1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 38 #ifdef CONFIG_UBIFS_FS_DEBUG 39 40 DEFINE_SPINLOCK(dbg_lock); 41 42 static char dbg_key_buf0[128]; 43 static char dbg_key_buf1[128]; 44 45 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 46 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 47 unsigned int ubifs_tst_flags; 48 49 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 50 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 51 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 52 53 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 54 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 55 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 56 57 static const char *get_key_fmt(int fmt) 58 { 59 switch (fmt) { 60 case UBIFS_SIMPLE_KEY_FMT: 61 return "simple"; 62 default: 63 return "unknown/invalid format"; 64 } 65 } 66 67 static const char *get_key_hash(int hash) 68 { 69 switch (hash) { 70 case UBIFS_KEY_HASH_R5: 71 return "R5"; 72 case UBIFS_KEY_HASH_TEST: 73 return "test"; 74 default: 75 return "unknown/invalid name hash"; 76 } 77 } 78 79 static const char *get_key_type(int type) 80 { 81 switch (type) { 82 case UBIFS_INO_KEY: 83 return "inode"; 84 case UBIFS_DENT_KEY: 85 return "direntry"; 86 case UBIFS_XENT_KEY: 87 return "xentry"; 88 case UBIFS_DATA_KEY: 89 return "data"; 90 case UBIFS_TRUN_KEY: 91 return "truncate"; 92 default: 93 return "unknown/invalid key"; 94 } 95 } 96 97 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 98 char *buffer) 99 { 100 char *p = buffer; 101 int type = key_type(c, key); 102 103 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 104 switch (type) { 105 case UBIFS_INO_KEY: 106 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 107 get_key_type(type)); 108 break; 109 case UBIFS_DENT_KEY: 110 case UBIFS_XENT_KEY: 111 sprintf(p, "(%lu, %s, %#08x)", 112 (unsigned long)key_inum(c, key), 113 get_key_type(type), key_hash(c, key)); 114 break; 115 case UBIFS_DATA_KEY: 116 sprintf(p, "(%lu, %s, %u)", 117 (unsigned long)key_inum(c, key), 118 get_key_type(type), key_block(c, key)); 119 break; 120 case UBIFS_TRUN_KEY: 121 sprintf(p, "(%lu, %s)", 122 (unsigned long)key_inum(c, key), 123 get_key_type(type)); 124 break; 125 default: 126 sprintf(p, "(bad key type: %#08x, %#08x)", 127 key->u32[0], key->u32[1]); 128 } 129 } else 130 sprintf(p, "bad key format %d", c->key_fmt); 131 } 132 133 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 134 { 135 /* dbg_lock must be held */ 136 sprintf_key(c, key, dbg_key_buf0); 137 return dbg_key_buf0; 138 } 139 140 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 141 { 142 /* dbg_lock must be held */ 143 sprintf_key(c, key, dbg_key_buf1); 144 return dbg_key_buf1; 145 } 146 147 const char *dbg_ntype(int type) 148 { 149 switch (type) { 150 case UBIFS_PAD_NODE: 151 return "padding node"; 152 case UBIFS_SB_NODE: 153 return "superblock node"; 154 case UBIFS_MST_NODE: 155 return "master node"; 156 case UBIFS_REF_NODE: 157 return "reference node"; 158 case UBIFS_INO_NODE: 159 return "inode node"; 160 case UBIFS_DENT_NODE: 161 return "direntry node"; 162 case UBIFS_XENT_NODE: 163 return "xentry node"; 164 case UBIFS_DATA_NODE: 165 return "data node"; 166 case UBIFS_TRUN_NODE: 167 return "truncate node"; 168 case UBIFS_IDX_NODE: 169 return "indexing node"; 170 case UBIFS_CS_NODE: 171 return "commit start node"; 172 case UBIFS_ORPH_NODE: 173 return "orphan node"; 174 default: 175 return "unknown node"; 176 } 177 } 178 179 static const char *dbg_gtype(int type) 180 { 181 switch (type) { 182 case UBIFS_NO_NODE_GROUP: 183 return "no node group"; 184 case UBIFS_IN_NODE_GROUP: 185 return "in node group"; 186 case UBIFS_LAST_OF_NODE_GROUP: 187 return "last of node group"; 188 default: 189 return "unknown"; 190 } 191 } 192 193 const char *dbg_cstate(int cmt_state) 194 { 195 switch (cmt_state) { 196 case COMMIT_RESTING: 197 return "commit resting"; 198 case COMMIT_BACKGROUND: 199 return "background commit requested"; 200 case COMMIT_REQUIRED: 201 return "commit required"; 202 case COMMIT_RUNNING_BACKGROUND: 203 return "BACKGROUND commit running"; 204 case COMMIT_RUNNING_REQUIRED: 205 return "commit running and required"; 206 case COMMIT_BROKEN: 207 return "broken commit"; 208 default: 209 return "unknown commit state"; 210 } 211 } 212 213 static void dump_ch(const struct ubifs_ch *ch) 214 { 215 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 216 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 217 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 218 dbg_ntype(ch->node_type)); 219 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 220 dbg_gtype(ch->group_type)); 221 printk(KERN_DEBUG "\tsqnum %llu\n", 222 (unsigned long long)le64_to_cpu(ch->sqnum)); 223 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 224 } 225 226 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 227 { 228 const struct ubifs_inode *ui = ubifs_inode(inode); 229 230 printk(KERN_DEBUG "Dump in-memory inode:"); 231 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 232 printk(KERN_DEBUG "\tsize %llu\n", 233 (unsigned long long)i_size_read(inode)); 234 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 235 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 236 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 237 printk(KERN_DEBUG "\tatime %u.%u\n", 238 (unsigned int)inode->i_atime.tv_sec, 239 (unsigned int)inode->i_atime.tv_nsec); 240 printk(KERN_DEBUG "\tmtime %u.%u\n", 241 (unsigned int)inode->i_mtime.tv_sec, 242 (unsigned int)inode->i_mtime.tv_nsec); 243 printk(KERN_DEBUG "\tctime %u.%u\n", 244 (unsigned int)inode->i_ctime.tv_sec, 245 (unsigned int)inode->i_ctime.tv_nsec); 246 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 247 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 248 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 249 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 250 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 251 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 252 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 253 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 254 (unsigned long long)ui->synced_i_size); 255 printk(KERN_DEBUG "\tui_size %llu\n", 256 (unsigned long long)ui->ui_size); 257 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 258 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 259 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 260 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 261 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 262 } 263 264 void dbg_dump_node(const struct ubifs_info *c, const void *node) 265 { 266 int i, n; 267 union ubifs_key key; 268 const struct ubifs_ch *ch = node; 269 270 if (dbg_failure_mode) 271 return; 272 273 /* If the magic is incorrect, just hexdump the first bytes */ 274 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 275 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 276 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 277 (void *)node, UBIFS_CH_SZ, 1); 278 return; 279 } 280 281 spin_lock(&dbg_lock); 282 dump_ch(node); 283 284 switch (ch->node_type) { 285 case UBIFS_PAD_NODE: 286 { 287 const struct ubifs_pad_node *pad = node; 288 289 printk(KERN_DEBUG "\tpad_len %u\n", 290 le32_to_cpu(pad->pad_len)); 291 break; 292 } 293 case UBIFS_SB_NODE: 294 { 295 const struct ubifs_sb_node *sup = node; 296 unsigned int sup_flags = le32_to_cpu(sup->flags); 297 298 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 299 (int)sup->key_hash, get_key_hash(sup->key_hash)); 300 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 301 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 302 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 303 printk(KERN_DEBUG "\t big_lpt %u\n", 304 !!(sup_flags & UBIFS_FLG_BIGLPT)); 305 printk(KERN_DEBUG "\tmin_io_size %u\n", 306 le32_to_cpu(sup->min_io_size)); 307 printk(KERN_DEBUG "\tleb_size %u\n", 308 le32_to_cpu(sup->leb_size)); 309 printk(KERN_DEBUG "\tleb_cnt %u\n", 310 le32_to_cpu(sup->leb_cnt)); 311 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 312 le32_to_cpu(sup->max_leb_cnt)); 313 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 314 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 315 printk(KERN_DEBUG "\tlog_lebs %u\n", 316 le32_to_cpu(sup->log_lebs)); 317 printk(KERN_DEBUG "\tlpt_lebs %u\n", 318 le32_to_cpu(sup->lpt_lebs)); 319 printk(KERN_DEBUG "\torph_lebs %u\n", 320 le32_to_cpu(sup->orph_lebs)); 321 printk(KERN_DEBUG "\tjhead_cnt %u\n", 322 le32_to_cpu(sup->jhead_cnt)); 323 printk(KERN_DEBUG "\tfanout %u\n", 324 le32_to_cpu(sup->fanout)); 325 printk(KERN_DEBUG "\tlsave_cnt %u\n", 326 le32_to_cpu(sup->lsave_cnt)); 327 printk(KERN_DEBUG "\tdefault_compr %u\n", 328 (int)le16_to_cpu(sup->default_compr)); 329 printk(KERN_DEBUG "\trp_size %llu\n", 330 (unsigned long long)le64_to_cpu(sup->rp_size)); 331 printk(KERN_DEBUG "\trp_uid %u\n", 332 le32_to_cpu(sup->rp_uid)); 333 printk(KERN_DEBUG "\trp_gid %u\n", 334 le32_to_cpu(sup->rp_gid)); 335 printk(KERN_DEBUG "\tfmt_version %u\n", 336 le32_to_cpu(sup->fmt_version)); 337 printk(KERN_DEBUG "\ttime_gran %u\n", 338 le32_to_cpu(sup->time_gran)); 339 printk(KERN_DEBUG "\tUUID %02X%02X%02X%02X-%02X%02X" 340 "-%02X%02X-%02X%02X-%02X%02X%02X%02X%02X%02X\n", 341 sup->uuid[0], sup->uuid[1], sup->uuid[2], sup->uuid[3], 342 sup->uuid[4], sup->uuid[5], sup->uuid[6], sup->uuid[7], 343 sup->uuid[8], sup->uuid[9], sup->uuid[10], sup->uuid[11], 344 sup->uuid[12], sup->uuid[13], sup->uuid[14], 345 sup->uuid[15]); 346 break; 347 } 348 case UBIFS_MST_NODE: 349 { 350 const struct ubifs_mst_node *mst = node; 351 352 printk(KERN_DEBUG "\thighest_inum %llu\n", 353 (unsigned long long)le64_to_cpu(mst->highest_inum)); 354 printk(KERN_DEBUG "\tcommit number %llu\n", 355 (unsigned long long)le64_to_cpu(mst->cmt_no)); 356 printk(KERN_DEBUG "\tflags %#x\n", 357 le32_to_cpu(mst->flags)); 358 printk(KERN_DEBUG "\tlog_lnum %u\n", 359 le32_to_cpu(mst->log_lnum)); 360 printk(KERN_DEBUG "\troot_lnum %u\n", 361 le32_to_cpu(mst->root_lnum)); 362 printk(KERN_DEBUG "\troot_offs %u\n", 363 le32_to_cpu(mst->root_offs)); 364 printk(KERN_DEBUG "\troot_len %u\n", 365 le32_to_cpu(mst->root_len)); 366 printk(KERN_DEBUG "\tgc_lnum %u\n", 367 le32_to_cpu(mst->gc_lnum)); 368 printk(KERN_DEBUG "\tihead_lnum %u\n", 369 le32_to_cpu(mst->ihead_lnum)); 370 printk(KERN_DEBUG "\tihead_offs %u\n", 371 le32_to_cpu(mst->ihead_offs)); 372 printk(KERN_DEBUG "\tindex_size %llu\n", 373 (unsigned long long)le64_to_cpu(mst->index_size)); 374 printk(KERN_DEBUG "\tlpt_lnum %u\n", 375 le32_to_cpu(mst->lpt_lnum)); 376 printk(KERN_DEBUG "\tlpt_offs %u\n", 377 le32_to_cpu(mst->lpt_offs)); 378 printk(KERN_DEBUG "\tnhead_lnum %u\n", 379 le32_to_cpu(mst->nhead_lnum)); 380 printk(KERN_DEBUG "\tnhead_offs %u\n", 381 le32_to_cpu(mst->nhead_offs)); 382 printk(KERN_DEBUG "\tltab_lnum %u\n", 383 le32_to_cpu(mst->ltab_lnum)); 384 printk(KERN_DEBUG "\tltab_offs %u\n", 385 le32_to_cpu(mst->ltab_offs)); 386 printk(KERN_DEBUG "\tlsave_lnum %u\n", 387 le32_to_cpu(mst->lsave_lnum)); 388 printk(KERN_DEBUG "\tlsave_offs %u\n", 389 le32_to_cpu(mst->lsave_offs)); 390 printk(KERN_DEBUG "\tlscan_lnum %u\n", 391 le32_to_cpu(mst->lscan_lnum)); 392 printk(KERN_DEBUG "\tleb_cnt %u\n", 393 le32_to_cpu(mst->leb_cnt)); 394 printk(KERN_DEBUG "\tempty_lebs %u\n", 395 le32_to_cpu(mst->empty_lebs)); 396 printk(KERN_DEBUG "\tidx_lebs %u\n", 397 le32_to_cpu(mst->idx_lebs)); 398 printk(KERN_DEBUG "\ttotal_free %llu\n", 399 (unsigned long long)le64_to_cpu(mst->total_free)); 400 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 401 (unsigned long long)le64_to_cpu(mst->total_dirty)); 402 printk(KERN_DEBUG "\ttotal_used %llu\n", 403 (unsigned long long)le64_to_cpu(mst->total_used)); 404 printk(KERN_DEBUG "\ttotal_dead %llu\n", 405 (unsigned long long)le64_to_cpu(mst->total_dead)); 406 printk(KERN_DEBUG "\ttotal_dark %llu\n", 407 (unsigned long long)le64_to_cpu(mst->total_dark)); 408 break; 409 } 410 case UBIFS_REF_NODE: 411 { 412 const struct ubifs_ref_node *ref = node; 413 414 printk(KERN_DEBUG "\tlnum %u\n", 415 le32_to_cpu(ref->lnum)); 416 printk(KERN_DEBUG "\toffs %u\n", 417 le32_to_cpu(ref->offs)); 418 printk(KERN_DEBUG "\tjhead %u\n", 419 le32_to_cpu(ref->jhead)); 420 break; 421 } 422 case UBIFS_INO_NODE: 423 { 424 const struct ubifs_ino_node *ino = node; 425 426 key_read(c, &ino->key, &key); 427 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 428 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 429 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 430 printk(KERN_DEBUG "\tsize %llu\n", 431 (unsigned long long)le64_to_cpu(ino->size)); 432 printk(KERN_DEBUG "\tnlink %u\n", 433 le32_to_cpu(ino->nlink)); 434 printk(KERN_DEBUG "\tatime %lld.%u\n", 435 (long long)le64_to_cpu(ino->atime_sec), 436 le32_to_cpu(ino->atime_nsec)); 437 printk(KERN_DEBUG "\tmtime %lld.%u\n", 438 (long long)le64_to_cpu(ino->mtime_sec), 439 le32_to_cpu(ino->mtime_nsec)); 440 printk(KERN_DEBUG "\tctime %lld.%u\n", 441 (long long)le64_to_cpu(ino->ctime_sec), 442 le32_to_cpu(ino->ctime_nsec)); 443 printk(KERN_DEBUG "\tuid %u\n", 444 le32_to_cpu(ino->uid)); 445 printk(KERN_DEBUG "\tgid %u\n", 446 le32_to_cpu(ino->gid)); 447 printk(KERN_DEBUG "\tmode %u\n", 448 le32_to_cpu(ino->mode)); 449 printk(KERN_DEBUG "\tflags %#x\n", 450 le32_to_cpu(ino->flags)); 451 printk(KERN_DEBUG "\txattr_cnt %u\n", 452 le32_to_cpu(ino->xattr_cnt)); 453 printk(KERN_DEBUG "\txattr_size %u\n", 454 le32_to_cpu(ino->xattr_size)); 455 printk(KERN_DEBUG "\txattr_names %u\n", 456 le32_to_cpu(ino->xattr_names)); 457 printk(KERN_DEBUG "\tcompr_type %#x\n", 458 (int)le16_to_cpu(ino->compr_type)); 459 printk(KERN_DEBUG "\tdata len %u\n", 460 le32_to_cpu(ino->data_len)); 461 break; 462 } 463 case UBIFS_DENT_NODE: 464 case UBIFS_XENT_NODE: 465 { 466 const struct ubifs_dent_node *dent = node; 467 int nlen = le16_to_cpu(dent->nlen); 468 469 key_read(c, &dent->key, &key); 470 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 471 printk(KERN_DEBUG "\tinum %llu\n", 472 (unsigned long long)le64_to_cpu(dent->inum)); 473 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 474 printk(KERN_DEBUG "\tnlen %d\n", nlen); 475 printk(KERN_DEBUG "\tname "); 476 477 if (nlen > UBIFS_MAX_NLEN) 478 printk(KERN_DEBUG "(bad name length, not printing, " 479 "bad or corrupted node)"); 480 else { 481 for (i = 0; i < nlen && dent->name[i]; i++) 482 printk("%c", dent->name[i]); 483 } 484 printk("\n"); 485 486 break; 487 } 488 case UBIFS_DATA_NODE: 489 { 490 const struct ubifs_data_node *dn = node; 491 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 492 493 key_read(c, &dn->key, &key); 494 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 495 printk(KERN_DEBUG "\tsize %u\n", 496 le32_to_cpu(dn->size)); 497 printk(KERN_DEBUG "\tcompr_typ %d\n", 498 (int)le16_to_cpu(dn->compr_type)); 499 printk(KERN_DEBUG "\tdata size %d\n", 500 dlen); 501 printk(KERN_DEBUG "\tdata:\n"); 502 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 503 (void *)&dn->data, dlen, 0); 504 break; 505 } 506 case UBIFS_TRUN_NODE: 507 { 508 const struct ubifs_trun_node *trun = node; 509 510 printk(KERN_DEBUG "\tinum %u\n", 511 le32_to_cpu(trun->inum)); 512 printk(KERN_DEBUG "\told_size %llu\n", 513 (unsigned long long)le64_to_cpu(trun->old_size)); 514 printk(KERN_DEBUG "\tnew_size %llu\n", 515 (unsigned long long)le64_to_cpu(trun->new_size)); 516 break; 517 } 518 case UBIFS_IDX_NODE: 519 { 520 const struct ubifs_idx_node *idx = node; 521 522 n = le16_to_cpu(idx->child_cnt); 523 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 524 printk(KERN_DEBUG "\tlevel %d\n", 525 (int)le16_to_cpu(idx->level)); 526 printk(KERN_DEBUG "\tBranches:\n"); 527 528 for (i = 0; i < n && i < c->fanout - 1; i++) { 529 const struct ubifs_branch *br; 530 531 br = ubifs_idx_branch(c, idx, i); 532 key_read(c, &br->key, &key); 533 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 534 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 535 le32_to_cpu(br->len), DBGKEY(&key)); 536 } 537 break; 538 } 539 case UBIFS_CS_NODE: 540 break; 541 case UBIFS_ORPH_NODE: 542 { 543 const struct ubifs_orph_node *orph = node; 544 545 printk(KERN_DEBUG "\tcommit number %llu\n", 546 (unsigned long long) 547 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 548 printk(KERN_DEBUG "\tlast node flag %llu\n", 549 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 550 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 551 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 552 for (i = 0; i < n; i++) 553 printk(KERN_DEBUG "\t ino %llu\n", 554 (unsigned long long)le64_to_cpu(orph->inos[i])); 555 break; 556 } 557 default: 558 printk(KERN_DEBUG "node type %d was not recognized\n", 559 (int)ch->node_type); 560 } 561 spin_unlock(&dbg_lock); 562 } 563 564 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 565 { 566 spin_lock(&dbg_lock); 567 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 568 req->new_ino, req->dirtied_ino); 569 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 570 req->new_ino_d, req->dirtied_ino_d); 571 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 572 req->new_page, req->dirtied_page); 573 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 574 req->new_dent, req->mod_dent); 575 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 576 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 577 req->data_growth, req->dd_growth); 578 spin_unlock(&dbg_lock); 579 } 580 581 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 582 { 583 spin_lock(&dbg_lock); 584 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 585 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 586 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 587 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 588 lst->total_dirty); 589 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 590 "total_dead %lld\n", lst->total_used, lst->total_dark, 591 lst->total_dead); 592 spin_unlock(&dbg_lock); 593 } 594 595 void dbg_dump_budg(struct ubifs_info *c) 596 { 597 int i; 598 struct rb_node *rb; 599 struct ubifs_bud *bud; 600 struct ubifs_gced_idx_leb *idx_gc; 601 long long available, outstanding, free; 602 603 ubifs_assert(spin_is_locked(&c->space_lock)); 604 spin_lock(&dbg_lock); 605 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 606 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 607 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 608 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 609 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 610 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 611 c->freeable_cnt); 612 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 613 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 614 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 615 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 616 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 617 atomic_long_read(&c->dirty_zn_cnt), 618 atomic_long_read(&c->clean_zn_cnt)); 619 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 620 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 621 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 622 c->gc_lnum, c->ihead_lnum); 623 for (i = 0; i < c->jhead_cnt; i++) 624 printk(KERN_DEBUG "\tjhead %d\t LEB %d\n", 625 c->jheads[i].wbuf.jhead, c->jheads[i].wbuf.lnum); 626 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 627 bud = rb_entry(rb, struct ubifs_bud, rb); 628 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 629 } 630 list_for_each_entry(bud, &c->old_buds, list) 631 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 632 list_for_each_entry(idx_gc, &c->idx_gc, list) 633 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 634 idx_gc->lnum, idx_gc->unmap); 635 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 636 637 /* Print budgeting predictions */ 638 available = ubifs_calc_available(c, c->min_idx_lebs); 639 outstanding = c->budg_data_growth + c->budg_dd_growth; 640 if (available > outstanding) 641 free = ubifs_reported_space(c, available - outstanding); 642 else 643 free = 0; 644 printk(KERN_DEBUG "Budgeting predictions:\n"); 645 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 646 available, outstanding, free); 647 spin_unlock(&dbg_lock); 648 } 649 650 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 651 { 652 printk(KERN_DEBUG "LEB %d lprops: free %d, dirty %d (used %d), " 653 "flags %#x\n", lp->lnum, lp->free, lp->dirty, 654 c->leb_size - lp->free - lp->dirty, lp->flags); 655 } 656 657 void dbg_dump_lprops(struct ubifs_info *c) 658 { 659 int lnum, err; 660 struct ubifs_lprops lp; 661 struct ubifs_lp_stats lst; 662 663 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 664 current->pid); 665 ubifs_get_lp_stats(c, &lst); 666 dbg_dump_lstats(&lst); 667 668 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 669 err = ubifs_read_one_lp(c, lnum, &lp); 670 if (err) 671 ubifs_err("cannot read lprops for LEB %d", lnum); 672 673 dbg_dump_lprop(c, &lp); 674 } 675 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 676 current->pid); 677 } 678 679 void dbg_dump_lpt_info(struct ubifs_info *c) 680 { 681 int i; 682 683 spin_lock(&dbg_lock); 684 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 685 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 686 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 687 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 688 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 689 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 690 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 691 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 692 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 693 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 694 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 695 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 696 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 697 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 698 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 699 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 700 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 701 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 702 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 703 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 704 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 705 c->nhead_lnum, c->nhead_offs); 706 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 707 c->ltab_lnum, c->ltab_offs); 708 if (c->big_lpt) 709 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 710 c->lsave_lnum, c->lsave_offs); 711 for (i = 0; i < c->lpt_lebs; i++) 712 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 713 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 714 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 715 spin_unlock(&dbg_lock); 716 } 717 718 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 719 { 720 struct ubifs_scan_leb *sleb; 721 struct ubifs_scan_node *snod; 722 723 if (dbg_failure_mode) 724 return; 725 726 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 727 current->pid, lnum); 728 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf); 729 if (IS_ERR(sleb)) { 730 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 731 return; 732 } 733 734 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 735 sleb->nodes_cnt, sleb->endpt); 736 737 list_for_each_entry(snod, &sleb->nodes, list) { 738 cond_resched(); 739 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 740 snod->offs, snod->len); 741 dbg_dump_node(c, snod->node); 742 } 743 744 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 745 current->pid, lnum); 746 ubifs_scan_destroy(sleb); 747 return; 748 } 749 750 void dbg_dump_znode(const struct ubifs_info *c, 751 const struct ubifs_znode *znode) 752 { 753 int n; 754 const struct ubifs_zbranch *zbr; 755 756 spin_lock(&dbg_lock); 757 if (znode->parent) 758 zbr = &znode->parent->zbranch[znode->iip]; 759 else 760 zbr = &c->zroot; 761 762 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 763 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 764 zbr->len, znode->parent, znode->iip, znode->level, 765 znode->child_cnt, znode->flags); 766 767 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 768 spin_unlock(&dbg_lock); 769 return; 770 } 771 772 printk(KERN_DEBUG "zbranches:\n"); 773 for (n = 0; n < znode->child_cnt; n++) { 774 zbr = &znode->zbranch[n]; 775 if (znode->level > 0) 776 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 777 "%s\n", n, zbr->znode, zbr->lnum, 778 zbr->offs, zbr->len, 779 DBGKEY(&zbr->key)); 780 else 781 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 782 "%s\n", n, zbr->znode, zbr->lnum, 783 zbr->offs, zbr->len, 784 DBGKEY(&zbr->key)); 785 } 786 spin_unlock(&dbg_lock); 787 } 788 789 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 790 { 791 int i; 792 793 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 794 current->pid, cat, heap->cnt); 795 for (i = 0; i < heap->cnt; i++) { 796 struct ubifs_lprops *lprops = heap->arr[i]; 797 798 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 799 "flags %d\n", i, lprops->lnum, lprops->hpos, 800 lprops->free, lprops->dirty, lprops->flags); 801 } 802 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 803 } 804 805 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 806 struct ubifs_nnode *parent, int iip) 807 { 808 int i; 809 810 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 811 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 812 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 813 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 814 pnode->flags, iip, pnode->level, pnode->num); 815 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 816 struct ubifs_lprops *lp = &pnode->lprops[i]; 817 818 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 819 i, lp->free, lp->dirty, lp->flags, lp->lnum); 820 } 821 } 822 823 void dbg_dump_tnc(struct ubifs_info *c) 824 { 825 struct ubifs_znode *znode; 826 int level; 827 828 printk(KERN_DEBUG "\n"); 829 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 830 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 831 level = znode->level; 832 printk(KERN_DEBUG "== Level %d ==\n", level); 833 while (znode) { 834 if (level != znode->level) { 835 level = znode->level; 836 printk(KERN_DEBUG "== Level %d ==\n", level); 837 } 838 dbg_dump_znode(c, znode); 839 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 840 } 841 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 842 } 843 844 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 845 void *priv) 846 { 847 dbg_dump_znode(c, znode); 848 return 0; 849 } 850 851 /** 852 * dbg_dump_index - dump the on-flash index. 853 * @c: UBIFS file-system description object 854 * 855 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 856 * which dumps only in-memory znodes and does not read znodes which from flash. 857 */ 858 void dbg_dump_index(struct ubifs_info *c) 859 { 860 dbg_walk_index(c, NULL, dump_znode, NULL); 861 } 862 863 /** 864 * dbg_check_synced_i_size - check synchronized inode size. 865 * @inode: inode to check 866 * 867 * If inode is clean, synchronized inode size has to be equivalent to current 868 * inode size. This function has to be called only for locked inodes (@i_mutex 869 * has to be locked). Returns %0 if synchronized inode size if correct, and 870 * %-EINVAL if not. 871 */ 872 int dbg_check_synced_i_size(struct inode *inode) 873 { 874 int err = 0; 875 struct ubifs_inode *ui = ubifs_inode(inode); 876 877 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 878 return 0; 879 if (!S_ISREG(inode->i_mode)) 880 return 0; 881 882 mutex_lock(&ui->ui_mutex); 883 spin_lock(&ui->ui_lock); 884 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 885 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 886 "is clean", ui->ui_size, ui->synced_i_size); 887 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 888 inode->i_mode, i_size_read(inode)); 889 dbg_dump_stack(); 890 err = -EINVAL; 891 } 892 spin_unlock(&ui->ui_lock); 893 mutex_unlock(&ui->ui_mutex); 894 return err; 895 } 896 897 /* 898 * dbg_check_dir - check directory inode size and link count. 899 * @c: UBIFS file-system description object 900 * @dir: the directory to calculate size for 901 * @size: the result is returned here 902 * 903 * This function makes sure that directory size and link count are correct. 904 * Returns zero in case of success and a negative error code in case of 905 * failure. 906 * 907 * Note, it is good idea to make sure the @dir->i_mutex is locked before 908 * calling this function. 909 */ 910 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 911 { 912 unsigned int nlink = 2; 913 union ubifs_key key; 914 struct ubifs_dent_node *dent, *pdent = NULL; 915 struct qstr nm = { .name = NULL }; 916 loff_t size = UBIFS_INO_NODE_SZ; 917 918 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 919 return 0; 920 921 if (!S_ISDIR(dir->i_mode)) 922 return 0; 923 924 lowest_dent_key(c, &key, dir->i_ino); 925 while (1) { 926 int err; 927 928 dent = ubifs_tnc_next_ent(c, &key, &nm); 929 if (IS_ERR(dent)) { 930 err = PTR_ERR(dent); 931 if (err == -ENOENT) 932 break; 933 return err; 934 } 935 936 nm.name = dent->name; 937 nm.len = le16_to_cpu(dent->nlen); 938 size += CALC_DENT_SIZE(nm.len); 939 if (dent->type == UBIFS_ITYPE_DIR) 940 nlink += 1; 941 kfree(pdent); 942 pdent = dent; 943 key_read(c, &dent->key, &key); 944 } 945 kfree(pdent); 946 947 if (i_size_read(dir) != size) { 948 ubifs_err("directory inode %lu has size %llu, " 949 "but calculated size is %llu", dir->i_ino, 950 (unsigned long long)i_size_read(dir), 951 (unsigned long long)size); 952 dump_stack(); 953 return -EINVAL; 954 } 955 if (dir->i_nlink != nlink) { 956 ubifs_err("directory inode %lu has nlink %u, but calculated " 957 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 958 dump_stack(); 959 return -EINVAL; 960 } 961 962 return 0; 963 } 964 965 /** 966 * dbg_check_key_order - make sure that colliding keys are properly ordered. 967 * @c: UBIFS file-system description object 968 * @zbr1: first zbranch 969 * @zbr2: following zbranch 970 * 971 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 972 * names of the direntries/xentries which are referred by the keys. This 973 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 974 * sure the name of direntry/xentry referred by @zbr1 is less than 975 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 976 * and a negative error code in case of failure. 977 */ 978 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 979 struct ubifs_zbranch *zbr2) 980 { 981 int err, nlen1, nlen2, cmp; 982 struct ubifs_dent_node *dent1, *dent2; 983 union ubifs_key key; 984 985 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 986 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 987 if (!dent1) 988 return -ENOMEM; 989 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 990 if (!dent2) { 991 err = -ENOMEM; 992 goto out_free; 993 } 994 995 err = ubifs_tnc_read_node(c, zbr1, dent1); 996 if (err) 997 goto out_free; 998 err = ubifs_validate_entry(c, dent1); 999 if (err) 1000 goto out_free; 1001 1002 err = ubifs_tnc_read_node(c, zbr2, dent2); 1003 if (err) 1004 goto out_free; 1005 err = ubifs_validate_entry(c, dent2); 1006 if (err) 1007 goto out_free; 1008 1009 /* Make sure node keys are the same as in zbranch */ 1010 err = 1; 1011 key_read(c, &dent1->key, &key); 1012 if (keys_cmp(c, &zbr1->key, &key)) { 1013 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1014 zbr1->offs, DBGKEY(&key)); 1015 dbg_err("but it should have key %s according to tnc", 1016 DBGKEY(&zbr1->key)); 1017 dbg_dump_node(c, dent1); 1018 goto out_free; 1019 } 1020 1021 key_read(c, &dent2->key, &key); 1022 if (keys_cmp(c, &zbr2->key, &key)) { 1023 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1024 zbr1->offs, DBGKEY(&key)); 1025 dbg_err("but it should have key %s according to tnc", 1026 DBGKEY(&zbr2->key)); 1027 dbg_dump_node(c, dent2); 1028 goto out_free; 1029 } 1030 1031 nlen1 = le16_to_cpu(dent1->nlen); 1032 nlen2 = le16_to_cpu(dent2->nlen); 1033 1034 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1035 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1036 err = 0; 1037 goto out_free; 1038 } 1039 if (cmp == 0 && nlen1 == nlen2) 1040 dbg_err("2 xent/dent nodes with the same name"); 1041 else 1042 dbg_err("bad order of colliding key %s", 1043 DBGKEY(&key)); 1044 1045 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1046 dbg_dump_node(c, dent1); 1047 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1048 dbg_dump_node(c, dent2); 1049 1050 out_free: 1051 kfree(dent2); 1052 kfree(dent1); 1053 return err; 1054 } 1055 1056 /** 1057 * dbg_check_znode - check if znode is all right. 1058 * @c: UBIFS file-system description object 1059 * @zbr: zbranch which points to this znode 1060 * 1061 * This function makes sure that znode referred to by @zbr is all right. 1062 * Returns zero if it is, and %-EINVAL if it is not. 1063 */ 1064 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1065 { 1066 struct ubifs_znode *znode = zbr->znode; 1067 struct ubifs_znode *zp = znode->parent; 1068 int n, err, cmp; 1069 1070 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1071 err = 1; 1072 goto out; 1073 } 1074 if (znode->level < 0) { 1075 err = 2; 1076 goto out; 1077 } 1078 if (znode->iip < 0 || znode->iip >= c->fanout) { 1079 err = 3; 1080 goto out; 1081 } 1082 1083 if (zbr->len == 0) 1084 /* Only dirty zbranch may have no on-flash nodes */ 1085 if (!ubifs_zn_dirty(znode)) { 1086 err = 4; 1087 goto out; 1088 } 1089 1090 if (ubifs_zn_dirty(znode)) { 1091 /* 1092 * If znode is dirty, its parent has to be dirty as well. The 1093 * order of the operation is important, so we have to have 1094 * memory barriers. 1095 */ 1096 smp_mb(); 1097 if (zp && !ubifs_zn_dirty(zp)) { 1098 /* 1099 * The dirty flag is atomic and is cleared outside the 1100 * TNC mutex, so znode's dirty flag may now have 1101 * been cleared. The child is always cleared before the 1102 * parent, so we just need to check again. 1103 */ 1104 smp_mb(); 1105 if (ubifs_zn_dirty(znode)) { 1106 err = 5; 1107 goto out; 1108 } 1109 } 1110 } 1111 1112 if (zp) { 1113 const union ubifs_key *min, *max; 1114 1115 if (znode->level != zp->level - 1) { 1116 err = 6; 1117 goto out; 1118 } 1119 1120 /* Make sure the 'parent' pointer in our znode is correct */ 1121 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1122 if (!err) { 1123 /* This zbranch does not exist in the parent */ 1124 err = 7; 1125 goto out; 1126 } 1127 1128 if (znode->iip >= zp->child_cnt) { 1129 err = 8; 1130 goto out; 1131 } 1132 1133 if (znode->iip != n) { 1134 /* This may happen only in case of collisions */ 1135 if (keys_cmp(c, &zp->zbranch[n].key, 1136 &zp->zbranch[znode->iip].key)) { 1137 err = 9; 1138 goto out; 1139 } 1140 n = znode->iip; 1141 } 1142 1143 /* 1144 * Make sure that the first key in our znode is greater than or 1145 * equal to the key in the pointing zbranch. 1146 */ 1147 min = &zbr->key; 1148 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1149 if (cmp == 1) { 1150 err = 10; 1151 goto out; 1152 } 1153 1154 if (n + 1 < zp->child_cnt) { 1155 max = &zp->zbranch[n + 1].key; 1156 1157 /* 1158 * Make sure the last key in our znode is less or 1159 * equivalent than the the key in zbranch which goes 1160 * after our pointing zbranch. 1161 */ 1162 cmp = keys_cmp(c, max, 1163 &znode->zbranch[znode->child_cnt - 1].key); 1164 if (cmp == -1) { 1165 err = 11; 1166 goto out; 1167 } 1168 } 1169 } else { 1170 /* This may only be root znode */ 1171 if (zbr != &c->zroot) { 1172 err = 12; 1173 goto out; 1174 } 1175 } 1176 1177 /* 1178 * Make sure that next key is greater or equivalent then the previous 1179 * one. 1180 */ 1181 for (n = 1; n < znode->child_cnt; n++) { 1182 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1183 &znode->zbranch[n].key); 1184 if (cmp > 0) { 1185 err = 13; 1186 goto out; 1187 } 1188 if (cmp == 0) { 1189 /* This can only be keys with colliding hash */ 1190 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1191 err = 14; 1192 goto out; 1193 } 1194 1195 if (znode->level != 0 || c->replaying) 1196 continue; 1197 1198 /* 1199 * Colliding keys should follow binary order of 1200 * corresponding xentry/dentry names. 1201 */ 1202 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1203 &znode->zbranch[n]); 1204 if (err < 0) 1205 return err; 1206 if (err) { 1207 err = 15; 1208 goto out; 1209 } 1210 } 1211 } 1212 1213 for (n = 0; n < znode->child_cnt; n++) { 1214 if (!znode->zbranch[n].znode && 1215 (znode->zbranch[n].lnum == 0 || 1216 znode->zbranch[n].len == 0)) { 1217 err = 16; 1218 goto out; 1219 } 1220 1221 if (znode->zbranch[n].lnum != 0 && 1222 znode->zbranch[n].len == 0) { 1223 err = 17; 1224 goto out; 1225 } 1226 1227 if (znode->zbranch[n].lnum == 0 && 1228 znode->zbranch[n].len != 0) { 1229 err = 18; 1230 goto out; 1231 } 1232 1233 if (znode->zbranch[n].lnum == 0 && 1234 znode->zbranch[n].offs != 0) { 1235 err = 19; 1236 goto out; 1237 } 1238 1239 if (znode->level != 0 && znode->zbranch[n].znode) 1240 if (znode->zbranch[n].znode->parent != znode) { 1241 err = 20; 1242 goto out; 1243 } 1244 } 1245 1246 return 0; 1247 1248 out: 1249 ubifs_err("failed, error %d", err); 1250 ubifs_msg("dump of the znode"); 1251 dbg_dump_znode(c, znode); 1252 if (zp) { 1253 ubifs_msg("dump of the parent znode"); 1254 dbg_dump_znode(c, zp); 1255 } 1256 dump_stack(); 1257 return -EINVAL; 1258 } 1259 1260 /** 1261 * dbg_check_tnc - check TNC tree. 1262 * @c: UBIFS file-system description object 1263 * @extra: do extra checks that are possible at start commit 1264 * 1265 * This function traverses whole TNC tree and checks every znode. Returns zero 1266 * if everything is all right and %-EINVAL if something is wrong with TNC. 1267 */ 1268 int dbg_check_tnc(struct ubifs_info *c, int extra) 1269 { 1270 struct ubifs_znode *znode; 1271 long clean_cnt = 0, dirty_cnt = 0; 1272 int err, last; 1273 1274 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1275 return 0; 1276 1277 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1278 if (!c->zroot.znode) 1279 return 0; 1280 1281 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1282 while (1) { 1283 struct ubifs_znode *prev; 1284 struct ubifs_zbranch *zbr; 1285 1286 if (!znode->parent) 1287 zbr = &c->zroot; 1288 else 1289 zbr = &znode->parent->zbranch[znode->iip]; 1290 1291 err = dbg_check_znode(c, zbr); 1292 if (err) 1293 return err; 1294 1295 if (extra) { 1296 if (ubifs_zn_dirty(znode)) 1297 dirty_cnt += 1; 1298 else 1299 clean_cnt += 1; 1300 } 1301 1302 prev = znode; 1303 znode = ubifs_tnc_postorder_next(znode); 1304 if (!znode) 1305 break; 1306 1307 /* 1308 * If the last key of this znode is equivalent to the first key 1309 * of the next znode (collision), then check order of the keys. 1310 */ 1311 last = prev->child_cnt - 1; 1312 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1313 !keys_cmp(c, &prev->zbranch[last].key, 1314 &znode->zbranch[0].key)) { 1315 err = dbg_check_key_order(c, &prev->zbranch[last], 1316 &znode->zbranch[0]); 1317 if (err < 0) 1318 return err; 1319 if (err) { 1320 ubifs_msg("first znode"); 1321 dbg_dump_znode(c, prev); 1322 ubifs_msg("second znode"); 1323 dbg_dump_znode(c, znode); 1324 return -EINVAL; 1325 } 1326 } 1327 } 1328 1329 if (extra) { 1330 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1331 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1332 atomic_long_read(&c->clean_zn_cnt), 1333 clean_cnt); 1334 return -EINVAL; 1335 } 1336 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1337 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1338 atomic_long_read(&c->dirty_zn_cnt), 1339 dirty_cnt); 1340 return -EINVAL; 1341 } 1342 } 1343 1344 return 0; 1345 } 1346 1347 /** 1348 * dbg_walk_index - walk the on-flash index. 1349 * @c: UBIFS file-system description object 1350 * @leaf_cb: called for each leaf node 1351 * @znode_cb: called for each indexing node 1352 * @priv: private date which is passed to callbacks 1353 * 1354 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1355 * node and @znode_cb for each indexing node. Returns zero in case of success 1356 * and a negative error code in case of failure. 1357 * 1358 * It would be better if this function removed every znode it pulled to into 1359 * the TNC, so that the behavior more closely matched the non-debugging 1360 * behavior. 1361 */ 1362 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1363 dbg_znode_callback znode_cb, void *priv) 1364 { 1365 int err; 1366 struct ubifs_zbranch *zbr; 1367 struct ubifs_znode *znode, *child; 1368 1369 mutex_lock(&c->tnc_mutex); 1370 /* If the root indexing node is not in TNC - pull it */ 1371 if (!c->zroot.znode) { 1372 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1373 if (IS_ERR(c->zroot.znode)) { 1374 err = PTR_ERR(c->zroot.znode); 1375 c->zroot.znode = NULL; 1376 goto out_unlock; 1377 } 1378 } 1379 1380 /* 1381 * We are going to traverse the indexing tree in the postorder manner. 1382 * Go down and find the leftmost indexing node where we are going to 1383 * start from. 1384 */ 1385 znode = c->zroot.znode; 1386 while (znode->level > 0) { 1387 zbr = &znode->zbranch[0]; 1388 child = zbr->znode; 1389 if (!child) { 1390 child = ubifs_load_znode(c, zbr, znode, 0); 1391 if (IS_ERR(child)) { 1392 err = PTR_ERR(child); 1393 goto out_unlock; 1394 } 1395 zbr->znode = child; 1396 } 1397 1398 znode = child; 1399 } 1400 1401 /* Iterate over all indexing nodes */ 1402 while (1) { 1403 int idx; 1404 1405 cond_resched(); 1406 1407 if (znode_cb) { 1408 err = znode_cb(c, znode, priv); 1409 if (err) { 1410 ubifs_err("znode checking function returned " 1411 "error %d", err); 1412 dbg_dump_znode(c, znode); 1413 goto out_dump; 1414 } 1415 } 1416 if (leaf_cb && znode->level == 0) { 1417 for (idx = 0; idx < znode->child_cnt; idx++) { 1418 zbr = &znode->zbranch[idx]; 1419 err = leaf_cb(c, zbr, priv); 1420 if (err) { 1421 ubifs_err("leaf checking function " 1422 "returned error %d, for leaf " 1423 "at LEB %d:%d", 1424 err, zbr->lnum, zbr->offs); 1425 goto out_dump; 1426 } 1427 } 1428 } 1429 1430 if (!znode->parent) 1431 break; 1432 1433 idx = znode->iip + 1; 1434 znode = znode->parent; 1435 if (idx < znode->child_cnt) { 1436 /* Switch to the next index in the parent */ 1437 zbr = &znode->zbranch[idx]; 1438 child = zbr->znode; 1439 if (!child) { 1440 child = ubifs_load_znode(c, zbr, znode, idx); 1441 if (IS_ERR(child)) { 1442 err = PTR_ERR(child); 1443 goto out_unlock; 1444 } 1445 zbr->znode = child; 1446 } 1447 znode = child; 1448 } else 1449 /* 1450 * This is the last child, switch to the parent and 1451 * continue. 1452 */ 1453 continue; 1454 1455 /* Go to the lowest leftmost znode in the new sub-tree */ 1456 while (znode->level > 0) { 1457 zbr = &znode->zbranch[0]; 1458 child = zbr->znode; 1459 if (!child) { 1460 child = ubifs_load_znode(c, zbr, znode, 0); 1461 if (IS_ERR(child)) { 1462 err = PTR_ERR(child); 1463 goto out_unlock; 1464 } 1465 zbr->znode = child; 1466 } 1467 znode = child; 1468 } 1469 } 1470 1471 mutex_unlock(&c->tnc_mutex); 1472 return 0; 1473 1474 out_dump: 1475 if (znode->parent) 1476 zbr = &znode->parent->zbranch[znode->iip]; 1477 else 1478 zbr = &c->zroot; 1479 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1480 dbg_dump_znode(c, znode); 1481 out_unlock: 1482 mutex_unlock(&c->tnc_mutex); 1483 return err; 1484 } 1485 1486 /** 1487 * add_size - add znode size to partially calculated index size. 1488 * @c: UBIFS file-system description object 1489 * @znode: znode to add size for 1490 * @priv: partially calculated index size 1491 * 1492 * This is a helper function for 'dbg_check_idx_size()' which is called for 1493 * every indexing node and adds its size to the 'long long' variable pointed to 1494 * by @priv. 1495 */ 1496 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1497 { 1498 long long *idx_size = priv; 1499 int add; 1500 1501 add = ubifs_idx_node_sz(c, znode->child_cnt); 1502 add = ALIGN(add, 8); 1503 *idx_size += add; 1504 return 0; 1505 } 1506 1507 /** 1508 * dbg_check_idx_size - check index size. 1509 * @c: UBIFS file-system description object 1510 * @idx_size: size to check 1511 * 1512 * This function walks the UBIFS index, calculates its size and checks that the 1513 * size is equivalent to @idx_size. Returns zero in case of success and a 1514 * negative error code in case of failure. 1515 */ 1516 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1517 { 1518 int err; 1519 long long calc = 0; 1520 1521 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1522 return 0; 1523 1524 err = dbg_walk_index(c, NULL, add_size, &calc); 1525 if (err) { 1526 ubifs_err("error %d while walking the index", err); 1527 return err; 1528 } 1529 1530 if (calc != idx_size) { 1531 ubifs_err("index size check failed: calculated size is %lld, " 1532 "should be %lld", calc, idx_size); 1533 dump_stack(); 1534 return -EINVAL; 1535 } 1536 1537 return 0; 1538 } 1539 1540 /** 1541 * struct fsck_inode - information about an inode used when checking the file-system. 1542 * @rb: link in the RB-tree of inodes 1543 * @inum: inode number 1544 * @mode: inode type, permissions, etc 1545 * @nlink: inode link count 1546 * @xattr_cnt: count of extended attributes 1547 * @references: how many directory/xattr entries refer this inode (calculated 1548 * while walking the index) 1549 * @calc_cnt: for directory inode count of child directories 1550 * @size: inode size (read from on-flash inode) 1551 * @xattr_sz: summary size of all extended attributes (read from on-flash 1552 * inode) 1553 * @calc_sz: for directories calculated directory size 1554 * @calc_xcnt: count of extended attributes 1555 * @calc_xsz: calculated summary size of all extended attributes 1556 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1557 * inode (read from on-flash inode) 1558 * @calc_xnms: calculated sum of lengths of all extended attribute names 1559 */ 1560 struct fsck_inode { 1561 struct rb_node rb; 1562 ino_t inum; 1563 umode_t mode; 1564 unsigned int nlink; 1565 unsigned int xattr_cnt; 1566 int references; 1567 int calc_cnt; 1568 long long size; 1569 unsigned int xattr_sz; 1570 long long calc_sz; 1571 long long calc_xcnt; 1572 long long calc_xsz; 1573 unsigned int xattr_nms; 1574 long long calc_xnms; 1575 }; 1576 1577 /** 1578 * struct fsck_data - private FS checking information. 1579 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1580 */ 1581 struct fsck_data { 1582 struct rb_root inodes; 1583 }; 1584 1585 /** 1586 * add_inode - add inode information to RB-tree of inodes. 1587 * @c: UBIFS file-system description object 1588 * @fsckd: FS checking information 1589 * @ino: raw UBIFS inode to add 1590 * 1591 * This is a helper function for 'check_leaf()' which adds information about 1592 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1593 * case of success and a negative error code in case of failure. 1594 */ 1595 static struct fsck_inode *add_inode(struct ubifs_info *c, 1596 struct fsck_data *fsckd, 1597 struct ubifs_ino_node *ino) 1598 { 1599 struct rb_node **p, *parent = NULL; 1600 struct fsck_inode *fscki; 1601 ino_t inum = key_inum_flash(c, &ino->key); 1602 1603 p = &fsckd->inodes.rb_node; 1604 while (*p) { 1605 parent = *p; 1606 fscki = rb_entry(parent, struct fsck_inode, rb); 1607 if (inum < fscki->inum) 1608 p = &(*p)->rb_left; 1609 else if (inum > fscki->inum) 1610 p = &(*p)->rb_right; 1611 else 1612 return fscki; 1613 } 1614 1615 if (inum > c->highest_inum) { 1616 ubifs_err("too high inode number, max. is %lu", 1617 (unsigned long)c->highest_inum); 1618 return ERR_PTR(-EINVAL); 1619 } 1620 1621 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1622 if (!fscki) 1623 return ERR_PTR(-ENOMEM); 1624 1625 fscki->inum = inum; 1626 fscki->nlink = le32_to_cpu(ino->nlink); 1627 fscki->size = le64_to_cpu(ino->size); 1628 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1629 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1630 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1631 fscki->mode = le32_to_cpu(ino->mode); 1632 if (S_ISDIR(fscki->mode)) { 1633 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1634 fscki->calc_cnt = 2; 1635 } 1636 rb_link_node(&fscki->rb, parent, p); 1637 rb_insert_color(&fscki->rb, &fsckd->inodes); 1638 return fscki; 1639 } 1640 1641 /** 1642 * search_inode - search inode in the RB-tree of inodes. 1643 * @fsckd: FS checking information 1644 * @inum: inode number to search 1645 * 1646 * This is a helper function for 'check_leaf()' which searches inode @inum in 1647 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1648 * the inode was not found. 1649 */ 1650 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1651 { 1652 struct rb_node *p; 1653 struct fsck_inode *fscki; 1654 1655 p = fsckd->inodes.rb_node; 1656 while (p) { 1657 fscki = rb_entry(p, struct fsck_inode, rb); 1658 if (inum < fscki->inum) 1659 p = p->rb_left; 1660 else if (inum > fscki->inum) 1661 p = p->rb_right; 1662 else 1663 return fscki; 1664 } 1665 return NULL; 1666 } 1667 1668 /** 1669 * read_add_inode - read inode node and add it to RB-tree of inodes. 1670 * @c: UBIFS file-system description object 1671 * @fsckd: FS checking information 1672 * @inum: inode number to read 1673 * 1674 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1675 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1676 * information pointer in case of success and a negative error code in case of 1677 * failure. 1678 */ 1679 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1680 struct fsck_data *fsckd, ino_t inum) 1681 { 1682 int n, err; 1683 union ubifs_key key; 1684 struct ubifs_znode *znode; 1685 struct ubifs_zbranch *zbr; 1686 struct ubifs_ino_node *ino; 1687 struct fsck_inode *fscki; 1688 1689 fscki = search_inode(fsckd, inum); 1690 if (fscki) 1691 return fscki; 1692 1693 ino_key_init(c, &key, inum); 1694 err = ubifs_lookup_level0(c, &key, &znode, &n); 1695 if (!err) { 1696 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1697 return ERR_PTR(-ENOENT); 1698 } else if (err < 0) { 1699 ubifs_err("error %d while looking up inode %lu", 1700 err, (unsigned long)inum); 1701 return ERR_PTR(err); 1702 } 1703 1704 zbr = &znode->zbranch[n]; 1705 if (zbr->len < UBIFS_INO_NODE_SZ) { 1706 ubifs_err("bad node %lu node length %d", 1707 (unsigned long)inum, zbr->len); 1708 return ERR_PTR(-EINVAL); 1709 } 1710 1711 ino = kmalloc(zbr->len, GFP_NOFS); 1712 if (!ino) 1713 return ERR_PTR(-ENOMEM); 1714 1715 err = ubifs_tnc_read_node(c, zbr, ino); 1716 if (err) { 1717 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1718 zbr->lnum, zbr->offs, err); 1719 kfree(ino); 1720 return ERR_PTR(err); 1721 } 1722 1723 fscki = add_inode(c, fsckd, ino); 1724 kfree(ino); 1725 if (IS_ERR(fscki)) { 1726 ubifs_err("error %ld while adding inode %lu node", 1727 PTR_ERR(fscki), (unsigned long)inum); 1728 return fscki; 1729 } 1730 1731 return fscki; 1732 } 1733 1734 /** 1735 * check_leaf - check leaf node. 1736 * @c: UBIFS file-system description object 1737 * @zbr: zbranch of the leaf node to check 1738 * @priv: FS checking information 1739 * 1740 * This is a helper function for 'dbg_check_filesystem()' which is called for 1741 * every single leaf node while walking the indexing tree. It checks that the 1742 * leaf node referred from the indexing tree exists, has correct CRC, and does 1743 * some other basic validation. This function is also responsible for building 1744 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1745 * calculates reference count, size, etc for each inode in order to later 1746 * compare them to the information stored inside the inodes and detect possible 1747 * inconsistencies. Returns zero in case of success and a negative error code 1748 * in case of failure. 1749 */ 1750 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1751 void *priv) 1752 { 1753 ino_t inum; 1754 void *node; 1755 struct ubifs_ch *ch; 1756 int err, type = key_type(c, &zbr->key); 1757 struct fsck_inode *fscki; 1758 1759 if (zbr->len < UBIFS_CH_SZ) { 1760 ubifs_err("bad leaf length %d (LEB %d:%d)", 1761 zbr->len, zbr->lnum, zbr->offs); 1762 return -EINVAL; 1763 } 1764 1765 node = kmalloc(zbr->len, GFP_NOFS); 1766 if (!node) 1767 return -ENOMEM; 1768 1769 err = ubifs_tnc_read_node(c, zbr, node); 1770 if (err) { 1771 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1772 zbr->lnum, zbr->offs, err); 1773 goto out_free; 1774 } 1775 1776 /* If this is an inode node, add it to RB-tree of inodes */ 1777 if (type == UBIFS_INO_KEY) { 1778 fscki = add_inode(c, priv, node); 1779 if (IS_ERR(fscki)) { 1780 err = PTR_ERR(fscki); 1781 ubifs_err("error %d while adding inode node", err); 1782 goto out_dump; 1783 } 1784 goto out; 1785 } 1786 1787 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1788 type != UBIFS_DATA_KEY) { 1789 ubifs_err("unexpected node type %d at LEB %d:%d", 1790 type, zbr->lnum, zbr->offs); 1791 err = -EINVAL; 1792 goto out_free; 1793 } 1794 1795 ch = node; 1796 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1797 ubifs_err("too high sequence number, max. is %llu", 1798 c->max_sqnum); 1799 err = -EINVAL; 1800 goto out_dump; 1801 } 1802 1803 if (type == UBIFS_DATA_KEY) { 1804 long long blk_offs; 1805 struct ubifs_data_node *dn = node; 1806 1807 /* 1808 * Search the inode node this data node belongs to and insert 1809 * it to the RB-tree of inodes. 1810 */ 1811 inum = key_inum_flash(c, &dn->key); 1812 fscki = read_add_inode(c, priv, inum); 1813 if (IS_ERR(fscki)) { 1814 err = PTR_ERR(fscki); 1815 ubifs_err("error %d while processing data node and " 1816 "trying to find inode node %lu", 1817 err, (unsigned long)inum); 1818 goto out_dump; 1819 } 1820 1821 /* Make sure the data node is within inode size */ 1822 blk_offs = key_block_flash(c, &dn->key); 1823 blk_offs <<= UBIFS_BLOCK_SHIFT; 1824 blk_offs += le32_to_cpu(dn->size); 1825 if (blk_offs > fscki->size) { 1826 ubifs_err("data node at LEB %d:%d is not within inode " 1827 "size %lld", zbr->lnum, zbr->offs, 1828 fscki->size); 1829 err = -EINVAL; 1830 goto out_dump; 1831 } 1832 } else { 1833 int nlen; 1834 struct ubifs_dent_node *dent = node; 1835 struct fsck_inode *fscki1; 1836 1837 err = ubifs_validate_entry(c, dent); 1838 if (err) 1839 goto out_dump; 1840 1841 /* 1842 * Search the inode node this entry refers to and the parent 1843 * inode node and insert them to the RB-tree of inodes. 1844 */ 1845 inum = le64_to_cpu(dent->inum); 1846 fscki = read_add_inode(c, priv, inum); 1847 if (IS_ERR(fscki)) { 1848 err = PTR_ERR(fscki); 1849 ubifs_err("error %d while processing entry node and " 1850 "trying to find inode node %lu", 1851 err, (unsigned long)inum); 1852 goto out_dump; 1853 } 1854 1855 /* Count how many direntries or xentries refers this inode */ 1856 fscki->references += 1; 1857 1858 inum = key_inum_flash(c, &dent->key); 1859 fscki1 = read_add_inode(c, priv, inum); 1860 if (IS_ERR(fscki1)) { 1861 err = PTR_ERR(fscki); 1862 ubifs_err("error %d while processing entry node and " 1863 "trying to find parent inode node %lu", 1864 err, (unsigned long)inum); 1865 goto out_dump; 1866 } 1867 1868 nlen = le16_to_cpu(dent->nlen); 1869 if (type == UBIFS_XENT_KEY) { 1870 fscki1->calc_xcnt += 1; 1871 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 1872 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 1873 fscki1->calc_xnms += nlen; 1874 } else { 1875 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 1876 if (dent->type == UBIFS_ITYPE_DIR) 1877 fscki1->calc_cnt += 1; 1878 } 1879 } 1880 1881 out: 1882 kfree(node); 1883 return 0; 1884 1885 out_dump: 1886 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 1887 dbg_dump_node(c, node); 1888 out_free: 1889 kfree(node); 1890 return err; 1891 } 1892 1893 /** 1894 * free_inodes - free RB-tree of inodes. 1895 * @fsckd: FS checking information 1896 */ 1897 static void free_inodes(struct fsck_data *fsckd) 1898 { 1899 struct rb_node *this = fsckd->inodes.rb_node; 1900 struct fsck_inode *fscki; 1901 1902 while (this) { 1903 if (this->rb_left) 1904 this = this->rb_left; 1905 else if (this->rb_right) 1906 this = this->rb_right; 1907 else { 1908 fscki = rb_entry(this, struct fsck_inode, rb); 1909 this = rb_parent(this); 1910 if (this) { 1911 if (this->rb_left == &fscki->rb) 1912 this->rb_left = NULL; 1913 else 1914 this->rb_right = NULL; 1915 } 1916 kfree(fscki); 1917 } 1918 } 1919 } 1920 1921 /** 1922 * check_inodes - checks all inodes. 1923 * @c: UBIFS file-system description object 1924 * @fsckd: FS checking information 1925 * 1926 * This is a helper function for 'dbg_check_filesystem()' which walks the 1927 * RB-tree of inodes after the index scan has been finished, and checks that 1928 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 1929 * %-EINVAL if not, and a negative error code in case of failure. 1930 */ 1931 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 1932 { 1933 int n, err; 1934 union ubifs_key key; 1935 struct ubifs_znode *znode; 1936 struct ubifs_zbranch *zbr; 1937 struct ubifs_ino_node *ino; 1938 struct fsck_inode *fscki; 1939 struct rb_node *this = rb_first(&fsckd->inodes); 1940 1941 while (this) { 1942 fscki = rb_entry(this, struct fsck_inode, rb); 1943 this = rb_next(this); 1944 1945 if (S_ISDIR(fscki->mode)) { 1946 /* 1947 * Directories have to have exactly one reference (they 1948 * cannot have hardlinks), although root inode is an 1949 * exception. 1950 */ 1951 if (fscki->inum != UBIFS_ROOT_INO && 1952 fscki->references != 1) { 1953 ubifs_err("directory inode %lu has %d " 1954 "direntries which refer it, but " 1955 "should be 1", 1956 (unsigned long)fscki->inum, 1957 fscki->references); 1958 goto out_dump; 1959 } 1960 if (fscki->inum == UBIFS_ROOT_INO && 1961 fscki->references != 0) { 1962 ubifs_err("root inode %lu has non-zero (%d) " 1963 "direntries which refer it", 1964 (unsigned long)fscki->inum, 1965 fscki->references); 1966 goto out_dump; 1967 } 1968 if (fscki->calc_sz != fscki->size) { 1969 ubifs_err("directory inode %lu size is %lld, " 1970 "but calculated size is %lld", 1971 (unsigned long)fscki->inum, 1972 fscki->size, fscki->calc_sz); 1973 goto out_dump; 1974 } 1975 if (fscki->calc_cnt != fscki->nlink) { 1976 ubifs_err("directory inode %lu nlink is %d, " 1977 "but calculated nlink is %d", 1978 (unsigned long)fscki->inum, 1979 fscki->nlink, fscki->calc_cnt); 1980 goto out_dump; 1981 } 1982 } else { 1983 if (fscki->references != fscki->nlink) { 1984 ubifs_err("inode %lu nlink is %d, but " 1985 "calculated nlink is %d", 1986 (unsigned long)fscki->inum, 1987 fscki->nlink, fscki->references); 1988 goto out_dump; 1989 } 1990 } 1991 if (fscki->xattr_sz != fscki->calc_xsz) { 1992 ubifs_err("inode %lu has xattr size %u, but " 1993 "calculated size is %lld", 1994 (unsigned long)fscki->inum, fscki->xattr_sz, 1995 fscki->calc_xsz); 1996 goto out_dump; 1997 } 1998 if (fscki->xattr_cnt != fscki->calc_xcnt) { 1999 ubifs_err("inode %lu has %u xattrs, but " 2000 "calculated count is %lld", 2001 (unsigned long)fscki->inum, 2002 fscki->xattr_cnt, fscki->calc_xcnt); 2003 goto out_dump; 2004 } 2005 if (fscki->xattr_nms != fscki->calc_xnms) { 2006 ubifs_err("inode %lu has xattr names' size %u, but " 2007 "calculated names' size is %lld", 2008 (unsigned long)fscki->inum, fscki->xattr_nms, 2009 fscki->calc_xnms); 2010 goto out_dump; 2011 } 2012 } 2013 2014 return 0; 2015 2016 out_dump: 2017 /* Read the bad inode and dump it */ 2018 ino_key_init(c, &key, fscki->inum); 2019 err = ubifs_lookup_level0(c, &key, &znode, &n); 2020 if (!err) { 2021 ubifs_err("inode %lu not found in index", 2022 (unsigned long)fscki->inum); 2023 return -ENOENT; 2024 } else if (err < 0) { 2025 ubifs_err("error %d while looking up inode %lu", 2026 err, (unsigned long)fscki->inum); 2027 return err; 2028 } 2029 2030 zbr = &znode->zbranch[n]; 2031 ino = kmalloc(zbr->len, GFP_NOFS); 2032 if (!ino) 2033 return -ENOMEM; 2034 2035 err = ubifs_tnc_read_node(c, zbr, ino); 2036 if (err) { 2037 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2038 zbr->lnum, zbr->offs, err); 2039 kfree(ino); 2040 return err; 2041 } 2042 2043 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2044 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2045 dbg_dump_node(c, ino); 2046 kfree(ino); 2047 return -EINVAL; 2048 } 2049 2050 /** 2051 * dbg_check_filesystem - check the file-system. 2052 * @c: UBIFS file-system description object 2053 * 2054 * This function checks the file system, namely: 2055 * o makes sure that all leaf nodes exist and their CRCs are correct; 2056 * o makes sure inode nlink, size, xattr size/count are correct (for all 2057 * inodes). 2058 * 2059 * The function reads whole indexing tree and all nodes, so it is pretty 2060 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2061 * not, and a negative error code in case of failure. 2062 */ 2063 int dbg_check_filesystem(struct ubifs_info *c) 2064 { 2065 int err; 2066 struct fsck_data fsckd; 2067 2068 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2069 return 0; 2070 2071 fsckd.inodes = RB_ROOT; 2072 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2073 if (err) 2074 goto out_free; 2075 2076 err = check_inodes(c, &fsckd); 2077 if (err) 2078 goto out_free; 2079 2080 free_inodes(&fsckd); 2081 return 0; 2082 2083 out_free: 2084 ubifs_err("file-system check failed with error %d", err); 2085 dump_stack(); 2086 free_inodes(&fsckd); 2087 return err; 2088 } 2089 2090 static int invocation_cnt; 2091 2092 int dbg_force_in_the_gaps(void) 2093 { 2094 if (!dbg_force_in_the_gaps_enabled) 2095 return 0; 2096 /* Force in-the-gaps every 8th commit */ 2097 return !((invocation_cnt++) & 0x7); 2098 } 2099 2100 /* Failure mode for recovery testing */ 2101 2102 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2103 2104 struct failure_mode_info { 2105 struct list_head list; 2106 struct ubifs_info *c; 2107 }; 2108 2109 static LIST_HEAD(fmi_list); 2110 static DEFINE_SPINLOCK(fmi_lock); 2111 2112 static unsigned int next; 2113 2114 static int simple_rand(void) 2115 { 2116 if (next == 0) 2117 next = current->pid; 2118 next = next * 1103515245 + 12345; 2119 return (next >> 16) & 32767; 2120 } 2121 2122 static void failure_mode_init(struct ubifs_info *c) 2123 { 2124 struct failure_mode_info *fmi; 2125 2126 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2127 if (!fmi) { 2128 ubifs_err("Failed to register failure mode - no memory"); 2129 return; 2130 } 2131 fmi->c = c; 2132 spin_lock(&fmi_lock); 2133 list_add_tail(&fmi->list, &fmi_list); 2134 spin_unlock(&fmi_lock); 2135 } 2136 2137 static void failure_mode_exit(struct ubifs_info *c) 2138 { 2139 struct failure_mode_info *fmi, *tmp; 2140 2141 spin_lock(&fmi_lock); 2142 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2143 if (fmi->c == c) { 2144 list_del(&fmi->list); 2145 kfree(fmi); 2146 } 2147 spin_unlock(&fmi_lock); 2148 } 2149 2150 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2151 { 2152 struct failure_mode_info *fmi; 2153 2154 spin_lock(&fmi_lock); 2155 list_for_each_entry(fmi, &fmi_list, list) 2156 if (fmi->c->ubi == desc) { 2157 struct ubifs_info *c = fmi->c; 2158 2159 spin_unlock(&fmi_lock); 2160 return c; 2161 } 2162 spin_unlock(&fmi_lock); 2163 return NULL; 2164 } 2165 2166 static int in_failure_mode(struct ubi_volume_desc *desc) 2167 { 2168 struct ubifs_info *c = dbg_find_info(desc); 2169 2170 if (c && dbg_failure_mode) 2171 return c->dbg->failure_mode; 2172 return 0; 2173 } 2174 2175 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2176 { 2177 struct ubifs_info *c = dbg_find_info(desc); 2178 struct ubifs_debug_info *d; 2179 2180 if (!c || !dbg_failure_mode) 2181 return 0; 2182 d = c->dbg; 2183 if (d->failure_mode) 2184 return 1; 2185 if (!d->fail_cnt) { 2186 /* First call - decide delay to failure */ 2187 if (chance(1, 2)) { 2188 unsigned int delay = 1 << (simple_rand() >> 11); 2189 2190 if (chance(1, 2)) { 2191 d->fail_delay = 1; 2192 d->fail_timeout = jiffies + 2193 msecs_to_jiffies(delay); 2194 dbg_rcvry("failing after %ums", delay); 2195 } else { 2196 d->fail_delay = 2; 2197 d->fail_cnt_max = delay; 2198 dbg_rcvry("failing after %u calls", delay); 2199 } 2200 } 2201 d->fail_cnt += 1; 2202 } 2203 /* Determine if failure delay has expired */ 2204 if (d->fail_delay == 1) { 2205 if (time_before(jiffies, d->fail_timeout)) 2206 return 0; 2207 } else if (d->fail_delay == 2) 2208 if (d->fail_cnt++ < d->fail_cnt_max) 2209 return 0; 2210 if (lnum == UBIFS_SB_LNUM) { 2211 if (write) { 2212 if (chance(1, 2)) 2213 return 0; 2214 } else if (chance(19, 20)) 2215 return 0; 2216 dbg_rcvry("failing in super block LEB %d", lnum); 2217 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2218 if (chance(19, 20)) 2219 return 0; 2220 dbg_rcvry("failing in master LEB %d", lnum); 2221 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2222 if (write) { 2223 if (chance(99, 100)) 2224 return 0; 2225 } else if (chance(399, 400)) 2226 return 0; 2227 dbg_rcvry("failing in log LEB %d", lnum); 2228 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2229 if (write) { 2230 if (chance(7, 8)) 2231 return 0; 2232 } else if (chance(19, 20)) 2233 return 0; 2234 dbg_rcvry("failing in LPT LEB %d", lnum); 2235 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2236 if (write) { 2237 if (chance(1, 2)) 2238 return 0; 2239 } else if (chance(9, 10)) 2240 return 0; 2241 dbg_rcvry("failing in orphan LEB %d", lnum); 2242 } else if (lnum == c->ihead_lnum) { 2243 if (chance(99, 100)) 2244 return 0; 2245 dbg_rcvry("failing in index head LEB %d", lnum); 2246 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2247 if (chance(9, 10)) 2248 return 0; 2249 dbg_rcvry("failing in GC head LEB %d", lnum); 2250 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2251 !ubifs_search_bud(c, lnum)) { 2252 if (chance(19, 20)) 2253 return 0; 2254 dbg_rcvry("failing in non-bud LEB %d", lnum); 2255 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2256 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2257 if (chance(999, 1000)) 2258 return 0; 2259 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2260 } else { 2261 if (chance(9999, 10000)) 2262 return 0; 2263 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2264 } 2265 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2266 d->failure_mode = 1; 2267 dump_stack(); 2268 return 1; 2269 } 2270 2271 static void cut_data(const void *buf, int len) 2272 { 2273 int flen, i; 2274 unsigned char *p = (void *)buf; 2275 2276 flen = (len * (long long)simple_rand()) >> 15; 2277 for (i = flen; i < len; i++) 2278 p[i] = 0xff; 2279 } 2280 2281 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2282 int len, int check) 2283 { 2284 if (in_failure_mode(desc)) 2285 return -EIO; 2286 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2287 } 2288 2289 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2290 int offset, int len, int dtype) 2291 { 2292 int err, failing; 2293 2294 if (in_failure_mode(desc)) 2295 return -EIO; 2296 failing = do_fail(desc, lnum, 1); 2297 if (failing) 2298 cut_data(buf, len); 2299 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2300 if (err) 2301 return err; 2302 if (failing) 2303 return -EIO; 2304 return 0; 2305 } 2306 2307 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2308 int len, int dtype) 2309 { 2310 int err; 2311 2312 if (do_fail(desc, lnum, 1)) 2313 return -EIO; 2314 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2315 if (err) 2316 return err; 2317 if (do_fail(desc, lnum, 1)) 2318 return -EIO; 2319 return 0; 2320 } 2321 2322 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2323 { 2324 int err; 2325 2326 if (do_fail(desc, lnum, 0)) 2327 return -EIO; 2328 err = ubi_leb_erase(desc, lnum); 2329 if (err) 2330 return err; 2331 if (do_fail(desc, lnum, 0)) 2332 return -EIO; 2333 return 0; 2334 } 2335 2336 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2337 { 2338 int err; 2339 2340 if (do_fail(desc, lnum, 0)) 2341 return -EIO; 2342 err = ubi_leb_unmap(desc, lnum); 2343 if (err) 2344 return err; 2345 if (do_fail(desc, lnum, 0)) 2346 return -EIO; 2347 return 0; 2348 } 2349 2350 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2351 { 2352 if (in_failure_mode(desc)) 2353 return -EIO; 2354 return ubi_is_mapped(desc, lnum); 2355 } 2356 2357 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2358 { 2359 int err; 2360 2361 if (do_fail(desc, lnum, 0)) 2362 return -EIO; 2363 err = ubi_leb_map(desc, lnum, dtype); 2364 if (err) 2365 return err; 2366 if (do_fail(desc, lnum, 0)) 2367 return -EIO; 2368 return 0; 2369 } 2370 2371 /** 2372 * ubifs_debugging_init - initialize UBIFS debugging. 2373 * @c: UBIFS file-system description object 2374 * 2375 * This function initializes debugging-related data for the file system. 2376 * Returns zero in case of success and a negative error code in case of 2377 * failure. 2378 */ 2379 int ubifs_debugging_init(struct ubifs_info *c) 2380 { 2381 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2382 if (!c->dbg) 2383 return -ENOMEM; 2384 2385 c->dbg->buf = vmalloc(c->leb_size); 2386 if (!c->dbg->buf) 2387 goto out; 2388 2389 failure_mode_init(c); 2390 return 0; 2391 2392 out: 2393 kfree(c->dbg); 2394 return -ENOMEM; 2395 } 2396 2397 /** 2398 * ubifs_debugging_exit - free debugging data. 2399 * @c: UBIFS file-system description object 2400 */ 2401 void ubifs_debugging_exit(struct ubifs_info *c) 2402 { 2403 failure_mode_exit(c); 2404 vfree(c->dbg->buf); 2405 kfree(c->dbg); 2406 } 2407 2408 /* 2409 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2410 * contain the stuff specific to particular file-system mounts. 2411 */ 2412 static struct dentry *debugfs_rootdir; 2413 2414 /** 2415 * dbg_debugfs_init - initialize debugfs file-system. 2416 * 2417 * UBIFS uses debugfs file-system to expose various debugging knobs to 2418 * user-space. This function creates "ubifs" directory in the debugfs 2419 * file-system. Returns zero in case of success and a negative error code in 2420 * case of failure. 2421 */ 2422 int dbg_debugfs_init(void) 2423 { 2424 debugfs_rootdir = debugfs_create_dir("ubifs", NULL); 2425 if (IS_ERR(debugfs_rootdir)) { 2426 int err = PTR_ERR(debugfs_rootdir); 2427 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2428 "error %d\n", err); 2429 return err; 2430 } 2431 2432 return 0; 2433 } 2434 2435 /** 2436 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2437 */ 2438 void dbg_debugfs_exit(void) 2439 { 2440 debugfs_remove(debugfs_rootdir); 2441 } 2442 2443 static int open_debugfs_file(struct inode *inode, struct file *file) 2444 { 2445 file->private_data = inode->i_private; 2446 return 0; 2447 } 2448 2449 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2450 size_t count, loff_t *ppos) 2451 { 2452 struct ubifs_info *c = file->private_data; 2453 struct ubifs_debug_info *d = c->dbg; 2454 2455 if (file->f_path.dentry == d->dump_lprops) 2456 dbg_dump_lprops(c); 2457 else if (file->f_path.dentry == d->dump_budg) { 2458 spin_lock(&c->space_lock); 2459 dbg_dump_budg(c); 2460 spin_unlock(&c->space_lock); 2461 } else if (file->f_path.dentry == d->dump_tnc) { 2462 mutex_lock(&c->tnc_mutex); 2463 dbg_dump_tnc(c); 2464 mutex_unlock(&c->tnc_mutex); 2465 } else 2466 return -EINVAL; 2467 2468 *ppos += count; 2469 return count; 2470 } 2471 2472 static const struct file_operations debugfs_fops = { 2473 .open = open_debugfs_file, 2474 .write = write_debugfs_file, 2475 .owner = THIS_MODULE, 2476 }; 2477 2478 /** 2479 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2480 * @c: UBIFS file-system description object 2481 * 2482 * This function creates all debugfs files for this instance of UBIFS. Returns 2483 * zero in case of success and a negative error code in case of failure. 2484 * 2485 * Note, the only reason we have not merged this function with the 2486 * 'ubifs_debugging_init()' function is because it is better to initialize 2487 * debugfs interfaces at the very end of the mount process, and remove them at 2488 * the very beginning of the mount process. 2489 */ 2490 int dbg_debugfs_init_fs(struct ubifs_info *c) 2491 { 2492 int err; 2493 const char *fname; 2494 struct dentry *dent; 2495 struct ubifs_debug_info *d = c->dbg; 2496 2497 sprintf(d->debugfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2498 d->debugfs_dir = debugfs_create_dir(d->debugfs_dir_name, 2499 debugfs_rootdir); 2500 if (IS_ERR(d->debugfs_dir)) { 2501 err = PTR_ERR(d->debugfs_dir); 2502 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2503 d->debugfs_dir_name, err); 2504 goto out; 2505 } 2506 2507 fname = "dump_lprops"; 2508 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c, 2509 &debugfs_fops); 2510 if (IS_ERR(dent)) 2511 goto out_remove; 2512 d->dump_lprops = dent; 2513 2514 fname = "dump_budg"; 2515 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c, 2516 &debugfs_fops); 2517 if (IS_ERR(dent)) 2518 goto out_remove; 2519 d->dump_budg = dent; 2520 2521 fname = "dump_tnc"; 2522 dent = debugfs_create_file(fname, S_IWUGO, d->debugfs_dir, c, 2523 &debugfs_fops); 2524 if (IS_ERR(dent)) 2525 goto out_remove; 2526 d->dump_tnc = dent; 2527 2528 return 0; 2529 2530 out_remove: 2531 err = PTR_ERR(dent); 2532 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2533 fname, err); 2534 debugfs_remove_recursive(d->debugfs_dir); 2535 out: 2536 return err; 2537 } 2538 2539 /** 2540 * dbg_debugfs_exit_fs - remove all debugfs files. 2541 * @c: UBIFS file-system description object 2542 */ 2543 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2544 { 2545 debugfs_remove_recursive(c->dbg->debugfs_dir); 2546 } 2547 2548 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2549