 out:
2393 	kfree(c->dbg);
2394 	return -ENOMEM;
2395 }
2396 
2397 /**
2398  * ubifs_debugging_exit - free debugging data.
2399  * @c: UBIFS file-system description object
2400  */
2401 void ubifs_debugging_exit(struct ubifs_info *c)
2402 {
2403 	failure_mode_exit(c);
2404 	vfree(c->dbg->buf);
2405 	kfree(c->dbg);
2406 }
2407 
2408 /*
2409  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2410  * contain the stuff specific to particular file-system mounts.
2411  */
2412 static struct dentry *debugfs_rootdir;
2413 
2414 /**
2415  * dbg_debugfs_init - initialize debugfs file-system.
2416  *
2417  * UBIFS uses debugfs file-system to expose various debugging knobs to
2418  * user-space. This function creates "ubifs" directory in the debugfs
2419  * file-system. Returns zero in case of success and a negative error code in
2420  * case of failure.
2421  */
2422 int dbg_debugfs_init(void)
2423 {
2424 	debugfs_rootdir = debugfs_create_dir("ubifs", NULL);
2425 	if (IS_ERR(debugfs_rootdir)) {
2426 		int err = PTR_ERR(debugfs_rootdir);
2427 		ubifs_err("cannot create \"ubifs\" debugfs directory, "
2428 			  "error %d\n", err);
2429 		return err;
2430 	}
2431 
2432 	return 0;
2433 }
2434 
2435 /**
2436  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2437  */
2438 void dbg_debugfs_exit(void)
2439 {
2440 	debugfs_remove(debugfs_rootdir);
2441 }
2442 
2443 static int open_debugfs_file(struct inode *inode, struct file *file)
2444 {
2445 	file->private_data = inode->i_private;
2446 	return 0;
2447 }
2448 
2449 static ssize_t write_debugfs_file(struct file *file, const char __user *buf,
2450 				  size_t count, loff_t *ppos)
2451 {
2452 	struct ubifs_info *c = file->private_data;
2453 	struct ubifs_debug_info *d = c->dbg;
2454 
2455 	if (file->f_path.dentry == d->dump_lprops)
2456 		dbg_dump_lprops(c);
2457 	else if (file->f_path.dentry == d->dump_budg) {
2458 		spin_lock(&c->space_lock);
2459 		dbg_dump_budg(c);
2460 		spin_unlock(&c->space_lock);
2461 	} else if (file->f_path.dentry == d->dump_tnc) {
2462 		mutex_lock(&c->tnc_mutex);
2463 		dbg_dump_tnc(c);
2464 		mutex_unlock(&c->tnc_mutex);
2465 	} else
2466 		return -EINVAL;
2467 
2468 	*ppos += count;
2469 	return count;
2470 }
2471 
2472 static const struct file_operations debugfs_fops = {
2473 	.open = open_debugfs_file,
2474 	.write = write_debugfs_file,
2475 	.owner = THIS_MODULE,
2476 };
2477 
2478 /**
2479  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2480  * @c: UBIFS file-system description object
2481  *
2482  * This function creates all debugfs files for this instance of UBIFS. Returns
2483  * zero in case of success and a negative error code in case of failure.
2484  *
2485  * Note, the only reason we have not merged this function with the
2486  * 'ubifs_debugging_init()' function is because it is better to initialize
2487  * debugfs interfaces at the very end of the mount process, and remove them at
2488  * the very beginning of the mount process.
2489  */
2490 int dbg_debugfs_init_fs(struct ubifs_info *c)
2491 {
2492 	int err;
2493 	const char *fname;
2494 	struct dentry *dent;
2495 	struct ubifs_debug_info *d = c->dbg;
2496 
2497 	sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id);
2498 	d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name,
2499 					      debugfs_rootdir);
2500 	if (IS_ERR(d->debugfs_dir)) {
2501 		err = PTR_ERR(d->debugfs_dir);
2502 		ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2503 			  d->debugfs_dir_name, err);
2504 		goto out;
2505 	}
2506 
2507 	fname = "dump_lprops";
2508 	dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2509 				   &debugfs_fops);
2510 	if (IS_ERR(dent))
2511 		goto out_remove;
2512 	d->dump_lprops = dent;
2513 
2514 	fname = "dump_budg";
2515 	dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2516 				   &debugfs_fops);
2517 	if (IS_ERR(dent))
2518 		goto out_remove;
2519 	d->dump_budg = dent;
2520 
2521 	fname = "dump_tnc";
2522 	dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c,
2523 				   &debugfs_fops);
2524 	if (IS_ERR(dent))
2525 		goto out_remove;
2526 	d->dump_tnc = dent;
2527 
2528 	return 0;
2529 
2530 out_remove:
2531 	err = PTR_ERR(dent);
2532 	ubifs_err("cannot create \"%s\" debugfs directory, error %d\n",
2533 		  fname, err);
2534 	debugfs_remove_recursive(d->debugfs_dir);
2535 out:
2536 	return err;
2537 }
2538 
2539 /**
2540  * dbg_debugfs_exit_fs - remove all debugfs files.
2541  * @c: UBIFS file-system description object
2542  */
2543 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2544 {
2545 	debugfs_remove_recursive(c->dbg->debugfs_dir);
2546 }
2547 
2548 #endif /* CONFIG_UBIFS_FS_DEBUG */
2549