1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Adrian Hunter 8 * Artem Bityutskiy (Битюцкий Артём) 9 */ 10 11 /* 12 * This file implements functions that manage the running of the commit process. 13 * Each affected module has its own functions to accomplish their part in the 14 * commit and those functions are called here. 15 * 16 * The commit is the process whereby all updates to the index and LEB properties 17 * are written out together and the journal becomes empty. This keeps the 18 * file system consistent - at all times the state can be recreated by reading 19 * the index and LEB properties and then replaying the journal. 20 * 21 * The commit is split into two parts named "commit start" and "commit end". 22 * During commit start, the commit process has exclusive access to the journal 23 * by holding the commit semaphore down for writing. As few I/O operations as 24 * possible are performed during commit start, instead the nodes that are to be 25 * written are merely identified. During commit end, the commit semaphore is no 26 * longer held and the journal is again in operation, allowing users to continue 27 * to use the file system while the bulk of the commit I/O is performed. The 28 * purpose of this two-step approach is to prevent the commit from causing any 29 * latency blips. Note that in any case, the commit does not prevent lookups 30 * (as permitted by the TNC mutex), or access to VFS data structures e.g. page 31 * cache. 32 */ 33 34 #include <linux/freezer.h> 35 #include <linux/kthread.h> 36 #include <linux/slab.h> 37 #include "ubifs.h" 38 39 /* 40 * nothing_to_commit - check if there is nothing to commit. 41 * @c: UBIFS file-system description object 42 * 43 * This is a helper function which checks if there is anything to commit. It is 44 * used as an optimization to avoid starting the commit if it is not really 45 * necessary. Indeed, the commit operation always assumes flash I/O (e.g., 46 * writing the commit start node to the log), and it is better to avoid doing 47 * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is 48 * nothing to commit, it is more optimal to avoid any flash I/O. 49 * 50 * This function has to be called with @c->commit_sem locked for writing - 51 * this function does not take LPT/TNC locks because the @c->commit_sem 52 * guarantees that we have exclusive access to the TNC and LPT data structures. 53 * 54 * This function returns %1 if there is nothing to commit and %0 otherwise. 55 */ 56 static int nothing_to_commit(struct ubifs_info *c) 57 { 58 /* 59 * During mounting or remounting from R/O mode to R/W mode we may 60 * commit for various recovery-related reasons. 61 */ 62 if (c->mounting || c->remounting_rw) 63 return 0; 64 65 /* 66 * If the root TNC node is dirty, we definitely have something to 67 * commit. 68 */ 69 if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode)) 70 return 0; 71 72 /* 73 * Even though the TNC is clean, the LPT tree may have dirty nodes. For 74 * example, this may happen if the budgeting subsystem invoked GC to 75 * make some free space, and the GC found an LEB with only dirty and 76 * free space. In this case GC would just change the lprops of this 77 * LEB (by turning all space into free space) and unmap it. 78 */ 79 if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags)) 80 return 0; 81 82 ubifs_assert(c, atomic_long_read(&c->dirty_zn_cnt) == 0); 83 ubifs_assert(c, c->dirty_pn_cnt == 0); 84 ubifs_assert(c, c->dirty_nn_cnt == 0); 85 86 return 1; 87 } 88 89 /** 90 * do_commit - commit the journal. 91 * @c: UBIFS file-system description object 92 * 93 * This function implements UBIFS commit. It has to be called with commit lock 94 * locked. Returns zero in case of success and a negative error code in case of 95 * failure. 96 */ 97 static int do_commit(struct ubifs_info *c) 98 { 99 int err, new_ltail_lnum, old_ltail_lnum, i; 100 struct ubifs_zbranch zroot; 101 struct ubifs_lp_stats lst; 102 103 dbg_cmt("start"); 104 ubifs_assert(c, !c->ro_media && !c->ro_mount); 105 106 if (c->ro_error) { 107 err = -EROFS; 108 goto out_up; 109 } 110 111 if (nothing_to_commit(c)) { 112 up_write(&c->commit_sem); 113 err = 0; 114 goto out_cancel; 115 } 116 117 /* Sync all write buffers (necessary for recovery) */ 118 for (i = 0; i < c->jhead_cnt; i++) { 119 err = ubifs_wbuf_sync(&c->jheads[i].wbuf); 120 if (err) 121 goto out_up; 122 } 123 124 c->cmt_no += 1; 125 err = ubifs_gc_start_commit(c); 126 if (err) 127 goto out_up; 128 err = dbg_check_lprops(c); 129 if (err) 130 goto out_up; 131 err = ubifs_log_start_commit(c, &new_ltail_lnum); 132 if (err) 133 goto out_up; 134 err = ubifs_tnc_start_commit(c, &zroot); 135 if (err) 136 goto out_up; 137 err = ubifs_lpt_start_commit(c); 138 if (err) 139 goto out_up; 140 err = ubifs_orphan_start_commit(c); 141 if (err) 142 goto out_up; 143 144 ubifs_get_lp_stats(c, &lst); 145 146 up_write(&c->commit_sem); 147 148 err = ubifs_tnc_end_commit(c); 149 if (err) 150 goto out; 151 err = ubifs_lpt_end_commit(c); 152 if (err) 153 goto out; 154 err = ubifs_orphan_end_commit(c); 155 if (err) 156 goto out; 157 err = dbg_check_old_index(c, &zroot); 158 if (err) 159 goto out; 160 161 c->mst_node->cmt_no = cpu_to_le64(c->cmt_no); 162 c->mst_node->log_lnum = cpu_to_le32(new_ltail_lnum); 163 c->mst_node->root_lnum = cpu_to_le32(zroot.lnum); 164 c->mst_node->root_offs = cpu_to_le32(zroot.offs); 165 c->mst_node->root_len = cpu_to_le32(zroot.len); 166 c->mst_node->ihead_lnum = cpu_to_le32(c->ihead_lnum); 167 c->mst_node->ihead_offs = cpu_to_le32(c->ihead_offs); 168 c->mst_node->index_size = cpu_to_le64(c->bi.old_idx_sz); 169 c->mst_node->lpt_lnum = cpu_to_le32(c->lpt_lnum); 170 c->mst_node->lpt_offs = cpu_to_le32(c->lpt_offs); 171 c->mst_node->nhead_lnum = cpu_to_le32(c->nhead_lnum); 172 c->mst_node->nhead_offs = cpu_to_le32(c->nhead_offs); 173 c->mst_node->ltab_lnum = cpu_to_le32(c->ltab_lnum); 174 c->mst_node->ltab_offs = cpu_to_le32(c->ltab_offs); 175 c->mst_node->lsave_lnum = cpu_to_le32(c->lsave_lnum); 176 c->mst_node->lsave_offs = cpu_to_le32(c->lsave_offs); 177 c->mst_node->lscan_lnum = cpu_to_le32(c->lscan_lnum); 178 c->mst_node->empty_lebs = cpu_to_le32(lst.empty_lebs); 179 c->mst_node->idx_lebs = cpu_to_le32(lst.idx_lebs); 180 c->mst_node->total_free = cpu_to_le64(lst.total_free); 181 c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty); 182 c->mst_node->total_used = cpu_to_le64(lst.total_used); 183 c->mst_node->total_dead = cpu_to_le64(lst.total_dead); 184 c->mst_node->total_dark = cpu_to_le64(lst.total_dark); 185 if (c->no_orphs) 186 c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS); 187 else 188 c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS); 189 190 old_ltail_lnum = c->ltail_lnum; 191 err = ubifs_log_end_commit(c, new_ltail_lnum); 192 if (err) 193 goto out; 194 195 err = ubifs_log_post_commit(c, old_ltail_lnum); 196 if (err) 197 goto out; 198 err = ubifs_gc_end_commit(c); 199 if (err) 200 goto out; 201 err = ubifs_lpt_post_commit(c); 202 if (err) 203 goto out; 204 205 out_cancel: 206 spin_lock(&c->cs_lock); 207 c->cmt_state = COMMIT_RESTING; 208 wake_up(&c->cmt_wq); 209 dbg_cmt("commit end"); 210 spin_unlock(&c->cs_lock); 211 return 0; 212 213 out_up: 214 up_write(&c->commit_sem); 215 out: 216 ubifs_err(c, "commit failed, error %d", err); 217 spin_lock(&c->cs_lock); 218 c->cmt_state = COMMIT_BROKEN; 219 wake_up(&c->cmt_wq); 220 spin_unlock(&c->cs_lock); 221 ubifs_ro_mode(c, err); 222 return err; 223 } 224 225 /** 226 * run_bg_commit - run background commit if it is needed. 227 * @c: UBIFS file-system description object 228 * 229 * This function runs background commit if it is needed. Returns zero in case 230 * of success and a negative error code in case of failure. 231 */ 232 static int run_bg_commit(struct ubifs_info *c) 233 { 234 spin_lock(&c->cs_lock); 235 /* 236 * Run background commit only if background commit was requested or if 237 * commit is required. 238 */ 239 if (c->cmt_state != COMMIT_BACKGROUND && 240 c->cmt_state != COMMIT_REQUIRED) 241 goto out; 242 spin_unlock(&c->cs_lock); 243 244 down_write(&c->commit_sem); 245 spin_lock(&c->cs_lock); 246 if (c->cmt_state == COMMIT_REQUIRED) 247 c->cmt_state = COMMIT_RUNNING_REQUIRED; 248 else if (c->cmt_state == COMMIT_BACKGROUND) 249 c->cmt_state = COMMIT_RUNNING_BACKGROUND; 250 else 251 goto out_cmt_unlock; 252 spin_unlock(&c->cs_lock); 253 254 return do_commit(c); 255 256 out_cmt_unlock: 257 up_write(&c->commit_sem); 258 out: 259 spin_unlock(&c->cs_lock); 260 return 0; 261 } 262 263 /** 264 * ubifs_bg_thread - UBIFS background thread function. 265 * @info: points to the file-system description object 266 * 267 * This function implements various file-system background activities: 268 * o when a write-buffer timer expires it synchronizes the appropriate 269 * write-buffer; 270 * o when the journal is about to be full, it starts in-advance commit. 271 * 272 * Note, other stuff like background garbage collection may be added here in 273 * future. 274 */ 275 int ubifs_bg_thread(void *info) 276 { 277 int err; 278 struct ubifs_info *c = info; 279 280 ubifs_msg(c, "background thread \"%s\" started, PID %d", 281 c->bgt_name, current->pid); 282 set_freezable(); 283 284 while (1) { 285 if (kthread_should_stop()) 286 break; 287 288 if (try_to_freeze()) 289 continue; 290 291 set_current_state(TASK_INTERRUPTIBLE); 292 /* Check if there is something to do */ 293 if (!c->need_bgt) { 294 /* 295 * Nothing prevents us from going sleep now and 296 * be never woken up and block the task which 297 * could wait in 'kthread_stop()' forever. 298 */ 299 if (kthread_should_stop()) 300 break; 301 schedule(); 302 continue; 303 } else 304 __set_current_state(TASK_RUNNING); 305 306 c->need_bgt = 0; 307 err = ubifs_bg_wbufs_sync(c); 308 if (err) 309 ubifs_ro_mode(c, err); 310 311 run_bg_commit(c); 312 cond_resched(); 313 } 314 315 ubifs_msg(c, "background thread \"%s\" stops", c->bgt_name); 316 return 0; 317 } 318 319 /** 320 * ubifs_commit_required - set commit state to "required". 321 * @c: UBIFS file-system description object 322 * 323 * This function is called if a commit is required but cannot be done from the 324 * calling function, so it is just flagged instead. 325 */ 326 void ubifs_commit_required(struct ubifs_info *c) 327 { 328 spin_lock(&c->cs_lock); 329 switch (c->cmt_state) { 330 case COMMIT_RESTING: 331 case COMMIT_BACKGROUND: 332 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 333 dbg_cstate(COMMIT_REQUIRED)); 334 c->cmt_state = COMMIT_REQUIRED; 335 break; 336 case COMMIT_RUNNING_BACKGROUND: 337 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 338 dbg_cstate(COMMIT_RUNNING_REQUIRED)); 339 c->cmt_state = COMMIT_RUNNING_REQUIRED; 340 break; 341 case COMMIT_REQUIRED: 342 case COMMIT_RUNNING_REQUIRED: 343 case COMMIT_BROKEN: 344 break; 345 } 346 spin_unlock(&c->cs_lock); 347 } 348 349 /** 350 * ubifs_request_bg_commit - notify the background thread to do a commit. 351 * @c: UBIFS file-system description object 352 * 353 * This function is called if the journal is full enough to make a commit 354 * worthwhile, so background thread is kicked to start it. 355 */ 356 void ubifs_request_bg_commit(struct ubifs_info *c) 357 { 358 spin_lock(&c->cs_lock); 359 if (c->cmt_state == COMMIT_RESTING) { 360 dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state), 361 dbg_cstate(COMMIT_BACKGROUND)); 362 c->cmt_state = COMMIT_BACKGROUND; 363 spin_unlock(&c->cs_lock); 364 ubifs_wake_up_bgt(c); 365 } else 366 spin_unlock(&c->cs_lock); 367 } 368 369 /** 370 * wait_for_commit - wait for commit. 371 * @c: UBIFS file-system description object 372 * 373 * This function sleeps until the commit operation is no longer running. 374 */ 375 static int wait_for_commit(struct ubifs_info *c) 376 { 377 dbg_cmt("pid %d goes sleep", current->pid); 378 379 /* 380 * The following sleeps if the condition is false, and will be woken 381 * when the commit ends. It is possible, although very unlikely, that we 382 * will wake up and see the subsequent commit running, rather than the 383 * one we were waiting for, and go back to sleep. However, we will be 384 * woken again, so there is no danger of sleeping forever. 385 */ 386 wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND && 387 c->cmt_state != COMMIT_RUNNING_REQUIRED); 388 dbg_cmt("commit finished, pid %d woke up", current->pid); 389 return 0; 390 } 391 392 /** 393 * ubifs_run_commit - run or wait for commit. 394 * @c: UBIFS file-system description object 395 * 396 * This function runs commit and returns zero in case of success and a negative 397 * error code in case of failure. 398 */ 399 int ubifs_run_commit(struct ubifs_info *c) 400 { 401 int err = 0; 402 403 spin_lock(&c->cs_lock); 404 if (c->cmt_state == COMMIT_BROKEN) { 405 err = -EROFS; 406 goto out; 407 } 408 409 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) 410 /* 411 * We set the commit state to 'running required' to indicate 412 * that we want it to complete as quickly as possible. 413 */ 414 c->cmt_state = COMMIT_RUNNING_REQUIRED; 415 416 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { 417 spin_unlock(&c->cs_lock); 418 return wait_for_commit(c); 419 } 420 spin_unlock(&c->cs_lock); 421 422 /* Ok, the commit is indeed needed */ 423 424 down_write(&c->commit_sem); 425 spin_lock(&c->cs_lock); 426 /* 427 * Since we unlocked 'c->cs_lock', the state may have changed, so 428 * re-check it. 429 */ 430 if (c->cmt_state == COMMIT_BROKEN) { 431 err = -EROFS; 432 goto out_cmt_unlock; 433 } 434 435 if (c->cmt_state == COMMIT_RUNNING_BACKGROUND) 436 c->cmt_state = COMMIT_RUNNING_REQUIRED; 437 438 if (c->cmt_state == COMMIT_RUNNING_REQUIRED) { 439 up_write(&c->commit_sem); 440 spin_unlock(&c->cs_lock); 441 return wait_for_commit(c); 442 } 443 c->cmt_state = COMMIT_RUNNING_REQUIRED; 444 spin_unlock(&c->cs_lock); 445 446 err = do_commit(c); 447 return err; 448 449 out_cmt_unlock: 450 up_write(&c->commit_sem); 451 out: 452 spin_unlock(&c->cs_lock); 453 return err; 454 } 455 456 /** 457 * ubifs_gc_should_commit - determine if it is time for GC to run commit. 458 * @c: UBIFS file-system description object 459 * 460 * This function is called by garbage collection to determine if commit should 461 * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal 462 * is full enough to start commit, this function returns true. It is not 463 * absolutely necessary to commit yet, but it feels like this should be better 464 * then to keep doing GC. This function returns %1 if GC has to initiate commit 465 * and %0 if not. 466 */ 467 int ubifs_gc_should_commit(struct ubifs_info *c) 468 { 469 int ret = 0; 470 471 spin_lock(&c->cs_lock); 472 if (c->cmt_state == COMMIT_BACKGROUND) { 473 dbg_cmt("commit required now"); 474 c->cmt_state = COMMIT_REQUIRED; 475 } else 476 dbg_cmt("commit not requested"); 477 if (c->cmt_state == COMMIT_REQUIRED) 478 ret = 1; 479 spin_unlock(&c->cs_lock); 480 return ret; 481 } 482 483 /* 484 * Everything below is related to debugging. 485 */ 486 487 /** 488 * struct idx_node - hold index nodes during index tree traversal. 489 * @list: list 490 * @iip: index in parent (slot number of this indexing node in the parent 491 * indexing node) 492 * @upper_key: all keys in this indexing node have to be less or equivalent to 493 * this key 494 * @idx: index node (8-byte aligned because all node structures must be 8-byte 495 * aligned) 496 */ 497 struct idx_node { 498 struct list_head list; 499 int iip; 500 union ubifs_key upper_key; 501 struct ubifs_idx_node idx __aligned(8); 502 }; 503 504 /** 505 * dbg_old_index_check_init - get information for the next old index check. 506 * @c: UBIFS file-system description object 507 * @zroot: root of the index 508 * 509 * This function records information about the index that will be needed for the 510 * next old index check i.e. 'dbg_check_old_index()'. 511 * 512 * This function returns %0 on success and a negative error code on failure. 513 */ 514 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot) 515 { 516 struct ubifs_idx_node *idx; 517 int lnum, offs, len, err = 0; 518 struct ubifs_debug_info *d = c->dbg; 519 520 d->old_zroot = *zroot; 521 lnum = d->old_zroot.lnum; 522 offs = d->old_zroot.offs; 523 len = d->old_zroot.len; 524 525 idx = kmalloc(c->max_idx_node_sz, GFP_NOFS); 526 if (!idx) 527 return -ENOMEM; 528 529 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 530 if (err) 531 goto out; 532 533 d->old_zroot_level = le16_to_cpu(idx->level); 534 d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum); 535 out: 536 kfree(idx); 537 return err; 538 } 539 540 /** 541 * dbg_check_old_index - check the old copy of the index. 542 * @c: UBIFS file-system description object 543 * @zroot: root of the new index 544 * 545 * In order to be able to recover from an unclean unmount, a complete copy of 546 * the index must exist on flash. This is the "old" index. The commit process 547 * must write the "new" index to flash without overwriting or destroying any 548 * part of the old index. This function is run at commit end in order to check 549 * that the old index does indeed exist completely intact. 550 * 551 * This function returns %0 on success and a negative error code on failure. 552 */ 553 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot) 554 { 555 int lnum, offs, len, err = 0, last_level, child_cnt; 556 int first = 1, iip; 557 struct ubifs_debug_info *d = c->dbg; 558 union ubifs_key lower_key, upper_key, l_key, u_key; 559 unsigned long long last_sqnum; 560 struct ubifs_idx_node *idx; 561 struct list_head list; 562 struct idx_node *i; 563 size_t sz; 564 565 if (!dbg_is_chk_index(c)) 566 return 0; 567 568 INIT_LIST_HEAD(&list); 569 570 sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) - 571 UBIFS_IDX_NODE_SZ; 572 573 /* Start at the old zroot */ 574 lnum = d->old_zroot.lnum; 575 offs = d->old_zroot.offs; 576 len = d->old_zroot.len; 577 iip = 0; 578 579 /* 580 * Traverse the index tree preorder depth-first i.e. do a node and then 581 * its subtrees from left to right. 582 */ 583 while (1) { 584 struct ubifs_branch *br; 585 586 /* Get the next index node */ 587 i = kmalloc(sz, GFP_NOFS); 588 if (!i) { 589 err = -ENOMEM; 590 goto out_free; 591 } 592 i->iip = iip; 593 /* Keep the index nodes on our path in a linked list */ 594 list_add_tail(&i->list, &list); 595 /* Read the index node */ 596 idx = &i->idx; 597 err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs); 598 if (err) 599 goto out_free; 600 /* Validate index node */ 601 child_cnt = le16_to_cpu(idx->child_cnt); 602 if (child_cnt < 1 || child_cnt > c->fanout) { 603 err = 1; 604 goto out_dump; 605 } 606 if (first) { 607 first = 0; 608 /* Check root level and sqnum */ 609 if (le16_to_cpu(idx->level) != d->old_zroot_level) { 610 err = 2; 611 goto out_dump; 612 } 613 if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) { 614 err = 3; 615 goto out_dump; 616 } 617 /* Set last values as though root had a parent */ 618 last_level = le16_to_cpu(idx->level) + 1; 619 last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1; 620 key_read(c, ubifs_idx_key(c, idx), &lower_key); 621 highest_ino_key(c, &upper_key, INUM_WATERMARK); 622 } 623 key_copy(c, &upper_key, &i->upper_key); 624 if (le16_to_cpu(idx->level) != last_level - 1) { 625 err = 3; 626 goto out_dump; 627 } 628 /* 629 * The index is always written bottom up hence a child's sqnum 630 * is always less than the parents. 631 */ 632 if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) { 633 err = 4; 634 goto out_dump; 635 } 636 /* Check key range */ 637 key_read(c, ubifs_idx_key(c, idx), &l_key); 638 br = ubifs_idx_branch(c, idx, child_cnt - 1); 639 key_read(c, &br->key, &u_key); 640 if (keys_cmp(c, &lower_key, &l_key) > 0) { 641 err = 5; 642 goto out_dump; 643 } 644 if (keys_cmp(c, &upper_key, &u_key) < 0) { 645 err = 6; 646 goto out_dump; 647 } 648 if (keys_cmp(c, &upper_key, &u_key) == 0) 649 if (!is_hash_key(c, &u_key)) { 650 err = 7; 651 goto out_dump; 652 } 653 /* Go to next index node */ 654 if (le16_to_cpu(idx->level) == 0) { 655 /* At the bottom, so go up until can go right */ 656 while (1) { 657 /* Drop the bottom of the list */ 658 list_del(&i->list); 659 kfree(i); 660 /* No more list means we are done */ 661 if (list_empty(&list)) 662 goto out; 663 /* Look at the new bottom */ 664 i = list_entry(list.prev, struct idx_node, 665 list); 666 idx = &i->idx; 667 /* Can we go right */ 668 if (iip + 1 < le16_to_cpu(idx->child_cnt)) { 669 iip = iip + 1; 670 break; 671 } else 672 /* Nope, so go up again */ 673 iip = i->iip; 674 } 675 } else 676 /* Go down left */ 677 iip = 0; 678 /* 679 * We have the parent in 'idx' and now we set up for reading the 680 * child pointed to by slot 'iip'. 681 */ 682 last_level = le16_to_cpu(idx->level); 683 last_sqnum = le64_to_cpu(idx->ch.sqnum); 684 br = ubifs_idx_branch(c, idx, iip); 685 lnum = le32_to_cpu(br->lnum); 686 offs = le32_to_cpu(br->offs); 687 len = le32_to_cpu(br->len); 688 key_read(c, &br->key, &lower_key); 689 if (iip + 1 < le16_to_cpu(idx->child_cnt)) { 690 br = ubifs_idx_branch(c, idx, iip + 1); 691 key_read(c, &br->key, &upper_key); 692 } else 693 key_copy(c, &i->upper_key, &upper_key); 694 } 695 out: 696 err = dbg_old_index_check_init(c, zroot); 697 if (err) 698 goto out_free; 699 700 return 0; 701 702 out_dump: 703 ubifs_err(c, "dumping index node (iip=%d)", i->iip); 704 ubifs_dump_node(c, idx); 705 list_del(&i->list); 706 kfree(i); 707 if (!list_empty(&list)) { 708 i = list_entry(list.prev, struct idx_node, list); 709 ubifs_err(c, "dumping parent index node"); 710 ubifs_dump_node(c, &i->idx); 711 } 712 out_free: 713 while (!list_empty(&list)) { 714 i = list_entry(list.next, struct idx_node, list); 715 list_del(&i->list); 716 kfree(i); 717 } 718 ubifs_err(c, "failed, error %d", err); 719 if (err > 0) 720 err = -EINVAL; 721 return err; 722 } 723