xref: /linux/fs/ubifs/debug.c (revision 2993c9b04e616df0848b655d7202a707a70fc876)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2006-2008 Nokia Corporation
6  *
7  * Authors: Artem Bityutskiy (Битюцкий Артём)
8  *          Adrian Hunter
9  */
10 
11 /*
12  * This file implements most of the debugging stuff which is compiled in only
13  * when it is enabled. But some debugging check functions are implemented in
14  * corresponding subsystem, just because they are closely related and utilize
15  * various local functions of those subsystems.
16  */
17 
18 #include <linux/module.h>
19 #include <linux/debugfs.h>
20 #include <linux/math64.h>
21 #include <linux/uaccess.h>
22 #include <linux/random.h>
23 #include <linux/ctype.h>
24 #include "ubifs.h"
25 
26 static DEFINE_SPINLOCK(dbg_lock);
27 
28 static const char *get_key_fmt(int fmt)
29 {
30 	switch (fmt) {
31 	case UBIFS_SIMPLE_KEY_FMT:
32 		return "simple";
33 	default:
34 		return "unknown/invalid format";
35 	}
36 }
37 
38 static const char *get_key_hash(int hash)
39 {
40 	switch (hash) {
41 	case UBIFS_KEY_HASH_R5:
42 		return "R5";
43 	case UBIFS_KEY_HASH_TEST:
44 		return "test";
45 	default:
46 		return "unknown/invalid name hash";
47 	}
48 }
49 
50 static const char *get_key_type(int type)
51 {
52 	switch (type) {
53 	case UBIFS_INO_KEY:
54 		return "inode";
55 	case UBIFS_DENT_KEY:
56 		return "direntry";
57 	case UBIFS_XENT_KEY:
58 		return "xentry";
59 	case UBIFS_DATA_KEY:
60 		return "data";
61 	case UBIFS_TRUN_KEY:
62 		return "truncate";
63 	default:
64 		return "unknown/invalid key";
65 	}
66 }
67 
68 static const char *get_dent_type(int type)
69 {
70 	switch (type) {
71 	case UBIFS_ITYPE_REG:
72 		return "file";
73 	case UBIFS_ITYPE_DIR:
74 		return "dir";
75 	case UBIFS_ITYPE_LNK:
76 		return "symlink";
77 	case UBIFS_ITYPE_BLK:
78 		return "blkdev";
79 	case UBIFS_ITYPE_CHR:
80 		return "char dev";
81 	case UBIFS_ITYPE_FIFO:
82 		return "fifo";
83 	case UBIFS_ITYPE_SOCK:
84 		return "socket";
85 	default:
86 		return "unknown/invalid type";
87 	}
88 }
89 
90 const char *dbg_snprintf_key(const struct ubifs_info *c,
91 			     const union ubifs_key *key, char *buffer, int len)
92 {
93 	char *p = buffer;
94 	int type = key_type(c, key);
95 
96 	if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) {
97 		switch (type) {
98 		case UBIFS_INO_KEY:
99 			len -= snprintf(p, len, "(%lu, %s)",
100 					(unsigned long)key_inum(c, key),
101 					get_key_type(type));
102 			break;
103 		case UBIFS_DENT_KEY:
104 		case UBIFS_XENT_KEY:
105 			len -= snprintf(p, len, "(%lu, %s, %#08x)",
106 					(unsigned long)key_inum(c, key),
107 					get_key_type(type), key_hash(c, key));
108 			break;
109 		case UBIFS_DATA_KEY:
110 			len -= snprintf(p, len, "(%lu, %s, %u)",
111 					(unsigned long)key_inum(c, key),
112 					get_key_type(type), key_block(c, key));
113 			break;
114 		case UBIFS_TRUN_KEY:
115 			len -= snprintf(p, len, "(%lu, %s)",
116 					(unsigned long)key_inum(c, key),
117 					get_key_type(type));
118 			break;
119 		default:
120 			len -= snprintf(p, len, "(bad key type: %#08x, %#08x)",
121 					key->u32[0], key->u32[1]);
122 		}
123 	} else
124 		len -= snprintf(p, len, "bad key format %d", c->key_fmt);
125 	ubifs_assert(c, len > 0);
126 	return p;
127 }
128 
129 const char *dbg_ntype(int type)
130 {
131 	switch (type) {
132 	case UBIFS_PAD_NODE:
133 		return "padding node";
134 	case UBIFS_SB_NODE:
135 		return "superblock node";
136 	case UBIFS_MST_NODE:
137 		return "master node";
138 	case UBIFS_REF_NODE:
139 		return "reference node";
140 	case UBIFS_INO_NODE:
141 		return "inode node";
142 	case UBIFS_DENT_NODE:
143 		return "direntry node";
144 	case UBIFS_XENT_NODE:
145 		return "xentry node";
146 	case UBIFS_DATA_NODE:
147 		return "data node";
148 	case UBIFS_TRUN_NODE:
149 		return "truncate node";
150 	case UBIFS_IDX_NODE:
151 		return "indexing node";
152 	case UBIFS_CS_NODE:
153 		return "commit start node";
154 	case UBIFS_ORPH_NODE:
155 		return "orphan node";
156 	case UBIFS_AUTH_NODE:
157 		return "auth node";
158 	default:
159 		return "unknown node";
160 	}
161 }
162 
163 static const char *dbg_gtype(int type)
164 {
165 	switch (type) {
166 	case UBIFS_NO_NODE_GROUP:
167 		return "no node group";
168 	case UBIFS_IN_NODE_GROUP:
169 		return "in node group";
170 	case UBIFS_LAST_OF_NODE_GROUP:
171 		return "last of node group";
172 	default:
173 		return "unknown";
174 	}
175 }
176 
177 const char *dbg_cstate(int cmt_state)
178 {
179 	switch (cmt_state) {
180 	case COMMIT_RESTING:
181 		return "commit resting";
182 	case COMMIT_BACKGROUND:
183 		return "background commit requested";
184 	case COMMIT_REQUIRED:
185 		return "commit required";
186 	case COMMIT_RUNNING_BACKGROUND:
187 		return "BACKGROUND commit running";
188 	case COMMIT_RUNNING_REQUIRED:
189 		return "commit running and required";
190 	case COMMIT_BROKEN:
191 		return "broken commit";
192 	default:
193 		return "unknown commit state";
194 	}
195 }
196 
197 const char *dbg_jhead(int jhead)
198 {
199 	switch (jhead) {
200 	case GCHD:
201 		return "0 (GC)";
202 	case BASEHD:
203 		return "1 (base)";
204 	case DATAHD:
205 		return "2 (data)";
206 	default:
207 		return "unknown journal head";
208 	}
209 }
210 
211 static void dump_ch(const struct ubifs_ch *ch)
212 {
213 	pr_err("\tmagic          %#x\n", le32_to_cpu(ch->magic));
214 	pr_err("\tcrc            %#x\n", le32_to_cpu(ch->crc));
215 	pr_err("\tnode_type      %d (%s)\n", ch->node_type,
216 	       dbg_ntype(ch->node_type));
217 	pr_err("\tgroup_type     %d (%s)\n", ch->group_type,
218 	       dbg_gtype(ch->group_type));
219 	pr_err("\tsqnum          %llu\n",
220 	       (unsigned long long)le64_to_cpu(ch->sqnum));
221 	pr_err("\tlen            %u\n", le32_to_cpu(ch->len));
222 }
223 
224 void ubifs_dump_inode(struct ubifs_info *c, const struct inode *inode)
225 {
226 	const struct ubifs_inode *ui = ubifs_inode(inode);
227 	struct fscrypt_name nm = {0};
228 	union ubifs_key key;
229 	struct ubifs_dent_node *dent, *pdent = NULL;
230 	int count = 2;
231 
232 	pr_err("Dump in-memory inode:");
233 	pr_err("\tinode          %lu\n", inode->i_ino);
234 	pr_err("\tsize           %llu\n",
235 	       (unsigned long long)i_size_read(inode));
236 	pr_err("\tnlink          %u\n", inode->i_nlink);
237 	pr_err("\tuid            %u\n", (unsigned int)i_uid_read(inode));
238 	pr_err("\tgid            %u\n", (unsigned int)i_gid_read(inode));
239 	pr_err("\tatime          %u.%u\n",
240 	       (unsigned int)inode->i_atime.tv_sec,
241 	       (unsigned int)inode->i_atime.tv_nsec);
242 	pr_err("\tmtime          %u.%u\n",
243 	       (unsigned int)inode->i_mtime.tv_sec,
244 	       (unsigned int)inode->i_mtime.tv_nsec);
245 	pr_err("\tctime          %u.%u\n",
246 	       (unsigned int)inode->i_ctime.tv_sec,
247 	       (unsigned int)inode->i_ctime.tv_nsec);
248 	pr_err("\tcreat_sqnum    %llu\n", ui->creat_sqnum);
249 	pr_err("\txattr_size     %u\n", ui->xattr_size);
250 	pr_err("\txattr_cnt      %u\n", ui->xattr_cnt);
251 	pr_err("\txattr_names    %u\n", ui->xattr_names);
252 	pr_err("\tdirty          %u\n", ui->dirty);
253 	pr_err("\txattr          %u\n", ui->xattr);
254 	pr_err("\tbulk_read      %u\n", ui->bulk_read);
255 	pr_err("\tsynced_i_size  %llu\n",
256 	       (unsigned long long)ui->synced_i_size);
257 	pr_err("\tui_size        %llu\n",
258 	       (unsigned long long)ui->ui_size);
259 	pr_err("\tflags          %d\n", ui->flags);
260 	pr_err("\tcompr_type     %d\n", ui->compr_type);
261 	pr_err("\tlast_page_read %lu\n", ui->last_page_read);
262 	pr_err("\tread_in_a_row  %lu\n", ui->read_in_a_row);
263 	pr_err("\tdata_len       %d\n", ui->data_len);
264 
265 	if (!S_ISDIR(inode->i_mode))
266 		return;
267 
268 	pr_err("List of directory entries:\n");
269 	ubifs_assert(c, !mutex_is_locked(&c->tnc_mutex));
270 
271 	lowest_dent_key(c, &key, inode->i_ino);
272 	while (1) {
273 		dent = ubifs_tnc_next_ent(c, &key, &nm);
274 		if (IS_ERR(dent)) {
275 			if (PTR_ERR(dent) != -ENOENT)
276 				pr_err("error %ld\n", PTR_ERR(dent));
277 			break;
278 		}
279 
280 		pr_err("\t%d: inode %llu, type %s, len %d\n",
281 		       count++, (unsigned long long) le64_to_cpu(dent->inum),
282 		       get_dent_type(dent->type),
283 		       le16_to_cpu(dent->nlen));
284 
285 		fname_name(&nm) = dent->name;
286 		fname_len(&nm) = le16_to_cpu(dent->nlen);
287 		kfree(pdent);
288 		pdent = dent;
289 		key_read(c, &dent->key, &key);
290 	}
291 	kfree(pdent);
292 }
293 
294 void ubifs_dump_node(const struct ubifs_info *c, const void *node)
295 {
296 	int i, n;
297 	union ubifs_key key;
298 	const struct ubifs_ch *ch = node;
299 	char key_buf[DBG_KEY_BUF_LEN];
300 
301 	/* If the magic is incorrect, just hexdump the first bytes */
302 	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) {
303 		pr_err("Not a node, first %zu bytes:", UBIFS_CH_SZ);
304 		print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 32, 1,
305 			       (void *)node, UBIFS_CH_SZ, 1);
306 		return;
307 	}
308 
309 	spin_lock(&dbg_lock);
310 	dump_ch(node);
311 
312 	switch (ch->node_type) {
313 	case UBIFS_PAD_NODE:
314 	{
315 		const struct ubifs_pad_node *pad = node;
316 
317 		pr_err("\tpad_len        %u\n", le32_to_cpu(pad->pad_len));
318 		break;
319 	}
320 	case UBIFS_SB_NODE:
321 	{
322 		const struct ubifs_sb_node *sup = node;
323 		unsigned int sup_flags = le32_to_cpu(sup->flags);
324 
325 		pr_err("\tkey_hash       %d (%s)\n",
326 		       (int)sup->key_hash, get_key_hash(sup->key_hash));
327 		pr_err("\tkey_fmt        %d (%s)\n",
328 		       (int)sup->key_fmt, get_key_fmt(sup->key_fmt));
329 		pr_err("\tflags          %#x\n", sup_flags);
330 		pr_err("\tbig_lpt        %u\n",
331 		       !!(sup_flags & UBIFS_FLG_BIGLPT));
332 		pr_err("\tspace_fixup    %u\n",
333 		       !!(sup_flags & UBIFS_FLG_SPACE_FIXUP));
334 		pr_err("\tmin_io_size    %u\n", le32_to_cpu(sup->min_io_size));
335 		pr_err("\tleb_size       %u\n", le32_to_cpu(sup->leb_size));
336 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(sup->leb_cnt));
337 		pr_err("\tmax_leb_cnt    %u\n", le32_to_cpu(sup->max_leb_cnt));
338 		pr_err("\tmax_bud_bytes  %llu\n",
339 		       (unsigned long long)le64_to_cpu(sup->max_bud_bytes));
340 		pr_err("\tlog_lebs       %u\n", le32_to_cpu(sup->log_lebs));
341 		pr_err("\tlpt_lebs       %u\n", le32_to_cpu(sup->lpt_lebs));
342 		pr_err("\torph_lebs      %u\n", le32_to_cpu(sup->orph_lebs));
343 		pr_err("\tjhead_cnt      %u\n", le32_to_cpu(sup->jhead_cnt));
344 		pr_err("\tfanout         %u\n", le32_to_cpu(sup->fanout));
345 		pr_err("\tlsave_cnt      %u\n", le32_to_cpu(sup->lsave_cnt));
346 		pr_err("\tdefault_compr  %u\n",
347 		       (int)le16_to_cpu(sup->default_compr));
348 		pr_err("\trp_size        %llu\n",
349 		       (unsigned long long)le64_to_cpu(sup->rp_size));
350 		pr_err("\trp_uid         %u\n", le32_to_cpu(sup->rp_uid));
351 		pr_err("\trp_gid         %u\n", le32_to_cpu(sup->rp_gid));
352 		pr_err("\tfmt_version    %u\n", le32_to_cpu(sup->fmt_version));
353 		pr_err("\ttime_gran      %u\n", le32_to_cpu(sup->time_gran));
354 		pr_err("\tUUID           %pUB\n", sup->uuid);
355 		break;
356 	}
357 	case UBIFS_MST_NODE:
358 	{
359 		const struct ubifs_mst_node *mst = node;
360 
361 		pr_err("\thighest_inum   %llu\n",
362 		       (unsigned long long)le64_to_cpu(mst->highest_inum));
363 		pr_err("\tcommit number  %llu\n",
364 		       (unsigned long long)le64_to_cpu(mst->cmt_no));
365 		pr_err("\tflags          %#x\n", le32_to_cpu(mst->flags));
366 		pr_err("\tlog_lnum       %u\n", le32_to_cpu(mst->log_lnum));
367 		pr_err("\troot_lnum      %u\n", le32_to_cpu(mst->root_lnum));
368 		pr_err("\troot_offs      %u\n", le32_to_cpu(mst->root_offs));
369 		pr_err("\troot_len       %u\n", le32_to_cpu(mst->root_len));
370 		pr_err("\tgc_lnum        %u\n", le32_to_cpu(mst->gc_lnum));
371 		pr_err("\tihead_lnum     %u\n", le32_to_cpu(mst->ihead_lnum));
372 		pr_err("\tihead_offs     %u\n", le32_to_cpu(mst->ihead_offs));
373 		pr_err("\tindex_size     %llu\n",
374 		       (unsigned long long)le64_to_cpu(mst->index_size));
375 		pr_err("\tlpt_lnum       %u\n", le32_to_cpu(mst->lpt_lnum));
376 		pr_err("\tlpt_offs       %u\n", le32_to_cpu(mst->lpt_offs));
377 		pr_err("\tnhead_lnum     %u\n", le32_to_cpu(mst->nhead_lnum));
378 		pr_err("\tnhead_offs     %u\n", le32_to_cpu(mst->nhead_offs));
379 		pr_err("\tltab_lnum      %u\n", le32_to_cpu(mst->ltab_lnum));
380 		pr_err("\tltab_offs      %u\n", le32_to_cpu(mst->ltab_offs));
381 		pr_err("\tlsave_lnum     %u\n", le32_to_cpu(mst->lsave_lnum));
382 		pr_err("\tlsave_offs     %u\n", le32_to_cpu(mst->lsave_offs));
383 		pr_err("\tlscan_lnum     %u\n", le32_to_cpu(mst->lscan_lnum));
384 		pr_err("\tleb_cnt        %u\n", le32_to_cpu(mst->leb_cnt));
385 		pr_err("\tempty_lebs     %u\n", le32_to_cpu(mst->empty_lebs));
386 		pr_err("\tidx_lebs       %u\n", le32_to_cpu(mst->idx_lebs));
387 		pr_err("\ttotal_free     %llu\n",
388 		       (unsigned long long)le64_to_cpu(mst->total_free));
389 		pr_err("\ttotal_dirty    %llu\n",
390 		       (unsigned long long)le64_to_cpu(mst->total_dirty));
391 		pr_err("\ttotal_used     %llu\n",
392 		       (unsigned long long)le64_to_cpu(mst->total_used));
393 		pr_err("\ttotal_dead     %llu\n",
394 		       (unsigned long long)le64_to_cpu(mst->total_dead));
395 		pr_err("\ttotal_dark     %llu\n",
396 		       (unsigned long long)le64_to_cpu(mst->total_dark));
397 		break;
398 	}
399 	case UBIFS_REF_NODE:
400 	{
401 		const struct ubifs_ref_node *ref = node;
402 
403 		pr_err("\tlnum           %u\n", le32_to_cpu(ref->lnum));
404 		pr_err("\toffs           %u\n", le32_to_cpu(ref->offs));
405 		pr_err("\tjhead          %u\n", le32_to_cpu(ref->jhead));
406 		break;
407 	}
408 	case UBIFS_INO_NODE:
409 	{
410 		const struct ubifs_ino_node *ino = node;
411 
412 		key_read(c, &ino->key, &key);
413 		pr_err("\tkey            %s\n",
414 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
415 		pr_err("\tcreat_sqnum    %llu\n",
416 		       (unsigned long long)le64_to_cpu(ino->creat_sqnum));
417 		pr_err("\tsize           %llu\n",
418 		       (unsigned long long)le64_to_cpu(ino->size));
419 		pr_err("\tnlink          %u\n", le32_to_cpu(ino->nlink));
420 		pr_err("\tatime          %lld.%u\n",
421 		       (long long)le64_to_cpu(ino->atime_sec),
422 		       le32_to_cpu(ino->atime_nsec));
423 		pr_err("\tmtime          %lld.%u\n",
424 		       (long long)le64_to_cpu(ino->mtime_sec),
425 		       le32_to_cpu(ino->mtime_nsec));
426 		pr_err("\tctime          %lld.%u\n",
427 		       (long long)le64_to_cpu(ino->ctime_sec),
428 		       le32_to_cpu(ino->ctime_nsec));
429 		pr_err("\tuid            %u\n", le32_to_cpu(ino->uid));
430 		pr_err("\tgid            %u\n", le32_to_cpu(ino->gid));
431 		pr_err("\tmode           %u\n", le32_to_cpu(ino->mode));
432 		pr_err("\tflags          %#x\n", le32_to_cpu(ino->flags));
433 		pr_err("\txattr_cnt      %u\n", le32_to_cpu(ino->xattr_cnt));
434 		pr_err("\txattr_size     %u\n", le32_to_cpu(ino->xattr_size));
435 		pr_err("\txattr_names    %u\n", le32_to_cpu(ino->xattr_names));
436 		pr_err("\tcompr_type     %#x\n",
437 		       (int)le16_to_cpu(ino->compr_type));
438 		pr_err("\tdata len       %u\n", le32_to_cpu(ino->data_len));
439 		break;
440 	}
441 	case UBIFS_DENT_NODE:
442 	case UBIFS_XENT_NODE:
443 	{
444 		const struct ubifs_dent_node *dent = node;
445 		int nlen = le16_to_cpu(dent->nlen);
446 
447 		key_read(c, &dent->key, &key);
448 		pr_err("\tkey            %s\n",
449 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
450 		pr_err("\tinum           %llu\n",
451 		       (unsigned long long)le64_to_cpu(dent->inum));
452 		pr_err("\ttype           %d\n", (int)dent->type);
453 		pr_err("\tnlen           %d\n", nlen);
454 		pr_err("\tname           ");
455 
456 		if (nlen > UBIFS_MAX_NLEN)
457 			pr_err("(bad name length, not printing, bad or corrupted node)");
458 		else {
459 			for (i = 0; i < nlen && dent->name[i]; i++)
460 				pr_cont("%c", isprint(dent->name[i]) ?
461 					dent->name[i] : '?');
462 		}
463 		pr_cont("\n");
464 
465 		break;
466 	}
467 	case UBIFS_DATA_NODE:
468 	{
469 		const struct ubifs_data_node *dn = node;
470 		int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ;
471 
472 		key_read(c, &dn->key, &key);
473 		pr_err("\tkey            %s\n",
474 		       dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
475 		pr_err("\tsize           %u\n", le32_to_cpu(dn->size));
476 		pr_err("\tcompr_typ      %d\n",
477 		       (int)le16_to_cpu(dn->compr_type));
478 		pr_err("\tdata size      %d\n", dlen);
479 		pr_err("\tdata:\n");
480 		print_hex_dump(KERN_ERR, "\t", DUMP_PREFIX_OFFSET, 32, 1,
481 			       (void *)&dn->data, dlen, 0);
482 		break;
483 	}
484 	case UBIFS_TRUN_NODE:
485 	{
486 		const struct ubifs_trun_node *trun = node;
487 
488 		pr_err("\tinum           %u\n", le32_to_cpu(trun->inum));
489 		pr_err("\told_size       %llu\n",
490 		       (unsigned long long)le64_to_cpu(trun->old_size));
491 		pr_err("\tnew_size       %llu\n",
492 		       (unsigned long long)le64_to_cpu(trun->new_size));
493 		break;
494 	}
495 	case UBIFS_IDX_NODE:
496 	{
497 		const struct ubifs_idx_node *idx = node;
498 
499 		n = le16_to_cpu(idx->child_cnt);
500 		pr_err("\tchild_cnt      %d\n", n);
501 		pr_err("\tlevel          %d\n", (int)le16_to_cpu(idx->level));
502 		pr_err("\tBranches:\n");
503 
504 		for (i = 0; i < n && i < c->fanout - 1; i++) {
505 			const struct ubifs_branch *br;
506 
507 			br = ubifs_idx_branch(c, idx, i);
508 			key_read(c, &br->key, &key);
509 			pr_err("\t%d: LEB %d:%d len %d key %s\n",
510 			       i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs),
511 			       le32_to_cpu(br->len),
512 			       dbg_snprintf_key(c, &key, key_buf,
513 						DBG_KEY_BUF_LEN));
514 		}
515 		break;
516 	}
517 	case UBIFS_CS_NODE:
518 		break;
519 	case UBIFS_ORPH_NODE:
520 	{
521 		const struct ubifs_orph_node *orph = node;
522 
523 		pr_err("\tcommit number  %llu\n",
524 		       (unsigned long long)
525 				le64_to_cpu(orph->cmt_no) & LLONG_MAX);
526 		pr_err("\tlast node flag %llu\n",
527 		       (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63);
528 		n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3;
529 		pr_err("\t%d orphan inode numbers:\n", n);
530 		for (i = 0; i < n; i++)
531 			pr_err("\t  ino %llu\n",
532 			       (unsigned long long)le64_to_cpu(orph->inos[i]));
533 		break;
534 	}
535 	case UBIFS_AUTH_NODE:
536 	{
537 		break;
538 	}
539 	default:
540 		pr_err("node type %d was not recognized\n",
541 		       (int)ch->node_type);
542 	}
543 	spin_unlock(&dbg_lock);
544 }
545 
546 void ubifs_dump_budget_req(const struct ubifs_budget_req *req)
547 {
548 	spin_lock(&dbg_lock);
549 	pr_err("Budgeting request: new_ino %d, dirtied_ino %d\n",
550 	       req->new_ino, req->dirtied_ino);
551 	pr_err("\tnew_ino_d   %d, dirtied_ino_d %d\n",
552 	       req->new_ino_d, req->dirtied_ino_d);
553 	pr_err("\tnew_page    %d, dirtied_page %d\n",
554 	       req->new_page, req->dirtied_page);
555 	pr_err("\tnew_dent    %d, mod_dent     %d\n",
556 	       req->new_dent, req->mod_dent);
557 	pr_err("\tidx_growth  %d\n", req->idx_growth);
558 	pr_err("\tdata_growth %d dd_growth     %d\n",
559 	       req->data_growth, req->dd_growth);
560 	spin_unlock(&dbg_lock);
561 }
562 
563 void ubifs_dump_lstats(const struct ubifs_lp_stats *lst)
564 {
565 	spin_lock(&dbg_lock);
566 	pr_err("(pid %d) Lprops statistics: empty_lebs %d, idx_lebs  %d\n",
567 	       current->pid, lst->empty_lebs, lst->idx_lebs);
568 	pr_err("\ttaken_empty_lebs %d, total_free %lld, total_dirty %lld\n",
569 	       lst->taken_empty_lebs, lst->total_free, lst->total_dirty);
570 	pr_err("\ttotal_used %lld, total_dark %lld, total_dead %lld\n",
571 	       lst->total_used, lst->total_dark, lst->total_dead);
572 	spin_unlock(&dbg_lock);
573 }
574 
575 void ubifs_dump_budg(struct ubifs_info *c, const struct ubifs_budg_info *bi)
576 {
577 	int i;
578 	struct rb_node *rb;
579 	struct ubifs_bud *bud;
580 	struct ubifs_gced_idx_leb *idx_gc;
581 	long long available, outstanding, free;
582 
583 	spin_lock(&c->space_lock);
584 	spin_lock(&dbg_lock);
585 	pr_err("(pid %d) Budgeting info: data budget sum %lld, total budget sum %lld\n",
586 	       current->pid, bi->data_growth + bi->dd_growth,
587 	       bi->data_growth + bi->dd_growth + bi->idx_growth);
588 	pr_err("\tbudg_data_growth %lld, budg_dd_growth %lld, budg_idx_growth %lld\n",
589 	       bi->data_growth, bi->dd_growth, bi->idx_growth);
590 	pr_err("\tmin_idx_lebs %d, old_idx_sz %llu, uncommitted_idx %lld\n",
591 	       bi->min_idx_lebs, bi->old_idx_sz, bi->uncommitted_idx);
592 	pr_err("\tpage_budget %d, inode_budget %d, dent_budget %d\n",
593 	       bi->page_budget, bi->inode_budget, bi->dent_budget);
594 	pr_err("\tnospace %u, nospace_rp %u\n", bi->nospace, bi->nospace_rp);
595 	pr_err("\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n",
596 	       c->dark_wm, c->dead_wm, c->max_idx_node_sz);
597 
598 	if (bi != &c->bi)
599 		/*
600 		 * If we are dumping saved budgeting data, do not print
601 		 * additional information which is about the current state, not
602 		 * the old one which corresponded to the saved budgeting data.
603 		 */
604 		goto out_unlock;
605 
606 	pr_err("\tfreeable_cnt %d, calc_idx_sz %lld, idx_gc_cnt %d\n",
607 	       c->freeable_cnt, c->calc_idx_sz, c->idx_gc_cnt);
608 	pr_err("\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, clean_zn_cnt %ld\n",
609 	       atomic_long_read(&c->dirty_pg_cnt),
610 	       atomic_long_read(&c->dirty_zn_cnt),
611 	       atomic_long_read(&c->clean_zn_cnt));
612 	pr_err("\tgc_lnum %d, ihead_lnum %d\n", c->gc_lnum, c->ihead_lnum);
613 
614 	/* If we are in R/O mode, journal heads do not exist */
615 	if (c->jheads)
616 		for (i = 0; i < c->jhead_cnt; i++)
617 			pr_err("\tjhead %s\t LEB %d\n",
618 			       dbg_jhead(c->jheads[i].wbuf.jhead),
619 			       c->jheads[i].wbuf.lnum);
620 	for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) {
621 		bud = rb_entry(rb, struct ubifs_bud, rb);
622 		pr_err("\tbud LEB %d\n", bud->lnum);
623 	}
624 	list_for_each_entry(bud, &c->old_buds, list)
625 		pr_err("\told bud LEB %d\n", bud->lnum);
626 	list_for_each_entry(idx_gc, &c->idx_gc, list)
627 		pr_err("\tGC'ed idx LEB %d unmap %d\n",
628 		       idx_gc->lnum, idx_gc->unmap);
629 	pr_err("\tcommit state %d\n", c->cmt_state);
630 
631 	/* Print budgeting predictions */
632 	available = ubifs_calc_available(c, c->bi.min_idx_lebs);
633 	outstanding = c->bi.data_growth + c->bi.dd_growth;
634 	free = ubifs_get_free_space_nolock(c);
635 	pr_err("Budgeting predictions:\n");
636 	pr_err("\tavailable: %lld, outstanding %lld, free %lld\n",
637 	       available, outstanding, free);
638 out_unlock:
639 	spin_unlock(&dbg_lock);
640 	spin_unlock(&c->space_lock);
641 }
642 
643 void ubifs_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp)
644 {
645 	int i, spc, dark = 0, dead = 0;
646 	struct rb_node *rb;
647 	struct ubifs_bud *bud;
648 
649 	spc = lp->free + lp->dirty;
650 	if (spc < c->dead_wm)
651 		dead = spc;
652 	else
653 		dark = ubifs_calc_dark(c, spc);
654 
655 	if (lp->flags & LPROPS_INDEX)
656 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d flags %#x (",
657 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
658 		       lp->flags);
659 	else
660 		pr_err("LEB %-7d free %-8d dirty %-8d used %-8d free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d flags %#-4x (",
661 		       lp->lnum, lp->free, lp->dirty, c->leb_size - spc, spc,
662 		       dark, dead, (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags);
663 
664 	if (lp->flags & LPROPS_TAKEN) {
665 		if (lp->flags & LPROPS_INDEX)
666 			pr_cont("index, taken");
667 		else
668 			pr_cont("taken");
669 	} else {
670 		const char *s;
671 
672 		if (lp->flags & LPROPS_INDEX) {
673 			switch (lp->flags & LPROPS_CAT_MASK) {
674 			case LPROPS_DIRTY_IDX:
675 				s = "dirty index";
676 				break;
677 			case LPROPS_FRDI_IDX:
678 				s = "freeable index";
679 				break;
680 			default:
681 				s = "index";
682 			}
683 		} else {
684 			switch (lp->flags & LPROPS_CAT_MASK) {
685 			case LPROPS_UNCAT:
686 				s = "not categorized";
687 				break;
688 			case LPROPS_DIRTY:
689 				s = "dirty";
690 				break;
691 			case LPROPS_FREE:
692 				s = "free";
693 				break;
694 			case LPROPS_EMPTY:
695 				s = "empty";
696 				break;
697 			case LPROPS_FREEABLE:
698 				s = "freeable";
699 				break;
700 			default:
701 				s = NULL;
702 				break;
703 			}
704 		}
705 		pr_cont("%s", s);
706 	}
707 
708 	for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) {
709 		bud = rb_entry(rb, struct ubifs_bud, rb);
710 		if (bud->lnum == lp->lnum) {
711 			int head = 0;
712 			for (i = 0; i < c->jhead_cnt; i++) {
713 				/*
714 				 * Note, if we are in R/O mode or in the middle
715 				 * of mounting/re-mounting, the write-buffers do
716 				 * not exist.
717 				 */
718 				if (c->jheads &&
719 				    lp->lnum == c->jheads[i].wbuf.lnum) {
720 					pr_cont(", jhead %s", dbg_jhead(i));
721 					head = 1;
722 				}
723 			}
724 			if (!head)
725 				pr_cont(", bud of jhead %s",
726 				       dbg_jhead(bud->jhead));
727 		}
728 	}
729 	if (lp->lnum == c->gc_lnum)
730 		pr_cont(", GC LEB");
731 	pr_cont(")\n");
732 }
733 
734 void ubifs_dump_lprops(struct ubifs_info *c)
735 {
736 	int lnum, err;
737 	struct ubifs_lprops lp;
738 	struct ubifs_lp_stats lst;
739 
740 	pr_err("(pid %d) start dumping LEB properties\n", current->pid);
741 	ubifs_get_lp_stats(c, &lst);
742 	ubifs_dump_lstats(&lst);
743 
744 	for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) {
745 		err = ubifs_read_one_lp(c, lnum, &lp);
746 		if (err) {
747 			ubifs_err(c, "cannot read lprops for LEB %d", lnum);
748 			continue;
749 		}
750 
751 		ubifs_dump_lprop(c, &lp);
752 	}
753 	pr_err("(pid %d) finish dumping LEB properties\n", current->pid);
754 }
755 
756 void ubifs_dump_lpt_info(struct ubifs_info *c)
757 {
758 	int i;
759 
760 	spin_lock(&dbg_lock);
761 	pr_err("(pid %d) dumping LPT information\n", current->pid);
762 	pr_err("\tlpt_sz:        %lld\n", c->lpt_sz);
763 	pr_err("\tpnode_sz:      %d\n", c->pnode_sz);
764 	pr_err("\tnnode_sz:      %d\n", c->nnode_sz);
765 	pr_err("\tltab_sz:       %d\n", c->ltab_sz);
766 	pr_err("\tlsave_sz:      %d\n", c->lsave_sz);
767 	pr_err("\tbig_lpt:       %d\n", c->big_lpt);
768 	pr_err("\tlpt_hght:      %d\n", c->lpt_hght);
769 	pr_err("\tpnode_cnt:     %d\n", c->pnode_cnt);
770 	pr_err("\tnnode_cnt:     %d\n", c->nnode_cnt);
771 	pr_err("\tdirty_pn_cnt:  %d\n", c->dirty_pn_cnt);
772 	pr_err("\tdirty_nn_cnt:  %d\n", c->dirty_nn_cnt);
773 	pr_err("\tlsave_cnt:     %d\n", c->lsave_cnt);
774 	pr_err("\tspace_bits:    %d\n", c->space_bits);
775 	pr_err("\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits);
776 	pr_err("\tlpt_offs_bits: %d\n", c->lpt_offs_bits);
777 	pr_err("\tlpt_spc_bits:  %d\n", c->lpt_spc_bits);
778 	pr_err("\tpcnt_bits:     %d\n", c->pcnt_bits);
779 	pr_err("\tlnum_bits:     %d\n", c->lnum_bits);
780 	pr_err("\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs);
781 	pr_err("\tLPT head is at %d:%d\n",
782 	       c->nhead_lnum, c->nhead_offs);
783 	pr_err("\tLPT ltab is at %d:%d\n", c->ltab_lnum, c->ltab_offs);
784 	if (c->big_lpt)
785 		pr_err("\tLPT lsave is at %d:%d\n",
786 		       c->lsave_lnum, c->lsave_offs);
787 	for (i = 0; i < c->lpt_lebs; i++)
788 		pr_err("\tLPT LEB %d free %d dirty %d tgc %d cmt %d\n",
789 		       i + c->lpt_first, c->ltab[i].free, c->ltab[i].dirty,
790 		       c->ltab[i].tgc, c->ltab[i].cmt);
791 	spin_unlock(&dbg_lock);
792 }
793 
794 void ubifs_dump_sleb(const struct ubifs_info *c,
795 		     const struct ubifs_scan_leb *sleb, int offs)
796 {
797 	struct ubifs_scan_node *snod;
798 
799 	pr_err("(pid %d) start dumping scanned data from LEB %d:%d\n",
800 	       current->pid, sleb->lnum, offs);
801 
802 	list_for_each_entry(snod, &sleb->nodes, list) {
803 		cond_resched();
804 		pr_err("Dumping node at LEB %d:%d len %d\n",
805 		       sleb->lnum, snod->offs, snod->len);
806 		ubifs_dump_node(c, snod->node);
807 	}
808 }
809 
810 void ubifs_dump_leb(const struct ubifs_info *c, int lnum)
811 {
812 	struct ubifs_scan_leb *sleb;
813 	struct ubifs_scan_node *snod;
814 	void *buf;
815 
816 	pr_err("(pid %d) start dumping LEB %d\n", current->pid, lnum);
817 
818 	buf = __vmalloc(c->leb_size, GFP_NOFS, PAGE_KERNEL);
819 	if (!buf) {
820 		ubifs_err(c, "cannot allocate memory for dumping LEB %d", lnum);
821 		return;
822 	}
823 
824 	sleb = ubifs_scan(c, lnum, 0, buf, 0);
825 	if (IS_ERR(sleb)) {
826 		ubifs_err(c, "scan error %d", (int)PTR_ERR(sleb));
827 		goto out;
828 	}
829 
830 	pr_err("LEB %d has %d nodes ending at %d\n", lnum,
831 	       sleb->nodes_cnt, sleb->endpt);
832 
833 	list_for_each_entry(snod, &sleb->nodes, list) {
834 		cond_resched();
835 		pr_err("Dumping node at LEB %d:%d len %d\n", lnum,
836 		       snod->offs, snod->len);
837 		ubifs_dump_node(c, snod->node);
838 	}
839 
840 	pr_err("(pid %d) finish dumping LEB %d\n", current->pid, lnum);
841 	ubifs_scan_destroy(sleb);
842 
843 out:
844 	vfree(buf);
845 	return;
846 }
847 
848 void ubifs_dump_znode(const struct ubifs_info *c,
849 		      const struct ubifs_znode *znode)
850 {
851 	int n;
852 	const struct ubifs_zbranch *zbr;
853 	char key_buf[DBG_KEY_BUF_LEN];
854 
855 	spin_lock(&dbg_lock);
856 	if (znode->parent)
857 		zbr = &znode->parent->zbranch[znode->iip];
858 	else
859 		zbr = &c->zroot;
860 
861 	pr_err("znode %p, LEB %d:%d len %d parent %p iip %d level %d child_cnt %d flags %lx\n",
862 	       znode, zbr->lnum, zbr->offs, zbr->len, znode->parent, znode->iip,
863 	       znode->level, znode->child_cnt, znode->flags);
864 
865 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
866 		spin_unlock(&dbg_lock);
867 		return;
868 	}
869 
870 	pr_err("zbranches:\n");
871 	for (n = 0; n < znode->child_cnt; n++) {
872 		zbr = &znode->zbranch[n];
873 		if (znode->level > 0)
874 			pr_err("\t%d: znode %p LEB %d:%d len %d key %s\n",
875 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
876 			       dbg_snprintf_key(c, &zbr->key, key_buf,
877 						DBG_KEY_BUF_LEN));
878 		else
879 			pr_err("\t%d: LNC %p LEB %d:%d len %d key %s\n",
880 			       n, zbr->znode, zbr->lnum, zbr->offs, zbr->len,
881 			       dbg_snprintf_key(c, &zbr->key, key_buf,
882 						DBG_KEY_BUF_LEN));
883 	}
884 	spin_unlock(&dbg_lock);
885 }
886 
887 void ubifs_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat)
888 {
889 	int i;
890 
891 	pr_err("(pid %d) start dumping heap cat %d (%d elements)\n",
892 	       current->pid, cat, heap->cnt);
893 	for (i = 0; i < heap->cnt; i++) {
894 		struct ubifs_lprops *lprops = heap->arr[i];
895 
896 		pr_err("\t%d. LEB %d hpos %d free %d dirty %d flags %d\n",
897 		       i, lprops->lnum, lprops->hpos, lprops->free,
898 		       lprops->dirty, lprops->flags);
899 	}
900 	pr_err("(pid %d) finish dumping heap\n", current->pid);
901 }
902 
903 void ubifs_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode,
904 		      struct ubifs_nnode *parent, int iip)
905 {
906 	int i;
907 
908 	pr_err("(pid %d) dumping pnode:\n", current->pid);
909 	pr_err("\taddress %zx parent %zx cnext %zx\n",
910 	       (size_t)pnode, (size_t)parent, (size_t)pnode->cnext);
911 	pr_err("\tflags %lu iip %d level %d num %d\n",
912 	       pnode->flags, iip, pnode->level, pnode->num);
913 	for (i = 0; i < UBIFS_LPT_FANOUT; i++) {
914 		struct ubifs_lprops *lp = &pnode->lprops[i];
915 
916 		pr_err("\t%d: free %d dirty %d flags %d lnum %d\n",
917 		       i, lp->free, lp->dirty, lp->flags, lp->lnum);
918 	}
919 }
920 
921 void ubifs_dump_tnc(struct ubifs_info *c)
922 {
923 	struct ubifs_znode *znode;
924 	int level;
925 
926 	pr_err("\n");
927 	pr_err("(pid %d) start dumping TNC tree\n", current->pid);
928 	znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, NULL);
929 	level = znode->level;
930 	pr_err("== Level %d ==\n", level);
931 	while (znode) {
932 		if (level != znode->level) {
933 			level = znode->level;
934 			pr_err("== Level %d ==\n", level);
935 		}
936 		ubifs_dump_znode(c, znode);
937 		znode = ubifs_tnc_levelorder_next(c, c->zroot.znode, znode);
938 	}
939 	pr_err("(pid %d) finish dumping TNC tree\n", current->pid);
940 }
941 
942 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode,
943 		      void *priv)
944 {
945 	ubifs_dump_znode(c, znode);
946 	return 0;
947 }
948 
949 /**
950  * ubifs_dump_index - dump the on-flash index.
951  * @c: UBIFS file-system description object
952  *
953  * This function dumps whole UBIFS indexing B-tree, unlike 'ubifs_dump_tnc()'
954  * which dumps only in-memory znodes and does not read znodes which from flash.
955  */
956 void ubifs_dump_index(struct ubifs_info *c)
957 {
958 	dbg_walk_index(c, NULL, dump_znode, NULL);
959 }
960 
961 /**
962  * dbg_save_space_info - save information about flash space.
963  * @c: UBIFS file-system description object
964  *
965  * This function saves information about UBIFS free space, dirty space, etc, in
966  * order to check it later.
967  */
968 void dbg_save_space_info(struct ubifs_info *c)
969 {
970 	struct ubifs_debug_info *d = c->dbg;
971 	int freeable_cnt;
972 
973 	spin_lock(&c->space_lock);
974 	memcpy(&d->saved_lst, &c->lst, sizeof(struct ubifs_lp_stats));
975 	memcpy(&d->saved_bi, &c->bi, sizeof(struct ubifs_budg_info));
976 	d->saved_idx_gc_cnt = c->idx_gc_cnt;
977 
978 	/*
979 	 * We use a dirty hack here and zero out @c->freeable_cnt, because it
980 	 * affects the free space calculations, and UBIFS might not know about
981 	 * all freeable eraseblocks. Indeed, we know about freeable eraseblocks
982 	 * only when we read their lprops, and we do this only lazily, upon the
983 	 * need. So at any given point of time @c->freeable_cnt might be not
984 	 * exactly accurate.
985 	 *
986 	 * Just one example about the issue we hit when we did not zero
987 	 * @c->freeable_cnt.
988 	 * 1. The file-system is mounted R/O, c->freeable_cnt is %0. We save the
989 	 *    amount of free space in @d->saved_free
990 	 * 2. We re-mount R/W, which makes UBIFS to read the "lsave"
991 	 *    information from flash, where we cache LEBs from various
992 	 *    categories ('ubifs_remount_fs()' -> 'ubifs_lpt_init()'
993 	 *    -> 'lpt_init_wr()' -> 'read_lsave()' -> 'ubifs_lpt_lookup()'
994 	 *    -> 'ubifs_get_pnode()' -> 'update_cats()'
995 	 *    -> 'ubifs_add_to_cat()').
996 	 * 3. Lsave contains a freeable eraseblock, and @c->freeable_cnt
997 	 *    becomes %1.
998 	 * 4. We calculate the amount of free space when the re-mount is
999 	 *    finished in 'dbg_check_space_info()' and it does not match
1000 	 *    @d->saved_free.
1001 	 */
1002 	freeable_cnt = c->freeable_cnt;
1003 	c->freeable_cnt = 0;
1004 	d->saved_free = ubifs_get_free_space_nolock(c);
1005 	c->freeable_cnt = freeable_cnt;
1006 	spin_unlock(&c->space_lock);
1007 }
1008 
1009 /**
1010  * dbg_check_space_info - check flash space information.
1011  * @c: UBIFS file-system description object
1012  *
1013  * This function compares current flash space information with the information
1014  * which was saved when the 'dbg_save_space_info()' function was called.
1015  * Returns zero if the information has not changed, and %-EINVAL it it has
1016  * changed.
1017  */
1018 int dbg_check_space_info(struct ubifs_info *c)
1019 {
1020 	struct ubifs_debug_info *d = c->dbg;
1021 	struct ubifs_lp_stats lst;
1022 	long long free;
1023 	int freeable_cnt;
1024 
1025 	spin_lock(&c->space_lock);
1026 	freeable_cnt = c->freeable_cnt;
1027 	c->freeable_cnt = 0;
1028 	free = ubifs_get_free_space_nolock(c);
1029 	c->freeable_cnt = freeable_cnt;
1030 	spin_unlock(&c->space_lock);
1031 
1032 	if (free != d->saved_free) {
1033 		ubifs_err(c, "free space changed from %lld to %lld",
1034 			  d->saved_free, free);
1035 		goto out;
1036 	}
1037 
1038 	return 0;
1039 
1040 out:
1041 	ubifs_msg(c, "saved lprops statistics dump");
1042 	ubifs_dump_lstats(&d->saved_lst);
1043 	ubifs_msg(c, "saved budgeting info dump");
1044 	ubifs_dump_budg(c, &d->saved_bi);
1045 	ubifs_msg(c, "saved idx_gc_cnt %d", d->saved_idx_gc_cnt);
1046 	ubifs_msg(c, "current lprops statistics dump");
1047 	ubifs_get_lp_stats(c, &lst);
1048 	ubifs_dump_lstats(&lst);
1049 	ubifs_msg(c, "current budgeting info dump");
1050 	ubifs_dump_budg(c, &c->bi);
1051 	dump_stack();
1052 	return -EINVAL;
1053 }
1054 
1055 /**
1056  * dbg_check_synced_i_size - check synchronized inode size.
1057  * @c: UBIFS file-system description object
1058  * @inode: inode to check
1059  *
1060  * If inode is clean, synchronized inode size has to be equivalent to current
1061  * inode size. This function has to be called only for locked inodes (@i_mutex
1062  * has to be locked). Returns %0 if synchronized inode size if correct, and
1063  * %-EINVAL if not.
1064  */
1065 int dbg_check_synced_i_size(const struct ubifs_info *c, struct inode *inode)
1066 {
1067 	int err = 0;
1068 	struct ubifs_inode *ui = ubifs_inode(inode);
1069 
1070 	if (!dbg_is_chk_gen(c))
1071 		return 0;
1072 	if (!S_ISREG(inode->i_mode))
1073 		return 0;
1074 
1075 	mutex_lock(&ui->ui_mutex);
1076 	spin_lock(&ui->ui_lock);
1077 	if (ui->ui_size != ui->synced_i_size && !ui->dirty) {
1078 		ubifs_err(c, "ui_size is %lld, synced_i_size is %lld, but inode is clean",
1079 			  ui->ui_size, ui->synced_i_size);
1080 		ubifs_err(c, "i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino,
1081 			  inode->i_mode, i_size_read(inode));
1082 		dump_stack();
1083 		err = -EINVAL;
1084 	}
1085 	spin_unlock(&ui->ui_lock);
1086 	mutex_unlock(&ui->ui_mutex);
1087 	return err;
1088 }
1089 
1090 /*
1091  * dbg_check_dir - check directory inode size and link count.
1092  * @c: UBIFS file-system description object
1093  * @dir: the directory to calculate size for
1094  * @size: the result is returned here
1095  *
1096  * This function makes sure that directory size and link count are correct.
1097  * Returns zero in case of success and a negative error code in case of
1098  * failure.
1099  *
1100  * Note, it is good idea to make sure the @dir->i_mutex is locked before
1101  * calling this function.
1102  */
1103 int dbg_check_dir(struct ubifs_info *c, const struct inode *dir)
1104 {
1105 	unsigned int nlink = 2;
1106 	union ubifs_key key;
1107 	struct ubifs_dent_node *dent, *pdent = NULL;
1108 	struct fscrypt_name nm = {0};
1109 	loff_t size = UBIFS_INO_NODE_SZ;
1110 
1111 	if (!dbg_is_chk_gen(c))
1112 		return 0;
1113 
1114 	if (!S_ISDIR(dir->i_mode))
1115 		return 0;
1116 
1117 	lowest_dent_key(c, &key, dir->i_ino);
1118 	while (1) {
1119 		int err;
1120 
1121 		dent = ubifs_tnc_next_ent(c, &key, &nm);
1122 		if (IS_ERR(dent)) {
1123 			err = PTR_ERR(dent);
1124 			if (err == -ENOENT)
1125 				break;
1126 			return err;
1127 		}
1128 
1129 		fname_name(&nm) = dent->name;
1130 		fname_len(&nm) = le16_to_cpu(dent->nlen);
1131 		size += CALC_DENT_SIZE(fname_len(&nm));
1132 		if (dent->type == UBIFS_ITYPE_DIR)
1133 			nlink += 1;
1134 		kfree(pdent);
1135 		pdent = dent;
1136 		key_read(c, &dent->key, &key);
1137 	}
1138 	kfree(pdent);
1139 
1140 	if (i_size_read(dir) != size) {
1141 		ubifs_err(c, "directory inode %lu has size %llu, but calculated size is %llu",
1142 			  dir->i_ino, (unsigned long long)i_size_read(dir),
1143 			  (unsigned long long)size);
1144 		ubifs_dump_inode(c, dir);
1145 		dump_stack();
1146 		return -EINVAL;
1147 	}
1148 	if (dir->i_nlink != nlink) {
1149 		ubifs_err(c, "directory inode %lu has nlink %u, but calculated nlink is %u",
1150 			  dir->i_ino, dir->i_nlink, nlink);
1151 		ubifs_dump_inode(c, dir);
1152 		dump_stack();
1153 		return -EINVAL;
1154 	}
1155 
1156 	return 0;
1157 }
1158 
1159 /**
1160  * dbg_check_key_order - make sure that colliding keys are properly ordered.
1161  * @c: UBIFS file-system description object
1162  * @zbr1: first zbranch
1163  * @zbr2: following zbranch
1164  *
1165  * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of
1166  * names of the direntries/xentries which are referred by the keys. This
1167  * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes
1168  * sure the name of direntry/xentry referred by @zbr1 is less than
1169  * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not,
1170  * and a negative error code in case of failure.
1171  */
1172 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1,
1173 			       struct ubifs_zbranch *zbr2)
1174 {
1175 	int err, nlen1, nlen2, cmp;
1176 	struct ubifs_dent_node *dent1, *dent2;
1177 	union ubifs_key key;
1178 	char key_buf[DBG_KEY_BUF_LEN];
1179 
1180 	ubifs_assert(c, !keys_cmp(c, &zbr1->key, &zbr2->key));
1181 	dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1182 	if (!dent1)
1183 		return -ENOMEM;
1184 	dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
1185 	if (!dent2) {
1186 		err = -ENOMEM;
1187 		goto out_free;
1188 	}
1189 
1190 	err = ubifs_tnc_read_node(c, zbr1, dent1);
1191 	if (err)
1192 		goto out_free;
1193 	err = ubifs_validate_entry(c, dent1);
1194 	if (err)
1195 		goto out_free;
1196 
1197 	err = ubifs_tnc_read_node(c, zbr2, dent2);
1198 	if (err)
1199 		goto out_free;
1200 	err = ubifs_validate_entry(c, dent2);
1201 	if (err)
1202 		goto out_free;
1203 
1204 	/* Make sure node keys are the same as in zbranch */
1205 	err = 1;
1206 	key_read(c, &dent1->key, &key);
1207 	if (keys_cmp(c, &zbr1->key, &key)) {
1208 		ubifs_err(c, "1st entry at %d:%d has key %s", zbr1->lnum,
1209 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1210 						       DBG_KEY_BUF_LEN));
1211 		ubifs_err(c, "but it should have key %s according to tnc",
1212 			  dbg_snprintf_key(c, &zbr1->key, key_buf,
1213 					   DBG_KEY_BUF_LEN));
1214 		ubifs_dump_node(c, dent1);
1215 		goto out_free;
1216 	}
1217 
1218 	key_read(c, &dent2->key, &key);
1219 	if (keys_cmp(c, &zbr2->key, &key)) {
1220 		ubifs_err(c, "2nd entry at %d:%d has key %s", zbr1->lnum,
1221 			  zbr1->offs, dbg_snprintf_key(c, &key, key_buf,
1222 						       DBG_KEY_BUF_LEN));
1223 		ubifs_err(c, "but it should have key %s according to tnc",
1224 			  dbg_snprintf_key(c, &zbr2->key, key_buf,
1225 					   DBG_KEY_BUF_LEN));
1226 		ubifs_dump_node(c, dent2);
1227 		goto out_free;
1228 	}
1229 
1230 	nlen1 = le16_to_cpu(dent1->nlen);
1231 	nlen2 = le16_to_cpu(dent2->nlen);
1232 
1233 	cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2));
1234 	if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) {
1235 		err = 0;
1236 		goto out_free;
1237 	}
1238 	if (cmp == 0 && nlen1 == nlen2)
1239 		ubifs_err(c, "2 xent/dent nodes with the same name");
1240 	else
1241 		ubifs_err(c, "bad order of colliding key %s",
1242 			  dbg_snprintf_key(c, &key, key_buf, DBG_KEY_BUF_LEN));
1243 
1244 	ubifs_msg(c, "first node at %d:%d\n", zbr1->lnum, zbr1->offs);
1245 	ubifs_dump_node(c, dent1);
1246 	ubifs_msg(c, "second node at %d:%d\n", zbr2->lnum, zbr2->offs);
1247 	ubifs_dump_node(c, dent2);
1248 
1249 out_free:
1250 	kfree(dent2);
1251 	kfree(dent1);
1252 	return err;
1253 }
1254 
1255 /**
1256  * dbg_check_znode - check if znode is all right.
1257  * @c: UBIFS file-system description object
1258  * @zbr: zbranch which points to this znode
1259  *
1260  * This function makes sure that znode referred to by @zbr is all right.
1261  * Returns zero if it is, and %-EINVAL if it is not.
1262  */
1263 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr)
1264 {
1265 	struct ubifs_znode *znode = zbr->znode;
1266 	struct ubifs_znode *zp = znode->parent;
1267 	int n, err, cmp;
1268 
1269 	if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) {
1270 		err = 1;
1271 		goto out;
1272 	}
1273 	if (znode->level < 0) {
1274 		err = 2;
1275 		goto out;
1276 	}
1277 	if (znode->iip < 0 || znode->iip >= c->fanout) {
1278 		err = 3;
1279 		goto out;
1280 	}
1281 
1282 	if (zbr->len == 0)
1283 		/* Only dirty zbranch may have no on-flash nodes */
1284 		if (!ubifs_zn_dirty(znode)) {
1285 			err = 4;
1286 			goto out;
1287 		}
1288 
1289 	if (ubifs_zn_dirty(znode)) {
1290 		/*
1291 		 * If znode is dirty, its parent has to be dirty as well. The
1292 		 * order of the operation is important, so we have to have
1293 		 * memory barriers.
1294 		 */
1295 		smp_mb();
1296 		if (zp && !ubifs_zn_dirty(zp)) {
1297 			/*
1298 			 * The dirty flag is atomic and is cleared outside the
1299 			 * TNC mutex, so znode's dirty flag may now have
1300 			 * been cleared. The child is always cleared before the
1301 			 * parent, so we just need to check again.
1302 			 */
1303 			smp_mb();
1304 			if (ubifs_zn_dirty(znode)) {
1305 				err = 5;
1306 				goto out;
1307 			}
1308 		}
1309 	}
1310 
1311 	if (zp) {
1312 		const union ubifs_key *min, *max;
1313 
1314 		if (znode->level != zp->level - 1) {
1315 			err = 6;
1316 			goto out;
1317 		}
1318 
1319 		/* Make sure the 'parent' pointer in our znode is correct */
1320 		err = ubifs_search_zbranch(c, zp, &zbr->key, &n);
1321 		if (!err) {
1322 			/* This zbranch does not exist in the parent */
1323 			err = 7;
1324 			goto out;
1325 		}
1326 
1327 		if (znode->iip >= zp->child_cnt) {
1328 			err = 8;
1329 			goto out;
1330 		}
1331 
1332 		if (znode->iip != n) {
1333 			/* This may happen only in case of collisions */
1334 			if (keys_cmp(c, &zp->zbranch[n].key,
1335 				     &zp->zbranch[znode->iip].key)) {
1336 				err = 9;
1337 				goto out;
1338 			}
1339 			n = znode->iip;
1340 		}
1341 
1342 		/*
1343 		 * Make sure that the first key in our znode is greater than or
1344 		 * equal to the key in the pointing zbranch.
1345 		 */
1346 		min = &zbr->key;
1347 		cmp = keys_cmp(c, min, &znode->zbranch[0].key);
1348 		if (cmp == 1) {
1349 			err = 10;
1350 			goto out;
1351 		}
1352 
1353 		if (n + 1 < zp->child_cnt) {
1354 			max = &zp->zbranch[n + 1].key;
1355 
1356 			/*
1357 			 * Make sure the last key in our znode is less or
1358 			 * equivalent than the key in the zbranch which goes
1359 			 * after our pointing zbranch.
1360 			 */
1361 			cmp = keys_cmp(c, max,
1362 				&znode->zbranch[znode->child_cnt - 1].key);
1363 			if (cmp == -1) {
1364 				err = 11;
1365 				goto out;
1366 			}
1367 		}
1368 	} else {
1369 		/* This may only be root znode */
1370 		if (zbr != &c->zroot) {
1371 			err = 12;
1372 			goto out;
1373 		}
1374 	}
1375 
1376 	/*
1377 	 * Make sure that next key is greater or equivalent then the previous
1378 	 * one.
1379 	 */
1380 	for (n = 1; n < znode->child_cnt; n++) {
1381 		cmp = keys_cmp(c, &znode->zbranch[n - 1].key,
1382 			       &znode->zbranch[n].key);
1383 		if (cmp > 0) {
1384 			err = 13;
1385 			goto out;
1386 		}
1387 		if (cmp == 0) {
1388 			/* This can only be keys with colliding hash */
1389 			if (!is_hash_key(c, &znode->zbranch[n].key)) {
1390 				err = 14;
1391 				goto out;
1392 			}
1393 
1394 			if (znode->level != 0 || c->replaying)
1395 				continue;
1396 
1397 			/*
1398 			 * Colliding keys should follow binary order of
1399 			 * corresponding xentry/dentry names.
1400 			 */
1401 			err = dbg_check_key_order(c, &znode->zbranch[n - 1],
1402 						  &znode->zbranch[n]);
1403 			if (err < 0)
1404 				return err;
1405 			if (err) {
1406 				err = 15;
1407 				goto out;
1408 			}
1409 		}
1410 	}
1411 
1412 	for (n = 0; n < znode->child_cnt; n++) {
1413 		if (!znode->zbranch[n].znode &&
1414 		    (znode->zbranch[n].lnum == 0 ||
1415 		     znode->zbranch[n].len == 0)) {
1416 			err = 16;
1417 			goto out;
1418 		}
1419 
1420 		if (znode->zbranch[n].lnum != 0 &&
1421 		    znode->zbranch[n].len == 0) {
1422 			err = 17;
1423 			goto out;
1424 		}
1425 
1426 		if (znode->zbranch[n].lnum == 0 &&
1427 		    znode->zbranch[n].len != 0) {
1428 			err = 18;
1429 			goto out;
1430 		}
1431 
1432 		if (znode->zbranch[n].lnum == 0 &&
1433 		    znode->zbranch[n].offs != 0) {
1434 			err = 19;
1435 			goto out;
1436 		}
1437 
1438 		if (znode->level != 0 && znode->zbranch[n].znode)
1439 			if (znode->zbranch[n].znode->parent != znode) {
1440 				err = 20;
1441 				goto out;
1442 			}
1443 	}
1444 
1445 	return 0;
1446 
1447 out:
1448 	ubifs_err(c, "failed, error %d", err);
1449 	ubifs_msg(c, "dump of the znode");
1450 	ubifs_dump_znode(c, znode);
1451 	if (zp) {
1452 		ubifs_msg(c, "dump of the parent znode");
1453 		ubifs_dump_znode(c, zp);
1454 	}
1455 	dump_stack();
1456 	return -EINVAL;
1457 }
1458 
1459 /**
1460  * dbg_check_tnc - check TNC tree.
1461  * @c: UBIFS file-system description object
1462  * @extra: do extra checks that are possible at start commit
1463  *
1464  * This function traverses whole TNC tree and checks every znode. Returns zero
1465  * if everything is all right and %-EINVAL if something is wrong with TNC.
1466  */
1467 int dbg_check_tnc(struct ubifs_info *c, int extra)
1468 {
1469 	struct ubifs_znode *znode;
1470 	long clean_cnt = 0, dirty_cnt = 0;
1471 	int err, last;
1472 
1473 	if (!dbg_is_chk_index(c))
1474 		return 0;
1475 
1476 	ubifs_assert(c, mutex_is_locked(&c->tnc_mutex));
1477 	if (!c->zroot.znode)
1478 		return 0;
1479 
1480 	znode = ubifs_tnc_postorder_first(c->zroot.znode);
1481 	while (1) {
1482 		struct ubifs_znode *prev;
1483 		struct ubifs_zbranch *zbr;
1484 
1485 		if (!znode->parent)
1486 			zbr = &c->zroot;
1487 		else
1488 			zbr = &znode->parent->zbranch[znode->iip];
1489 
1490 		err = dbg_check_znode(c, zbr);
1491 		if (err)
1492 			return err;
1493 
1494 		if (extra) {
1495 			if (ubifs_zn_dirty(znode))
1496 				dirty_cnt += 1;
1497 			else
1498 				clean_cnt += 1;
1499 		}
1500 
1501 		prev = znode;
1502 		znode = ubifs_tnc_postorder_next(c, znode);
1503 		if (!znode)
1504 			break;
1505 
1506 		/*
1507 		 * If the last key of this znode is equivalent to the first key
1508 		 * of the next znode (collision), then check order of the keys.
1509 		 */
1510 		last = prev->child_cnt - 1;
1511 		if (prev->level == 0 && znode->level == 0 && !c->replaying &&
1512 		    !keys_cmp(c, &prev->zbranch[last].key,
1513 			      &znode->zbranch[0].key)) {
1514 			err = dbg_check_key_order(c, &prev->zbranch[last],
1515 						  &znode->zbranch[0]);
1516 			if (err < 0)
1517 				return err;
1518 			if (err) {
1519 				ubifs_msg(c, "first znode");
1520 				ubifs_dump_znode(c, prev);
1521 				ubifs_msg(c, "second znode");
1522 				ubifs_dump_znode(c, znode);
1523 				return -EINVAL;
1524 			}
1525 		}
1526 	}
1527 
1528 	if (extra) {
1529 		if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) {
1530 			ubifs_err(c, "incorrect clean_zn_cnt %ld, calculated %ld",
1531 				  atomic_long_read(&c->clean_zn_cnt),
1532 				  clean_cnt);
1533 			return -EINVAL;
1534 		}
1535 		if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) {
1536 			ubifs_err(c, "incorrect dirty_zn_cnt %ld, calculated %ld",
1537 				  atomic_long_read(&c->dirty_zn_cnt),
1538 				  dirty_cnt);
1539 			return -EINVAL;
1540 		}
1541 	}
1542 
1543 	return 0;
1544 }
1545 
1546 /**
1547  * dbg_walk_index - walk the on-flash index.
1548  * @c: UBIFS file-system description object
1549  * @leaf_cb: called for each leaf node
1550  * @znode_cb: called for each indexing node
1551  * @priv: private data which is passed to callbacks
1552  *
1553  * This function walks the UBIFS index and calls the @leaf_cb for each leaf
1554  * node and @znode_cb for each indexing node. Returns zero in case of success
1555  * and a negative error code in case of failure.
1556  *
1557  * It would be better if this function removed every znode it pulled to into
1558  * the TNC, so that the behavior more closely matched the non-debugging
1559  * behavior.
1560  */
1561 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb,
1562 		   dbg_znode_callback znode_cb, void *priv)
1563 {
1564 	int err;
1565 	struct ubifs_zbranch *zbr;
1566 	struct ubifs_znode *znode, *child;
1567 
1568 	mutex_lock(&c->tnc_mutex);
1569 	/* If the root indexing node is not in TNC - pull it */
1570 	if (!c->zroot.znode) {
1571 		c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1572 		if (IS_ERR(c->zroot.znode)) {
1573 			err = PTR_ERR(c->zroot.znode);
1574 			c->zroot.znode = NULL;
1575 			goto out_unlock;
1576 		}
1577 	}
1578 
1579 	/*
1580 	 * We are going to traverse the indexing tree in the postorder manner.
1581 	 * Go down and find the leftmost indexing node where we are going to
1582 	 * start from.
1583 	 */
1584 	znode = c->zroot.znode;
1585 	while (znode->level > 0) {
1586 		zbr = &znode->zbranch[0];
1587 		child = zbr->znode;
1588 		if (!child) {
1589 			child = ubifs_load_znode(c, zbr, znode, 0);
1590 			if (IS_ERR(child)) {
1591 				err = PTR_ERR(child);
1592 				goto out_unlock;
1593 			}
1594 		}
1595 
1596 		znode = child;
1597 	}
1598 
1599 	/* Iterate over all indexing nodes */
1600 	while (1) {
1601 		int idx;
1602 
1603 		cond_resched();
1604 
1605 		if (znode_cb) {
1606 			err = znode_cb(c, znode, priv);
1607 			if (err) {
1608 				ubifs_err(c, "znode checking function returned error %d",
1609 					  err);
1610 				ubifs_dump_znode(c, znode);
1611 				goto out_dump;
1612 			}
1613 		}
1614 		if (leaf_cb && znode->level == 0) {
1615 			for (idx = 0; idx < znode->child_cnt; idx++) {
1616 				zbr = &znode->zbranch[idx];
1617 				err = leaf_cb(c, zbr, priv);
1618 				if (err) {
1619 					ubifs_err(c, "leaf checking function returned error %d, for leaf at LEB %d:%d",
1620 						  err, zbr->lnum, zbr->offs);
1621 					goto out_dump;
1622 				}
1623 			}
1624 		}
1625 
1626 		if (!znode->parent)
1627 			break;
1628 
1629 		idx = znode->iip + 1;
1630 		znode = znode->parent;
1631 		if (idx < znode->child_cnt) {
1632 			/* Switch to the next index in the parent */
1633 			zbr = &znode->zbranch[idx];
1634 			child = zbr->znode;
1635 			if (!child) {
1636 				child = ubifs_load_znode(c, zbr, znode, idx);
1637 				if (IS_ERR(child)) {
1638 					err = PTR_ERR(child);
1639 					goto out_unlock;
1640 				}
1641 				zbr->znode = child;
1642 			}
1643 			znode = child;
1644 		} else
1645 			/*
1646 			 * This is the last child, switch to the parent and
1647 			 * continue.
1648 			 */
1649 			continue;
1650 
1651 		/* Go to the lowest leftmost znode in the new sub-tree */
1652 		while (znode->level > 0) {
1653 			zbr = &znode->zbranch[0];
1654 			child = zbr->znode;
1655 			if (!child) {
1656 				child = ubifs_load_znode(c, zbr, znode, 0);
1657 				if (IS_ERR(child)) {
1658 					err = PTR_ERR(child);
1659 					goto out_unlock;
1660 				}
1661 				zbr->znode = child;
1662 			}
1663 			znode = child;
1664 		}
1665 	}
1666 
1667 	mutex_unlock(&c->tnc_mutex);
1668 	return 0;
1669 
1670 out_dump:
1671 	if (znode->parent)
1672 		zbr = &znode->parent->zbranch[znode->iip];
1673 	else
1674 		zbr = &c->zroot;
1675 	ubifs_msg(c, "dump of znode at LEB %d:%d", zbr->lnum, zbr->offs);
1676 	ubifs_dump_znode(c, znode);
1677 out_unlock:
1678 	mutex_unlock(&c->tnc_mutex);
1679 	return err;
1680 }
1681 
1682 /**
1683  * add_size - add znode size to partially calculated index size.
1684  * @c: UBIFS file-system description object
1685  * @znode: znode to add size for
1686  * @priv: partially calculated index size
1687  *
1688  * This is a helper function for 'dbg_check_idx_size()' which is called for
1689  * every indexing node and adds its size to the 'long long' variable pointed to
1690  * by @priv.
1691  */
1692 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv)
1693 {
1694 	long long *idx_size = priv;
1695 	int add;
1696 
1697 	add = ubifs_idx_node_sz(c, znode->child_cnt);
1698 	add = ALIGN(add, 8);
1699 	*idx_size += add;
1700 	return 0;
1701 }
1702 
1703 /**
1704  * dbg_check_idx_size - check index size.
1705  * @c: UBIFS file-system description object
1706  * @idx_size: size to check
1707  *
1708  * This function walks the UBIFS index, calculates its size and checks that the
1709  * size is equivalent to @idx_size. Returns zero in case of success and a
1710  * negative error code in case of failure.
1711  */
1712 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size)
1713 {
1714 	int err;
1715 	long long calc = 0;
1716 
1717 	if (!dbg_is_chk_index(c))
1718 		return 0;
1719 
1720 	err = dbg_walk_index(c, NULL, add_size, &calc);
1721 	if (err) {
1722 		ubifs_err(c, "error %d while walking the index", err);
1723 		return err;
1724 	}
1725 
1726 	if (calc != idx_size) {
1727 		ubifs_err(c, "index size check failed: calculated size is %lld, should be %lld",
1728 			  calc, idx_size);
1729 		dump_stack();
1730 		return -EINVAL;
1731 	}
1732 
1733 	return 0;
1734 }
1735 
1736 /**
1737  * struct fsck_inode - information about an inode used when checking the file-system.
1738  * @rb: link in the RB-tree of inodes
1739  * @inum: inode number
1740  * @mode: inode type, permissions, etc
1741  * @nlink: inode link count
1742  * @xattr_cnt: count of extended attributes
1743  * @references: how many directory/xattr entries refer this inode (calculated
1744  *              while walking the index)
1745  * @calc_cnt: for directory inode count of child directories
1746  * @size: inode size (read from on-flash inode)
1747  * @xattr_sz: summary size of all extended attributes (read from on-flash
1748  *            inode)
1749  * @calc_sz: for directories calculated directory size
1750  * @calc_xcnt: count of extended attributes
1751  * @calc_xsz: calculated summary size of all extended attributes
1752  * @xattr_nms: sum of lengths of all extended attribute names belonging to this
1753  *             inode (read from on-flash inode)
1754  * @calc_xnms: calculated sum of lengths of all extended attribute names
1755  */
1756 struct fsck_inode {
1757 	struct rb_node rb;
1758 	ino_t inum;
1759 	umode_t mode;
1760 	unsigned int nlink;
1761 	unsigned int xattr_cnt;
1762 	int references;
1763 	int calc_cnt;
1764 	long long size;
1765 	unsigned int xattr_sz;
1766 	long long calc_sz;
1767 	long long calc_xcnt;
1768 	long long calc_xsz;
1769 	unsigned int xattr_nms;
1770 	long long calc_xnms;
1771 };
1772 
1773 /**
1774  * struct fsck_data - private FS checking information.
1775  * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects)
1776  */
1777 struct fsck_data {
1778 	struct rb_root inodes;
1779 };
1780 
1781 /**
1782  * add_inode - add inode information to RB-tree of inodes.
1783  * @c: UBIFS file-system description object
1784  * @fsckd: FS checking information
1785  * @ino: raw UBIFS inode to add
1786  *
1787  * This is a helper function for 'check_leaf()' which adds information about
1788  * inode @ino to the RB-tree of inodes. Returns inode information pointer in
1789  * case of success and a negative error code in case of failure.
1790  */
1791 static struct fsck_inode *add_inode(struct ubifs_info *c,
1792 				    struct fsck_data *fsckd,
1793 				    struct ubifs_ino_node *ino)
1794 {
1795 	struct rb_node **p, *parent = NULL;
1796 	struct fsck_inode *fscki;
1797 	ino_t inum = key_inum_flash(c, &ino->key);
1798 	struct inode *inode;
1799 	struct ubifs_inode *ui;
1800 
1801 	p = &fsckd->inodes.rb_node;
1802 	while (*p) {
1803 		parent = *p;
1804 		fscki = rb_entry(parent, struct fsck_inode, rb);
1805 		if (inum < fscki->inum)
1806 			p = &(*p)->rb_left;
1807 		else if (inum > fscki->inum)
1808 			p = &(*p)->rb_right;
1809 		else
1810 			return fscki;
1811 	}
1812 
1813 	if (inum > c->highest_inum) {
1814 		ubifs_err(c, "too high inode number, max. is %lu",
1815 			  (unsigned long)c->highest_inum);
1816 		return ERR_PTR(-EINVAL);
1817 	}
1818 
1819 	fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS);
1820 	if (!fscki)
1821 		return ERR_PTR(-ENOMEM);
1822 
1823 	inode = ilookup(c->vfs_sb, inum);
1824 
1825 	fscki->inum = inum;
1826 	/*
1827 	 * If the inode is present in the VFS inode cache, use it instead of
1828 	 * the on-flash inode which might be out-of-date. E.g., the size might
1829 	 * be out-of-date. If we do not do this, the following may happen, for
1830 	 * example:
1831 	 *   1. A power cut happens
1832 	 *   2. We mount the file-system R/O, the replay process fixes up the
1833 	 *      inode size in the VFS cache, but on on-flash.
1834 	 *   3. 'check_leaf()' fails because it hits a data node beyond inode
1835 	 *      size.
1836 	 */
1837 	if (!inode) {
1838 		fscki->nlink = le32_to_cpu(ino->nlink);
1839 		fscki->size = le64_to_cpu(ino->size);
1840 		fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt);
1841 		fscki->xattr_sz = le32_to_cpu(ino->xattr_size);
1842 		fscki->xattr_nms = le32_to_cpu(ino->xattr_names);
1843 		fscki->mode = le32_to_cpu(ino->mode);
1844 	} else {
1845 		ui = ubifs_inode(inode);
1846 		fscki->nlink = inode->i_nlink;
1847 		fscki->size = inode->i_size;
1848 		fscki->xattr_cnt = ui->xattr_cnt;
1849 		fscki->xattr_sz = ui->xattr_size;
1850 		fscki->xattr_nms = ui->xattr_names;
1851 		fscki->mode = inode->i_mode;
1852 		iput(inode);
1853 	}
1854 
1855 	if (S_ISDIR(fscki->mode)) {
1856 		fscki->calc_sz = UBIFS_INO_NODE_SZ;
1857 		fscki->calc_cnt = 2;
1858 	}
1859 
1860 	rb_link_node(&fscki->rb, parent, p);
1861 	rb_insert_color(&fscki->rb, &fsckd->inodes);
1862 
1863 	return fscki;
1864 }
1865 
1866 /**
1867  * search_inode - search inode in the RB-tree of inodes.
1868  * @fsckd: FS checking information
1869  * @inum: inode number to search
1870  *
1871  * This is a helper function for 'check_leaf()' which searches inode @inum in
1872  * the RB-tree of inodes and returns an inode information pointer or %NULL if
1873  * the inode was not found.
1874  */
1875 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum)
1876 {
1877 	struct rb_node *p;
1878 	struct fsck_inode *fscki;
1879 
1880 	p = fsckd->inodes.rb_node;
1881 	while (p) {
1882 		fscki = rb_entry(p, struct fsck_inode, rb);
1883 		if (inum < fscki->inum)
1884 			p = p->rb_left;
1885 		else if (inum > fscki->inum)
1886 			p = p->rb_right;
1887 		else
1888 			return fscki;
1889 	}
1890 	return NULL;
1891 }
1892 
1893 /**
1894  * read_add_inode - read inode node and add it to RB-tree of inodes.
1895  * @c: UBIFS file-system description object
1896  * @fsckd: FS checking information
1897  * @inum: inode number to read
1898  *
1899  * This is a helper function for 'check_leaf()' which finds inode node @inum in
1900  * the index, reads it, and adds it to the RB-tree of inodes. Returns inode
1901  * information pointer in case of success and a negative error code in case of
1902  * failure.
1903  */
1904 static struct fsck_inode *read_add_inode(struct ubifs_info *c,
1905 					 struct fsck_data *fsckd, ino_t inum)
1906 {
1907 	int n, err;
1908 	union ubifs_key key;
1909 	struct ubifs_znode *znode;
1910 	struct ubifs_zbranch *zbr;
1911 	struct ubifs_ino_node *ino;
1912 	struct fsck_inode *fscki;
1913 
1914 	fscki = search_inode(fsckd, inum);
1915 	if (fscki)
1916 		return fscki;
1917 
1918 	ino_key_init(c, &key, inum);
1919 	err = ubifs_lookup_level0(c, &key, &znode, &n);
1920 	if (!err) {
1921 		ubifs_err(c, "inode %lu not found in index", (unsigned long)inum);
1922 		return ERR_PTR(-ENOENT);
1923 	} else if (err < 0) {
1924 		ubifs_err(c, "error %d while looking up inode %lu",
1925 			  err, (unsigned long)inum);
1926 		return ERR_PTR(err);
1927 	}
1928 
1929 	zbr = &znode->zbranch[n];
1930 	if (zbr->len < UBIFS_INO_NODE_SZ) {
1931 		ubifs_err(c, "bad node %lu node length %d",
1932 			  (unsigned long)inum, zbr->len);
1933 		return ERR_PTR(-EINVAL);
1934 	}
1935 
1936 	ino = kmalloc(zbr->len, GFP_NOFS);
1937 	if (!ino)
1938 		return ERR_PTR(-ENOMEM);
1939 
1940 	err = ubifs_tnc_read_node(c, zbr, ino);
1941 	if (err) {
1942 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
1943 			  zbr->lnum, zbr->offs, err);
1944 		kfree(ino);
1945 		return ERR_PTR(err);
1946 	}
1947 
1948 	fscki = add_inode(c, fsckd, ino);
1949 	kfree(ino);
1950 	if (IS_ERR(fscki)) {
1951 		ubifs_err(c, "error %ld while adding inode %lu node",
1952 			  PTR_ERR(fscki), (unsigned long)inum);
1953 		return fscki;
1954 	}
1955 
1956 	return fscki;
1957 }
1958 
1959 /**
1960  * check_leaf - check leaf node.
1961  * @c: UBIFS file-system description object
1962  * @zbr: zbranch of the leaf node to check
1963  * @priv: FS checking information
1964  *
1965  * This is a helper function for 'dbg_check_filesystem()' which is called for
1966  * every single leaf node while walking the indexing tree. It checks that the
1967  * leaf node referred from the indexing tree exists, has correct CRC, and does
1968  * some other basic validation. This function is also responsible for building
1969  * an RB-tree of inodes - it adds all inodes into the RB-tree. It also
1970  * calculates reference count, size, etc for each inode in order to later
1971  * compare them to the information stored inside the inodes and detect possible
1972  * inconsistencies. Returns zero in case of success and a negative error code
1973  * in case of failure.
1974  */
1975 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr,
1976 		      void *priv)
1977 {
1978 	ino_t inum;
1979 	void *node;
1980 	struct ubifs_ch *ch;
1981 	int err, type = key_type(c, &zbr->key);
1982 	struct fsck_inode *fscki;
1983 
1984 	if (zbr->len < UBIFS_CH_SZ) {
1985 		ubifs_err(c, "bad leaf length %d (LEB %d:%d)",
1986 			  zbr->len, zbr->lnum, zbr->offs);
1987 		return -EINVAL;
1988 	}
1989 
1990 	node = kmalloc(zbr->len, GFP_NOFS);
1991 	if (!node)
1992 		return -ENOMEM;
1993 
1994 	err = ubifs_tnc_read_node(c, zbr, node);
1995 	if (err) {
1996 		ubifs_err(c, "cannot read leaf node at LEB %d:%d, error %d",
1997 			  zbr->lnum, zbr->offs, err);
1998 		goto out_free;
1999 	}
2000 
2001 	/* If this is an inode node, add it to RB-tree of inodes */
2002 	if (type == UBIFS_INO_KEY) {
2003 		fscki = add_inode(c, priv, node);
2004 		if (IS_ERR(fscki)) {
2005 			err = PTR_ERR(fscki);
2006 			ubifs_err(c, "error %d while adding inode node", err);
2007 			goto out_dump;
2008 		}
2009 		goto out;
2010 	}
2011 
2012 	if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY &&
2013 	    type != UBIFS_DATA_KEY) {
2014 		ubifs_err(c, "unexpected node type %d at LEB %d:%d",
2015 			  type, zbr->lnum, zbr->offs);
2016 		err = -EINVAL;
2017 		goto out_free;
2018 	}
2019 
2020 	ch = node;
2021 	if (le64_to_cpu(ch->sqnum) > c->max_sqnum) {
2022 		ubifs_err(c, "too high sequence number, max. is %llu",
2023 			  c->max_sqnum);
2024 		err = -EINVAL;
2025 		goto out_dump;
2026 	}
2027 
2028 	if (type == UBIFS_DATA_KEY) {
2029 		long long blk_offs;
2030 		struct ubifs_data_node *dn = node;
2031 
2032 		ubifs_assert(c, zbr->len >= UBIFS_DATA_NODE_SZ);
2033 
2034 		/*
2035 		 * Search the inode node this data node belongs to and insert
2036 		 * it to the RB-tree of inodes.
2037 		 */
2038 		inum = key_inum_flash(c, &dn->key);
2039 		fscki = read_add_inode(c, priv, inum);
2040 		if (IS_ERR(fscki)) {
2041 			err = PTR_ERR(fscki);
2042 			ubifs_err(c, "error %d while processing data node and trying to find inode node %lu",
2043 				  err, (unsigned long)inum);
2044 			goto out_dump;
2045 		}
2046 
2047 		/* Make sure the data node is within inode size */
2048 		blk_offs = key_block_flash(c, &dn->key);
2049 		blk_offs <<= UBIFS_BLOCK_SHIFT;
2050 		blk_offs += le32_to_cpu(dn->size);
2051 		if (blk_offs > fscki->size) {
2052 			ubifs_err(c, "data node at LEB %d:%d is not within inode size %lld",
2053 				  zbr->lnum, zbr->offs, fscki->size);
2054 			err = -EINVAL;
2055 			goto out_dump;
2056 		}
2057 	} else {
2058 		int nlen;
2059 		struct ubifs_dent_node *dent = node;
2060 		struct fsck_inode *fscki1;
2061 
2062 		ubifs_assert(c, zbr->len >= UBIFS_DENT_NODE_SZ);
2063 
2064 		err = ubifs_validate_entry(c, dent);
2065 		if (err)
2066 			goto out_dump;
2067 
2068 		/*
2069 		 * Search the inode node this entry refers to and the parent
2070 		 * inode node and insert them to the RB-tree of inodes.
2071 		 */
2072 		inum = le64_to_cpu(dent->inum);
2073 		fscki = read_add_inode(c, priv, inum);
2074 		if (IS_ERR(fscki)) {
2075 			err = PTR_ERR(fscki);
2076 			ubifs_err(c, "error %d while processing entry node and trying to find inode node %lu",
2077 				  err, (unsigned long)inum);
2078 			goto out_dump;
2079 		}
2080 
2081 		/* Count how many direntries or xentries refers this inode */
2082 		fscki->references += 1;
2083 
2084 		inum = key_inum_flash(c, &dent->key);
2085 		fscki1 = read_add_inode(c, priv, inum);
2086 		if (IS_ERR(fscki1)) {
2087 			err = PTR_ERR(fscki1);
2088 			ubifs_err(c, "error %d while processing entry node and trying to find parent inode node %lu",
2089 				  err, (unsigned long)inum);
2090 			goto out_dump;
2091 		}
2092 
2093 		nlen = le16_to_cpu(dent->nlen);
2094 		if (type == UBIFS_XENT_KEY) {
2095 			fscki1->calc_xcnt += 1;
2096 			fscki1->calc_xsz += CALC_DENT_SIZE(nlen);
2097 			fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size);
2098 			fscki1->calc_xnms += nlen;
2099 		} else {
2100 			fscki1->calc_sz += CALC_DENT_SIZE(nlen);
2101 			if (dent->type == UBIFS_ITYPE_DIR)
2102 				fscki1->calc_cnt += 1;
2103 		}
2104 	}
2105 
2106 out:
2107 	kfree(node);
2108 	return 0;
2109 
2110 out_dump:
2111 	ubifs_msg(c, "dump of node at LEB %d:%d", zbr->lnum, zbr->offs);
2112 	ubifs_dump_node(c, node);
2113 out_free:
2114 	kfree(node);
2115 	return err;
2116 }
2117 
2118 /**
2119  * free_inodes - free RB-tree of inodes.
2120  * @fsckd: FS checking information
2121  */
2122 static void free_inodes(struct fsck_data *fsckd)
2123 {
2124 	struct fsck_inode *fscki, *n;
2125 
2126 	rbtree_postorder_for_each_entry_safe(fscki, n, &fsckd->inodes, rb)
2127 		kfree(fscki);
2128 }
2129 
2130 /**
2131  * check_inodes - checks all inodes.
2132  * @c: UBIFS file-system description object
2133  * @fsckd: FS checking information
2134  *
2135  * This is a helper function for 'dbg_check_filesystem()' which walks the
2136  * RB-tree of inodes after the index scan has been finished, and checks that
2137  * inode nlink, size, etc are correct. Returns zero if inodes are fine,
2138  * %-EINVAL if not, and a negative error code in case of failure.
2139  */
2140 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd)
2141 {
2142 	int n, err;
2143 	union ubifs_key key;
2144 	struct ubifs_znode *znode;
2145 	struct ubifs_zbranch *zbr;
2146 	struct ubifs_ino_node *ino;
2147 	struct fsck_inode *fscki;
2148 	struct rb_node *this = rb_first(&fsckd->inodes);
2149 
2150 	while (this) {
2151 		fscki = rb_entry(this, struct fsck_inode, rb);
2152 		this = rb_next(this);
2153 
2154 		if (S_ISDIR(fscki->mode)) {
2155 			/*
2156 			 * Directories have to have exactly one reference (they
2157 			 * cannot have hardlinks), although root inode is an
2158 			 * exception.
2159 			 */
2160 			if (fscki->inum != UBIFS_ROOT_INO &&
2161 			    fscki->references != 1) {
2162 				ubifs_err(c, "directory inode %lu has %d direntries which refer it, but should be 1",
2163 					  (unsigned long)fscki->inum,
2164 					  fscki->references);
2165 				goto out_dump;
2166 			}
2167 			if (fscki->inum == UBIFS_ROOT_INO &&
2168 			    fscki->references != 0) {
2169 				ubifs_err(c, "root inode %lu has non-zero (%d) direntries which refer it",
2170 					  (unsigned long)fscki->inum,
2171 					  fscki->references);
2172 				goto out_dump;
2173 			}
2174 			if (fscki->calc_sz != fscki->size) {
2175 				ubifs_err(c, "directory inode %lu size is %lld, but calculated size is %lld",
2176 					  (unsigned long)fscki->inum,
2177 					  fscki->size, fscki->calc_sz);
2178 				goto out_dump;
2179 			}
2180 			if (fscki->calc_cnt != fscki->nlink) {
2181 				ubifs_err(c, "directory inode %lu nlink is %d, but calculated nlink is %d",
2182 					  (unsigned long)fscki->inum,
2183 					  fscki->nlink, fscki->calc_cnt);
2184 				goto out_dump;
2185 			}
2186 		} else {
2187 			if (fscki->references != fscki->nlink) {
2188 				ubifs_err(c, "inode %lu nlink is %d, but calculated nlink is %d",
2189 					  (unsigned long)fscki->inum,
2190 					  fscki->nlink, fscki->references);
2191 				goto out_dump;
2192 			}
2193 		}
2194 		if (fscki->xattr_sz != fscki->calc_xsz) {
2195 			ubifs_err(c, "inode %lu has xattr size %u, but calculated size is %lld",
2196 				  (unsigned long)fscki->inum, fscki->xattr_sz,
2197 				  fscki->calc_xsz);
2198 			goto out_dump;
2199 		}
2200 		if (fscki->xattr_cnt != fscki->calc_xcnt) {
2201 			ubifs_err(c, "inode %lu has %u xattrs, but calculated count is %lld",
2202 				  (unsigned long)fscki->inum,
2203 				  fscki->xattr_cnt, fscki->calc_xcnt);
2204 			goto out_dump;
2205 		}
2206 		if (fscki->xattr_nms != fscki->calc_xnms) {
2207 			ubifs_err(c, "inode %lu has xattr names' size %u, but calculated names' size is %lld",
2208 				  (unsigned long)fscki->inum, fscki->xattr_nms,
2209 				  fscki->calc_xnms);
2210 			goto out_dump;
2211 		}
2212 	}
2213 
2214 	return 0;
2215 
2216 out_dump:
2217 	/* Read the bad inode and dump it */
2218 	ino_key_init(c, &key, fscki->inum);
2219 	err = ubifs_lookup_level0(c, &key, &znode, &n);
2220 	if (!err) {
2221 		ubifs_err(c, "inode %lu not found in index",
2222 			  (unsigned long)fscki->inum);
2223 		return -ENOENT;
2224 	} else if (err < 0) {
2225 		ubifs_err(c, "error %d while looking up inode %lu",
2226 			  err, (unsigned long)fscki->inum);
2227 		return err;
2228 	}
2229 
2230 	zbr = &znode->zbranch[n];
2231 	ino = kmalloc(zbr->len, GFP_NOFS);
2232 	if (!ino)
2233 		return -ENOMEM;
2234 
2235 	err = ubifs_tnc_read_node(c, zbr, ino);
2236 	if (err) {
2237 		ubifs_err(c, "cannot read inode node at LEB %d:%d, error %d",
2238 			  zbr->lnum, zbr->offs, err);
2239 		kfree(ino);
2240 		return err;
2241 	}
2242 
2243 	ubifs_msg(c, "dump of the inode %lu sitting in LEB %d:%d",
2244 		  (unsigned long)fscki->inum, zbr->lnum, zbr->offs);
2245 	ubifs_dump_node(c, ino);
2246 	kfree(ino);
2247 	return -EINVAL;
2248 }
2249 
2250 /**
2251  * dbg_check_filesystem - check the file-system.
2252  * @c: UBIFS file-system description object
2253  *
2254  * This function checks the file system, namely:
2255  * o makes sure that all leaf nodes exist and their CRCs are correct;
2256  * o makes sure inode nlink, size, xattr size/count are correct (for all
2257  *   inodes).
2258  *
2259  * The function reads whole indexing tree and all nodes, so it is pretty
2260  * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if
2261  * not, and a negative error code in case of failure.
2262  */
2263 int dbg_check_filesystem(struct ubifs_info *c)
2264 {
2265 	int err;
2266 	struct fsck_data fsckd;
2267 
2268 	if (!dbg_is_chk_fs(c))
2269 		return 0;
2270 
2271 	fsckd.inodes = RB_ROOT;
2272 	err = dbg_walk_index(c, check_leaf, NULL, &fsckd);
2273 	if (err)
2274 		goto out_free;
2275 
2276 	err = check_inodes(c, &fsckd);
2277 	if (err)
2278 		goto out_free;
2279 
2280 	free_inodes(&fsckd);
2281 	return 0;
2282 
2283 out_free:
2284 	ubifs_err(c, "file-system check failed with error %d", err);
2285 	dump_stack();
2286 	free_inodes(&fsckd);
2287 	return err;
2288 }
2289 
2290 /**
2291  * dbg_check_data_nodes_order - check that list of data nodes is sorted.
2292  * @c: UBIFS file-system description object
2293  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2294  *
2295  * This function returns zero if the list of data nodes is sorted correctly,
2296  * and %-EINVAL if not.
2297  */
2298 int dbg_check_data_nodes_order(struct ubifs_info *c, struct list_head *head)
2299 {
2300 	struct list_head *cur;
2301 	struct ubifs_scan_node *sa, *sb;
2302 
2303 	if (!dbg_is_chk_gen(c))
2304 		return 0;
2305 
2306 	for (cur = head->next; cur->next != head; cur = cur->next) {
2307 		ino_t inuma, inumb;
2308 		uint32_t blka, blkb;
2309 
2310 		cond_resched();
2311 		sa = container_of(cur, struct ubifs_scan_node, list);
2312 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2313 
2314 		if (sa->type != UBIFS_DATA_NODE) {
2315 			ubifs_err(c, "bad node type %d", sa->type);
2316 			ubifs_dump_node(c, sa->node);
2317 			return -EINVAL;
2318 		}
2319 		if (sb->type != UBIFS_DATA_NODE) {
2320 			ubifs_err(c, "bad node type %d", sb->type);
2321 			ubifs_dump_node(c, sb->node);
2322 			return -EINVAL;
2323 		}
2324 
2325 		inuma = key_inum(c, &sa->key);
2326 		inumb = key_inum(c, &sb->key);
2327 
2328 		if (inuma < inumb)
2329 			continue;
2330 		if (inuma > inumb) {
2331 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2332 				  (unsigned long)inuma, (unsigned long)inumb);
2333 			goto error_dump;
2334 		}
2335 
2336 		blka = key_block(c, &sa->key);
2337 		blkb = key_block(c, &sb->key);
2338 
2339 		if (blka > blkb) {
2340 			ubifs_err(c, "larger block %u goes before %u", blka, blkb);
2341 			goto error_dump;
2342 		}
2343 		if (blka == blkb) {
2344 			ubifs_err(c, "two data nodes for the same block");
2345 			goto error_dump;
2346 		}
2347 	}
2348 
2349 	return 0;
2350 
2351 error_dump:
2352 	ubifs_dump_node(c, sa->node);
2353 	ubifs_dump_node(c, sb->node);
2354 	return -EINVAL;
2355 }
2356 
2357 /**
2358  * dbg_check_nondata_nodes_order - check that list of data nodes is sorted.
2359  * @c: UBIFS file-system description object
2360  * @head: the list of nodes ('struct ubifs_scan_node' objects)
2361  *
2362  * This function returns zero if the list of non-data nodes is sorted correctly,
2363  * and %-EINVAL if not.
2364  */
2365 int dbg_check_nondata_nodes_order(struct ubifs_info *c, struct list_head *head)
2366 {
2367 	struct list_head *cur;
2368 	struct ubifs_scan_node *sa, *sb;
2369 
2370 	if (!dbg_is_chk_gen(c))
2371 		return 0;
2372 
2373 	for (cur = head->next; cur->next != head; cur = cur->next) {
2374 		ino_t inuma, inumb;
2375 		uint32_t hasha, hashb;
2376 
2377 		cond_resched();
2378 		sa = container_of(cur, struct ubifs_scan_node, list);
2379 		sb = container_of(cur->next, struct ubifs_scan_node, list);
2380 
2381 		if (sa->type != UBIFS_INO_NODE && sa->type != UBIFS_DENT_NODE &&
2382 		    sa->type != UBIFS_XENT_NODE) {
2383 			ubifs_err(c, "bad node type %d", sa->type);
2384 			ubifs_dump_node(c, sa->node);
2385 			return -EINVAL;
2386 		}
2387 		if (sb->type != UBIFS_INO_NODE && sb->type != UBIFS_DENT_NODE &&
2388 		    sb->type != UBIFS_XENT_NODE) {
2389 			ubifs_err(c, "bad node type %d", sb->type);
2390 			ubifs_dump_node(c, sb->node);
2391 			return -EINVAL;
2392 		}
2393 
2394 		if (sa->type != UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2395 			ubifs_err(c, "non-inode node goes before inode node");
2396 			goto error_dump;
2397 		}
2398 
2399 		if (sa->type == UBIFS_INO_NODE && sb->type != UBIFS_INO_NODE)
2400 			continue;
2401 
2402 		if (sa->type == UBIFS_INO_NODE && sb->type == UBIFS_INO_NODE) {
2403 			/* Inode nodes are sorted in descending size order */
2404 			if (sa->len < sb->len) {
2405 				ubifs_err(c, "smaller inode node goes first");
2406 				goto error_dump;
2407 			}
2408 			continue;
2409 		}
2410 
2411 		/*
2412 		 * This is either a dentry or xentry, which should be sorted in
2413 		 * ascending (parent ino, hash) order.
2414 		 */
2415 		inuma = key_inum(c, &sa->key);
2416 		inumb = key_inum(c, &sb->key);
2417 
2418 		if (inuma < inumb)
2419 			continue;
2420 		if (inuma > inumb) {
2421 			ubifs_err(c, "larger inum %lu goes before inum %lu",
2422 				  (unsigned long)inuma, (unsigned long)inumb);
2423 			goto error_dump;
2424 		}
2425 
2426 		hasha = key_block(c, &sa->key);
2427 		hashb = key_block(c, &sb->key);
2428 
2429 		if (hasha > hashb) {
2430 			ubifs_err(c, "larger hash %u goes before %u",
2431 				  hasha, hashb);
2432 			goto error_dump;
2433 		}
2434 	}
2435 
2436 	return 0;
2437 
2438 error_dump:
2439 	ubifs_msg(c, "dumping first node");
2440 	ubifs_dump_node(c, sa->node);
2441 	ubifs_msg(c, "dumping second node");
2442 	ubifs_dump_node(c, sb->node);
2443 	return -EINVAL;
2444 	return 0;
2445 }
2446 
2447 static inline int chance(unsigned int n, unsigned int out_of)
2448 {
2449 	return !!((prandom_u32() % out_of) + 1 <= n);
2450 
2451 }
2452 
2453 static int power_cut_emulated(struct ubifs_info *c, int lnum, int write)
2454 {
2455 	struct ubifs_debug_info *d = c->dbg;
2456 
2457 	ubifs_assert(c, dbg_is_tst_rcvry(c));
2458 
2459 	if (!d->pc_cnt) {
2460 		/* First call - decide delay to the power cut */
2461 		if (chance(1, 2)) {
2462 			unsigned long delay;
2463 
2464 			if (chance(1, 2)) {
2465 				d->pc_delay = 1;
2466 				/* Fail within 1 minute */
2467 				delay = prandom_u32() % 60000;
2468 				d->pc_timeout = jiffies;
2469 				d->pc_timeout += msecs_to_jiffies(delay);
2470 				ubifs_warn(c, "failing after %lums", delay);
2471 			} else {
2472 				d->pc_delay = 2;
2473 				delay = prandom_u32() % 10000;
2474 				/* Fail within 10000 operations */
2475 				d->pc_cnt_max = delay;
2476 				ubifs_warn(c, "failing after %lu calls", delay);
2477 			}
2478 		}
2479 
2480 		d->pc_cnt += 1;
2481 	}
2482 
2483 	/* Determine if failure delay has expired */
2484 	if (d->pc_delay == 1 && time_before(jiffies, d->pc_timeout))
2485 			return 0;
2486 	if (d->pc_delay == 2 && d->pc_cnt++ < d->pc_cnt_max)
2487 			return 0;
2488 
2489 	if (lnum == UBIFS_SB_LNUM) {
2490 		if (write && chance(1, 2))
2491 			return 0;
2492 		if (chance(19, 20))
2493 			return 0;
2494 		ubifs_warn(c, "failing in super block LEB %d", lnum);
2495 	} else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) {
2496 		if (chance(19, 20))
2497 			return 0;
2498 		ubifs_warn(c, "failing in master LEB %d", lnum);
2499 	} else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) {
2500 		if (write && chance(99, 100))
2501 			return 0;
2502 		if (chance(399, 400))
2503 			return 0;
2504 		ubifs_warn(c, "failing in log LEB %d", lnum);
2505 	} else if (lnum >= c->lpt_first && lnum <= c->lpt_last) {
2506 		if (write && chance(7, 8))
2507 			return 0;
2508 		if (chance(19, 20))
2509 			return 0;
2510 		ubifs_warn(c, "failing in LPT LEB %d", lnum);
2511 	} else if (lnum >= c->orph_first && lnum <= c->orph_last) {
2512 		if (write && chance(1, 2))
2513 			return 0;
2514 		if (chance(9, 10))
2515 			return 0;
2516 		ubifs_warn(c, "failing in orphan LEB %d", lnum);
2517 	} else if (lnum == c->ihead_lnum) {
2518 		if (chance(99, 100))
2519 			return 0;
2520 		ubifs_warn(c, "failing in index head LEB %d", lnum);
2521 	} else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) {
2522 		if (chance(9, 10))
2523 			return 0;
2524 		ubifs_warn(c, "failing in GC head LEB %d", lnum);
2525 	} else if (write && !RB_EMPTY_ROOT(&c->buds) &&
2526 		   !ubifs_search_bud(c, lnum)) {
2527 		if (chance(19, 20))
2528 			return 0;
2529 		ubifs_warn(c, "failing in non-bud LEB %d", lnum);
2530 	} else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND ||
2531 		   c->cmt_state == COMMIT_RUNNING_REQUIRED) {
2532 		if (chance(999, 1000))
2533 			return 0;
2534 		ubifs_warn(c, "failing in bud LEB %d commit running", lnum);
2535 	} else {
2536 		if (chance(9999, 10000))
2537 			return 0;
2538 		ubifs_warn(c, "failing in bud LEB %d commit not running", lnum);
2539 	}
2540 
2541 	d->pc_happened = 1;
2542 	ubifs_warn(c, "========== Power cut emulated ==========");
2543 	dump_stack();
2544 	return 1;
2545 }
2546 
2547 static int corrupt_data(const struct ubifs_info *c, const void *buf,
2548 			unsigned int len)
2549 {
2550 	unsigned int from, to, ffs = chance(1, 2);
2551 	unsigned char *p = (void *)buf;
2552 
2553 	from = prandom_u32() % len;
2554 	/* Corruption span max to end of write unit */
2555 	to = min(len, ALIGN(from + 1, c->max_write_size));
2556 
2557 	ubifs_warn(c, "filled bytes %u-%u with %s", from, to - 1,
2558 		   ffs ? "0xFFs" : "random data");
2559 
2560 	if (ffs)
2561 		memset(p + from, 0xFF, to - from);
2562 	else
2563 		prandom_bytes(p + from, to - from);
2564 
2565 	return to;
2566 }
2567 
2568 int dbg_leb_write(struct ubifs_info *c, int lnum, const void *buf,
2569 		  int offs, int len)
2570 {
2571 	int err, failing;
2572 
2573 	if (dbg_is_power_cut(c))
2574 		return -EROFS;
2575 
2576 	failing = power_cut_emulated(c, lnum, 1);
2577 	if (failing) {
2578 		len = corrupt_data(c, buf, len);
2579 		ubifs_warn(c, "actually write %d bytes to LEB %d:%d (the buffer was corrupted)",
2580 			   len, lnum, offs);
2581 	}
2582 	err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
2583 	if (err)
2584 		return err;
2585 	if (failing)
2586 		return -EROFS;
2587 	return 0;
2588 }
2589 
2590 int dbg_leb_change(struct ubifs_info *c, int lnum, const void *buf,
2591 		   int len)
2592 {
2593 	int err;
2594 
2595 	if (dbg_is_power_cut(c))
2596 		return -EROFS;
2597 	if (power_cut_emulated(c, lnum, 1))
2598 		return -EROFS;
2599 	err = ubi_leb_change(c->ubi, lnum, buf, len);
2600 	if (err)
2601 		return err;
2602 	if (power_cut_emulated(c, lnum, 1))
2603 		return -EROFS;
2604 	return 0;
2605 }
2606 
2607 int dbg_leb_unmap(struct ubifs_info *c, int lnum)
2608 {
2609 	int err;
2610 
2611 	if (dbg_is_power_cut(c))
2612 		return -EROFS;
2613 	if (power_cut_emulated(c, lnum, 0))
2614 		return -EROFS;
2615 	err = ubi_leb_unmap(c->ubi, lnum);
2616 	if (err)
2617 		return err;
2618 	if (power_cut_emulated(c, lnum, 0))
2619 		return -EROFS;
2620 	return 0;
2621 }
2622 
2623 int dbg_leb_map(struct ubifs_info *c, int lnum)
2624 {
2625 	int err;
2626 
2627 	if (dbg_is_power_cut(c))
2628 		return -EROFS;
2629 	if (power_cut_emulated(c, lnum, 0))
2630 		return -EROFS;
2631 	err = ubi_leb_map(c->ubi, lnum);
2632 	if (err)
2633 		return err;
2634 	if (power_cut_emulated(c, lnum, 0))
2635 		return -EROFS;
2636 	return 0;
2637 }
2638 
2639 /*
2640  * Root directory for UBIFS stuff in debugfs. Contains sub-directories which
2641  * contain the stuff specific to particular file-system mounts.
2642  */
2643 static struct dentry *dfs_rootdir;
2644 
2645 static int dfs_file_open(struct inode *inode, struct file *file)
2646 {
2647 	file->private_data = inode->i_private;
2648 	return nonseekable_open(inode, file);
2649 }
2650 
2651 /**
2652  * provide_user_output - provide output to the user reading a debugfs file.
2653  * @val: boolean value for the answer
2654  * @u: the buffer to store the answer at
2655  * @count: size of the buffer
2656  * @ppos: position in the @u output buffer
2657  *
2658  * This is a simple helper function which stores @val boolean value in the user
2659  * buffer when the user reads one of UBIFS debugfs files. Returns amount of
2660  * bytes written to @u in case of success and a negative error code in case of
2661  * failure.
2662  */
2663 static int provide_user_output(int val, char __user *u, size_t count,
2664 			       loff_t *ppos)
2665 {
2666 	char buf[3];
2667 
2668 	if (val)
2669 		buf[0] = '1';
2670 	else
2671 		buf[0] = '0';
2672 	buf[1] = '\n';
2673 	buf[2] = 0x00;
2674 
2675 	return simple_read_from_buffer(u, count, ppos, buf, 2);
2676 }
2677 
2678 static ssize_t dfs_file_read(struct file *file, char __user *u, size_t count,
2679 			     loff_t *ppos)
2680 {
2681 	struct dentry *dent = file->f_path.dentry;
2682 	struct ubifs_info *c = file->private_data;
2683 	struct ubifs_debug_info *d = c->dbg;
2684 	int val;
2685 
2686 	if (dent == d->dfs_chk_gen)
2687 		val = d->chk_gen;
2688 	else if (dent == d->dfs_chk_index)
2689 		val = d->chk_index;
2690 	else if (dent == d->dfs_chk_orph)
2691 		val = d->chk_orph;
2692 	else if (dent == d->dfs_chk_lprops)
2693 		val = d->chk_lprops;
2694 	else if (dent == d->dfs_chk_fs)
2695 		val = d->chk_fs;
2696 	else if (dent == d->dfs_tst_rcvry)
2697 		val = d->tst_rcvry;
2698 	else if (dent == d->dfs_ro_error)
2699 		val = c->ro_error;
2700 	else
2701 		return -EINVAL;
2702 
2703 	return provide_user_output(val, u, count, ppos);
2704 }
2705 
2706 /**
2707  * interpret_user_input - interpret user debugfs file input.
2708  * @u: user-provided buffer with the input
2709  * @count: buffer size
2710  *
2711  * This is a helper function which interpret user input to a boolean UBIFS
2712  * debugfs file. Returns %0 or %1 in case of success and a negative error code
2713  * in case of failure.
2714  */
2715 static int interpret_user_input(const char __user *u, size_t count)
2716 {
2717 	size_t buf_size;
2718 	char buf[8];
2719 
2720 	buf_size = min_t(size_t, count, (sizeof(buf) - 1));
2721 	if (copy_from_user(buf, u, buf_size))
2722 		return -EFAULT;
2723 
2724 	if (buf[0] == '1')
2725 		return 1;
2726 	else if (buf[0] == '0')
2727 		return 0;
2728 
2729 	return -EINVAL;
2730 }
2731 
2732 static ssize_t dfs_file_write(struct file *file, const char __user *u,
2733 			      size_t count, loff_t *ppos)
2734 {
2735 	struct ubifs_info *c = file->private_data;
2736 	struct ubifs_debug_info *d = c->dbg;
2737 	struct dentry *dent = file->f_path.dentry;
2738 	int val;
2739 
2740 	/*
2741 	 * TODO: this is racy - the file-system might have already been
2742 	 * unmounted and we'd oops in this case. The plan is to fix it with
2743 	 * help of 'iterate_supers_type()' which we should have in v3.0: when
2744 	 * a debugfs opened, we rember FS's UUID in file->private_data. Then
2745 	 * whenever we access the FS via a debugfs file, we iterate all UBIFS
2746 	 * superblocks and fine the one with the same UUID, and take the
2747 	 * locking right.
2748 	 *
2749 	 * The other way to go suggested by Al Viro is to create a separate
2750 	 * 'ubifs-debug' file-system instead.
2751 	 */
2752 	if (file->f_path.dentry == d->dfs_dump_lprops) {
2753 		ubifs_dump_lprops(c);
2754 		return count;
2755 	}
2756 	if (file->f_path.dentry == d->dfs_dump_budg) {
2757 		ubifs_dump_budg(c, &c->bi);
2758 		return count;
2759 	}
2760 	if (file->f_path.dentry == d->dfs_dump_tnc) {
2761 		mutex_lock(&c->tnc_mutex);
2762 		ubifs_dump_tnc(c);
2763 		mutex_unlock(&c->tnc_mutex);
2764 		return count;
2765 	}
2766 
2767 	val = interpret_user_input(u, count);
2768 	if (val < 0)
2769 		return val;
2770 
2771 	if (dent == d->dfs_chk_gen)
2772 		d->chk_gen = val;
2773 	else if (dent == d->dfs_chk_index)
2774 		d->chk_index = val;
2775 	else if (dent == d->dfs_chk_orph)
2776 		d->chk_orph = val;
2777 	else if (dent == d->dfs_chk_lprops)
2778 		d->chk_lprops = val;
2779 	else if (dent == d->dfs_chk_fs)
2780 		d->chk_fs = val;
2781 	else if (dent == d->dfs_tst_rcvry)
2782 		d->tst_rcvry = val;
2783 	else if (dent == d->dfs_ro_error)
2784 		c->ro_error = !!val;
2785 	else
2786 		return -EINVAL;
2787 
2788 	return count;
2789 }
2790 
2791 static const struct file_operations dfs_fops = {
2792 	.open = dfs_file_open,
2793 	.read = dfs_file_read,
2794 	.write = dfs_file_write,
2795 	.owner = THIS_MODULE,
2796 	.llseek = no_llseek,
2797 };
2798 
2799 /**
2800  * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance.
2801  * @c: UBIFS file-system description object
2802  *
2803  * This function creates all debugfs files for this instance of UBIFS.
2804  *
2805  * Note, the only reason we have not merged this function with the
2806  * 'ubifs_debugging_init()' function is because it is better to initialize
2807  * debugfs interfaces at the very end of the mount process, and remove them at
2808  * the very beginning of the mount process.
2809  */
2810 void dbg_debugfs_init_fs(struct ubifs_info *c)
2811 {
2812 	int n;
2813 	const char *fname;
2814 	struct ubifs_debug_info *d = c->dbg;
2815 
2816 	n = snprintf(d->dfs_dir_name, UBIFS_DFS_DIR_LEN + 1, UBIFS_DFS_DIR_NAME,
2817 		     c->vi.ubi_num, c->vi.vol_id);
2818 	if (n == UBIFS_DFS_DIR_LEN) {
2819 		/* The array size is too small */
2820 		return;
2821 	}
2822 
2823 	fname = d->dfs_dir_name;
2824 	d->dfs_dir = debugfs_create_dir(fname, dfs_rootdir);
2825 
2826 	fname = "dump_lprops";
2827 	d->dfs_dump_lprops = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2828 						 &dfs_fops);
2829 
2830 	fname = "dump_budg";
2831 	d->dfs_dump_budg = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2832 					       &dfs_fops);
2833 
2834 	fname = "dump_tnc";
2835 	d->dfs_dump_tnc = debugfs_create_file(fname, S_IWUSR, d->dfs_dir, c,
2836 					      &dfs_fops);
2837 
2838 	fname = "chk_general";
2839 	d->dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2840 					     d->dfs_dir, c, &dfs_fops);
2841 
2842 	fname = "chk_index";
2843 	d->dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2844 					       d->dfs_dir, c, &dfs_fops);
2845 
2846 	fname = "chk_orphans";
2847 	d->dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2848 					      d->dfs_dir, c, &dfs_fops);
2849 
2850 	fname = "chk_lprops";
2851 	d->dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2852 						d->dfs_dir, c, &dfs_fops);
2853 
2854 	fname = "chk_fs";
2855 	d->dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2856 					    d->dfs_dir, c, &dfs_fops);
2857 
2858 	fname = "tst_recovery";
2859 	d->dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2860 					       d->dfs_dir, c, &dfs_fops);
2861 
2862 	fname = "ro_error";
2863 	d->dfs_ro_error = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2864 					      d->dfs_dir, c, &dfs_fops);
2865 }
2866 
2867 /**
2868  * dbg_debugfs_exit_fs - remove all debugfs files.
2869  * @c: UBIFS file-system description object
2870  */
2871 void dbg_debugfs_exit_fs(struct ubifs_info *c)
2872 {
2873 	debugfs_remove_recursive(c->dbg->dfs_dir);
2874 }
2875 
2876 struct ubifs_global_debug_info ubifs_dbg;
2877 
2878 static struct dentry *dfs_chk_gen;
2879 static struct dentry *dfs_chk_index;
2880 static struct dentry *dfs_chk_orph;
2881 static struct dentry *dfs_chk_lprops;
2882 static struct dentry *dfs_chk_fs;
2883 static struct dentry *dfs_tst_rcvry;
2884 
2885 static ssize_t dfs_global_file_read(struct file *file, char __user *u,
2886 				    size_t count, loff_t *ppos)
2887 {
2888 	struct dentry *dent = file->f_path.dentry;
2889 	int val;
2890 
2891 	if (dent == dfs_chk_gen)
2892 		val = ubifs_dbg.chk_gen;
2893 	else if (dent == dfs_chk_index)
2894 		val = ubifs_dbg.chk_index;
2895 	else if (dent == dfs_chk_orph)
2896 		val = ubifs_dbg.chk_orph;
2897 	else if (dent == dfs_chk_lprops)
2898 		val = ubifs_dbg.chk_lprops;
2899 	else if (dent == dfs_chk_fs)
2900 		val = ubifs_dbg.chk_fs;
2901 	else if (dent == dfs_tst_rcvry)
2902 		val = ubifs_dbg.tst_rcvry;
2903 	else
2904 		return -EINVAL;
2905 
2906 	return provide_user_output(val, u, count, ppos);
2907 }
2908 
2909 static ssize_t dfs_global_file_write(struct file *file, const char __user *u,
2910 				     size_t count, loff_t *ppos)
2911 {
2912 	struct dentry *dent = file->f_path.dentry;
2913 	int val;
2914 
2915 	val = interpret_user_input(u, count);
2916 	if (val < 0)
2917 		return val;
2918 
2919 	if (dent == dfs_chk_gen)
2920 		ubifs_dbg.chk_gen = val;
2921 	else if (dent == dfs_chk_index)
2922 		ubifs_dbg.chk_index = val;
2923 	else if (dent == dfs_chk_orph)
2924 		ubifs_dbg.chk_orph = val;
2925 	else if (dent == dfs_chk_lprops)
2926 		ubifs_dbg.chk_lprops = val;
2927 	else if (dent == dfs_chk_fs)
2928 		ubifs_dbg.chk_fs = val;
2929 	else if (dent == dfs_tst_rcvry)
2930 		ubifs_dbg.tst_rcvry = val;
2931 	else
2932 		return -EINVAL;
2933 
2934 	return count;
2935 }
2936 
2937 static const struct file_operations dfs_global_fops = {
2938 	.read = dfs_global_file_read,
2939 	.write = dfs_global_file_write,
2940 	.owner = THIS_MODULE,
2941 	.llseek = no_llseek,
2942 };
2943 
2944 /**
2945  * dbg_debugfs_init - initialize debugfs file-system.
2946  *
2947  * UBIFS uses debugfs file-system to expose various debugging knobs to
2948  * user-space. This function creates "ubifs" directory in the debugfs
2949  * file-system.
2950  */
2951 void dbg_debugfs_init(void)
2952 {
2953 	const char *fname;
2954 
2955 	fname = "ubifs";
2956 	dfs_rootdir = debugfs_create_dir(fname, NULL);
2957 
2958 	fname = "chk_general";
2959 	dfs_chk_gen = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2960 					  NULL, &dfs_global_fops);
2961 
2962 	fname = "chk_index";
2963 	dfs_chk_index = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2964 					    dfs_rootdir, NULL, &dfs_global_fops);
2965 
2966 	fname = "chk_orphans";
2967 	dfs_chk_orph = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2968 					   dfs_rootdir, NULL, &dfs_global_fops);
2969 
2970 	fname = "chk_lprops";
2971 	dfs_chk_lprops = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2972 					     dfs_rootdir, NULL, &dfs_global_fops);
2973 
2974 	fname = "chk_fs";
2975 	dfs_chk_fs = debugfs_create_file(fname, S_IRUSR | S_IWUSR, dfs_rootdir,
2976 					 NULL, &dfs_global_fops);
2977 
2978 	fname = "tst_recovery";
2979 	dfs_tst_rcvry = debugfs_create_file(fname, S_IRUSR | S_IWUSR,
2980 					    dfs_rootdir, NULL, &dfs_global_fops);
2981 }
2982 
2983 /**
2984  * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system.
2985  */
2986 void dbg_debugfs_exit(void)
2987 {
2988 	debugfs_remove_recursive(dfs_rootdir);
2989 }
2990 
2991 void ubifs_assert_failed(struct ubifs_info *c, const char *expr,
2992 			 const char *file, int line)
2993 {
2994 	ubifs_err(c, "UBIFS assert failed: %s, in %s:%u", expr, file, line);
2995 
2996 	switch (c->assert_action) {
2997 		case ASSACT_PANIC:
2998 		BUG();
2999 		break;
3000 
3001 		case ASSACT_RO:
3002 		ubifs_ro_mode(c, -EINVAL);
3003 		break;
3004 
3005 		case ASSACT_REPORT:
3006 		default:
3007 		dump_stack();
3008 		break;
3009 
3010 	}
3011 }
3012 
3013 /**
3014  * ubifs_debugging_init - initialize UBIFS debugging.
3015  * @c: UBIFS file-system description object
3016  *
3017  * This function initializes debugging-related data for the file system.
3018  * Returns zero in case of success and a negative error code in case of
3019  * failure.
3020  */
3021 int ubifs_debugging_init(struct ubifs_info *c)
3022 {
3023 	c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL);
3024 	if (!c->dbg)
3025 		return -ENOMEM;
3026 
3027 	return 0;
3028 }
3029 
3030 /**
3031  * ubifs_debugging_exit - free debugging data.
3032  * @c: UBIFS file-system description object
3033  */
3034 void ubifs_debugging_exit(struct ubifs_info *c)
3035 {
3036 	kfree(c->dbg);
3037 }
3038