xref: /linux/fs/ubifs/commit.c (revision 3932b9ca55b0be314a36d3e84faff3e823c081f5)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions that manage the running of the commit process.
25  * Each affected module has its own functions to accomplish their part in the
26  * commit and those functions are called here.
27  *
28  * The commit is the process whereby all updates to the index and LEB properties
29  * are written out together and the journal becomes empty. This keeps the
30  * file system consistent - at all times the state can be recreated by reading
31  * the index and LEB properties and then replaying the journal.
32  *
33  * The commit is split into two parts named "commit start" and "commit end".
34  * During commit start, the commit process has exclusive access to the journal
35  * by holding the commit semaphore down for writing. As few I/O operations as
36  * possible are performed during commit start, instead the nodes that are to be
37  * written are merely identified. During commit end, the commit semaphore is no
38  * longer held and the journal is again in operation, allowing users to continue
39  * to use the file system while the bulk of the commit I/O is performed. The
40  * purpose of this two-step approach is to prevent the commit from causing any
41  * latency blips. Note that in any case, the commit does not prevent lookups
42  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43  * cache.
44  */
45 
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include <linux/slab.h>
49 #include "ubifs.h"
50 
51 /*
52  * nothing_to_commit - check if there is nothing to commit.
53  * @c: UBIFS file-system description object
54  *
55  * This is a helper function which checks if there is anything to commit. It is
56  * used as an optimization to avoid starting the commit if it is not really
57  * necessary. Indeed, the commit operation always assumes flash I/O (e.g.,
58  * writing the commit start node to the log), and it is better to avoid doing
59  * this unnecessarily. E.g., 'ubifs_sync_fs()' runs the commit, but if there is
60  * nothing to commit, it is more optimal to avoid any flash I/O.
61  *
62  * This function has to be called with @c->commit_sem locked for writing -
63  * this function does not take LPT/TNC locks because the @c->commit_sem
64  * guarantees that we have exclusive access to the TNC and LPT data structures.
65  *
66  * This function returns %1 if there is nothing to commit and %0 otherwise.
67  */
68 static int nothing_to_commit(struct ubifs_info *c)
69 {
70 	/*
71 	 * During mounting or remounting from R/O mode to R/W mode we may
72 	 * commit for various recovery-related reasons.
73 	 */
74 	if (c->mounting || c->remounting_rw)
75 		return 0;
76 
77 	/*
78 	 * If the root TNC node is dirty, we definitely have something to
79 	 * commit.
80 	 */
81 	if (c->zroot.znode && ubifs_zn_dirty(c->zroot.znode))
82 		return 0;
83 
84 	/*
85 	 * Even though the TNC is clean, the LPT tree may have dirty nodes. For
86 	 * example, this may happen if the budgeting subsystem invoked GC to
87 	 * make some free space, and the GC found an LEB with only dirty and
88 	 * free space. In this case GC would just change the lprops of this
89 	 * LEB (by turning all space into free space) and unmap it.
90 	 */
91 	if (c->nroot && test_bit(DIRTY_CNODE, &c->nroot->flags))
92 		return 0;
93 
94 	ubifs_assert(atomic_long_read(&c->dirty_zn_cnt) == 0);
95 	ubifs_assert(c->dirty_pn_cnt == 0);
96 	ubifs_assert(c->dirty_nn_cnt == 0);
97 
98 	return 1;
99 }
100 
101 /**
102  * do_commit - commit the journal.
103  * @c: UBIFS file-system description object
104  *
105  * This function implements UBIFS commit. It has to be called with commit lock
106  * locked. Returns zero in case of success and a negative error code in case of
107  * failure.
108  */
109 static int do_commit(struct ubifs_info *c)
110 {
111 	int err, new_ltail_lnum, old_ltail_lnum, i;
112 	struct ubifs_zbranch zroot;
113 	struct ubifs_lp_stats lst;
114 
115 	dbg_cmt("start");
116 	ubifs_assert(!c->ro_media && !c->ro_mount);
117 
118 	if (c->ro_error) {
119 		err = -EROFS;
120 		goto out_up;
121 	}
122 
123 	if (nothing_to_commit(c)) {
124 		up_write(&c->commit_sem);
125 		err = 0;
126 		goto out_cancel;
127 	}
128 
129 	/* Sync all write buffers (necessary for recovery) */
130 	for (i = 0; i < c->jhead_cnt; i++) {
131 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
132 		if (err)
133 			goto out_up;
134 	}
135 
136 	c->cmt_no += 1;
137 	err = ubifs_gc_start_commit(c);
138 	if (err)
139 		goto out_up;
140 	err = dbg_check_lprops(c);
141 	if (err)
142 		goto out_up;
143 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
144 	if (err)
145 		goto out_up;
146 	err = ubifs_tnc_start_commit(c, &zroot);
147 	if (err)
148 		goto out_up;
149 	err = ubifs_lpt_start_commit(c);
150 	if (err)
151 		goto out_up;
152 	err = ubifs_orphan_start_commit(c);
153 	if (err)
154 		goto out_up;
155 
156 	ubifs_get_lp_stats(c, &lst);
157 
158 	up_write(&c->commit_sem);
159 
160 	err = ubifs_tnc_end_commit(c);
161 	if (err)
162 		goto out;
163 	err = ubifs_lpt_end_commit(c);
164 	if (err)
165 		goto out;
166 	err = ubifs_orphan_end_commit(c);
167 	if (err)
168 		goto out;
169 	old_ltail_lnum = c->ltail_lnum;
170 	err = ubifs_log_end_commit(c, new_ltail_lnum);
171 	if (err)
172 		goto out;
173 	err = dbg_check_old_index(c, &zroot);
174 	if (err)
175 		goto out;
176 
177 	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
178 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
179 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
180 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
181 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
182 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
183 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
184 	c->mst_node->index_size  = cpu_to_le64(c->bi.old_idx_sz);
185 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
186 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
187 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
188 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
189 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
190 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
191 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
192 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
193 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
194 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
195 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
196 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
197 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
198 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
199 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
200 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
201 	if (c->no_orphs)
202 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
203 	else
204 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
205 	err = ubifs_write_master(c);
206 	if (err)
207 		goto out;
208 
209 	err = ubifs_log_post_commit(c, old_ltail_lnum);
210 	if (err)
211 		goto out;
212 	err = ubifs_gc_end_commit(c);
213 	if (err)
214 		goto out;
215 	err = ubifs_lpt_post_commit(c);
216 	if (err)
217 		goto out;
218 
219 out_cancel:
220 	spin_lock(&c->cs_lock);
221 	c->cmt_state = COMMIT_RESTING;
222 	wake_up(&c->cmt_wq);
223 	dbg_cmt("commit end");
224 	spin_unlock(&c->cs_lock);
225 	return 0;
226 
227 out_up:
228 	up_write(&c->commit_sem);
229 out:
230 	ubifs_err("commit failed, error %d", err);
231 	spin_lock(&c->cs_lock);
232 	c->cmt_state = COMMIT_BROKEN;
233 	wake_up(&c->cmt_wq);
234 	spin_unlock(&c->cs_lock);
235 	ubifs_ro_mode(c, err);
236 	return err;
237 }
238 
239 /**
240  * run_bg_commit - run background commit if it is needed.
241  * @c: UBIFS file-system description object
242  *
243  * This function runs background commit if it is needed. Returns zero in case
244  * of success and a negative error code in case of failure.
245  */
246 static int run_bg_commit(struct ubifs_info *c)
247 {
248 	spin_lock(&c->cs_lock);
249 	/*
250 	 * Run background commit only if background commit was requested or if
251 	 * commit is required.
252 	 */
253 	if (c->cmt_state != COMMIT_BACKGROUND &&
254 	    c->cmt_state != COMMIT_REQUIRED)
255 		goto out;
256 	spin_unlock(&c->cs_lock);
257 
258 	down_write(&c->commit_sem);
259 	spin_lock(&c->cs_lock);
260 	if (c->cmt_state == COMMIT_REQUIRED)
261 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
262 	else if (c->cmt_state == COMMIT_BACKGROUND)
263 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
264 	else
265 		goto out_cmt_unlock;
266 	spin_unlock(&c->cs_lock);
267 
268 	return do_commit(c);
269 
270 out_cmt_unlock:
271 	up_write(&c->commit_sem);
272 out:
273 	spin_unlock(&c->cs_lock);
274 	return 0;
275 }
276 
277 /**
278  * ubifs_bg_thread - UBIFS background thread function.
279  * @info: points to the file-system description object
280  *
281  * This function implements various file-system background activities:
282  * o when a write-buffer timer expires it synchronizes the appropriate
283  *   write-buffer;
284  * o when the journal is about to be full, it starts in-advance commit.
285  *
286  * Note, other stuff like background garbage collection may be added here in
287  * future.
288  */
289 int ubifs_bg_thread(void *info)
290 {
291 	int err;
292 	struct ubifs_info *c = info;
293 
294 	ubifs_msg("background thread \"%s\" started, PID %d",
295 		  c->bgt_name, current->pid);
296 	set_freezable();
297 
298 	while (1) {
299 		if (kthread_should_stop())
300 			break;
301 
302 		if (try_to_freeze())
303 			continue;
304 
305 		set_current_state(TASK_INTERRUPTIBLE);
306 		/* Check if there is something to do */
307 		if (!c->need_bgt) {
308 			/*
309 			 * Nothing prevents us from going sleep now and
310 			 * be never woken up and block the task which
311 			 * could wait in 'kthread_stop()' forever.
312 			 */
313 			if (kthread_should_stop())
314 				break;
315 			schedule();
316 			continue;
317 		} else
318 			__set_current_state(TASK_RUNNING);
319 
320 		c->need_bgt = 0;
321 		err = ubifs_bg_wbufs_sync(c);
322 		if (err)
323 			ubifs_ro_mode(c, err);
324 
325 		run_bg_commit(c);
326 		cond_resched();
327 	}
328 
329 	ubifs_msg("background thread \"%s\" stops", c->bgt_name);
330 	return 0;
331 }
332 
333 /**
334  * ubifs_commit_required - set commit state to "required".
335  * @c: UBIFS file-system description object
336  *
337  * This function is called if a commit is required but cannot be done from the
338  * calling function, so it is just flagged instead.
339  */
340 void ubifs_commit_required(struct ubifs_info *c)
341 {
342 	spin_lock(&c->cs_lock);
343 	switch (c->cmt_state) {
344 	case COMMIT_RESTING:
345 	case COMMIT_BACKGROUND:
346 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
347 			dbg_cstate(COMMIT_REQUIRED));
348 		c->cmt_state = COMMIT_REQUIRED;
349 		break;
350 	case COMMIT_RUNNING_BACKGROUND:
351 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
352 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
353 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
354 		break;
355 	case COMMIT_REQUIRED:
356 	case COMMIT_RUNNING_REQUIRED:
357 	case COMMIT_BROKEN:
358 		break;
359 	}
360 	spin_unlock(&c->cs_lock);
361 }
362 
363 /**
364  * ubifs_request_bg_commit - notify the background thread to do a commit.
365  * @c: UBIFS file-system description object
366  *
367  * This function is called if the journal is full enough to make a commit
368  * worthwhile, so background thread is kicked to start it.
369  */
370 void ubifs_request_bg_commit(struct ubifs_info *c)
371 {
372 	spin_lock(&c->cs_lock);
373 	if (c->cmt_state == COMMIT_RESTING) {
374 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
375 			dbg_cstate(COMMIT_BACKGROUND));
376 		c->cmt_state = COMMIT_BACKGROUND;
377 		spin_unlock(&c->cs_lock);
378 		ubifs_wake_up_bgt(c);
379 	} else
380 		spin_unlock(&c->cs_lock);
381 }
382 
383 /**
384  * wait_for_commit - wait for commit.
385  * @c: UBIFS file-system description object
386  *
387  * This function sleeps until the commit operation is no longer running.
388  */
389 static int wait_for_commit(struct ubifs_info *c)
390 {
391 	dbg_cmt("pid %d goes sleep", current->pid);
392 
393 	/*
394 	 * The following sleeps if the condition is false, and will be woken
395 	 * when the commit ends. It is possible, although very unlikely, that we
396 	 * will wake up and see the subsequent commit running, rather than the
397 	 * one we were waiting for, and go back to sleep.  However, we will be
398 	 * woken again, so there is no danger of sleeping forever.
399 	 */
400 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
401 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
402 	dbg_cmt("commit finished, pid %d woke up", current->pid);
403 	return 0;
404 }
405 
406 /**
407  * ubifs_run_commit - run or wait for commit.
408  * @c: UBIFS file-system description object
409  *
410  * This function runs commit and returns zero in case of success and a negative
411  * error code in case of failure.
412  */
413 int ubifs_run_commit(struct ubifs_info *c)
414 {
415 	int err = 0;
416 
417 	spin_lock(&c->cs_lock);
418 	if (c->cmt_state == COMMIT_BROKEN) {
419 		err = -EROFS;
420 		goto out;
421 	}
422 
423 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
424 		/*
425 		 * We set the commit state to 'running required' to indicate
426 		 * that we want it to complete as quickly as possible.
427 		 */
428 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
429 
430 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
431 		spin_unlock(&c->cs_lock);
432 		return wait_for_commit(c);
433 	}
434 	spin_unlock(&c->cs_lock);
435 
436 	/* Ok, the commit is indeed needed */
437 
438 	down_write(&c->commit_sem);
439 	spin_lock(&c->cs_lock);
440 	/*
441 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
442 	 * re-check it.
443 	 */
444 	if (c->cmt_state == COMMIT_BROKEN) {
445 		err = -EROFS;
446 		goto out_cmt_unlock;
447 	}
448 
449 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
450 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
451 
452 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
453 		up_write(&c->commit_sem);
454 		spin_unlock(&c->cs_lock);
455 		return wait_for_commit(c);
456 	}
457 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
458 	spin_unlock(&c->cs_lock);
459 
460 	err = do_commit(c);
461 	return err;
462 
463 out_cmt_unlock:
464 	up_write(&c->commit_sem);
465 out:
466 	spin_unlock(&c->cs_lock);
467 	return err;
468 }
469 
470 /**
471  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
472  * @c: UBIFS file-system description object
473  *
474  * This function is called by garbage collection to determine if commit should
475  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
476  * is full enough to start commit, this function returns true. It is not
477  * absolutely necessary to commit yet, but it feels like this should be better
478  * then to keep doing GC. This function returns %1 if GC has to initiate commit
479  * and %0 if not.
480  */
481 int ubifs_gc_should_commit(struct ubifs_info *c)
482 {
483 	int ret = 0;
484 
485 	spin_lock(&c->cs_lock);
486 	if (c->cmt_state == COMMIT_BACKGROUND) {
487 		dbg_cmt("commit required now");
488 		c->cmt_state = COMMIT_REQUIRED;
489 	} else
490 		dbg_cmt("commit not requested");
491 	if (c->cmt_state == COMMIT_REQUIRED)
492 		ret = 1;
493 	spin_unlock(&c->cs_lock);
494 	return ret;
495 }
496 
497 /*
498  * Everything below is related to debugging.
499  */
500 
501 /**
502  * struct idx_node - hold index nodes during index tree traversal.
503  * @list: list
504  * @iip: index in parent (slot number of this indexing node in the parent
505  *       indexing node)
506  * @upper_key: all keys in this indexing node have to be less or equivalent to
507  *             this key
508  * @idx: index node (8-byte aligned because all node structures must be 8-byte
509  *       aligned)
510  */
511 struct idx_node {
512 	struct list_head list;
513 	int iip;
514 	union ubifs_key upper_key;
515 	struct ubifs_idx_node idx __aligned(8);
516 };
517 
518 /**
519  * dbg_old_index_check_init - get information for the next old index check.
520  * @c: UBIFS file-system description object
521  * @zroot: root of the index
522  *
523  * This function records information about the index that will be needed for the
524  * next old index check i.e. 'dbg_check_old_index()'.
525  *
526  * This function returns %0 on success and a negative error code on failure.
527  */
528 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
529 {
530 	struct ubifs_idx_node *idx;
531 	int lnum, offs, len, err = 0;
532 	struct ubifs_debug_info *d = c->dbg;
533 
534 	d->old_zroot = *zroot;
535 	lnum = d->old_zroot.lnum;
536 	offs = d->old_zroot.offs;
537 	len = d->old_zroot.len;
538 
539 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
540 	if (!idx)
541 		return -ENOMEM;
542 
543 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
544 	if (err)
545 		goto out;
546 
547 	d->old_zroot_level = le16_to_cpu(idx->level);
548 	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
549 out:
550 	kfree(idx);
551 	return err;
552 }
553 
554 /**
555  * dbg_check_old_index - check the old copy of the index.
556  * @c: UBIFS file-system description object
557  * @zroot: root of the new index
558  *
559  * In order to be able to recover from an unclean unmount, a complete copy of
560  * the index must exist on flash. This is the "old" index. The commit process
561  * must write the "new" index to flash without overwriting or destroying any
562  * part of the old index. This function is run at commit end in order to check
563  * that the old index does indeed exist completely intact.
564  *
565  * This function returns %0 on success and a negative error code on failure.
566  */
567 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
568 {
569 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
570 	int first = 1, iip;
571 	struct ubifs_debug_info *d = c->dbg;
572 	union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
573 	unsigned long long uninitialized_var(last_sqnum);
574 	struct ubifs_idx_node *idx;
575 	struct list_head list;
576 	struct idx_node *i;
577 	size_t sz;
578 
579 	if (!dbg_is_chk_index(c))
580 		return 0;
581 
582 	INIT_LIST_HEAD(&list);
583 
584 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
585 	     UBIFS_IDX_NODE_SZ;
586 
587 	/* Start at the old zroot */
588 	lnum = d->old_zroot.lnum;
589 	offs = d->old_zroot.offs;
590 	len = d->old_zroot.len;
591 	iip = 0;
592 
593 	/*
594 	 * Traverse the index tree preorder depth-first i.e. do a node and then
595 	 * its subtrees from left to right.
596 	 */
597 	while (1) {
598 		struct ubifs_branch *br;
599 
600 		/* Get the next index node */
601 		i = kmalloc(sz, GFP_NOFS);
602 		if (!i) {
603 			err = -ENOMEM;
604 			goto out_free;
605 		}
606 		i->iip = iip;
607 		/* Keep the index nodes on our path in a linked list */
608 		list_add_tail(&i->list, &list);
609 		/* Read the index node */
610 		idx = &i->idx;
611 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
612 		if (err)
613 			goto out_free;
614 		/* Validate index node */
615 		child_cnt = le16_to_cpu(idx->child_cnt);
616 		if (child_cnt < 1 || child_cnt > c->fanout) {
617 			err = 1;
618 			goto out_dump;
619 		}
620 		if (first) {
621 			first = 0;
622 			/* Check root level and sqnum */
623 			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
624 				err = 2;
625 				goto out_dump;
626 			}
627 			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
628 				err = 3;
629 				goto out_dump;
630 			}
631 			/* Set last values as though root had a parent */
632 			last_level = le16_to_cpu(idx->level) + 1;
633 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
634 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
635 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
636 		}
637 		key_copy(c, &upper_key, &i->upper_key);
638 		if (le16_to_cpu(idx->level) != last_level - 1) {
639 			err = 3;
640 			goto out_dump;
641 		}
642 		/*
643 		 * The index is always written bottom up hence a child's sqnum
644 		 * is always less than the parents.
645 		 */
646 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
647 			err = 4;
648 			goto out_dump;
649 		}
650 		/* Check key range */
651 		key_read(c, ubifs_idx_key(c, idx), &l_key);
652 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
653 		key_read(c, &br->key, &u_key);
654 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
655 			err = 5;
656 			goto out_dump;
657 		}
658 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
659 			err = 6;
660 			goto out_dump;
661 		}
662 		if (keys_cmp(c, &upper_key, &u_key) == 0)
663 			if (!is_hash_key(c, &u_key)) {
664 				err = 7;
665 				goto out_dump;
666 			}
667 		/* Go to next index node */
668 		if (le16_to_cpu(idx->level) == 0) {
669 			/* At the bottom, so go up until can go right */
670 			while (1) {
671 				/* Drop the bottom of the list */
672 				list_del(&i->list);
673 				kfree(i);
674 				/* No more list means we are done */
675 				if (list_empty(&list))
676 					goto out;
677 				/* Look at the new bottom */
678 				i = list_entry(list.prev, struct idx_node,
679 					       list);
680 				idx = &i->idx;
681 				/* Can we go right */
682 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
683 					iip = iip + 1;
684 					break;
685 				} else
686 					/* Nope, so go up again */
687 					iip = i->iip;
688 			}
689 		} else
690 			/* Go down left */
691 			iip = 0;
692 		/*
693 		 * We have the parent in 'idx' and now we set up for reading the
694 		 * child pointed to by slot 'iip'.
695 		 */
696 		last_level = le16_to_cpu(idx->level);
697 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
698 		br = ubifs_idx_branch(c, idx, iip);
699 		lnum = le32_to_cpu(br->lnum);
700 		offs = le32_to_cpu(br->offs);
701 		len = le32_to_cpu(br->len);
702 		key_read(c, &br->key, &lower_key);
703 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
704 			br = ubifs_idx_branch(c, idx, iip + 1);
705 			key_read(c, &br->key, &upper_key);
706 		} else
707 			key_copy(c, &i->upper_key, &upper_key);
708 	}
709 out:
710 	err = dbg_old_index_check_init(c, zroot);
711 	if (err)
712 		goto out_free;
713 
714 	return 0;
715 
716 out_dump:
717 	ubifs_err("dumping index node (iip=%d)", i->iip);
718 	ubifs_dump_node(c, idx);
719 	list_del(&i->list);
720 	kfree(i);
721 	if (!list_empty(&list)) {
722 		i = list_entry(list.prev, struct idx_node, list);
723 		ubifs_err("dumping parent index node");
724 		ubifs_dump_node(c, &i->idx);
725 	}
726 out_free:
727 	while (!list_empty(&list)) {
728 		i = list_entry(list.next, struct idx_node, list);
729 		list_del(&i->list);
730 		kfree(i);
731 	}
732 	ubifs_err("failed, error %d", err);
733 	if (err > 0)
734 		err = -EINVAL;
735 	return err;
736 }
737