1 /* 2 * This file is part of UBIFS. 3 * 4 * Copyright (C) 2006-2008 Nokia Corporation 5 * 6 * This program is free software; you can redistribute it and/or modify it 7 * under the terms of the GNU General Public License version 2 as published by 8 * the Free Software Foundation. 9 * 10 * This program is distributed in the hope that it will be useful, but WITHOUT 11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or 12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for 13 * more details. 14 * 15 * You should have received a copy of the GNU General Public License along with 16 * this program; if not, write to the Free Software Foundation, Inc., 51 17 * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA 18 * 19 * Authors: Artem Bityutskiy (Битюцкий Артём) 20 * Adrian Hunter 21 */ 22 23 /* 24 * This file implements most of the debugging stuff which is compiled in only 25 * when it is enabled. But some debugging check functions are implemented in 26 * corresponding subsystem, just because they are closely related and utilize 27 * various local functions of those subsystems. 28 */ 29 30 #define UBIFS_DBG_PRESERVE_UBI 31 32 #include "ubifs.h" 33 #include <linux/module.h> 34 #include <linux/moduleparam.h> 35 #include <linux/debugfs.h> 36 #include <linux/math64.h> 37 #include <linux/slab.h> 38 39 #ifdef CONFIG_UBIFS_FS_DEBUG 40 41 DEFINE_SPINLOCK(dbg_lock); 42 43 static char dbg_key_buf0[128]; 44 static char dbg_key_buf1[128]; 45 46 unsigned int ubifs_msg_flags = UBIFS_MSG_FLAGS_DEFAULT; 47 unsigned int ubifs_chk_flags = UBIFS_CHK_FLAGS_DEFAULT; 48 unsigned int ubifs_tst_flags; 49 50 module_param_named(debug_msgs, ubifs_msg_flags, uint, S_IRUGO | S_IWUSR); 51 module_param_named(debug_chks, ubifs_chk_flags, uint, S_IRUGO | S_IWUSR); 52 module_param_named(debug_tsts, ubifs_tst_flags, uint, S_IRUGO | S_IWUSR); 53 54 MODULE_PARM_DESC(debug_msgs, "Debug message type flags"); 55 MODULE_PARM_DESC(debug_chks, "Debug check flags"); 56 MODULE_PARM_DESC(debug_tsts, "Debug special test flags"); 57 58 static const char *get_key_fmt(int fmt) 59 { 60 switch (fmt) { 61 case UBIFS_SIMPLE_KEY_FMT: 62 return "simple"; 63 default: 64 return "unknown/invalid format"; 65 } 66 } 67 68 static const char *get_key_hash(int hash) 69 { 70 switch (hash) { 71 case UBIFS_KEY_HASH_R5: 72 return "R5"; 73 case UBIFS_KEY_HASH_TEST: 74 return "test"; 75 default: 76 return "unknown/invalid name hash"; 77 } 78 } 79 80 static const char *get_key_type(int type) 81 { 82 switch (type) { 83 case UBIFS_INO_KEY: 84 return "inode"; 85 case UBIFS_DENT_KEY: 86 return "direntry"; 87 case UBIFS_XENT_KEY: 88 return "xentry"; 89 case UBIFS_DATA_KEY: 90 return "data"; 91 case UBIFS_TRUN_KEY: 92 return "truncate"; 93 default: 94 return "unknown/invalid key"; 95 } 96 } 97 98 static void sprintf_key(const struct ubifs_info *c, const union ubifs_key *key, 99 char *buffer) 100 { 101 char *p = buffer; 102 int type = key_type(c, key); 103 104 if (c->key_fmt == UBIFS_SIMPLE_KEY_FMT) { 105 switch (type) { 106 case UBIFS_INO_KEY: 107 sprintf(p, "(%lu, %s)", (unsigned long)key_inum(c, key), 108 get_key_type(type)); 109 break; 110 case UBIFS_DENT_KEY: 111 case UBIFS_XENT_KEY: 112 sprintf(p, "(%lu, %s, %#08x)", 113 (unsigned long)key_inum(c, key), 114 get_key_type(type), key_hash(c, key)); 115 break; 116 case UBIFS_DATA_KEY: 117 sprintf(p, "(%lu, %s, %u)", 118 (unsigned long)key_inum(c, key), 119 get_key_type(type), key_block(c, key)); 120 break; 121 case UBIFS_TRUN_KEY: 122 sprintf(p, "(%lu, %s)", 123 (unsigned long)key_inum(c, key), 124 get_key_type(type)); 125 break; 126 default: 127 sprintf(p, "(bad key type: %#08x, %#08x)", 128 key->u32[0], key->u32[1]); 129 } 130 } else 131 sprintf(p, "bad key format %d", c->key_fmt); 132 } 133 134 const char *dbg_key_str0(const struct ubifs_info *c, const union ubifs_key *key) 135 { 136 /* dbg_lock must be held */ 137 sprintf_key(c, key, dbg_key_buf0); 138 return dbg_key_buf0; 139 } 140 141 const char *dbg_key_str1(const struct ubifs_info *c, const union ubifs_key *key) 142 { 143 /* dbg_lock must be held */ 144 sprintf_key(c, key, dbg_key_buf1); 145 return dbg_key_buf1; 146 } 147 148 const char *dbg_ntype(int type) 149 { 150 switch (type) { 151 case UBIFS_PAD_NODE: 152 return "padding node"; 153 case UBIFS_SB_NODE: 154 return "superblock node"; 155 case UBIFS_MST_NODE: 156 return "master node"; 157 case UBIFS_REF_NODE: 158 return "reference node"; 159 case UBIFS_INO_NODE: 160 return "inode node"; 161 case UBIFS_DENT_NODE: 162 return "direntry node"; 163 case UBIFS_XENT_NODE: 164 return "xentry node"; 165 case UBIFS_DATA_NODE: 166 return "data node"; 167 case UBIFS_TRUN_NODE: 168 return "truncate node"; 169 case UBIFS_IDX_NODE: 170 return "indexing node"; 171 case UBIFS_CS_NODE: 172 return "commit start node"; 173 case UBIFS_ORPH_NODE: 174 return "orphan node"; 175 default: 176 return "unknown node"; 177 } 178 } 179 180 static const char *dbg_gtype(int type) 181 { 182 switch (type) { 183 case UBIFS_NO_NODE_GROUP: 184 return "no node group"; 185 case UBIFS_IN_NODE_GROUP: 186 return "in node group"; 187 case UBIFS_LAST_OF_NODE_GROUP: 188 return "last of node group"; 189 default: 190 return "unknown"; 191 } 192 } 193 194 const char *dbg_cstate(int cmt_state) 195 { 196 switch (cmt_state) { 197 case COMMIT_RESTING: 198 return "commit resting"; 199 case COMMIT_BACKGROUND: 200 return "background commit requested"; 201 case COMMIT_REQUIRED: 202 return "commit required"; 203 case COMMIT_RUNNING_BACKGROUND: 204 return "BACKGROUND commit running"; 205 case COMMIT_RUNNING_REQUIRED: 206 return "commit running and required"; 207 case COMMIT_BROKEN: 208 return "broken commit"; 209 default: 210 return "unknown commit state"; 211 } 212 } 213 214 const char *dbg_jhead(int jhead) 215 { 216 switch (jhead) { 217 case GCHD: 218 return "0 (GC)"; 219 case BASEHD: 220 return "1 (base)"; 221 case DATAHD: 222 return "2 (data)"; 223 default: 224 return "unknown journal head"; 225 } 226 } 227 228 static void dump_ch(const struct ubifs_ch *ch) 229 { 230 printk(KERN_DEBUG "\tmagic %#x\n", le32_to_cpu(ch->magic)); 231 printk(KERN_DEBUG "\tcrc %#x\n", le32_to_cpu(ch->crc)); 232 printk(KERN_DEBUG "\tnode_type %d (%s)\n", ch->node_type, 233 dbg_ntype(ch->node_type)); 234 printk(KERN_DEBUG "\tgroup_type %d (%s)\n", ch->group_type, 235 dbg_gtype(ch->group_type)); 236 printk(KERN_DEBUG "\tsqnum %llu\n", 237 (unsigned long long)le64_to_cpu(ch->sqnum)); 238 printk(KERN_DEBUG "\tlen %u\n", le32_to_cpu(ch->len)); 239 } 240 241 void dbg_dump_inode(const struct ubifs_info *c, const struct inode *inode) 242 { 243 const struct ubifs_inode *ui = ubifs_inode(inode); 244 245 printk(KERN_DEBUG "Dump in-memory inode:"); 246 printk(KERN_DEBUG "\tinode %lu\n", inode->i_ino); 247 printk(KERN_DEBUG "\tsize %llu\n", 248 (unsigned long long)i_size_read(inode)); 249 printk(KERN_DEBUG "\tnlink %u\n", inode->i_nlink); 250 printk(KERN_DEBUG "\tuid %u\n", (unsigned int)inode->i_uid); 251 printk(KERN_DEBUG "\tgid %u\n", (unsigned int)inode->i_gid); 252 printk(KERN_DEBUG "\tatime %u.%u\n", 253 (unsigned int)inode->i_atime.tv_sec, 254 (unsigned int)inode->i_atime.tv_nsec); 255 printk(KERN_DEBUG "\tmtime %u.%u\n", 256 (unsigned int)inode->i_mtime.tv_sec, 257 (unsigned int)inode->i_mtime.tv_nsec); 258 printk(KERN_DEBUG "\tctime %u.%u\n", 259 (unsigned int)inode->i_ctime.tv_sec, 260 (unsigned int)inode->i_ctime.tv_nsec); 261 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", ui->creat_sqnum); 262 printk(KERN_DEBUG "\txattr_size %u\n", ui->xattr_size); 263 printk(KERN_DEBUG "\txattr_cnt %u\n", ui->xattr_cnt); 264 printk(KERN_DEBUG "\txattr_names %u\n", ui->xattr_names); 265 printk(KERN_DEBUG "\tdirty %u\n", ui->dirty); 266 printk(KERN_DEBUG "\txattr %u\n", ui->xattr); 267 printk(KERN_DEBUG "\tbulk_read %u\n", ui->xattr); 268 printk(KERN_DEBUG "\tsynced_i_size %llu\n", 269 (unsigned long long)ui->synced_i_size); 270 printk(KERN_DEBUG "\tui_size %llu\n", 271 (unsigned long long)ui->ui_size); 272 printk(KERN_DEBUG "\tflags %d\n", ui->flags); 273 printk(KERN_DEBUG "\tcompr_type %d\n", ui->compr_type); 274 printk(KERN_DEBUG "\tlast_page_read %lu\n", ui->last_page_read); 275 printk(KERN_DEBUG "\tread_in_a_row %lu\n", ui->read_in_a_row); 276 printk(KERN_DEBUG "\tdata_len %d\n", ui->data_len); 277 } 278 279 void dbg_dump_node(const struct ubifs_info *c, const void *node) 280 { 281 int i, n; 282 union ubifs_key key; 283 const struct ubifs_ch *ch = node; 284 285 if (dbg_failure_mode) 286 return; 287 288 /* If the magic is incorrect, just hexdump the first bytes */ 289 if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC) { 290 printk(KERN_DEBUG "Not a node, first %zu bytes:", UBIFS_CH_SZ); 291 print_hex_dump(KERN_DEBUG, "", DUMP_PREFIX_OFFSET, 32, 1, 292 (void *)node, UBIFS_CH_SZ, 1); 293 return; 294 } 295 296 spin_lock(&dbg_lock); 297 dump_ch(node); 298 299 switch (ch->node_type) { 300 case UBIFS_PAD_NODE: 301 { 302 const struct ubifs_pad_node *pad = node; 303 304 printk(KERN_DEBUG "\tpad_len %u\n", 305 le32_to_cpu(pad->pad_len)); 306 break; 307 } 308 case UBIFS_SB_NODE: 309 { 310 const struct ubifs_sb_node *sup = node; 311 unsigned int sup_flags = le32_to_cpu(sup->flags); 312 313 printk(KERN_DEBUG "\tkey_hash %d (%s)\n", 314 (int)sup->key_hash, get_key_hash(sup->key_hash)); 315 printk(KERN_DEBUG "\tkey_fmt %d (%s)\n", 316 (int)sup->key_fmt, get_key_fmt(sup->key_fmt)); 317 printk(KERN_DEBUG "\tflags %#x\n", sup_flags); 318 printk(KERN_DEBUG "\t big_lpt %u\n", 319 !!(sup_flags & UBIFS_FLG_BIGLPT)); 320 printk(KERN_DEBUG "\tmin_io_size %u\n", 321 le32_to_cpu(sup->min_io_size)); 322 printk(KERN_DEBUG "\tleb_size %u\n", 323 le32_to_cpu(sup->leb_size)); 324 printk(KERN_DEBUG "\tleb_cnt %u\n", 325 le32_to_cpu(sup->leb_cnt)); 326 printk(KERN_DEBUG "\tmax_leb_cnt %u\n", 327 le32_to_cpu(sup->max_leb_cnt)); 328 printk(KERN_DEBUG "\tmax_bud_bytes %llu\n", 329 (unsigned long long)le64_to_cpu(sup->max_bud_bytes)); 330 printk(KERN_DEBUG "\tlog_lebs %u\n", 331 le32_to_cpu(sup->log_lebs)); 332 printk(KERN_DEBUG "\tlpt_lebs %u\n", 333 le32_to_cpu(sup->lpt_lebs)); 334 printk(KERN_DEBUG "\torph_lebs %u\n", 335 le32_to_cpu(sup->orph_lebs)); 336 printk(KERN_DEBUG "\tjhead_cnt %u\n", 337 le32_to_cpu(sup->jhead_cnt)); 338 printk(KERN_DEBUG "\tfanout %u\n", 339 le32_to_cpu(sup->fanout)); 340 printk(KERN_DEBUG "\tlsave_cnt %u\n", 341 le32_to_cpu(sup->lsave_cnt)); 342 printk(KERN_DEBUG "\tdefault_compr %u\n", 343 (int)le16_to_cpu(sup->default_compr)); 344 printk(KERN_DEBUG "\trp_size %llu\n", 345 (unsigned long long)le64_to_cpu(sup->rp_size)); 346 printk(KERN_DEBUG "\trp_uid %u\n", 347 le32_to_cpu(sup->rp_uid)); 348 printk(KERN_DEBUG "\trp_gid %u\n", 349 le32_to_cpu(sup->rp_gid)); 350 printk(KERN_DEBUG "\tfmt_version %u\n", 351 le32_to_cpu(sup->fmt_version)); 352 printk(KERN_DEBUG "\ttime_gran %u\n", 353 le32_to_cpu(sup->time_gran)); 354 printk(KERN_DEBUG "\tUUID %pUB\n", 355 sup->uuid); 356 break; 357 } 358 case UBIFS_MST_NODE: 359 { 360 const struct ubifs_mst_node *mst = node; 361 362 printk(KERN_DEBUG "\thighest_inum %llu\n", 363 (unsigned long long)le64_to_cpu(mst->highest_inum)); 364 printk(KERN_DEBUG "\tcommit number %llu\n", 365 (unsigned long long)le64_to_cpu(mst->cmt_no)); 366 printk(KERN_DEBUG "\tflags %#x\n", 367 le32_to_cpu(mst->flags)); 368 printk(KERN_DEBUG "\tlog_lnum %u\n", 369 le32_to_cpu(mst->log_lnum)); 370 printk(KERN_DEBUG "\troot_lnum %u\n", 371 le32_to_cpu(mst->root_lnum)); 372 printk(KERN_DEBUG "\troot_offs %u\n", 373 le32_to_cpu(mst->root_offs)); 374 printk(KERN_DEBUG "\troot_len %u\n", 375 le32_to_cpu(mst->root_len)); 376 printk(KERN_DEBUG "\tgc_lnum %u\n", 377 le32_to_cpu(mst->gc_lnum)); 378 printk(KERN_DEBUG "\tihead_lnum %u\n", 379 le32_to_cpu(mst->ihead_lnum)); 380 printk(KERN_DEBUG "\tihead_offs %u\n", 381 le32_to_cpu(mst->ihead_offs)); 382 printk(KERN_DEBUG "\tindex_size %llu\n", 383 (unsigned long long)le64_to_cpu(mst->index_size)); 384 printk(KERN_DEBUG "\tlpt_lnum %u\n", 385 le32_to_cpu(mst->lpt_lnum)); 386 printk(KERN_DEBUG "\tlpt_offs %u\n", 387 le32_to_cpu(mst->lpt_offs)); 388 printk(KERN_DEBUG "\tnhead_lnum %u\n", 389 le32_to_cpu(mst->nhead_lnum)); 390 printk(KERN_DEBUG "\tnhead_offs %u\n", 391 le32_to_cpu(mst->nhead_offs)); 392 printk(KERN_DEBUG "\tltab_lnum %u\n", 393 le32_to_cpu(mst->ltab_lnum)); 394 printk(KERN_DEBUG "\tltab_offs %u\n", 395 le32_to_cpu(mst->ltab_offs)); 396 printk(KERN_DEBUG "\tlsave_lnum %u\n", 397 le32_to_cpu(mst->lsave_lnum)); 398 printk(KERN_DEBUG "\tlsave_offs %u\n", 399 le32_to_cpu(mst->lsave_offs)); 400 printk(KERN_DEBUG "\tlscan_lnum %u\n", 401 le32_to_cpu(mst->lscan_lnum)); 402 printk(KERN_DEBUG "\tleb_cnt %u\n", 403 le32_to_cpu(mst->leb_cnt)); 404 printk(KERN_DEBUG "\tempty_lebs %u\n", 405 le32_to_cpu(mst->empty_lebs)); 406 printk(KERN_DEBUG "\tidx_lebs %u\n", 407 le32_to_cpu(mst->idx_lebs)); 408 printk(KERN_DEBUG "\ttotal_free %llu\n", 409 (unsigned long long)le64_to_cpu(mst->total_free)); 410 printk(KERN_DEBUG "\ttotal_dirty %llu\n", 411 (unsigned long long)le64_to_cpu(mst->total_dirty)); 412 printk(KERN_DEBUG "\ttotal_used %llu\n", 413 (unsigned long long)le64_to_cpu(mst->total_used)); 414 printk(KERN_DEBUG "\ttotal_dead %llu\n", 415 (unsigned long long)le64_to_cpu(mst->total_dead)); 416 printk(KERN_DEBUG "\ttotal_dark %llu\n", 417 (unsigned long long)le64_to_cpu(mst->total_dark)); 418 break; 419 } 420 case UBIFS_REF_NODE: 421 { 422 const struct ubifs_ref_node *ref = node; 423 424 printk(KERN_DEBUG "\tlnum %u\n", 425 le32_to_cpu(ref->lnum)); 426 printk(KERN_DEBUG "\toffs %u\n", 427 le32_to_cpu(ref->offs)); 428 printk(KERN_DEBUG "\tjhead %u\n", 429 le32_to_cpu(ref->jhead)); 430 break; 431 } 432 case UBIFS_INO_NODE: 433 { 434 const struct ubifs_ino_node *ino = node; 435 436 key_read(c, &ino->key, &key); 437 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 438 printk(KERN_DEBUG "\tcreat_sqnum %llu\n", 439 (unsigned long long)le64_to_cpu(ino->creat_sqnum)); 440 printk(KERN_DEBUG "\tsize %llu\n", 441 (unsigned long long)le64_to_cpu(ino->size)); 442 printk(KERN_DEBUG "\tnlink %u\n", 443 le32_to_cpu(ino->nlink)); 444 printk(KERN_DEBUG "\tatime %lld.%u\n", 445 (long long)le64_to_cpu(ino->atime_sec), 446 le32_to_cpu(ino->atime_nsec)); 447 printk(KERN_DEBUG "\tmtime %lld.%u\n", 448 (long long)le64_to_cpu(ino->mtime_sec), 449 le32_to_cpu(ino->mtime_nsec)); 450 printk(KERN_DEBUG "\tctime %lld.%u\n", 451 (long long)le64_to_cpu(ino->ctime_sec), 452 le32_to_cpu(ino->ctime_nsec)); 453 printk(KERN_DEBUG "\tuid %u\n", 454 le32_to_cpu(ino->uid)); 455 printk(KERN_DEBUG "\tgid %u\n", 456 le32_to_cpu(ino->gid)); 457 printk(KERN_DEBUG "\tmode %u\n", 458 le32_to_cpu(ino->mode)); 459 printk(KERN_DEBUG "\tflags %#x\n", 460 le32_to_cpu(ino->flags)); 461 printk(KERN_DEBUG "\txattr_cnt %u\n", 462 le32_to_cpu(ino->xattr_cnt)); 463 printk(KERN_DEBUG "\txattr_size %u\n", 464 le32_to_cpu(ino->xattr_size)); 465 printk(KERN_DEBUG "\txattr_names %u\n", 466 le32_to_cpu(ino->xattr_names)); 467 printk(KERN_DEBUG "\tcompr_type %#x\n", 468 (int)le16_to_cpu(ino->compr_type)); 469 printk(KERN_DEBUG "\tdata len %u\n", 470 le32_to_cpu(ino->data_len)); 471 break; 472 } 473 case UBIFS_DENT_NODE: 474 case UBIFS_XENT_NODE: 475 { 476 const struct ubifs_dent_node *dent = node; 477 int nlen = le16_to_cpu(dent->nlen); 478 479 key_read(c, &dent->key, &key); 480 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 481 printk(KERN_DEBUG "\tinum %llu\n", 482 (unsigned long long)le64_to_cpu(dent->inum)); 483 printk(KERN_DEBUG "\ttype %d\n", (int)dent->type); 484 printk(KERN_DEBUG "\tnlen %d\n", nlen); 485 printk(KERN_DEBUG "\tname "); 486 487 if (nlen > UBIFS_MAX_NLEN) 488 printk(KERN_DEBUG "(bad name length, not printing, " 489 "bad or corrupted node)"); 490 else { 491 for (i = 0; i < nlen && dent->name[i]; i++) 492 printk(KERN_CONT "%c", dent->name[i]); 493 } 494 printk(KERN_CONT "\n"); 495 496 break; 497 } 498 case UBIFS_DATA_NODE: 499 { 500 const struct ubifs_data_node *dn = node; 501 int dlen = le32_to_cpu(ch->len) - UBIFS_DATA_NODE_SZ; 502 503 key_read(c, &dn->key, &key); 504 printk(KERN_DEBUG "\tkey %s\n", DBGKEY(&key)); 505 printk(KERN_DEBUG "\tsize %u\n", 506 le32_to_cpu(dn->size)); 507 printk(KERN_DEBUG "\tcompr_typ %d\n", 508 (int)le16_to_cpu(dn->compr_type)); 509 printk(KERN_DEBUG "\tdata size %d\n", 510 dlen); 511 printk(KERN_DEBUG "\tdata:\n"); 512 print_hex_dump(KERN_DEBUG, "\t", DUMP_PREFIX_OFFSET, 32, 1, 513 (void *)&dn->data, dlen, 0); 514 break; 515 } 516 case UBIFS_TRUN_NODE: 517 { 518 const struct ubifs_trun_node *trun = node; 519 520 printk(KERN_DEBUG "\tinum %u\n", 521 le32_to_cpu(trun->inum)); 522 printk(KERN_DEBUG "\told_size %llu\n", 523 (unsigned long long)le64_to_cpu(trun->old_size)); 524 printk(KERN_DEBUG "\tnew_size %llu\n", 525 (unsigned long long)le64_to_cpu(trun->new_size)); 526 break; 527 } 528 case UBIFS_IDX_NODE: 529 { 530 const struct ubifs_idx_node *idx = node; 531 532 n = le16_to_cpu(idx->child_cnt); 533 printk(KERN_DEBUG "\tchild_cnt %d\n", n); 534 printk(KERN_DEBUG "\tlevel %d\n", 535 (int)le16_to_cpu(idx->level)); 536 printk(KERN_DEBUG "\tBranches:\n"); 537 538 for (i = 0; i < n && i < c->fanout - 1; i++) { 539 const struct ubifs_branch *br; 540 541 br = ubifs_idx_branch(c, idx, i); 542 key_read(c, &br->key, &key); 543 printk(KERN_DEBUG "\t%d: LEB %d:%d len %d key %s\n", 544 i, le32_to_cpu(br->lnum), le32_to_cpu(br->offs), 545 le32_to_cpu(br->len), DBGKEY(&key)); 546 } 547 break; 548 } 549 case UBIFS_CS_NODE: 550 break; 551 case UBIFS_ORPH_NODE: 552 { 553 const struct ubifs_orph_node *orph = node; 554 555 printk(KERN_DEBUG "\tcommit number %llu\n", 556 (unsigned long long) 557 le64_to_cpu(orph->cmt_no) & LLONG_MAX); 558 printk(KERN_DEBUG "\tlast node flag %llu\n", 559 (unsigned long long)(le64_to_cpu(orph->cmt_no)) >> 63); 560 n = (le32_to_cpu(ch->len) - UBIFS_ORPH_NODE_SZ) >> 3; 561 printk(KERN_DEBUG "\t%d orphan inode numbers:\n", n); 562 for (i = 0; i < n; i++) 563 printk(KERN_DEBUG "\t ino %llu\n", 564 (unsigned long long)le64_to_cpu(orph->inos[i])); 565 break; 566 } 567 default: 568 printk(KERN_DEBUG "node type %d was not recognized\n", 569 (int)ch->node_type); 570 } 571 spin_unlock(&dbg_lock); 572 } 573 574 void dbg_dump_budget_req(const struct ubifs_budget_req *req) 575 { 576 spin_lock(&dbg_lock); 577 printk(KERN_DEBUG "Budgeting request: new_ino %d, dirtied_ino %d\n", 578 req->new_ino, req->dirtied_ino); 579 printk(KERN_DEBUG "\tnew_ino_d %d, dirtied_ino_d %d\n", 580 req->new_ino_d, req->dirtied_ino_d); 581 printk(KERN_DEBUG "\tnew_page %d, dirtied_page %d\n", 582 req->new_page, req->dirtied_page); 583 printk(KERN_DEBUG "\tnew_dent %d, mod_dent %d\n", 584 req->new_dent, req->mod_dent); 585 printk(KERN_DEBUG "\tidx_growth %d\n", req->idx_growth); 586 printk(KERN_DEBUG "\tdata_growth %d dd_growth %d\n", 587 req->data_growth, req->dd_growth); 588 spin_unlock(&dbg_lock); 589 } 590 591 void dbg_dump_lstats(const struct ubifs_lp_stats *lst) 592 { 593 spin_lock(&dbg_lock); 594 printk(KERN_DEBUG "(pid %d) Lprops statistics: empty_lebs %d, " 595 "idx_lebs %d\n", current->pid, lst->empty_lebs, lst->idx_lebs); 596 printk(KERN_DEBUG "\ttaken_empty_lebs %d, total_free %lld, " 597 "total_dirty %lld\n", lst->taken_empty_lebs, lst->total_free, 598 lst->total_dirty); 599 printk(KERN_DEBUG "\ttotal_used %lld, total_dark %lld, " 600 "total_dead %lld\n", lst->total_used, lst->total_dark, 601 lst->total_dead); 602 spin_unlock(&dbg_lock); 603 } 604 605 void dbg_dump_budg(struct ubifs_info *c) 606 { 607 int i; 608 struct rb_node *rb; 609 struct ubifs_bud *bud; 610 struct ubifs_gced_idx_leb *idx_gc; 611 long long available, outstanding, free; 612 613 ubifs_assert(spin_is_locked(&c->space_lock)); 614 spin_lock(&dbg_lock); 615 printk(KERN_DEBUG "(pid %d) Budgeting info: budg_data_growth %lld, " 616 "budg_dd_growth %lld, budg_idx_growth %lld\n", current->pid, 617 c->budg_data_growth, c->budg_dd_growth, c->budg_idx_growth); 618 printk(KERN_DEBUG "\tdata budget sum %lld, total budget sum %lld, " 619 "freeable_cnt %d\n", c->budg_data_growth + c->budg_dd_growth, 620 c->budg_data_growth + c->budg_dd_growth + c->budg_idx_growth, 621 c->freeable_cnt); 622 printk(KERN_DEBUG "\tmin_idx_lebs %d, old_idx_sz %lld, " 623 "calc_idx_sz %lld, idx_gc_cnt %d\n", c->min_idx_lebs, 624 c->old_idx_sz, c->calc_idx_sz, c->idx_gc_cnt); 625 printk(KERN_DEBUG "\tdirty_pg_cnt %ld, dirty_zn_cnt %ld, " 626 "clean_zn_cnt %ld\n", atomic_long_read(&c->dirty_pg_cnt), 627 atomic_long_read(&c->dirty_zn_cnt), 628 atomic_long_read(&c->clean_zn_cnt)); 629 printk(KERN_DEBUG "\tdark_wm %d, dead_wm %d, max_idx_node_sz %d\n", 630 c->dark_wm, c->dead_wm, c->max_idx_node_sz); 631 printk(KERN_DEBUG "\tgc_lnum %d, ihead_lnum %d\n", 632 c->gc_lnum, c->ihead_lnum); 633 /* If we are in R/O mode, journal heads do not exist */ 634 if (c->jheads) 635 for (i = 0; i < c->jhead_cnt; i++) 636 printk(KERN_DEBUG "\tjhead %s\t LEB %d\n", 637 dbg_jhead(c->jheads[i].wbuf.jhead), 638 c->jheads[i].wbuf.lnum); 639 for (rb = rb_first(&c->buds); rb; rb = rb_next(rb)) { 640 bud = rb_entry(rb, struct ubifs_bud, rb); 641 printk(KERN_DEBUG "\tbud LEB %d\n", bud->lnum); 642 } 643 list_for_each_entry(bud, &c->old_buds, list) 644 printk(KERN_DEBUG "\told bud LEB %d\n", bud->lnum); 645 list_for_each_entry(idx_gc, &c->idx_gc, list) 646 printk(KERN_DEBUG "\tGC'ed idx LEB %d unmap %d\n", 647 idx_gc->lnum, idx_gc->unmap); 648 printk(KERN_DEBUG "\tcommit state %d\n", c->cmt_state); 649 650 /* Print budgeting predictions */ 651 available = ubifs_calc_available(c, c->min_idx_lebs); 652 outstanding = c->budg_data_growth + c->budg_dd_growth; 653 free = ubifs_get_free_space_nolock(c); 654 printk(KERN_DEBUG "Budgeting predictions:\n"); 655 printk(KERN_DEBUG "\tavailable: %lld, outstanding %lld, free %lld\n", 656 available, outstanding, free); 657 spin_unlock(&dbg_lock); 658 } 659 660 void dbg_dump_lprop(const struct ubifs_info *c, const struct ubifs_lprops *lp) 661 { 662 int i, spc, dark = 0, dead = 0; 663 struct rb_node *rb; 664 struct ubifs_bud *bud; 665 666 spc = lp->free + lp->dirty; 667 if (spc < c->dead_wm) 668 dead = spc; 669 else 670 dark = ubifs_calc_dark(c, spc); 671 672 if (lp->flags & LPROPS_INDEX) 673 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 674 "free + dirty %-8d flags %#x (", lp->lnum, lp->free, 675 lp->dirty, c->leb_size - spc, spc, lp->flags); 676 else 677 printk(KERN_DEBUG "LEB %-7d free %-8d dirty %-8d used %-8d " 678 "free + dirty %-8d dark %-4d dead %-4d nodes fit %-3d " 679 "flags %#-4x (", lp->lnum, lp->free, lp->dirty, 680 c->leb_size - spc, spc, dark, dead, 681 (int)(spc / UBIFS_MAX_NODE_SZ), lp->flags); 682 683 if (lp->flags & LPROPS_TAKEN) { 684 if (lp->flags & LPROPS_INDEX) 685 printk(KERN_CONT "index, taken"); 686 else 687 printk(KERN_CONT "taken"); 688 } else { 689 const char *s; 690 691 if (lp->flags & LPROPS_INDEX) { 692 switch (lp->flags & LPROPS_CAT_MASK) { 693 case LPROPS_DIRTY_IDX: 694 s = "dirty index"; 695 break; 696 case LPROPS_FRDI_IDX: 697 s = "freeable index"; 698 break; 699 default: 700 s = "index"; 701 } 702 } else { 703 switch (lp->flags & LPROPS_CAT_MASK) { 704 case LPROPS_UNCAT: 705 s = "not categorized"; 706 break; 707 case LPROPS_DIRTY: 708 s = "dirty"; 709 break; 710 case LPROPS_FREE: 711 s = "free"; 712 break; 713 case LPROPS_EMPTY: 714 s = "empty"; 715 break; 716 case LPROPS_FREEABLE: 717 s = "freeable"; 718 break; 719 default: 720 s = NULL; 721 break; 722 } 723 } 724 printk(KERN_CONT "%s", s); 725 } 726 727 for (rb = rb_first((struct rb_root *)&c->buds); rb; rb = rb_next(rb)) { 728 bud = rb_entry(rb, struct ubifs_bud, rb); 729 if (bud->lnum == lp->lnum) { 730 int head = 0; 731 for (i = 0; i < c->jhead_cnt; i++) { 732 if (lp->lnum == c->jheads[i].wbuf.lnum) { 733 printk(KERN_CONT ", jhead %s", 734 dbg_jhead(i)); 735 head = 1; 736 } 737 } 738 if (!head) 739 printk(KERN_CONT ", bud of jhead %s", 740 dbg_jhead(bud->jhead)); 741 } 742 } 743 if (lp->lnum == c->gc_lnum) 744 printk(KERN_CONT ", GC LEB"); 745 printk(KERN_CONT ")\n"); 746 } 747 748 void dbg_dump_lprops(struct ubifs_info *c) 749 { 750 int lnum, err; 751 struct ubifs_lprops lp; 752 struct ubifs_lp_stats lst; 753 754 printk(KERN_DEBUG "(pid %d) start dumping LEB properties\n", 755 current->pid); 756 ubifs_get_lp_stats(c, &lst); 757 dbg_dump_lstats(&lst); 758 759 for (lnum = c->main_first; lnum < c->leb_cnt; lnum++) { 760 err = ubifs_read_one_lp(c, lnum, &lp); 761 if (err) 762 ubifs_err("cannot read lprops for LEB %d", lnum); 763 764 dbg_dump_lprop(c, &lp); 765 } 766 printk(KERN_DEBUG "(pid %d) finish dumping LEB properties\n", 767 current->pid); 768 } 769 770 void dbg_dump_lpt_info(struct ubifs_info *c) 771 { 772 int i; 773 774 spin_lock(&dbg_lock); 775 printk(KERN_DEBUG "(pid %d) dumping LPT information\n", current->pid); 776 printk(KERN_DEBUG "\tlpt_sz: %lld\n", c->lpt_sz); 777 printk(KERN_DEBUG "\tpnode_sz: %d\n", c->pnode_sz); 778 printk(KERN_DEBUG "\tnnode_sz: %d\n", c->nnode_sz); 779 printk(KERN_DEBUG "\tltab_sz: %d\n", c->ltab_sz); 780 printk(KERN_DEBUG "\tlsave_sz: %d\n", c->lsave_sz); 781 printk(KERN_DEBUG "\tbig_lpt: %d\n", c->big_lpt); 782 printk(KERN_DEBUG "\tlpt_hght: %d\n", c->lpt_hght); 783 printk(KERN_DEBUG "\tpnode_cnt: %d\n", c->pnode_cnt); 784 printk(KERN_DEBUG "\tnnode_cnt: %d\n", c->nnode_cnt); 785 printk(KERN_DEBUG "\tdirty_pn_cnt: %d\n", c->dirty_pn_cnt); 786 printk(KERN_DEBUG "\tdirty_nn_cnt: %d\n", c->dirty_nn_cnt); 787 printk(KERN_DEBUG "\tlsave_cnt: %d\n", c->lsave_cnt); 788 printk(KERN_DEBUG "\tspace_bits: %d\n", c->space_bits); 789 printk(KERN_DEBUG "\tlpt_lnum_bits: %d\n", c->lpt_lnum_bits); 790 printk(KERN_DEBUG "\tlpt_offs_bits: %d\n", c->lpt_offs_bits); 791 printk(KERN_DEBUG "\tlpt_spc_bits: %d\n", c->lpt_spc_bits); 792 printk(KERN_DEBUG "\tpcnt_bits: %d\n", c->pcnt_bits); 793 printk(KERN_DEBUG "\tlnum_bits: %d\n", c->lnum_bits); 794 printk(KERN_DEBUG "\tLPT root is at %d:%d\n", c->lpt_lnum, c->lpt_offs); 795 printk(KERN_DEBUG "\tLPT head is at %d:%d\n", 796 c->nhead_lnum, c->nhead_offs); 797 printk(KERN_DEBUG "\tLPT ltab is at %d:%d\n", 798 c->ltab_lnum, c->ltab_offs); 799 if (c->big_lpt) 800 printk(KERN_DEBUG "\tLPT lsave is at %d:%d\n", 801 c->lsave_lnum, c->lsave_offs); 802 for (i = 0; i < c->lpt_lebs; i++) 803 printk(KERN_DEBUG "\tLPT LEB %d free %d dirty %d tgc %d " 804 "cmt %d\n", i + c->lpt_first, c->ltab[i].free, 805 c->ltab[i].dirty, c->ltab[i].tgc, c->ltab[i].cmt); 806 spin_unlock(&dbg_lock); 807 } 808 809 void dbg_dump_leb(const struct ubifs_info *c, int lnum) 810 { 811 struct ubifs_scan_leb *sleb; 812 struct ubifs_scan_node *snod; 813 814 if (dbg_failure_mode) 815 return; 816 817 printk(KERN_DEBUG "(pid %d) start dumping LEB %d\n", 818 current->pid, lnum); 819 sleb = ubifs_scan(c, lnum, 0, c->dbg->buf, 0); 820 if (IS_ERR(sleb)) { 821 ubifs_err("scan error %d", (int)PTR_ERR(sleb)); 822 return; 823 } 824 825 printk(KERN_DEBUG "LEB %d has %d nodes ending at %d\n", lnum, 826 sleb->nodes_cnt, sleb->endpt); 827 828 list_for_each_entry(snod, &sleb->nodes, list) { 829 cond_resched(); 830 printk(KERN_DEBUG "Dumping node at LEB %d:%d len %d\n", lnum, 831 snod->offs, snod->len); 832 dbg_dump_node(c, snod->node); 833 } 834 835 printk(KERN_DEBUG "(pid %d) finish dumping LEB %d\n", 836 current->pid, lnum); 837 ubifs_scan_destroy(sleb); 838 return; 839 } 840 841 void dbg_dump_znode(const struct ubifs_info *c, 842 const struct ubifs_znode *znode) 843 { 844 int n; 845 const struct ubifs_zbranch *zbr; 846 847 spin_lock(&dbg_lock); 848 if (znode->parent) 849 zbr = &znode->parent->zbranch[znode->iip]; 850 else 851 zbr = &c->zroot; 852 853 printk(KERN_DEBUG "znode %p, LEB %d:%d len %d parent %p iip %d level %d" 854 " child_cnt %d flags %lx\n", znode, zbr->lnum, zbr->offs, 855 zbr->len, znode->parent, znode->iip, znode->level, 856 znode->child_cnt, znode->flags); 857 858 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 859 spin_unlock(&dbg_lock); 860 return; 861 } 862 863 printk(KERN_DEBUG "zbranches:\n"); 864 for (n = 0; n < znode->child_cnt; n++) { 865 zbr = &znode->zbranch[n]; 866 if (znode->level > 0) 867 printk(KERN_DEBUG "\t%d: znode %p LEB %d:%d len %d key " 868 "%s\n", n, zbr->znode, zbr->lnum, 869 zbr->offs, zbr->len, 870 DBGKEY(&zbr->key)); 871 else 872 printk(KERN_DEBUG "\t%d: LNC %p LEB %d:%d len %d key " 873 "%s\n", n, zbr->znode, zbr->lnum, 874 zbr->offs, zbr->len, 875 DBGKEY(&zbr->key)); 876 } 877 spin_unlock(&dbg_lock); 878 } 879 880 void dbg_dump_heap(struct ubifs_info *c, struct ubifs_lpt_heap *heap, int cat) 881 { 882 int i; 883 884 printk(KERN_DEBUG "(pid %d) start dumping heap cat %d (%d elements)\n", 885 current->pid, cat, heap->cnt); 886 for (i = 0; i < heap->cnt; i++) { 887 struct ubifs_lprops *lprops = heap->arr[i]; 888 889 printk(KERN_DEBUG "\t%d. LEB %d hpos %d free %d dirty %d " 890 "flags %d\n", i, lprops->lnum, lprops->hpos, 891 lprops->free, lprops->dirty, lprops->flags); 892 } 893 printk(KERN_DEBUG "(pid %d) finish dumping heap\n", current->pid); 894 } 895 896 void dbg_dump_pnode(struct ubifs_info *c, struct ubifs_pnode *pnode, 897 struct ubifs_nnode *parent, int iip) 898 { 899 int i; 900 901 printk(KERN_DEBUG "(pid %d) dumping pnode:\n", current->pid); 902 printk(KERN_DEBUG "\taddress %zx parent %zx cnext %zx\n", 903 (size_t)pnode, (size_t)parent, (size_t)pnode->cnext); 904 printk(KERN_DEBUG "\tflags %lu iip %d level %d num %d\n", 905 pnode->flags, iip, pnode->level, pnode->num); 906 for (i = 0; i < UBIFS_LPT_FANOUT; i++) { 907 struct ubifs_lprops *lp = &pnode->lprops[i]; 908 909 printk(KERN_DEBUG "\t%d: free %d dirty %d flags %d lnum %d\n", 910 i, lp->free, lp->dirty, lp->flags, lp->lnum); 911 } 912 } 913 914 void dbg_dump_tnc(struct ubifs_info *c) 915 { 916 struct ubifs_znode *znode; 917 int level; 918 919 printk(KERN_DEBUG "\n"); 920 printk(KERN_DEBUG "(pid %d) start dumping TNC tree\n", current->pid); 921 znode = ubifs_tnc_levelorder_next(c->zroot.znode, NULL); 922 level = znode->level; 923 printk(KERN_DEBUG "== Level %d ==\n", level); 924 while (znode) { 925 if (level != znode->level) { 926 level = znode->level; 927 printk(KERN_DEBUG "== Level %d ==\n", level); 928 } 929 dbg_dump_znode(c, znode); 930 znode = ubifs_tnc_levelorder_next(c->zroot.znode, znode); 931 } 932 printk(KERN_DEBUG "(pid %d) finish dumping TNC tree\n", current->pid); 933 } 934 935 static int dump_znode(struct ubifs_info *c, struct ubifs_znode *znode, 936 void *priv) 937 { 938 dbg_dump_znode(c, znode); 939 return 0; 940 } 941 942 /** 943 * dbg_dump_index - dump the on-flash index. 944 * @c: UBIFS file-system description object 945 * 946 * This function dumps whole UBIFS indexing B-tree, unlike 'dbg_dump_tnc()' 947 * which dumps only in-memory znodes and does not read znodes which from flash. 948 */ 949 void dbg_dump_index(struct ubifs_info *c) 950 { 951 dbg_walk_index(c, NULL, dump_znode, NULL); 952 } 953 954 /** 955 * dbg_save_space_info - save information about flash space. 956 * @c: UBIFS file-system description object 957 * 958 * This function saves information about UBIFS free space, dirty space, etc, in 959 * order to check it later. 960 */ 961 void dbg_save_space_info(struct ubifs_info *c) 962 { 963 struct ubifs_debug_info *d = c->dbg; 964 965 ubifs_get_lp_stats(c, &d->saved_lst); 966 967 spin_lock(&c->space_lock); 968 d->saved_free = ubifs_get_free_space_nolock(c); 969 spin_unlock(&c->space_lock); 970 } 971 972 /** 973 * dbg_check_space_info - check flash space information. 974 * @c: UBIFS file-system description object 975 * 976 * This function compares current flash space information with the information 977 * which was saved when the 'dbg_save_space_info()' function was called. 978 * Returns zero if the information has not changed, and %-EINVAL it it has 979 * changed. 980 */ 981 int dbg_check_space_info(struct ubifs_info *c) 982 { 983 struct ubifs_debug_info *d = c->dbg; 984 struct ubifs_lp_stats lst; 985 long long avail, free; 986 987 spin_lock(&c->space_lock); 988 avail = ubifs_calc_available(c, c->min_idx_lebs); 989 spin_unlock(&c->space_lock); 990 free = ubifs_get_free_space(c); 991 992 if (free != d->saved_free) { 993 ubifs_err("free space changed from %lld to %lld", 994 d->saved_free, free); 995 goto out; 996 } 997 998 return 0; 999 1000 out: 1001 ubifs_msg("saved lprops statistics dump"); 1002 dbg_dump_lstats(&d->saved_lst); 1003 ubifs_get_lp_stats(c, &lst); 1004 1005 ubifs_msg("current lprops statistics dump"); 1006 dbg_dump_lstats(&lst); 1007 1008 spin_lock(&c->space_lock); 1009 dbg_dump_budg(c); 1010 spin_unlock(&c->space_lock); 1011 dump_stack(); 1012 return -EINVAL; 1013 } 1014 1015 /** 1016 * dbg_check_synced_i_size - check synchronized inode size. 1017 * @inode: inode to check 1018 * 1019 * If inode is clean, synchronized inode size has to be equivalent to current 1020 * inode size. This function has to be called only for locked inodes (@i_mutex 1021 * has to be locked). Returns %0 if synchronized inode size if correct, and 1022 * %-EINVAL if not. 1023 */ 1024 int dbg_check_synced_i_size(struct inode *inode) 1025 { 1026 int err = 0; 1027 struct ubifs_inode *ui = ubifs_inode(inode); 1028 1029 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1030 return 0; 1031 if (!S_ISREG(inode->i_mode)) 1032 return 0; 1033 1034 mutex_lock(&ui->ui_mutex); 1035 spin_lock(&ui->ui_lock); 1036 if (ui->ui_size != ui->synced_i_size && !ui->dirty) { 1037 ubifs_err("ui_size is %lld, synced_i_size is %lld, but inode " 1038 "is clean", ui->ui_size, ui->synced_i_size); 1039 ubifs_err("i_ino %lu, i_mode %#x, i_size %lld", inode->i_ino, 1040 inode->i_mode, i_size_read(inode)); 1041 dbg_dump_stack(); 1042 err = -EINVAL; 1043 } 1044 spin_unlock(&ui->ui_lock); 1045 mutex_unlock(&ui->ui_mutex); 1046 return err; 1047 } 1048 1049 /* 1050 * dbg_check_dir - check directory inode size and link count. 1051 * @c: UBIFS file-system description object 1052 * @dir: the directory to calculate size for 1053 * @size: the result is returned here 1054 * 1055 * This function makes sure that directory size and link count are correct. 1056 * Returns zero in case of success and a negative error code in case of 1057 * failure. 1058 * 1059 * Note, it is good idea to make sure the @dir->i_mutex is locked before 1060 * calling this function. 1061 */ 1062 int dbg_check_dir_size(struct ubifs_info *c, const struct inode *dir) 1063 { 1064 unsigned int nlink = 2; 1065 union ubifs_key key; 1066 struct ubifs_dent_node *dent, *pdent = NULL; 1067 struct qstr nm = { .name = NULL }; 1068 loff_t size = UBIFS_INO_NODE_SZ; 1069 1070 if (!(ubifs_chk_flags & UBIFS_CHK_GEN)) 1071 return 0; 1072 1073 if (!S_ISDIR(dir->i_mode)) 1074 return 0; 1075 1076 lowest_dent_key(c, &key, dir->i_ino); 1077 while (1) { 1078 int err; 1079 1080 dent = ubifs_tnc_next_ent(c, &key, &nm); 1081 if (IS_ERR(dent)) { 1082 err = PTR_ERR(dent); 1083 if (err == -ENOENT) 1084 break; 1085 return err; 1086 } 1087 1088 nm.name = dent->name; 1089 nm.len = le16_to_cpu(dent->nlen); 1090 size += CALC_DENT_SIZE(nm.len); 1091 if (dent->type == UBIFS_ITYPE_DIR) 1092 nlink += 1; 1093 kfree(pdent); 1094 pdent = dent; 1095 key_read(c, &dent->key, &key); 1096 } 1097 kfree(pdent); 1098 1099 if (i_size_read(dir) != size) { 1100 ubifs_err("directory inode %lu has size %llu, " 1101 "but calculated size is %llu", dir->i_ino, 1102 (unsigned long long)i_size_read(dir), 1103 (unsigned long long)size); 1104 dump_stack(); 1105 return -EINVAL; 1106 } 1107 if (dir->i_nlink != nlink) { 1108 ubifs_err("directory inode %lu has nlink %u, but calculated " 1109 "nlink is %u", dir->i_ino, dir->i_nlink, nlink); 1110 dump_stack(); 1111 return -EINVAL; 1112 } 1113 1114 return 0; 1115 } 1116 1117 /** 1118 * dbg_check_key_order - make sure that colliding keys are properly ordered. 1119 * @c: UBIFS file-system description object 1120 * @zbr1: first zbranch 1121 * @zbr2: following zbranch 1122 * 1123 * In UBIFS indexing B-tree colliding keys has to be sorted in binary order of 1124 * names of the direntries/xentries which are referred by the keys. This 1125 * function reads direntries/xentries referred by @zbr1 and @zbr2 and makes 1126 * sure the name of direntry/xentry referred by @zbr1 is less than 1127 * direntry/xentry referred by @zbr2. Returns zero if this is true, %1 if not, 1128 * and a negative error code in case of failure. 1129 */ 1130 static int dbg_check_key_order(struct ubifs_info *c, struct ubifs_zbranch *zbr1, 1131 struct ubifs_zbranch *zbr2) 1132 { 1133 int err, nlen1, nlen2, cmp; 1134 struct ubifs_dent_node *dent1, *dent2; 1135 union ubifs_key key; 1136 1137 ubifs_assert(!keys_cmp(c, &zbr1->key, &zbr2->key)); 1138 dent1 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1139 if (!dent1) 1140 return -ENOMEM; 1141 dent2 = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS); 1142 if (!dent2) { 1143 err = -ENOMEM; 1144 goto out_free; 1145 } 1146 1147 err = ubifs_tnc_read_node(c, zbr1, dent1); 1148 if (err) 1149 goto out_free; 1150 err = ubifs_validate_entry(c, dent1); 1151 if (err) 1152 goto out_free; 1153 1154 err = ubifs_tnc_read_node(c, zbr2, dent2); 1155 if (err) 1156 goto out_free; 1157 err = ubifs_validate_entry(c, dent2); 1158 if (err) 1159 goto out_free; 1160 1161 /* Make sure node keys are the same as in zbranch */ 1162 err = 1; 1163 key_read(c, &dent1->key, &key); 1164 if (keys_cmp(c, &zbr1->key, &key)) { 1165 dbg_err("1st entry at %d:%d has key %s", zbr1->lnum, 1166 zbr1->offs, DBGKEY(&key)); 1167 dbg_err("but it should have key %s according to tnc", 1168 DBGKEY(&zbr1->key)); 1169 dbg_dump_node(c, dent1); 1170 goto out_free; 1171 } 1172 1173 key_read(c, &dent2->key, &key); 1174 if (keys_cmp(c, &zbr2->key, &key)) { 1175 dbg_err("2nd entry at %d:%d has key %s", zbr1->lnum, 1176 zbr1->offs, DBGKEY(&key)); 1177 dbg_err("but it should have key %s according to tnc", 1178 DBGKEY(&zbr2->key)); 1179 dbg_dump_node(c, dent2); 1180 goto out_free; 1181 } 1182 1183 nlen1 = le16_to_cpu(dent1->nlen); 1184 nlen2 = le16_to_cpu(dent2->nlen); 1185 1186 cmp = memcmp(dent1->name, dent2->name, min_t(int, nlen1, nlen2)); 1187 if (cmp < 0 || (cmp == 0 && nlen1 < nlen2)) { 1188 err = 0; 1189 goto out_free; 1190 } 1191 if (cmp == 0 && nlen1 == nlen2) 1192 dbg_err("2 xent/dent nodes with the same name"); 1193 else 1194 dbg_err("bad order of colliding key %s", 1195 DBGKEY(&key)); 1196 1197 ubifs_msg("first node at %d:%d\n", zbr1->lnum, zbr1->offs); 1198 dbg_dump_node(c, dent1); 1199 ubifs_msg("second node at %d:%d\n", zbr2->lnum, zbr2->offs); 1200 dbg_dump_node(c, dent2); 1201 1202 out_free: 1203 kfree(dent2); 1204 kfree(dent1); 1205 return err; 1206 } 1207 1208 /** 1209 * dbg_check_znode - check if znode is all right. 1210 * @c: UBIFS file-system description object 1211 * @zbr: zbranch which points to this znode 1212 * 1213 * This function makes sure that znode referred to by @zbr is all right. 1214 * Returns zero if it is, and %-EINVAL if it is not. 1215 */ 1216 static int dbg_check_znode(struct ubifs_info *c, struct ubifs_zbranch *zbr) 1217 { 1218 struct ubifs_znode *znode = zbr->znode; 1219 struct ubifs_znode *zp = znode->parent; 1220 int n, err, cmp; 1221 1222 if (znode->child_cnt <= 0 || znode->child_cnt > c->fanout) { 1223 err = 1; 1224 goto out; 1225 } 1226 if (znode->level < 0) { 1227 err = 2; 1228 goto out; 1229 } 1230 if (znode->iip < 0 || znode->iip >= c->fanout) { 1231 err = 3; 1232 goto out; 1233 } 1234 1235 if (zbr->len == 0) 1236 /* Only dirty zbranch may have no on-flash nodes */ 1237 if (!ubifs_zn_dirty(znode)) { 1238 err = 4; 1239 goto out; 1240 } 1241 1242 if (ubifs_zn_dirty(znode)) { 1243 /* 1244 * If znode is dirty, its parent has to be dirty as well. The 1245 * order of the operation is important, so we have to have 1246 * memory barriers. 1247 */ 1248 smp_mb(); 1249 if (zp && !ubifs_zn_dirty(zp)) { 1250 /* 1251 * The dirty flag is atomic and is cleared outside the 1252 * TNC mutex, so znode's dirty flag may now have 1253 * been cleared. The child is always cleared before the 1254 * parent, so we just need to check again. 1255 */ 1256 smp_mb(); 1257 if (ubifs_zn_dirty(znode)) { 1258 err = 5; 1259 goto out; 1260 } 1261 } 1262 } 1263 1264 if (zp) { 1265 const union ubifs_key *min, *max; 1266 1267 if (znode->level != zp->level - 1) { 1268 err = 6; 1269 goto out; 1270 } 1271 1272 /* Make sure the 'parent' pointer in our znode is correct */ 1273 err = ubifs_search_zbranch(c, zp, &zbr->key, &n); 1274 if (!err) { 1275 /* This zbranch does not exist in the parent */ 1276 err = 7; 1277 goto out; 1278 } 1279 1280 if (znode->iip >= zp->child_cnt) { 1281 err = 8; 1282 goto out; 1283 } 1284 1285 if (znode->iip != n) { 1286 /* This may happen only in case of collisions */ 1287 if (keys_cmp(c, &zp->zbranch[n].key, 1288 &zp->zbranch[znode->iip].key)) { 1289 err = 9; 1290 goto out; 1291 } 1292 n = znode->iip; 1293 } 1294 1295 /* 1296 * Make sure that the first key in our znode is greater than or 1297 * equal to the key in the pointing zbranch. 1298 */ 1299 min = &zbr->key; 1300 cmp = keys_cmp(c, min, &znode->zbranch[0].key); 1301 if (cmp == 1) { 1302 err = 10; 1303 goto out; 1304 } 1305 1306 if (n + 1 < zp->child_cnt) { 1307 max = &zp->zbranch[n + 1].key; 1308 1309 /* 1310 * Make sure the last key in our znode is less or 1311 * equivalent than the key in the zbranch which goes 1312 * after our pointing zbranch. 1313 */ 1314 cmp = keys_cmp(c, max, 1315 &znode->zbranch[znode->child_cnt - 1].key); 1316 if (cmp == -1) { 1317 err = 11; 1318 goto out; 1319 } 1320 } 1321 } else { 1322 /* This may only be root znode */ 1323 if (zbr != &c->zroot) { 1324 err = 12; 1325 goto out; 1326 } 1327 } 1328 1329 /* 1330 * Make sure that next key is greater or equivalent then the previous 1331 * one. 1332 */ 1333 for (n = 1; n < znode->child_cnt; n++) { 1334 cmp = keys_cmp(c, &znode->zbranch[n - 1].key, 1335 &znode->zbranch[n].key); 1336 if (cmp > 0) { 1337 err = 13; 1338 goto out; 1339 } 1340 if (cmp == 0) { 1341 /* This can only be keys with colliding hash */ 1342 if (!is_hash_key(c, &znode->zbranch[n].key)) { 1343 err = 14; 1344 goto out; 1345 } 1346 1347 if (znode->level != 0 || c->replaying) 1348 continue; 1349 1350 /* 1351 * Colliding keys should follow binary order of 1352 * corresponding xentry/dentry names. 1353 */ 1354 err = dbg_check_key_order(c, &znode->zbranch[n - 1], 1355 &znode->zbranch[n]); 1356 if (err < 0) 1357 return err; 1358 if (err) { 1359 err = 15; 1360 goto out; 1361 } 1362 } 1363 } 1364 1365 for (n = 0; n < znode->child_cnt; n++) { 1366 if (!znode->zbranch[n].znode && 1367 (znode->zbranch[n].lnum == 0 || 1368 znode->zbranch[n].len == 0)) { 1369 err = 16; 1370 goto out; 1371 } 1372 1373 if (znode->zbranch[n].lnum != 0 && 1374 znode->zbranch[n].len == 0) { 1375 err = 17; 1376 goto out; 1377 } 1378 1379 if (znode->zbranch[n].lnum == 0 && 1380 znode->zbranch[n].len != 0) { 1381 err = 18; 1382 goto out; 1383 } 1384 1385 if (znode->zbranch[n].lnum == 0 && 1386 znode->zbranch[n].offs != 0) { 1387 err = 19; 1388 goto out; 1389 } 1390 1391 if (znode->level != 0 && znode->zbranch[n].znode) 1392 if (znode->zbranch[n].znode->parent != znode) { 1393 err = 20; 1394 goto out; 1395 } 1396 } 1397 1398 return 0; 1399 1400 out: 1401 ubifs_err("failed, error %d", err); 1402 ubifs_msg("dump of the znode"); 1403 dbg_dump_znode(c, znode); 1404 if (zp) { 1405 ubifs_msg("dump of the parent znode"); 1406 dbg_dump_znode(c, zp); 1407 } 1408 dump_stack(); 1409 return -EINVAL; 1410 } 1411 1412 /** 1413 * dbg_check_tnc - check TNC tree. 1414 * @c: UBIFS file-system description object 1415 * @extra: do extra checks that are possible at start commit 1416 * 1417 * This function traverses whole TNC tree and checks every znode. Returns zero 1418 * if everything is all right and %-EINVAL if something is wrong with TNC. 1419 */ 1420 int dbg_check_tnc(struct ubifs_info *c, int extra) 1421 { 1422 struct ubifs_znode *znode; 1423 long clean_cnt = 0, dirty_cnt = 0; 1424 int err, last; 1425 1426 if (!(ubifs_chk_flags & UBIFS_CHK_TNC)) 1427 return 0; 1428 1429 ubifs_assert(mutex_is_locked(&c->tnc_mutex)); 1430 if (!c->zroot.znode) 1431 return 0; 1432 1433 znode = ubifs_tnc_postorder_first(c->zroot.znode); 1434 while (1) { 1435 struct ubifs_znode *prev; 1436 struct ubifs_zbranch *zbr; 1437 1438 if (!znode->parent) 1439 zbr = &c->zroot; 1440 else 1441 zbr = &znode->parent->zbranch[znode->iip]; 1442 1443 err = dbg_check_znode(c, zbr); 1444 if (err) 1445 return err; 1446 1447 if (extra) { 1448 if (ubifs_zn_dirty(znode)) 1449 dirty_cnt += 1; 1450 else 1451 clean_cnt += 1; 1452 } 1453 1454 prev = znode; 1455 znode = ubifs_tnc_postorder_next(znode); 1456 if (!znode) 1457 break; 1458 1459 /* 1460 * If the last key of this znode is equivalent to the first key 1461 * of the next znode (collision), then check order of the keys. 1462 */ 1463 last = prev->child_cnt - 1; 1464 if (prev->level == 0 && znode->level == 0 && !c->replaying && 1465 !keys_cmp(c, &prev->zbranch[last].key, 1466 &znode->zbranch[0].key)) { 1467 err = dbg_check_key_order(c, &prev->zbranch[last], 1468 &znode->zbranch[0]); 1469 if (err < 0) 1470 return err; 1471 if (err) { 1472 ubifs_msg("first znode"); 1473 dbg_dump_znode(c, prev); 1474 ubifs_msg("second znode"); 1475 dbg_dump_znode(c, znode); 1476 return -EINVAL; 1477 } 1478 } 1479 } 1480 1481 if (extra) { 1482 if (clean_cnt != atomic_long_read(&c->clean_zn_cnt)) { 1483 ubifs_err("incorrect clean_zn_cnt %ld, calculated %ld", 1484 atomic_long_read(&c->clean_zn_cnt), 1485 clean_cnt); 1486 return -EINVAL; 1487 } 1488 if (dirty_cnt != atomic_long_read(&c->dirty_zn_cnt)) { 1489 ubifs_err("incorrect dirty_zn_cnt %ld, calculated %ld", 1490 atomic_long_read(&c->dirty_zn_cnt), 1491 dirty_cnt); 1492 return -EINVAL; 1493 } 1494 } 1495 1496 return 0; 1497 } 1498 1499 /** 1500 * dbg_walk_index - walk the on-flash index. 1501 * @c: UBIFS file-system description object 1502 * @leaf_cb: called for each leaf node 1503 * @znode_cb: called for each indexing node 1504 * @priv: private data which is passed to callbacks 1505 * 1506 * This function walks the UBIFS index and calls the @leaf_cb for each leaf 1507 * node and @znode_cb for each indexing node. Returns zero in case of success 1508 * and a negative error code in case of failure. 1509 * 1510 * It would be better if this function removed every znode it pulled to into 1511 * the TNC, so that the behavior more closely matched the non-debugging 1512 * behavior. 1513 */ 1514 int dbg_walk_index(struct ubifs_info *c, dbg_leaf_callback leaf_cb, 1515 dbg_znode_callback znode_cb, void *priv) 1516 { 1517 int err; 1518 struct ubifs_zbranch *zbr; 1519 struct ubifs_znode *znode, *child; 1520 1521 mutex_lock(&c->tnc_mutex); 1522 /* If the root indexing node is not in TNC - pull it */ 1523 if (!c->zroot.znode) { 1524 c->zroot.znode = ubifs_load_znode(c, &c->zroot, NULL, 0); 1525 if (IS_ERR(c->zroot.znode)) { 1526 err = PTR_ERR(c->zroot.znode); 1527 c->zroot.znode = NULL; 1528 goto out_unlock; 1529 } 1530 } 1531 1532 /* 1533 * We are going to traverse the indexing tree in the postorder manner. 1534 * Go down and find the leftmost indexing node where we are going to 1535 * start from. 1536 */ 1537 znode = c->zroot.znode; 1538 while (znode->level > 0) { 1539 zbr = &znode->zbranch[0]; 1540 child = zbr->znode; 1541 if (!child) { 1542 child = ubifs_load_znode(c, zbr, znode, 0); 1543 if (IS_ERR(child)) { 1544 err = PTR_ERR(child); 1545 goto out_unlock; 1546 } 1547 zbr->znode = child; 1548 } 1549 1550 znode = child; 1551 } 1552 1553 /* Iterate over all indexing nodes */ 1554 while (1) { 1555 int idx; 1556 1557 cond_resched(); 1558 1559 if (znode_cb) { 1560 err = znode_cb(c, znode, priv); 1561 if (err) { 1562 ubifs_err("znode checking function returned " 1563 "error %d", err); 1564 dbg_dump_znode(c, znode); 1565 goto out_dump; 1566 } 1567 } 1568 if (leaf_cb && znode->level == 0) { 1569 for (idx = 0; idx < znode->child_cnt; idx++) { 1570 zbr = &znode->zbranch[idx]; 1571 err = leaf_cb(c, zbr, priv); 1572 if (err) { 1573 ubifs_err("leaf checking function " 1574 "returned error %d, for leaf " 1575 "at LEB %d:%d", 1576 err, zbr->lnum, zbr->offs); 1577 goto out_dump; 1578 } 1579 } 1580 } 1581 1582 if (!znode->parent) 1583 break; 1584 1585 idx = znode->iip + 1; 1586 znode = znode->parent; 1587 if (idx < znode->child_cnt) { 1588 /* Switch to the next index in the parent */ 1589 zbr = &znode->zbranch[idx]; 1590 child = zbr->znode; 1591 if (!child) { 1592 child = ubifs_load_znode(c, zbr, znode, idx); 1593 if (IS_ERR(child)) { 1594 err = PTR_ERR(child); 1595 goto out_unlock; 1596 } 1597 zbr->znode = child; 1598 } 1599 znode = child; 1600 } else 1601 /* 1602 * This is the last child, switch to the parent and 1603 * continue. 1604 */ 1605 continue; 1606 1607 /* Go to the lowest leftmost znode in the new sub-tree */ 1608 while (znode->level > 0) { 1609 zbr = &znode->zbranch[0]; 1610 child = zbr->znode; 1611 if (!child) { 1612 child = ubifs_load_znode(c, zbr, znode, 0); 1613 if (IS_ERR(child)) { 1614 err = PTR_ERR(child); 1615 goto out_unlock; 1616 } 1617 zbr->znode = child; 1618 } 1619 znode = child; 1620 } 1621 } 1622 1623 mutex_unlock(&c->tnc_mutex); 1624 return 0; 1625 1626 out_dump: 1627 if (znode->parent) 1628 zbr = &znode->parent->zbranch[znode->iip]; 1629 else 1630 zbr = &c->zroot; 1631 ubifs_msg("dump of znode at LEB %d:%d", zbr->lnum, zbr->offs); 1632 dbg_dump_znode(c, znode); 1633 out_unlock: 1634 mutex_unlock(&c->tnc_mutex); 1635 return err; 1636 } 1637 1638 /** 1639 * add_size - add znode size to partially calculated index size. 1640 * @c: UBIFS file-system description object 1641 * @znode: znode to add size for 1642 * @priv: partially calculated index size 1643 * 1644 * This is a helper function for 'dbg_check_idx_size()' which is called for 1645 * every indexing node and adds its size to the 'long long' variable pointed to 1646 * by @priv. 1647 */ 1648 static int add_size(struct ubifs_info *c, struct ubifs_znode *znode, void *priv) 1649 { 1650 long long *idx_size = priv; 1651 int add; 1652 1653 add = ubifs_idx_node_sz(c, znode->child_cnt); 1654 add = ALIGN(add, 8); 1655 *idx_size += add; 1656 return 0; 1657 } 1658 1659 /** 1660 * dbg_check_idx_size - check index size. 1661 * @c: UBIFS file-system description object 1662 * @idx_size: size to check 1663 * 1664 * This function walks the UBIFS index, calculates its size and checks that the 1665 * size is equivalent to @idx_size. Returns zero in case of success and a 1666 * negative error code in case of failure. 1667 */ 1668 int dbg_check_idx_size(struct ubifs_info *c, long long idx_size) 1669 { 1670 int err; 1671 long long calc = 0; 1672 1673 if (!(ubifs_chk_flags & UBIFS_CHK_IDX_SZ)) 1674 return 0; 1675 1676 err = dbg_walk_index(c, NULL, add_size, &calc); 1677 if (err) { 1678 ubifs_err("error %d while walking the index", err); 1679 return err; 1680 } 1681 1682 if (calc != idx_size) { 1683 ubifs_err("index size check failed: calculated size is %lld, " 1684 "should be %lld", calc, idx_size); 1685 dump_stack(); 1686 return -EINVAL; 1687 } 1688 1689 return 0; 1690 } 1691 1692 /** 1693 * struct fsck_inode - information about an inode used when checking the file-system. 1694 * @rb: link in the RB-tree of inodes 1695 * @inum: inode number 1696 * @mode: inode type, permissions, etc 1697 * @nlink: inode link count 1698 * @xattr_cnt: count of extended attributes 1699 * @references: how many directory/xattr entries refer this inode (calculated 1700 * while walking the index) 1701 * @calc_cnt: for directory inode count of child directories 1702 * @size: inode size (read from on-flash inode) 1703 * @xattr_sz: summary size of all extended attributes (read from on-flash 1704 * inode) 1705 * @calc_sz: for directories calculated directory size 1706 * @calc_xcnt: count of extended attributes 1707 * @calc_xsz: calculated summary size of all extended attributes 1708 * @xattr_nms: sum of lengths of all extended attribute names belonging to this 1709 * inode (read from on-flash inode) 1710 * @calc_xnms: calculated sum of lengths of all extended attribute names 1711 */ 1712 struct fsck_inode { 1713 struct rb_node rb; 1714 ino_t inum; 1715 umode_t mode; 1716 unsigned int nlink; 1717 unsigned int xattr_cnt; 1718 int references; 1719 int calc_cnt; 1720 long long size; 1721 unsigned int xattr_sz; 1722 long long calc_sz; 1723 long long calc_xcnt; 1724 long long calc_xsz; 1725 unsigned int xattr_nms; 1726 long long calc_xnms; 1727 }; 1728 1729 /** 1730 * struct fsck_data - private FS checking information. 1731 * @inodes: RB-tree of all inodes (contains @struct fsck_inode objects) 1732 */ 1733 struct fsck_data { 1734 struct rb_root inodes; 1735 }; 1736 1737 /** 1738 * add_inode - add inode information to RB-tree of inodes. 1739 * @c: UBIFS file-system description object 1740 * @fsckd: FS checking information 1741 * @ino: raw UBIFS inode to add 1742 * 1743 * This is a helper function for 'check_leaf()' which adds information about 1744 * inode @ino to the RB-tree of inodes. Returns inode information pointer in 1745 * case of success and a negative error code in case of failure. 1746 */ 1747 static struct fsck_inode *add_inode(struct ubifs_info *c, 1748 struct fsck_data *fsckd, 1749 struct ubifs_ino_node *ino) 1750 { 1751 struct rb_node **p, *parent = NULL; 1752 struct fsck_inode *fscki; 1753 ino_t inum = key_inum_flash(c, &ino->key); 1754 1755 p = &fsckd->inodes.rb_node; 1756 while (*p) { 1757 parent = *p; 1758 fscki = rb_entry(parent, struct fsck_inode, rb); 1759 if (inum < fscki->inum) 1760 p = &(*p)->rb_left; 1761 else if (inum > fscki->inum) 1762 p = &(*p)->rb_right; 1763 else 1764 return fscki; 1765 } 1766 1767 if (inum > c->highest_inum) { 1768 ubifs_err("too high inode number, max. is %lu", 1769 (unsigned long)c->highest_inum); 1770 return ERR_PTR(-EINVAL); 1771 } 1772 1773 fscki = kzalloc(sizeof(struct fsck_inode), GFP_NOFS); 1774 if (!fscki) 1775 return ERR_PTR(-ENOMEM); 1776 1777 fscki->inum = inum; 1778 fscki->nlink = le32_to_cpu(ino->nlink); 1779 fscki->size = le64_to_cpu(ino->size); 1780 fscki->xattr_cnt = le32_to_cpu(ino->xattr_cnt); 1781 fscki->xattr_sz = le32_to_cpu(ino->xattr_size); 1782 fscki->xattr_nms = le32_to_cpu(ino->xattr_names); 1783 fscki->mode = le32_to_cpu(ino->mode); 1784 if (S_ISDIR(fscki->mode)) { 1785 fscki->calc_sz = UBIFS_INO_NODE_SZ; 1786 fscki->calc_cnt = 2; 1787 } 1788 rb_link_node(&fscki->rb, parent, p); 1789 rb_insert_color(&fscki->rb, &fsckd->inodes); 1790 return fscki; 1791 } 1792 1793 /** 1794 * search_inode - search inode in the RB-tree of inodes. 1795 * @fsckd: FS checking information 1796 * @inum: inode number to search 1797 * 1798 * This is a helper function for 'check_leaf()' which searches inode @inum in 1799 * the RB-tree of inodes and returns an inode information pointer or %NULL if 1800 * the inode was not found. 1801 */ 1802 static struct fsck_inode *search_inode(struct fsck_data *fsckd, ino_t inum) 1803 { 1804 struct rb_node *p; 1805 struct fsck_inode *fscki; 1806 1807 p = fsckd->inodes.rb_node; 1808 while (p) { 1809 fscki = rb_entry(p, struct fsck_inode, rb); 1810 if (inum < fscki->inum) 1811 p = p->rb_left; 1812 else if (inum > fscki->inum) 1813 p = p->rb_right; 1814 else 1815 return fscki; 1816 } 1817 return NULL; 1818 } 1819 1820 /** 1821 * read_add_inode - read inode node and add it to RB-tree of inodes. 1822 * @c: UBIFS file-system description object 1823 * @fsckd: FS checking information 1824 * @inum: inode number to read 1825 * 1826 * This is a helper function for 'check_leaf()' which finds inode node @inum in 1827 * the index, reads it, and adds it to the RB-tree of inodes. Returns inode 1828 * information pointer in case of success and a negative error code in case of 1829 * failure. 1830 */ 1831 static struct fsck_inode *read_add_inode(struct ubifs_info *c, 1832 struct fsck_data *fsckd, ino_t inum) 1833 { 1834 int n, err; 1835 union ubifs_key key; 1836 struct ubifs_znode *znode; 1837 struct ubifs_zbranch *zbr; 1838 struct ubifs_ino_node *ino; 1839 struct fsck_inode *fscki; 1840 1841 fscki = search_inode(fsckd, inum); 1842 if (fscki) 1843 return fscki; 1844 1845 ino_key_init(c, &key, inum); 1846 err = ubifs_lookup_level0(c, &key, &znode, &n); 1847 if (!err) { 1848 ubifs_err("inode %lu not found in index", (unsigned long)inum); 1849 return ERR_PTR(-ENOENT); 1850 } else if (err < 0) { 1851 ubifs_err("error %d while looking up inode %lu", 1852 err, (unsigned long)inum); 1853 return ERR_PTR(err); 1854 } 1855 1856 zbr = &znode->zbranch[n]; 1857 if (zbr->len < UBIFS_INO_NODE_SZ) { 1858 ubifs_err("bad node %lu node length %d", 1859 (unsigned long)inum, zbr->len); 1860 return ERR_PTR(-EINVAL); 1861 } 1862 1863 ino = kmalloc(zbr->len, GFP_NOFS); 1864 if (!ino) 1865 return ERR_PTR(-ENOMEM); 1866 1867 err = ubifs_tnc_read_node(c, zbr, ino); 1868 if (err) { 1869 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 1870 zbr->lnum, zbr->offs, err); 1871 kfree(ino); 1872 return ERR_PTR(err); 1873 } 1874 1875 fscki = add_inode(c, fsckd, ino); 1876 kfree(ino); 1877 if (IS_ERR(fscki)) { 1878 ubifs_err("error %ld while adding inode %lu node", 1879 PTR_ERR(fscki), (unsigned long)inum); 1880 return fscki; 1881 } 1882 1883 return fscki; 1884 } 1885 1886 /** 1887 * check_leaf - check leaf node. 1888 * @c: UBIFS file-system description object 1889 * @zbr: zbranch of the leaf node to check 1890 * @priv: FS checking information 1891 * 1892 * This is a helper function for 'dbg_check_filesystem()' which is called for 1893 * every single leaf node while walking the indexing tree. It checks that the 1894 * leaf node referred from the indexing tree exists, has correct CRC, and does 1895 * some other basic validation. This function is also responsible for building 1896 * an RB-tree of inodes - it adds all inodes into the RB-tree. It also 1897 * calculates reference count, size, etc for each inode in order to later 1898 * compare them to the information stored inside the inodes and detect possible 1899 * inconsistencies. Returns zero in case of success and a negative error code 1900 * in case of failure. 1901 */ 1902 static int check_leaf(struct ubifs_info *c, struct ubifs_zbranch *zbr, 1903 void *priv) 1904 { 1905 ino_t inum; 1906 void *node; 1907 struct ubifs_ch *ch; 1908 int err, type = key_type(c, &zbr->key); 1909 struct fsck_inode *fscki; 1910 1911 if (zbr->len < UBIFS_CH_SZ) { 1912 ubifs_err("bad leaf length %d (LEB %d:%d)", 1913 zbr->len, zbr->lnum, zbr->offs); 1914 return -EINVAL; 1915 } 1916 1917 node = kmalloc(zbr->len, GFP_NOFS); 1918 if (!node) 1919 return -ENOMEM; 1920 1921 err = ubifs_tnc_read_node(c, zbr, node); 1922 if (err) { 1923 ubifs_err("cannot read leaf node at LEB %d:%d, error %d", 1924 zbr->lnum, zbr->offs, err); 1925 goto out_free; 1926 } 1927 1928 /* If this is an inode node, add it to RB-tree of inodes */ 1929 if (type == UBIFS_INO_KEY) { 1930 fscki = add_inode(c, priv, node); 1931 if (IS_ERR(fscki)) { 1932 err = PTR_ERR(fscki); 1933 ubifs_err("error %d while adding inode node", err); 1934 goto out_dump; 1935 } 1936 goto out; 1937 } 1938 1939 if (type != UBIFS_DENT_KEY && type != UBIFS_XENT_KEY && 1940 type != UBIFS_DATA_KEY) { 1941 ubifs_err("unexpected node type %d at LEB %d:%d", 1942 type, zbr->lnum, zbr->offs); 1943 err = -EINVAL; 1944 goto out_free; 1945 } 1946 1947 ch = node; 1948 if (le64_to_cpu(ch->sqnum) > c->max_sqnum) { 1949 ubifs_err("too high sequence number, max. is %llu", 1950 c->max_sqnum); 1951 err = -EINVAL; 1952 goto out_dump; 1953 } 1954 1955 if (type == UBIFS_DATA_KEY) { 1956 long long blk_offs; 1957 struct ubifs_data_node *dn = node; 1958 1959 /* 1960 * Search the inode node this data node belongs to and insert 1961 * it to the RB-tree of inodes. 1962 */ 1963 inum = key_inum_flash(c, &dn->key); 1964 fscki = read_add_inode(c, priv, inum); 1965 if (IS_ERR(fscki)) { 1966 err = PTR_ERR(fscki); 1967 ubifs_err("error %d while processing data node and " 1968 "trying to find inode node %lu", 1969 err, (unsigned long)inum); 1970 goto out_dump; 1971 } 1972 1973 /* Make sure the data node is within inode size */ 1974 blk_offs = key_block_flash(c, &dn->key); 1975 blk_offs <<= UBIFS_BLOCK_SHIFT; 1976 blk_offs += le32_to_cpu(dn->size); 1977 if (blk_offs > fscki->size) { 1978 ubifs_err("data node at LEB %d:%d is not within inode " 1979 "size %lld", zbr->lnum, zbr->offs, 1980 fscki->size); 1981 err = -EINVAL; 1982 goto out_dump; 1983 } 1984 } else { 1985 int nlen; 1986 struct ubifs_dent_node *dent = node; 1987 struct fsck_inode *fscki1; 1988 1989 err = ubifs_validate_entry(c, dent); 1990 if (err) 1991 goto out_dump; 1992 1993 /* 1994 * Search the inode node this entry refers to and the parent 1995 * inode node and insert them to the RB-tree of inodes. 1996 */ 1997 inum = le64_to_cpu(dent->inum); 1998 fscki = read_add_inode(c, priv, inum); 1999 if (IS_ERR(fscki)) { 2000 err = PTR_ERR(fscki); 2001 ubifs_err("error %d while processing entry node and " 2002 "trying to find inode node %lu", 2003 err, (unsigned long)inum); 2004 goto out_dump; 2005 } 2006 2007 /* Count how many direntries or xentries refers this inode */ 2008 fscki->references += 1; 2009 2010 inum = key_inum_flash(c, &dent->key); 2011 fscki1 = read_add_inode(c, priv, inum); 2012 if (IS_ERR(fscki1)) { 2013 err = PTR_ERR(fscki1); 2014 ubifs_err("error %d while processing entry node and " 2015 "trying to find parent inode node %lu", 2016 err, (unsigned long)inum); 2017 goto out_dump; 2018 } 2019 2020 nlen = le16_to_cpu(dent->nlen); 2021 if (type == UBIFS_XENT_KEY) { 2022 fscki1->calc_xcnt += 1; 2023 fscki1->calc_xsz += CALC_DENT_SIZE(nlen); 2024 fscki1->calc_xsz += CALC_XATTR_BYTES(fscki->size); 2025 fscki1->calc_xnms += nlen; 2026 } else { 2027 fscki1->calc_sz += CALC_DENT_SIZE(nlen); 2028 if (dent->type == UBIFS_ITYPE_DIR) 2029 fscki1->calc_cnt += 1; 2030 } 2031 } 2032 2033 out: 2034 kfree(node); 2035 return 0; 2036 2037 out_dump: 2038 ubifs_msg("dump of node at LEB %d:%d", zbr->lnum, zbr->offs); 2039 dbg_dump_node(c, node); 2040 out_free: 2041 kfree(node); 2042 return err; 2043 } 2044 2045 /** 2046 * free_inodes - free RB-tree of inodes. 2047 * @fsckd: FS checking information 2048 */ 2049 static void free_inodes(struct fsck_data *fsckd) 2050 { 2051 struct rb_node *this = fsckd->inodes.rb_node; 2052 struct fsck_inode *fscki; 2053 2054 while (this) { 2055 if (this->rb_left) 2056 this = this->rb_left; 2057 else if (this->rb_right) 2058 this = this->rb_right; 2059 else { 2060 fscki = rb_entry(this, struct fsck_inode, rb); 2061 this = rb_parent(this); 2062 if (this) { 2063 if (this->rb_left == &fscki->rb) 2064 this->rb_left = NULL; 2065 else 2066 this->rb_right = NULL; 2067 } 2068 kfree(fscki); 2069 } 2070 } 2071 } 2072 2073 /** 2074 * check_inodes - checks all inodes. 2075 * @c: UBIFS file-system description object 2076 * @fsckd: FS checking information 2077 * 2078 * This is a helper function for 'dbg_check_filesystem()' which walks the 2079 * RB-tree of inodes after the index scan has been finished, and checks that 2080 * inode nlink, size, etc are correct. Returns zero if inodes are fine, 2081 * %-EINVAL if not, and a negative error code in case of failure. 2082 */ 2083 static int check_inodes(struct ubifs_info *c, struct fsck_data *fsckd) 2084 { 2085 int n, err; 2086 union ubifs_key key; 2087 struct ubifs_znode *znode; 2088 struct ubifs_zbranch *zbr; 2089 struct ubifs_ino_node *ino; 2090 struct fsck_inode *fscki; 2091 struct rb_node *this = rb_first(&fsckd->inodes); 2092 2093 while (this) { 2094 fscki = rb_entry(this, struct fsck_inode, rb); 2095 this = rb_next(this); 2096 2097 if (S_ISDIR(fscki->mode)) { 2098 /* 2099 * Directories have to have exactly one reference (they 2100 * cannot have hardlinks), although root inode is an 2101 * exception. 2102 */ 2103 if (fscki->inum != UBIFS_ROOT_INO && 2104 fscki->references != 1) { 2105 ubifs_err("directory inode %lu has %d " 2106 "direntries which refer it, but " 2107 "should be 1", 2108 (unsigned long)fscki->inum, 2109 fscki->references); 2110 goto out_dump; 2111 } 2112 if (fscki->inum == UBIFS_ROOT_INO && 2113 fscki->references != 0) { 2114 ubifs_err("root inode %lu has non-zero (%d) " 2115 "direntries which refer it", 2116 (unsigned long)fscki->inum, 2117 fscki->references); 2118 goto out_dump; 2119 } 2120 if (fscki->calc_sz != fscki->size) { 2121 ubifs_err("directory inode %lu size is %lld, " 2122 "but calculated size is %lld", 2123 (unsigned long)fscki->inum, 2124 fscki->size, fscki->calc_sz); 2125 goto out_dump; 2126 } 2127 if (fscki->calc_cnt != fscki->nlink) { 2128 ubifs_err("directory inode %lu nlink is %d, " 2129 "but calculated nlink is %d", 2130 (unsigned long)fscki->inum, 2131 fscki->nlink, fscki->calc_cnt); 2132 goto out_dump; 2133 } 2134 } else { 2135 if (fscki->references != fscki->nlink) { 2136 ubifs_err("inode %lu nlink is %d, but " 2137 "calculated nlink is %d", 2138 (unsigned long)fscki->inum, 2139 fscki->nlink, fscki->references); 2140 goto out_dump; 2141 } 2142 } 2143 if (fscki->xattr_sz != fscki->calc_xsz) { 2144 ubifs_err("inode %lu has xattr size %u, but " 2145 "calculated size is %lld", 2146 (unsigned long)fscki->inum, fscki->xattr_sz, 2147 fscki->calc_xsz); 2148 goto out_dump; 2149 } 2150 if (fscki->xattr_cnt != fscki->calc_xcnt) { 2151 ubifs_err("inode %lu has %u xattrs, but " 2152 "calculated count is %lld", 2153 (unsigned long)fscki->inum, 2154 fscki->xattr_cnt, fscki->calc_xcnt); 2155 goto out_dump; 2156 } 2157 if (fscki->xattr_nms != fscki->calc_xnms) { 2158 ubifs_err("inode %lu has xattr names' size %u, but " 2159 "calculated names' size is %lld", 2160 (unsigned long)fscki->inum, fscki->xattr_nms, 2161 fscki->calc_xnms); 2162 goto out_dump; 2163 } 2164 } 2165 2166 return 0; 2167 2168 out_dump: 2169 /* Read the bad inode and dump it */ 2170 ino_key_init(c, &key, fscki->inum); 2171 err = ubifs_lookup_level0(c, &key, &znode, &n); 2172 if (!err) { 2173 ubifs_err("inode %lu not found in index", 2174 (unsigned long)fscki->inum); 2175 return -ENOENT; 2176 } else if (err < 0) { 2177 ubifs_err("error %d while looking up inode %lu", 2178 err, (unsigned long)fscki->inum); 2179 return err; 2180 } 2181 2182 zbr = &znode->zbranch[n]; 2183 ino = kmalloc(zbr->len, GFP_NOFS); 2184 if (!ino) 2185 return -ENOMEM; 2186 2187 err = ubifs_tnc_read_node(c, zbr, ino); 2188 if (err) { 2189 ubifs_err("cannot read inode node at LEB %d:%d, error %d", 2190 zbr->lnum, zbr->offs, err); 2191 kfree(ino); 2192 return err; 2193 } 2194 2195 ubifs_msg("dump of the inode %lu sitting in LEB %d:%d", 2196 (unsigned long)fscki->inum, zbr->lnum, zbr->offs); 2197 dbg_dump_node(c, ino); 2198 kfree(ino); 2199 return -EINVAL; 2200 } 2201 2202 /** 2203 * dbg_check_filesystem - check the file-system. 2204 * @c: UBIFS file-system description object 2205 * 2206 * This function checks the file system, namely: 2207 * o makes sure that all leaf nodes exist and their CRCs are correct; 2208 * o makes sure inode nlink, size, xattr size/count are correct (for all 2209 * inodes). 2210 * 2211 * The function reads whole indexing tree and all nodes, so it is pretty 2212 * heavy-weight. Returns zero if the file-system is consistent, %-EINVAL if 2213 * not, and a negative error code in case of failure. 2214 */ 2215 int dbg_check_filesystem(struct ubifs_info *c) 2216 { 2217 int err; 2218 struct fsck_data fsckd; 2219 2220 if (!(ubifs_chk_flags & UBIFS_CHK_FS)) 2221 return 0; 2222 2223 fsckd.inodes = RB_ROOT; 2224 err = dbg_walk_index(c, check_leaf, NULL, &fsckd); 2225 if (err) 2226 goto out_free; 2227 2228 err = check_inodes(c, &fsckd); 2229 if (err) 2230 goto out_free; 2231 2232 free_inodes(&fsckd); 2233 return 0; 2234 2235 out_free: 2236 ubifs_err("file-system check failed with error %d", err); 2237 dump_stack(); 2238 free_inodes(&fsckd); 2239 return err; 2240 } 2241 2242 static int invocation_cnt; 2243 2244 int dbg_force_in_the_gaps(void) 2245 { 2246 if (!dbg_force_in_the_gaps_enabled) 2247 return 0; 2248 /* Force in-the-gaps every 8th commit */ 2249 return !((invocation_cnt++) & 0x7); 2250 } 2251 2252 /* Failure mode for recovery testing */ 2253 2254 #define chance(n, d) (simple_rand() <= (n) * 32768LL / (d)) 2255 2256 struct failure_mode_info { 2257 struct list_head list; 2258 struct ubifs_info *c; 2259 }; 2260 2261 static LIST_HEAD(fmi_list); 2262 static DEFINE_SPINLOCK(fmi_lock); 2263 2264 static unsigned int next; 2265 2266 static int simple_rand(void) 2267 { 2268 if (next == 0) 2269 next = current->pid; 2270 next = next * 1103515245 + 12345; 2271 return (next >> 16) & 32767; 2272 } 2273 2274 static void failure_mode_init(struct ubifs_info *c) 2275 { 2276 struct failure_mode_info *fmi; 2277 2278 fmi = kmalloc(sizeof(struct failure_mode_info), GFP_NOFS); 2279 if (!fmi) { 2280 ubifs_err("Failed to register failure mode - no memory"); 2281 return; 2282 } 2283 fmi->c = c; 2284 spin_lock(&fmi_lock); 2285 list_add_tail(&fmi->list, &fmi_list); 2286 spin_unlock(&fmi_lock); 2287 } 2288 2289 static void failure_mode_exit(struct ubifs_info *c) 2290 { 2291 struct failure_mode_info *fmi, *tmp; 2292 2293 spin_lock(&fmi_lock); 2294 list_for_each_entry_safe(fmi, tmp, &fmi_list, list) 2295 if (fmi->c == c) { 2296 list_del(&fmi->list); 2297 kfree(fmi); 2298 } 2299 spin_unlock(&fmi_lock); 2300 } 2301 2302 static struct ubifs_info *dbg_find_info(struct ubi_volume_desc *desc) 2303 { 2304 struct failure_mode_info *fmi; 2305 2306 spin_lock(&fmi_lock); 2307 list_for_each_entry(fmi, &fmi_list, list) 2308 if (fmi->c->ubi == desc) { 2309 struct ubifs_info *c = fmi->c; 2310 2311 spin_unlock(&fmi_lock); 2312 return c; 2313 } 2314 spin_unlock(&fmi_lock); 2315 return NULL; 2316 } 2317 2318 static int in_failure_mode(struct ubi_volume_desc *desc) 2319 { 2320 struct ubifs_info *c = dbg_find_info(desc); 2321 2322 if (c && dbg_failure_mode) 2323 return c->dbg->failure_mode; 2324 return 0; 2325 } 2326 2327 static int do_fail(struct ubi_volume_desc *desc, int lnum, int write) 2328 { 2329 struct ubifs_info *c = dbg_find_info(desc); 2330 struct ubifs_debug_info *d; 2331 2332 if (!c || !dbg_failure_mode) 2333 return 0; 2334 d = c->dbg; 2335 if (d->failure_mode) 2336 return 1; 2337 if (!d->fail_cnt) { 2338 /* First call - decide delay to failure */ 2339 if (chance(1, 2)) { 2340 unsigned int delay = 1 << (simple_rand() >> 11); 2341 2342 if (chance(1, 2)) { 2343 d->fail_delay = 1; 2344 d->fail_timeout = jiffies + 2345 msecs_to_jiffies(delay); 2346 dbg_rcvry("failing after %ums", delay); 2347 } else { 2348 d->fail_delay = 2; 2349 d->fail_cnt_max = delay; 2350 dbg_rcvry("failing after %u calls", delay); 2351 } 2352 } 2353 d->fail_cnt += 1; 2354 } 2355 /* Determine if failure delay has expired */ 2356 if (d->fail_delay == 1) { 2357 if (time_before(jiffies, d->fail_timeout)) 2358 return 0; 2359 } else if (d->fail_delay == 2) 2360 if (d->fail_cnt++ < d->fail_cnt_max) 2361 return 0; 2362 if (lnum == UBIFS_SB_LNUM) { 2363 if (write) { 2364 if (chance(1, 2)) 2365 return 0; 2366 } else if (chance(19, 20)) 2367 return 0; 2368 dbg_rcvry("failing in super block LEB %d", lnum); 2369 } else if (lnum == UBIFS_MST_LNUM || lnum == UBIFS_MST_LNUM + 1) { 2370 if (chance(19, 20)) 2371 return 0; 2372 dbg_rcvry("failing in master LEB %d", lnum); 2373 } else if (lnum >= UBIFS_LOG_LNUM && lnum <= c->log_last) { 2374 if (write) { 2375 if (chance(99, 100)) 2376 return 0; 2377 } else if (chance(399, 400)) 2378 return 0; 2379 dbg_rcvry("failing in log LEB %d", lnum); 2380 } else if (lnum >= c->lpt_first && lnum <= c->lpt_last) { 2381 if (write) { 2382 if (chance(7, 8)) 2383 return 0; 2384 } else if (chance(19, 20)) 2385 return 0; 2386 dbg_rcvry("failing in LPT LEB %d", lnum); 2387 } else if (lnum >= c->orph_first && lnum <= c->orph_last) { 2388 if (write) { 2389 if (chance(1, 2)) 2390 return 0; 2391 } else if (chance(9, 10)) 2392 return 0; 2393 dbg_rcvry("failing in orphan LEB %d", lnum); 2394 } else if (lnum == c->ihead_lnum) { 2395 if (chance(99, 100)) 2396 return 0; 2397 dbg_rcvry("failing in index head LEB %d", lnum); 2398 } else if (c->jheads && lnum == c->jheads[GCHD].wbuf.lnum) { 2399 if (chance(9, 10)) 2400 return 0; 2401 dbg_rcvry("failing in GC head LEB %d", lnum); 2402 } else if (write && !RB_EMPTY_ROOT(&c->buds) && 2403 !ubifs_search_bud(c, lnum)) { 2404 if (chance(19, 20)) 2405 return 0; 2406 dbg_rcvry("failing in non-bud LEB %d", lnum); 2407 } else if (c->cmt_state == COMMIT_RUNNING_BACKGROUND || 2408 c->cmt_state == COMMIT_RUNNING_REQUIRED) { 2409 if (chance(999, 1000)) 2410 return 0; 2411 dbg_rcvry("failing in bud LEB %d commit running", lnum); 2412 } else { 2413 if (chance(9999, 10000)) 2414 return 0; 2415 dbg_rcvry("failing in bud LEB %d commit not running", lnum); 2416 } 2417 ubifs_err("*** SETTING FAILURE MODE ON (LEB %d) ***", lnum); 2418 d->failure_mode = 1; 2419 dump_stack(); 2420 return 1; 2421 } 2422 2423 static void cut_data(const void *buf, int len) 2424 { 2425 int flen, i; 2426 unsigned char *p = (void *)buf; 2427 2428 flen = (len * (long long)simple_rand()) >> 15; 2429 for (i = flen; i < len; i++) 2430 p[i] = 0xff; 2431 } 2432 2433 int dbg_leb_read(struct ubi_volume_desc *desc, int lnum, char *buf, int offset, 2434 int len, int check) 2435 { 2436 if (in_failure_mode(desc)) 2437 return -EIO; 2438 return ubi_leb_read(desc, lnum, buf, offset, len, check); 2439 } 2440 2441 int dbg_leb_write(struct ubi_volume_desc *desc, int lnum, const void *buf, 2442 int offset, int len, int dtype) 2443 { 2444 int err, failing; 2445 2446 if (in_failure_mode(desc)) 2447 return -EIO; 2448 failing = do_fail(desc, lnum, 1); 2449 if (failing) 2450 cut_data(buf, len); 2451 err = ubi_leb_write(desc, lnum, buf, offset, len, dtype); 2452 if (err) 2453 return err; 2454 if (failing) 2455 return -EIO; 2456 return 0; 2457 } 2458 2459 int dbg_leb_change(struct ubi_volume_desc *desc, int lnum, const void *buf, 2460 int len, int dtype) 2461 { 2462 int err; 2463 2464 if (do_fail(desc, lnum, 1)) 2465 return -EIO; 2466 err = ubi_leb_change(desc, lnum, buf, len, dtype); 2467 if (err) 2468 return err; 2469 if (do_fail(desc, lnum, 1)) 2470 return -EIO; 2471 return 0; 2472 } 2473 2474 int dbg_leb_erase(struct ubi_volume_desc *desc, int lnum) 2475 { 2476 int err; 2477 2478 if (do_fail(desc, lnum, 0)) 2479 return -EIO; 2480 err = ubi_leb_erase(desc, lnum); 2481 if (err) 2482 return err; 2483 if (do_fail(desc, lnum, 0)) 2484 return -EIO; 2485 return 0; 2486 } 2487 2488 int dbg_leb_unmap(struct ubi_volume_desc *desc, int lnum) 2489 { 2490 int err; 2491 2492 if (do_fail(desc, lnum, 0)) 2493 return -EIO; 2494 err = ubi_leb_unmap(desc, lnum); 2495 if (err) 2496 return err; 2497 if (do_fail(desc, lnum, 0)) 2498 return -EIO; 2499 return 0; 2500 } 2501 2502 int dbg_is_mapped(struct ubi_volume_desc *desc, int lnum) 2503 { 2504 if (in_failure_mode(desc)) 2505 return -EIO; 2506 return ubi_is_mapped(desc, lnum); 2507 } 2508 2509 int dbg_leb_map(struct ubi_volume_desc *desc, int lnum, int dtype) 2510 { 2511 int err; 2512 2513 if (do_fail(desc, lnum, 0)) 2514 return -EIO; 2515 err = ubi_leb_map(desc, lnum, dtype); 2516 if (err) 2517 return err; 2518 if (do_fail(desc, lnum, 0)) 2519 return -EIO; 2520 return 0; 2521 } 2522 2523 /** 2524 * ubifs_debugging_init - initialize UBIFS debugging. 2525 * @c: UBIFS file-system description object 2526 * 2527 * This function initializes debugging-related data for the file system. 2528 * Returns zero in case of success and a negative error code in case of 2529 * failure. 2530 */ 2531 int ubifs_debugging_init(struct ubifs_info *c) 2532 { 2533 c->dbg = kzalloc(sizeof(struct ubifs_debug_info), GFP_KERNEL); 2534 if (!c->dbg) 2535 return -ENOMEM; 2536 2537 c->dbg->buf = vmalloc(c->leb_size); 2538 if (!c->dbg->buf) 2539 goto out; 2540 2541 failure_mode_init(c); 2542 return 0; 2543 2544 out: 2545 kfree(c->dbg); 2546 return -ENOMEM; 2547 } 2548 2549 /** 2550 * ubifs_debugging_exit - free debugging data. 2551 * @c: UBIFS file-system description object 2552 */ 2553 void ubifs_debugging_exit(struct ubifs_info *c) 2554 { 2555 failure_mode_exit(c); 2556 vfree(c->dbg->buf); 2557 kfree(c->dbg); 2558 } 2559 2560 /* 2561 * Root directory for UBIFS stuff in debugfs. Contains sub-directories which 2562 * contain the stuff specific to particular file-system mounts. 2563 */ 2564 static struct dentry *dfs_rootdir; 2565 2566 /** 2567 * dbg_debugfs_init - initialize debugfs file-system. 2568 * 2569 * UBIFS uses debugfs file-system to expose various debugging knobs to 2570 * user-space. This function creates "ubifs" directory in the debugfs 2571 * file-system. Returns zero in case of success and a negative error code in 2572 * case of failure. 2573 */ 2574 int dbg_debugfs_init(void) 2575 { 2576 dfs_rootdir = debugfs_create_dir("ubifs", NULL); 2577 if (IS_ERR(dfs_rootdir)) { 2578 int err = PTR_ERR(dfs_rootdir); 2579 ubifs_err("cannot create \"ubifs\" debugfs directory, " 2580 "error %d\n", err); 2581 return err; 2582 } 2583 2584 return 0; 2585 } 2586 2587 /** 2588 * dbg_debugfs_exit - remove the "ubifs" directory from debugfs file-system. 2589 */ 2590 void dbg_debugfs_exit(void) 2591 { 2592 debugfs_remove(dfs_rootdir); 2593 } 2594 2595 static int open_debugfs_file(struct inode *inode, struct file *file) 2596 { 2597 file->private_data = inode->i_private; 2598 return 0; 2599 } 2600 2601 static ssize_t write_debugfs_file(struct file *file, const char __user *buf, 2602 size_t count, loff_t *ppos) 2603 { 2604 struct ubifs_info *c = file->private_data; 2605 struct ubifs_debug_info *d = c->dbg; 2606 2607 if (file->f_path.dentry == d->dfs_dump_lprops) 2608 dbg_dump_lprops(c); 2609 else if (file->f_path.dentry == d->dfs_dump_budg) { 2610 spin_lock(&c->space_lock); 2611 dbg_dump_budg(c); 2612 spin_unlock(&c->space_lock); 2613 } else if (file->f_path.dentry == d->dfs_dump_tnc) { 2614 mutex_lock(&c->tnc_mutex); 2615 dbg_dump_tnc(c); 2616 mutex_unlock(&c->tnc_mutex); 2617 } else 2618 return -EINVAL; 2619 2620 *ppos += count; 2621 return count; 2622 } 2623 2624 static const struct file_operations dfs_fops = { 2625 .open = open_debugfs_file, 2626 .write = write_debugfs_file, 2627 .owner = THIS_MODULE, 2628 }; 2629 2630 /** 2631 * dbg_debugfs_init_fs - initialize debugfs for UBIFS instance. 2632 * @c: UBIFS file-system description object 2633 * 2634 * This function creates all debugfs files for this instance of UBIFS. Returns 2635 * zero in case of success and a negative error code in case of failure. 2636 * 2637 * Note, the only reason we have not merged this function with the 2638 * 'ubifs_debugging_init()' function is because it is better to initialize 2639 * debugfs interfaces at the very end of the mount process, and remove them at 2640 * the very beginning of the mount process. 2641 */ 2642 int dbg_debugfs_init_fs(struct ubifs_info *c) 2643 { 2644 int err; 2645 const char *fname; 2646 struct dentry *dent; 2647 struct ubifs_debug_info *d = c->dbg; 2648 2649 sprintf(d->dfs_dir_name, "ubi%d_%d", c->vi.ubi_num, c->vi.vol_id); 2650 d->dfs_dir = debugfs_create_dir(d->dfs_dir_name, dfs_rootdir); 2651 if (IS_ERR(d->dfs_dir)) { 2652 err = PTR_ERR(d->dfs_dir); 2653 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2654 d->dfs_dir_name, err); 2655 goto out; 2656 } 2657 2658 fname = "dump_lprops"; 2659 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2660 if (IS_ERR(dent)) 2661 goto out_remove; 2662 d->dfs_dump_lprops = dent; 2663 2664 fname = "dump_budg"; 2665 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2666 if (IS_ERR(dent)) 2667 goto out_remove; 2668 d->dfs_dump_budg = dent; 2669 2670 fname = "dump_tnc"; 2671 dent = debugfs_create_file(fname, S_IWUGO, d->dfs_dir, c, &dfs_fops); 2672 if (IS_ERR(dent)) 2673 goto out_remove; 2674 d->dfs_dump_tnc = dent; 2675 2676 return 0; 2677 2678 out_remove: 2679 err = PTR_ERR(dent); 2680 ubifs_err("cannot create \"%s\" debugfs directory, error %d\n", 2681 fname, err); 2682 debugfs_remove_recursive(d->dfs_dir); 2683 out: 2684 return err; 2685 } 2686 2687 /** 2688 * dbg_debugfs_exit_fs - remove all debugfs files. 2689 * @c: UBIFS file-system description object 2690 */ 2691 void dbg_debugfs_exit_fs(struct ubifs_info *c) 2692 { 2693 debugfs_remove_recursive(c->dbg->dfs_dir); 2694 } 2695 2696 #endif /* CONFIG_UBIFS_FS_DEBUG */ 2697