xref: /linux/fs/ubifs/commit.c (revision 367b8112fe2ea5c39a7bb4d263dcdd9b612fae18)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions that manage the running of the commit process.
25  * Each affected module has its own functions to accomplish their part in the
26  * commit and those functions are called here.
27  *
28  * The commit is the process whereby all updates to the index and LEB properties
29  * are written out together and the journal becomes empty. This keeps the
30  * file system consistent - at all times the state can be recreated by reading
31  * the index and LEB properties and then replaying the journal.
32  *
33  * The commit is split into two parts named "commit start" and "commit end".
34  * During commit start, the commit process has exclusive access to the journal
35  * by holding the commit semaphore down for writing. As few I/O operations as
36  * possible are performed during commit start, instead the nodes that are to be
37  * written are merely identified. During commit end, the commit semaphore is no
38  * longer held and the journal is again in operation, allowing users to continue
39  * to use the file system while the bulk of the commit I/O is performed. The
40  * purpose of this two-step approach is to prevent the commit from causing any
41  * latency blips. Note that in any case, the commit does not prevent lookups
42  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43  * cache.
44  */
45 
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include "ubifs.h"
49 
50 /**
51  * do_commit - commit the journal.
52  * @c: UBIFS file-system description object
53  *
54  * This function implements UBIFS commit. It has to be called with commit lock
55  * locked. Returns zero in case of success and a negative error code in case of
56  * failure.
57  */
58 static int do_commit(struct ubifs_info *c)
59 {
60 	int err, new_ltail_lnum, old_ltail_lnum, i;
61 	struct ubifs_zbranch zroot;
62 	struct ubifs_lp_stats lst;
63 
64 	dbg_cmt("start");
65 	if (c->ro_media) {
66 		err = -EROFS;
67 		goto out_up;
68 	}
69 
70 	/* Sync all write buffers (necessary for recovery) */
71 	for (i = 0; i < c->jhead_cnt; i++) {
72 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
73 		if (err)
74 			goto out_up;
75 	}
76 
77 	c->cmt_no += 1;
78 	err = ubifs_gc_start_commit(c);
79 	if (err)
80 		goto out_up;
81 	err = dbg_check_lprops(c);
82 	if (err)
83 		goto out_up;
84 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
85 	if (err)
86 		goto out_up;
87 	err = ubifs_tnc_start_commit(c, &zroot);
88 	if (err)
89 		goto out_up;
90 	err = ubifs_lpt_start_commit(c);
91 	if (err)
92 		goto out_up;
93 	err = ubifs_orphan_start_commit(c);
94 	if (err)
95 		goto out_up;
96 
97 	ubifs_get_lp_stats(c, &lst);
98 
99 	up_write(&c->commit_sem);
100 
101 	err = ubifs_tnc_end_commit(c);
102 	if (err)
103 		goto out;
104 	err = ubifs_lpt_end_commit(c);
105 	if (err)
106 		goto out;
107 	err = ubifs_orphan_end_commit(c);
108 	if (err)
109 		goto out;
110 	old_ltail_lnum = c->ltail_lnum;
111 	err = ubifs_log_end_commit(c, new_ltail_lnum);
112 	if (err)
113 		goto out;
114 	err = dbg_check_old_index(c, &zroot);
115 	if (err)
116 		goto out;
117 
118 	mutex_lock(&c->mst_mutex);
119 	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
120 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
121 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
122 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
123 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
124 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
125 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
126 	c->mst_node->index_size  = cpu_to_le64(c->old_idx_sz);
127 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
128 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
129 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
130 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
131 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
132 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
133 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
134 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
135 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
136 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
137 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
138 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
139 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
140 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
141 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
142 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
143 	if (c->no_orphs)
144 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
145 	else
146 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
147 	err = ubifs_write_master(c);
148 	mutex_unlock(&c->mst_mutex);
149 	if (err)
150 		goto out;
151 
152 	err = ubifs_log_post_commit(c, old_ltail_lnum);
153 	if (err)
154 		goto out;
155 	err = ubifs_gc_end_commit(c);
156 	if (err)
157 		goto out;
158 	err = ubifs_lpt_post_commit(c);
159 	if (err)
160 		goto out;
161 
162 	spin_lock(&c->cs_lock);
163 	c->cmt_state = COMMIT_RESTING;
164 	wake_up(&c->cmt_wq);
165 	dbg_cmt("commit end");
166 	spin_unlock(&c->cs_lock);
167 
168 	return 0;
169 
170 out_up:
171 	up_write(&c->commit_sem);
172 out:
173 	ubifs_err("commit failed, error %d", err);
174 	spin_lock(&c->cs_lock);
175 	c->cmt_state = COMMIT_BROKEN;
176 	wake_up(&c->cmt_wq);
177 	spin_unlock(&c->cs_lock);
178 	ubifs_ro_mode(c, err);
179 	return err;
180 }
181 
182 /**
183  * run_bg_commit - run background commit if it is needed.
184  * @c: UBIFS file-system description object
185  *
186  * This function runs background commit if it is needed. Returns zero in case
187  * of success and a negative error code in case of failure.
188  */
189 static int run_bg_commit(struct ubifs_info *c)
190 {
191 	spin_lock(&c->cs_lock);
192 	/*
193 	 * Run background commit only if background commit was requested or if
194 	 * commit is required.
195 	 */
196 	if (c->cmt_state != COMMIT_BACKGROUND &&
197 	    c->cmt_state != COMMIT_REQUIRED)
198 		goto out;
199 	spin_unlock(&c->cs_lock);
200 
201 	down_write(&c->commit_sem);
202 	spin_lock(&c->cs_lock);
203 	if (c->cmt_state == COMMIT_REQUIRED)
204 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
205 	else if (c->cmt_state == COMMIT_BACKGROUND)
206 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
207 	else
208 		goto out_cmt_unlock;
209 	spin_unlock(&c->cs_lock);
210 
211 	return do_commit(c);
212 
213 out_cmt_unlock:
214 	up_write(&c->commit_sem);
215 out:
216 	spin_unlock(&c->cs_lock);
217 	return 0;
218 }
219 
220 /**
221  * ubifs_bg_thread - UBIFS background thread function.
222  * @info: points to the file-system description object
223  *
224  * This function implements various file-system background activities:
225  * o when a write-buffer timer expires it synchronizes the appropriate
226  *   write-buffer;
227  * o when the journal is about to be full, it starts in-advance commit.
228  *
229  * Note, other stuff like background garbage collection may be added here in
230  * future.
231  */
232 int ubifs_bg_thread(void *info)
233 {
234 	int err;
235 	struct ubifs_info *c = info;
236 
237 	ubifs_msg("background thread \"%s\" started, PID %d",
238 		  c->bgt_name, current->pid);
239 	set_freezable();
240 
241 	while (1) {
242 		if (kthread_should_stop())
243 			break;
244 
245 		if (try_to_freeze())
246 			continue;
247 
248 		set_current_state(TASK_INTERRUPTIBLE);
249 		/* Check if there is something to do */
250 		if (!c->need_bgt) {
251 			/*
252 			 * Nothing prevents us from going sleep now and
253 			 * be never woken up and block the task which
254 			 * could wait in 'kthread_stop()' forever.
255 			 */
256 			if (kthread_should_stop())
257 				break;
258 			schedule();
259 			continue;
260 		} else
261 			__set_current_state(TASK_RUNNING);
262 
263 		c->need_bgt = 0;
264 		err = ubifs_bg_wbufs_sync(c);
265 		if (err)
266 			ubifs_ro_mode(c, err);
267 
268 		run_bg_commit(c);
269 		cond_resched();
270 	}
271 
272 	dbg_msg("background thread \"%s\" stops", c->bgt_name);
273 	return 0;
274 }
275 
276 /**
277  * ubifs_commit_required - set commit state to "required".
278  * @c: UBIFS file-system description object
279  *
280  * This function is called if a commit is required but cannot be done from the
281  * calling function, so it is just flagged instead.
282  */
283 void ubifs_commit_required(struct ubifs_info *c)
284 {
285 	spin_lock(&c->cs_lock);
286 	switch (c->cmt_state) {
287 	case COMMIT_RESTING:
288 	case COMMIT_BACKGROUND:
289 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
290 			dbg_cstate(COMMIT_REQUIRED));
291 		c->cmt_state = COMMIT_REQUIRED;
292 		break;
293 	case COMMIT_RUNNING_BACKGROUND:
294 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
295 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
296 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
297 		break;
298 	case COMMIT_REQUIRED:
299 	case COMMIT_RUNNING_REQUIRED:
300 	case COMMIT_BROKEN:
301 		break;
302 	}
303 	spin_unlock(&c->cs_lock);
304 }
305 
306 /**
307  * ubifs_request_bg_commit - notify the background thread to do a commit.
308  * @c: UBIFS file-system description object
309  *
310  * This function is called if the journal is full enough to make a commit
311  * worthwhile, so background thread is kicked to start it.
312  */
313 void ubifs_request_bg_commit(struct ubifs_info *c)
314 {
315 	spin_lock(&c->cs_lock);
316 	if (c->cmt_state == COMMIT_RESTING) {
317 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
318 			dbg_cstate(COMMIT_BACKGROUND));
319 		c->cmt_state = COMMIT_BACKGROUND;
320 		spin_unlock(&c->cs_lock);
321 		ubifs_wake_up_bgt(c);
322 	} else
323 		spin_unlock(&c->cs_lock);
324 }
325 
326 /**
327  * wait_for_commit - wait for commit.
328  * @c: UBIFS file-system description object
329  *
330  * This function sleeps until the commit operation is no longer running.
331  */
332 static int wait_for_commit(struct ubifs_info *c)
333 {
334 	dbg_cmt("pid %d goes sleep", current->pid);
335 
336 	/*
337 	 * The following sleeps if the condition is false, and will be woken
338 	 * when the commit ends. It is possible, although very unlikely, that we
339 	 * will wake up and see the subsequent commit running, rather than the
340 	 * one we were waiting for, and go back to sleep.  However, we will be
341 	 * woken again, so there is no danger of sleeping forever.
342 	 */
343 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
344 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
345 	dbg_cmt("commit finished, pid %d woke up", current->pid);
346 	return 0;
347 }
348 
349 /**
350  * ubifs_run_commit - run or wait for commit.
351  * @c: UBIFS file-system description object
352  *
353  * This function runs commit and returns zero in case of success and a negative
354  * error code in case of failure.
355  */
356 int ubifs_run_commit(struct ubifs_info *c)
357 {
358 	int err = 0;
359 
360 	spin_lock(&c->cs_lock);
361 	if (c->cmt_state == COMMIT_BROKEN) {
362 		err = -EINVAL;
363 		goto out;
364 	}
365 
366 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
367 		/*
368 		 * We set the commit state to 'running required' to indicate
369 		 * that we want it to complete as quickly as possible.
370 		 */
371 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
372 
373 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
374 		spin_unlock(&c->cs_lock);
375 		return wait_for_commit(c);
376 	}
377 	spin_unlock(&c->cs_lock);
378 
379 	/* Ok, the commit is indeed needed */
380 
381 	down_write(&c->commit_sem);
382 	spin_lock(&c->cs_lock);
383 	/*
384 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
385 	 * re-check it.
386 	 */
387 	if (c->cmt_state == COMMIT_BROKEN) {
388 		err = -EINVAL;
389 		goto out_cmt_unlock;
390 	}
391 
392 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
393 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
394 
395 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
396 		up_write(&c->commit_sem);
397 		spin_unlock(&c->cs_lock);
398 		return wait_for_commit(c);
399 	}
400 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
401 	spin_unlock(&c->cs_lock);
402 
403 	err = do_commit(c);
404 	return err;
405 
406 out_cmt_unlock:
407 	up_write(&c->commit_sem);
408 out:
409 	spin_unlock(&c->cs_lock);
410 	return err;
411 }
412 
413 /**
414  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
415  * @c: UBIFS file-system description object
416  *
417  * This function is called by garbage collection to determine if commit should
418  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
419  * is full enough to start commit, this function returns true. It is not
420  * absolutely necessary to commit yet, but it feels like this should be better
421  * then to keep doing GC. This function returns %1 if GC has to initiate commit
422  * and %0 if not.
423  */
424 int ubifs_gc_should_commit(struct ubifs_info *c)
425 {
426 	int ret = 0;
427 
428 	spin_lock(&c->cs_lock);
429 	if (c->cmt_state == COMMIT_BACKGROUND) {
430 		dbg_cmt("commit required now");
431 		c->cmt_state = COMMIT_REQUIRED;
432 	} else
433 		dbg_cmt("commit not requested");
434 	if (c->cmt_state == COMMIT_REQUIRED)
435 		ret = 1;
436 	spin_unlock(&c->cs_lock);
437 	return ret;
438 }
439 
440 #ifdef CONFIG_UBIFS_FS_DEBUG
441 
442 /**
443  * struct idx_node - hold index nodes during index tree traversal.
444  * @list: list
445  * @iip: index in parent (slot number of this indexing node in the parent
446  *       indexing node)
447  * @upper_key: all keys in this indexing node have to be less or equivalent to
448  *             this key
449  * @idx: index node (8-byte aligned because all node structures must be 8-byte
450  *       aligned)
451  */
452 struct idx_node {
453 	struct list_head list;
454 	int iip;
455 	union ubifs_key upper_key;
456 	struct ubifs_idx_node idx __attribute__((aligned(8)));
457 };
458 
459 /**
460  * dbg_old_index_check_init - get information for the next old index check.
461  * @c: UBIFS file-system description object
462  * @zroot: root of the index
463  *
464  * This function records information about the index that will be needed for the
465  * next old index check i.e. 'dbg_check_old_index()'.
466  *
467  * This function returns %0 on success and a negative error code on failure.
468  */
469 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
470 {
471 	struct ubifs_idx_node *idx;
472 	int lnum, offs, len, err = 0;
473 
474 	c->old_zroot = *zroot;
475 
476 	lnum = c->old_zroot.lnum;
477 	offs = c->old_zroot.offs;
478 	len = c->old_zroot.len;
479 
480 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
481 	if (!idx)
482 		return -ENOMEM;
483 
484 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
485 	if (err)
486 		goto out;
487 
488 	c->old_zroot_level = le16_to_cpu(idx->level);
489 	c->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
490 out:
491 	kfree(idx);
492 	return err;
493 }
494 
495 /**
496  * dbg_check_old_index - check the old copy of the index.
497  * @c: UBIFS file-system description object
498  * @zroot: root of the new index
499  *
500  * In order to be able to recover from an unclean unmount, a complete copy of
501  * the index must exist on flash. This is the "old" index. The commit process
502  * must write the "new" index to flash without overwriting or destroying any
503  * part of the old index. This function is run at commit end in order to check
504  * that the old index does indeed exist completely intact.
505  *
506  * This function returns %0 on success and a negative error code on failure.
507  */
508 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
509 {
510 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
511 	int first = 1, iip;
512 	union ubifs_key lower_key, upper_key, l_key, u_key;
513 	unsigned long long uninitialized_var(last_sqnum);
514 	struct ubifs_idx_node *idx;
515 	struct list_head list;
516 	struct idx_node *i;
517 	size_t sz;
518 
519 	if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX))
520 		goto out;
521 
522 	INIT_LIST_HEAD(&list);
523 
524 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
525 	     UBIFS_IDX_NODE_SZ;
526 
527 	/* Start at the old zroot */
528 	lnum = c->old_zroot.lnum;
529 	offs = c->old_zroot.offs;
530 	len = c->old_zroot.len;
531 	iip = 0;
532 
533 	/*
534 	 * Traverse the index tree preorder depth-first i.e. do a node and then
535 	 * its subtrees from left to right.
536 	 */
537 	while (1) {
538 		struct ubifs_branch *br;
539 
540 		/* Get the next index node */
541 		i = kmalloc(sz, GFP_NOFS);
542 		if (!i) {
543 			err = -ENOMEM;
544 			goto out_free;
545 		}
546 		i->iip = iip;
547 		/* Keep the index nodes on our path in a linked list */
548 		list_add_tail(&i->list, &list);
549 		/* Read the index node */
550 		idx = &i->idx;
551 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
552 		if (err)
553 			goto out_free;
554 		/* Validate index node */
555 		child_cnt = le16_to_cpu(idx->child_cnt);
556 		if (child_cnt < 1 || child_cnt > c->fanout) {
557 			err = 1;
558 			goto out_dump;
559 		}
560 		if (first) {
561 			first = 0;
562 			/* Check root level and sqnum */
563 			if (le16_to_cpu(idx->level) != c->old_zroot_level) {
564 				err = 2;
565 				goto out_dump;
566 			}
567 			if (le64_to_cpu(idx->ch.sqnum) != c->old_zroot_sqnum) {
568 				err = 3;
569 				goto out_dump;
570 			}
571 			/* Set last values as though root had a parent */
572 			last_level = le16_to_cpu(idx->level) + 1;
573 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
574 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
575 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
576 		}
577 		key_copy(c, &upper_key, &i->upper_key);
578 		if (le16_to_cpu(idx->level) != last_level - 1) {
579 			err = 3;
580 			goto out_dump;
581 		}
582 		/*
583 		 * The index is always written bottom up hence a child's sqnum
584 		 * is always less than the parents.
585 		 */
586 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
587 			err = 4;
588 			goto out_dump;
589 		}
590 		/* Check key range */
591 		key_read(c, ubifs_idx_key(c, idx), &l_key);
592 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
593 		key_read(c, &br->key, &u_key);
594 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
595 			err = 5;
596 			goto out_dump;
597 		}
598 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
599 			err = 6;
600 			goto out_dump;
601 		}
602 		if (keys_cmp(c, &upper_key, &u_key) == 0)
603 			if (!is_hash_key(c, &u_key)) {
604 				err = 7;
605 				goto out_dump;
606 			}
607 		/* Go to next index node */
608 		if (le16_to_cpu(idx->level) == 0) {
609 			/* At the bottom, so go up until can go right */
610 			while (1) {
611 				/* Drop the bottom of the list */
612 				list_del(&i->list);
613 				kfree(i);
614 				/* No more list means we are done */
615 				if (list_empty(&list))
616 					goto out;
617 				/* Look at the new bottom */
618 				i = list_entry(list.prev, struct idx_node,
619 					       list);
620 				idx = &i->idx;
621 				/* Can we go right */
622 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
623 					iip = iip + 1;
624 					break;
625 				} else
626 					/* Nope, so go up again */
627 					iip = i->iip;
628 			}
629 		} else
630 			/* Go down left */
631 			iip = 0;
632 		/*
633 		 * We have the parent in 'idx' and now we set up for reading the
634 		 * child pointed to by slot 'iip'.
635 		 */
636 		last_level = le16_to_cpu(idx->level);
637 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
638 		br = ubifs_idx_branch(c, idx, iip);
639 		lnum = le32_to_cpu(br->lnum);
640 		offs = le32_to_cpu(br->offs);
641 		len = le32_to_cpu(br->len);
642 		key_read(c, &br->key, &lower_key);
643 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
644 			br = ubifs_idx_branch(c, idx, iip + 1);
645 			key_read(c, &br->key, &upper_key);
646 		} else
647 			key_copy(c, &i->upper_key, &upper_key);
648 	}
649 out:
650 	err = dbg_old_index_check_init(c, zroot);
651 	if (err)
652 		goto out_free;
653 
654 	return 0;
655 
656 out_dump:
657 	dbg_err("dumping index node (iip=%d)", i->iip);
658 	dbg_dump_node(c, idx);
659 	list_del(&i->list);
660 	kfree(i);
661 	if (!list_empty(&list)) {
662 		i = list_entry(list.prev, struct idx_node, list);
663 		dbg_err("dumping parent index node");
664 		dbg_dump_node(c, &i->idx);
665 	}
666 out_free:
667 	while (!list_empty(&list)) {
668 		i = list_entry(list.next, struct idx_node, list);
669 		list_del(&i->list);
670 		kfree(i);
671 	}
672 	ubifs_err("failed, error %d", err);
673 	if (err > 0)
674 		err = -EINVAL;
675 	return err;
676 }
677 
678 #endif /* CONFIG_UBIFS_FS_DEBUG */
679