xref: /linux/fs/ubifs/commit.c (revision 0dd9ac63ce26ec87b080ca9c3e6efed33c23ace6)
1 /*
2  * This file is part of UBIFS.
3  *
4  * Copyright (C) 2006-2008 Nokia Corporation.
5  *
6  * This program is free software; you can redistribute it and/or modify it
7  * under the terms of the GNU General Public License version 2 as published by
8  * the Free Software Foundation.
9  *
10  * This program is distributed in the hope that it will be useful, but WITHOUT
11  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
13  * more details.
14  *
15  * You should have received a copy of the GNU General Public License along with
16  * this program; if not, write to the Free Software Foundation, Inc., 51
17  * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
18  *
19  * Authors: Adrian Hunter
20  *          Artem Bityutskiy (Битюцкий Артём)
21  */
22 
23 /*
24  * This file implements functions that manage the running of the commit process.
25  * Each affected module has its own functions to accomplish their part in the
26  * commit and those functions are called here.
27  *
28  * The commit is the process whereby all updates to the index and LEB properties
29  * are written out together and the journal becomes empty. This keeps the
30  * file system consistent - at all times the state can be recreated by reading
31  * the index and LEB properties and then replaying the journal.
32  *
33  * The commit is split into two parts named "commit start" and "commit end".
34  * During commit start, the commit process has exclusive access to the journal
35  * by holding the commit semaphore down for writing. As few I/O operations as
36  * possible are performed during commit start, instead the nodes that are to be
37  * written are merely identified. During commit end, the commit semaphore is no
38  * longer held and the journal is again in operation, allowing users to continue
39  * to use the file system while the bulk of the commit I/O is performed. The
40  * purpose of this two-step approach is to prevent the commit from causing any
41  * latency blips. Note that in any case, the commit does not prevent lookups
42  * (as permitted by the TNC mutex), or access to VFS data structures e.g. page
43  * cache.
44  */
45 
46 #include <linux/freezer.h>
47 #include <linux/kthread.h>
48 #include <linux/slab.h>
49 #include "ubifs.h"
50 
51 /**
52  * do_commit - commit the journal.
53  * @c: UBIFS file-system description object
54  *
55  * This function implements UBIFS commit. It has to be called with commit lock
56  * locked. Returns zero in case of success and a negative error code in case of
57  * failure.
58  */
59 static int do_commit(struct ubifs_info *c)
60 {
61 	int err, new_ltail_lnum, old_ltail_lnum, i;
62 	struct ubifs_zbranch zroot;
63 	struct ubifs_lp_stats lst;
64 
65 	dbg_cmt("start");
66 	if (c->ro_media) {
67 		err = -EROFS;
68 		goto out_up;
69 	}
70 
71 	/* Sync all write buffers (necessary for recovery) */
72 	for (i = 0; i < c->jhead_cnt; i++) {
73 		err = ubifs_wbuf_sync(&c->jheads[i].wbuf);
74 		if (err)
75 			goto out_up;
76 	}
77 
78 	c->cmt_no += 1;
79 	err = ubifs_gc_start_commit(c);
80 	if (err)
81 		goto out_up;
82 	err = dbg_check_lprops(c);
83 	if (err)
84 		goto out_up;
85 	err = ubifs_log_start_commit(c, &new_ltail_lnum);
86 	if (err)
87 		goto out_up;
88 	err = ubifs_tnc_start_commit(c, &zroot);
89 	if (err)
90 		goto out_up;
91 	err = ubifs_lpt_start_commit(c);
92 	if (err)
93 		goto out_up;
94 	err = ubifs_orphan_start_commit(c);
95 	if (err)
96 		goto out_up;
97 
98 	ubifs_get_lp_stats(c, &lst);
99 
100 	up_write(&c->commit_sem);
101 
102 	err = ubifs_tnc_end_commit(c);
103 	if (err)
104 		goto out;
105 	err = ubifs_lpt_end_commit(c);
106 	if (err)
107 		goto out;
108 	err = ubifs_orphan_end_commit(c);
109 	if (err)
110 		goto out;
111 	old_ltail_lnum = c->ltail_lnum;
112 	err = ubifs_log_end_commit(c, new_ltail_lnum);
113 	if (err)
114 		goto out;
115 	err = dbg_check_old_index(c, &zroot);
116 	if (err)
117 		goto out;
118 
119 	mutex_lock(&c->mst_mutex);
120 	c->mst_node->cmt_no      = cpu_to_le64(c->cmt_no);
121 	c->mst_node->log_lnum    = cpu_to_le32(new_ltail_lnum);
122 	c->mst_node->root_lnum   = cpu_to_le32(zroot.lnum);
123 	c->mst_node->root_offs   = cpu_to_le32(zroot.offs);
124 	c->mst_node->root_len    = cpu_to_le32(zroot.len);
125 	c->mst_node->ihead_lnum  = cpu_to_le32(c->ihead_lnum);
126 	c->mst_node->ihead_offs  = cpu_to_le32(c->ihead_offs);
127 	c->mst_node->index_size  = cpu_to_le64(c->old_idx_sz);
128 	c->mst_node->lpt_lnum    = cpu_to_le32(c->lpt_lnum);
129 	c->mst_node->lpt_offs    = cpu_to_le32(c->lpt_offs);
130 	c->mst_node->nhead_lnum  = cpu_to_le32(c->nhead_lnum);
131 	c->mst_node->nhead_offs  = cpu_to_le32(c->nhead_offs);
132 	c->mst_node->ltab_lnum   = cpu_to_le32(c->ltab_lnum);
133 	c->mst_node->ltab_offs   = cpu_to_le32(c->ltab_offs);
134 	c->mst_node->lsave_lnum  = cpu_to_le32(c->lsave_lnum);
135 	c->mst_node->lsave_offs  = cpu_to_le32(c->lsave_offs);
136 	c->mst_node->lscan_lnum  = cpu_to_le32(c->lscan_lnum);
137 	c->mst_node->empty_lebs  = cpu_to_le32(lst.empty_lebs);
138 	c->mst_node->idx_lebs    = cpu_to_le32(lst.idx_lebs);
139 	c->mst_node->total_free  = cpu_to_le64(lst.total_free);
140 	c->mst_node->total_dirty = cpu_to_le64(lst.total_dirty);
141 	c->mst_node->total_used  = cpu_to_le64(lst.total_used);
142 	c->mst_node->total_dead  = cpu_to_le64(lst.total_dead);
143 	c->mst_node->total_dark  = cpu_to_le64(lst.total_dark);
144 	if (c->no_orphs)
145 		c->mst_node->flags |= cpu_to_le32(UBIFS_MST_NO_ORPHS);
146 	else
147 		c->mst_node->flags &= ~cpu_to_le32(UBIFS_MST_NO_ORPHS);
148 	err = ubifs_write_master(c);
149 	mutex_unlock(&c->mst_mutex);
150 	if (err)
151 		goto out;
152 
153 	err = ubifs_log_post_commit(c, old_ltail_lnum);
154 	if (err)
155 		goto out;
156 	err = ubifs_gc_end_commit(c);
157 	if (err)
158 		goto out;
159 	err = ubifs_lpt_post_commit(c);
160 	if (err)
161 		goto out;
162 
163 	spin_lock(&c->cs_lock);
164 	c->cmt_state = COMMIT_RESTING;
165 	wake_up(&c->cmt_wq);
166 	dbg_cmt("commit end");
167 	spin_unlock(&c->cs_lock);
168 
169 	return 0;
170 
171 out_up:
172 	up_write(&c->commit_sem);
173 out:
174 	ubifs_err("commit failed, error %d", err);
175 	spin_lock(&c->cs_lock);
176 	c->cmt_state = COMMIT_BROKEN;
177 	wake_up(&c->cmt_wq);
178 	spin_unlock(&c->cs_lock);
179 	ubifs_ro_mode(c, err);
180 	return err;
181 }
182 
183 /**
184  * run_bg_commit - run background commit if it is needed.
185  * @c: UBIFS file-system description object
186  *
187  * This function runs background commit if it is needed. Returns zero in case
188  * of success and a negative error code in case of failure.
189  */
190 static int run_bg_commit(struct ubifs_info *c)
191 {
192 	spin_lock(&c->cs_lock);
193 	/*
194 	 * Run background commit only if background commit was requested or if
195 	 * commit is required.
196 	 */
197 	if (c->cmt_state != COMMIT_BACKGROUND &&
198 	    c->cmt_state != COMMIT_REQUIRED)
199 		goto out;
200 	spin_unlock(&c->cs_lock);
201 
202 	down_write(&c->commit_sem);
203 	spin_lock(&c->cs_lock);
204 	if (c->cmt_state == COMMIT_REQUIRED)
205 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
206 	else if (c->cmt_state == COMMIT_BACKGROUND)
207 		c->cmt_state = COMMIT_RUNNING_BACKGROUND;
208 	else
209 		goto out_cmt_unlock;
210 	spin_unlock(&c->cs_lock);
211 
212 	return do_commit(c);
213 
214 out_cmt_unlock:
215 	up_write(&c->commit_sem);
216 out:
217 	spin_unlock(&c->cs_lock);
218 	return 0;
219 }
220 
221 /**
222  * ubifs_bg_thread - UBIFS background thread function.
223  * @info: points to the file-system description object
224  *
225  * This function implements various file-system background activities:
226  * o when a write-buffer timer expires it synchronizes the appropriate
227  *   write-buffer;
228  * o when the journal is about to be full, it starts in-advance commit.
229  *
230  * Note, other stuff like background garbage collection may be added here in
231  * future.
232  */
233 int ubifs_bg_thread(void *info)
234 {
235 	int err;
236 	struct ubifs_info *c = info;
237 
238 	dbg_msg("background thread \"%s\" started, PID %d",
239 		c->bgt_name, current->pid);
240 	set_freezable();
241 
242 	while (1) {
243 		if (kthread_should_stop())
244 			break;
245 
246 		if (try_to_freeze())
247 			continue;
248 
249 		set_current_state(TASK_INTERRUPTIBLE);
250 		/* Check if there is something to do */
251 		if (!c->need_bgt) {
252 			/*
253 			 * Nothing prevents us from going sleep now and
254 			 * be never woken up and block the task which
255 			 * could wait in 'kthread_stop()' forever.
256 			 */
257 			if (kthread_should_stop())
258 				break;
259 			schedule();
260 			continue;
261 		} else
262 			__set_current_state(TASK_RUNNING);
263 
264 		c->need_bgt = 0;
265 		err = ubifs_bg_wbufs_sync(c);
266 		if (err)
267 			ubifs_ro_mode(c, err);
268 
269 		run_bg_commit(c);
270 		cond_resched();
271 	}
272 
273 	dbg_msg("background thread \"%s\" stops", c->bgt_name);
274 	return 0;
275 }
276 
277 /**
278  * ubifs_commit_required - set commit state to "required".
279  * @c: UBIFS file-system description object
280  *
281  * This function is called if a commit is required but cannot be done from the
282  * calling function, so it is just flagged instead.
283  */
284 void ubifs_commit_required(struct ubifs_info *c)
285 {
286 	spin_lock(&c->cs_lock);
287 	switch (c->cmt_state) {
288 	case COMMIT_RESTING:
289 	case COMMIT_BACKGROUND:
290 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
291 			dbg_cstate(COMMIT_REQUIRED));
292 		c->cmt_state = COMMIT_REQUIRED;
293 		break;
294 	case COMMIT_RUNNING_BACKGROUND:
295 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
296 			dbg_cstate(COMMIT_RUNNING_REQUIRED));
297 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
298 		break;
299 	case COMMIT_REQUIRED:
300 	case COMMIT_RUNNING_REQUIRED:
301 	case COMMIT_BROKEN:
302 		break;
303 	}
304 	spin_unlock(&c->cs_lock);
305 }
306 
307 /**
308  * ubifs_request_bg_commit - notify the background thread to do a commit.
309  * @c: UBIFS file-system description object
310  *
311  * This function is called if the journal is full enough to make a commit
312  * worthwhile, so background thread is kicked to start it.
313  */
314 void ubifs_request_bg_commit(struct ubifs_info *c)
315 {
316 	spin_lock(&c->cs_lock);
317 	if (c->cmt_state == COMMIT_RESTING) {
318 		dbg_cmt("old: %s, new: %s", dbg_cstate(c->cmt_state),
319 			dbg_cstate(COMMIT_BACKGROUND));
320 		c->cmt_state = COMMIT_BACKGROUND;
321 		spin_unlock(&c->cs_lock);
322 		ubifs_wake_up_bgt(c);
323 	} else
324 		spin_unlock(&c->cs_lock);
325 }
326 
327 /**
328  * wait_for_commit - wait for commit.
329  * @c: UBIFS file-system description object
330  *
331  * This function sleeps until the commit operation is no longer running.
332  */
333 static int wait_for_commit(struct ubifs_info *c)
334 {
335 	dbg_cmt("pid %d goes sleep", current->pid);
336 
337 	/*
338 	 * The following sleeps if the condition is false, and will be woken
339 	 * when the commit ends. It is possible, although very unlikely, that we
340 	 * will wake up and see the subsequent commit running, rather than the
341 	 * one we were waiting for, and go back to sleep.  However, we will be
342 	 * woken again, so there is no danger of sleeping forever.
343 	 */
344 	wait_event(c->cmt_wq, c->cmt_state != COMMIT_RUNNING_BACKGROUND &&
345 			      c->cmt_state != COMMIT_RUNNING_REQUIRED);
346 	dbg_cmt("commit finished, pid %d woke up", current->pid);
347 	return 0;
348 }
349 
350 /**
351  * ubifs_run_commit - run or wait for commit.
352  * @c: UBIFS file-system description object
353  *
354  * This function runs commit and returns zero in case of success and a negative
355  * error code in case of failure.
356  */
357 int ubifs_run_commit(struct ubifs_info *c)
358 {
359 	int err = 0;
360 
361 	spin_lock(&c->cs_lock);
362 	if (c->cmt_state == COMMIT_BROKEN) {
363 		err = -EINVAL;
364 		goto out;
365 	}
366 
367 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
368 		/*
369 		 * We set the commit state to 'running required' to indicate
370 		 * that we want it to complete as quickly as possible.
371 		 */
372 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
373 
374 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
375 		spin_unlock(&c->cs_lock);
376 		return wait_for_commit(c);
377 	}
378 	spin_unlock(&c->cs_lock);
379 
380 	/* Ok, the commit is indeed needed */
381 
382 	down_write(&c->commit_sem);
383 	spin_lock(&c->cs_lock);
384 	/*
385 	 * Since we unlocked 'c->cs_lock', the state may have changed, so
386 	 * re-check it.
387 	 */
388 	if (c->cmt_state == COMMIT_BROKEN) {
389 		err = -EINVAL;
390 		goto out_cmt_unlock;
391 	}
392 
393 	if (c->cmt_state == COMMIT_RUNNING_BACKGROUND)
394 		c->cmt_state = COMMIT_RUNNING_REQUIRED;
395 
396 	if (c->cmt_state == COMMIT_RUNNING_REQUIRED) {
397 		up_write(&c->commit_sem);
398 		spin_unlock(&c->cs_lock);
399 		return wait_for_commit(c);
400 	}
401 	c->cmt_state = COMMIT_RUNNING_REQUIRED;
402 	spin_unlock(&c->cs_lock);
403 
404 	err = do_commit(c);
405 	return err;
406 
407 out_cmt_unlock:
408 	up_write(&c->commit_sem);
409 out:
410 	spin_unlock(&c->cs_lock);
411 	return err;
412 }
413 
414 /**
415  * ubifs_gc_should_commit - determine if it is time for GC to run commit.
416  * @c: UBIFS file-system description object
417  *
418  * This function is called by garbage collection to determine if commit should
419  * be run. If commit state is @COMMIT_BACKGROUND, which means that the journal
420  * is full enough to start commit, this function returns true. It is not
421  * absolutely necessary to commit yet, but it feels like this should be better
422  * then to keep doing GC. This function returns %1 if GC has to initiate commit
423  * and %0 if not.
424  */
425 int ubifs_gc_should_commit(struct ubifs_info *c)
426 {
427 	int ret = 0;
428 
429 	spin_lock(&c->cs_lock);
430 	if (c->cmt_state == COMMIT_BACKGROUND) {
431 		dbg_cmt("commit required now");
432 		c->cmt_state = COMMIT_REQUIRED;
433 	} else
434 		dbg_cmt("commit not requested");
435 	if (c->cmt_state == COMMIT_REQUIRED)
436 		ret = 1;
437 	spin_unlock(&c->cs_lock);
438 	return ret;
439 }
440 
441 #ifdef CONFIG_UBIFS_FS_DEBUG
442 
443 /**
444  * struct idx_node - hold index nodes during index tree traversal.
445  * @list: list
446  * @iip: index in parent (slot number of this indexing node in the parent
447  *       indexing node)
448  * @upper_key: all keys in this indexing node have to be less or equivalent to
449  *             this key
450  * @idx: index node (8-byte aligned because all node structures must be 8-byte
451  *       aligned)
452  */
453 struct idx_node {
454 	struct list_head list;
455 	int iip;
456 	union ubifs_key upper_key;
457 	struct ubifs_idx_node idx __attribute__((aligned(8)));
458 };
459 
460 /**
461  * dbg_old_index_check_init - get information for the next old index check.
462  * @c: UBIFS file-system description object
463  * @zroot: root of the index
464  *
465  * This function records information about the index that will be needed for the
466  * next old index check i.e. 'dbg_check_old_index()'.
467  *
468  * This function returns %0 on success and a negative error code on failure.
469  */
470 int dbg_old_index_check_init(struct ubifs_info *c, struct ubifs_zbranch *zroot)
471 {
472 	struct ubifs_idx_node *idx;
473 	int lnum, offs, len, err = 0;
474 	struct ubifs_debug_info *d = c->dbg;
475 
476 	d->old_zroot = *zroot;
477 	lnum = d->old_zroot.lnum;
478 	offs = d->old_zroot.offs;
479 	len = d->old_zroot.len;
480 
481 	idx = kmalloc(c->max_idx_node_sz, GFP_NOFS);
482 	if (!idx)
483 		return -ENOMEM;
484 
485 	err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
486 	if (err)
487 		goto out;
488 
489 	d->old_zroot_level = le16_to_cpu(idx->level);
490 	d->old_zroot_sqnum = le64_to_cpu(idx->ch.sqnum);
491 out:
492 	kfree(idx);
493 	return err;
494 }
495 
496 /**
497  * dbg_check_old_index - check the old copy of the index.
498  * @c: UBIFS file-system description object
499  * @zroot: root of the new index
500  *
501  * In order to be able to recover from an unclean unmount, a complete copy of
502  * the index must exist on flash. This is the "old" index. The commit process
503  * must write the "new" index to flash without overwriting or destroying any
504  * part of the old index. This function is run at commit end in order to check
505  * that the old index does indeed exist completely intact.
506  *
507  * This function returns %0 on success and a negative error code on failure.
508  */
509 int dbg_check_old_index(struct ubifs_info *c, struct ubifs_zbranch *zroot)
510 {
511 	int lnum, offs, len, err = 0, uninitialized_var(last_level), child_cnt;
512 	int first = 1, iip;
513 	struct ubifs_debug_info *d = c->dbg;
514 	union ubifs_key uninitialized_var(lower_key), upper_key, l_key, u_key;
515 	unsigned long long uninitialized_var(last_sqnum);
516 	struct ubifs_idx_node *idx;
517 	struct list_head list;
518 	struct idx_node *i;
519 	size_t sz;
520 
521 	if (!(ubifs_chk_flags & UBIFS_CHK_OLD_IDX))
522 		goto out;
523 
524 	INIT_LIST_HEAD(&list);
525 
526 	sz = sizeof(struct idx_node) + ubifs_idx_node_sz(c, c->fanout) -
527 	     UBIFS_IDX_NODE_SZ;
528 
529 	/* Start at the old zroot */
530 	lnum = d->old_zroot.lnum;
531 	offs = d->old_zroot.offs;
532 	len = d->old_zroot.len;
533 	iip = 0;
534 
535 	/*
536 	 * Traverse the index tree preorder depth-first i.e. do a node and then
537 	 * its subtrees from left to right.
538 	 */
539 	while (1) {
540 		struct ubifs_branch *br;
541 
542 		/* Get the next index node */
543 		i = kmalloc(sz, GFP_NOFS);
544 		if (!i) {
545 			err = -ENOMEM;
546 			goto out_free;
547 		}
548 		i->iip = iip;
549 		/* Keep the index nodes on our path in a linked list */
550 		list_add_tail(&i->list, &list);
551 		/* Read the index node */
552 		idx = &i->idx;
553 		err = ubifs_read_node(c, idx, UBIFS_IDX_NODE, len, lnum, offs);
554 		if (err)
555 			goto out_free;
556 		/* Validate index node */
557 		child_cnt = le16_to_cpu(idx->child_cnt);
558 		if (child_cnt < 1 || child_cnt > c->fanout) {
559 			err = 1;
560 			goto out_dump;
561 		}
562 		if (first) {
563 			first = 0;
564 			/* Check root level and sqnum */
565 			if (le16_to_cpu(idx->level) != d->old_zroot_level) {
566 				err = 2;
567 				goto out_dump;
568 			}
569 			if (le64_to_cpu(idx->ch.sqnum) != d->old_zroot_sqnum) {
570 				err = 3;
571 				goto out_dump;
572 			}
573 			/* Set last values as though root had a parent */
574 			last_level = le16_to_cpu(idx->level) + 1;
575 			last_sqnum = le64_to_cpu(idx->ch.sqnum) + 1;
576 			key_read(c, ubifs_idx_key(c, idx), &lower_key);
577 			highest_ino_key(c, &upper_key, INUM_WATERMARK);
578 		}
579 		key_copy(c, &upper_key, &i->upper_key);
580 		if (le16_to_cpu(idx->level) != last_level - 1) {
581 			err = 3;
582 			goto out_dump;
583 		}
584 		/*
585 		 * The index is always written bottom up hence a child's sqnum
586 		 * is always less than the parents.
587 		 */
588 		if (le64_to_cpu(idx->ch.sqnum) >= last_sqnum) {
589 			err = 4;
590 			goto out_dump;
591 		}
592 		/* Check key range */
593 		key_read(c, ubifs_idx_key(c, idx), &l_key);
594 		br = ubifs_idx_branch(c, idx, child_cnt - 1);
595 		key_read(c, &br->key, &u_key);
596 		if (keys_cmp(c, &lower_key, &l_key) > 0) {
597 			err = 5;
598 			goto out_dump;
599 		}
600 		if (keys_cmp(c, &upper_key, &u_key) < 0) {
601 			err = 6;
602 			goto out_dump;
603 		}
604 		if (keys_cmp(c, &upper_key, &u_key) == 0)
605 			if (!is_hash_key(c, &u_key)) {
606 				err = 7;
607 				goto out_dump;
608 			}
609 		/* Go to next index node */
610 		if (le16_to_cpu(idx->level) == 0) {
611 			/* At the bottom, so go up until can go right */
612 			while (1) {
613 				/* Drop the bottom of the list */
614 				list_del(&i->list);
615 				kfree(i);
616 				/* No more list means we are done */
617 				if (list_empty(&list))
618 					goto out;
619 				/* Look at the new bottom */
620 				i = list_entry(list.prev, struct idx_node,
621 					       list);
622 				idx = &i->idx;
623 				/* Can we go right */
624 				if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
625 					iip = iip + 1;
626 					break;
627 				} else
628 					/* Nope, so go up again */
629 					iip = i->iip;
630 			}
631 		} else
632 			/* Go down left */
633 			iip = 0;
634 		/*
635 		 * We have the parent in 'idx' and now we set up for reading the
636 		 * child pointed to by slot 'iip'.
637 		 */
638 		last_level = le16_to_cpu(idx->level);
639 		last_sqnum = le64_to_cpu(idx->ch.sqnum);
640 		br = ubifs_idx_branch(c, idx, iip);
641 		lnum = le32_to_cpu(br->lnum);
642 		offs = le32_to_cpu(br->offs);
643 		len = le32_to_cpu(br->len);
644 		key_read(c, &br->key, &lower_key);
645 		if (iip + 1 < le16_to_cpu(idx->child_cnt)) {
646 			br = ubifs_idx_branch(c, idx, iip + 1);
647 			key_read(c, &br->key, &upper_key);
648 		} else
649 			key_copy(c, &i->upper_key, &upper_key);
650 	}
651 out:
652 	err = dbg_old_index_check_init(c, zroot);
653 	if (err)
654 		goto out_free;
655 
656 	return 0;
657 
658 out_dump:
659 	dbg_err("dumping index node (iip=%d)", i->iip);
660 	dbg_dump_node(c, idx);
661 	list_del(&i->list);
662 	kfree(i);
663 	if (!list_empty(&list)) {
664 		i = list_entry(list.prev, struct idx_node, list);
665 		dbg_err("dumping parent index node");
666 		dbg_dump_node(c, &i->idx);
667 	}
668 out_free:
669 	while (!list_empty(&list)) {
670 		i = list_entry(list.next, struct idx_node, list);
671 		list_del(&i->list);
672 		kfree(i);
673 	}
674 	ubifs_err("failed, error %d", err);
675 	if (err > 0)
676 		err = -EINVAL;
677 	return err;
678 }
679 
680 #endif /* CONFIG_UBIFS_FS_DEBUG */
681