xref: /linux/fs/ubifs/auth.c (revision ebc733e54a1a79ea2dde2ba5121ae73a188e20d4)
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * This file is part of UBIFS.
4  *
5  * Copyright (C) 2018 Pengutronix, Sascha Hauer <s.hauer@pengutronix.de>
6  */
7 
8 /*
9  * This file implements various helper functions for UBIFS authentication support
10  */
11 
12 #include <linux/verification.h>
13 #include <crypto/hash.h>
14 #include <crypto/utils.h>
15 #include <keys/user-type.h>
16 #include <keys/asymmetric-type.h>
17 
18 #include "ubifs.h"
19 
20 /**
21  * ubifs_node_calc_hash - calculate the hash of a UBIFS node
22  * @c: UBIFS file-system description object
23  * @node: the node to calculate a hash for
24  * @hash: the returned hash
25  *
26  * Returns 0 for success or a negative error code otherwise.
27  */
28 int __ubifs_node_calc_hash(const struct ubifs_info *c, const void *node,
29 			    u8 *hash)
30 {
31 	const struct ubifs_ch *ch = node;
32 
33 	return crypto_shash_tfm_digest(c->hash_tfm, node, le32_to_cpu(ch->len),
34 				       hash);
35 }
36 
37 /**
38  * ubifs_hash_calc_hmac - calculate a HMAC from a hash
39  * @c: UBIFS file-system description object
40  * @hash: the node to calculate a HMAC for
41  * @hmac: the returned HMAC
42  *
43  * Returns 0 for success or a negative error code otherwise.
44  */
45 static int ubifs_hash_calc_hmac(const struct ubifs_info *c, const u8 *hash,
46 				 u8 *hmac)
47 {
48 	return crypto_shash_tfm_digest(c->hmac_tfm, hash, c->hash_len, hmac);
49 }
50 
51 /**
52  * ubifs_prepare_auth_node - Prepare an authentication node
53  * @c: UBIFS file-system description object
54  * @node: the node to calculate a hash for
55  * @inhash: input hash of previous nodes
56  *
57  * This function prepares an authentication node for writing onto flash.
58  * It creates a HMAC from the given input hash and writes it to the node.
59  *
60  * Returns 0 for success or a negative error code otherwise.
61  */
62 int ubifs_prepare_auth_node(struct ubifs_info *c, void *node,
63 			     struct shash_desc *inhash)
64 {
65 	struct ubifs_auth_node *auth = node;
66 	u8 hash[UBIFS_HASH_ARR_SZ];
67 	int err;
68 
69 	{
70 		SHASH_DESC_ON_STACK(hash_desc, c->hash_tfm);
71 
72 		hash_desc->tfm = c->hash_tfm;
73 		ubifs_shash_copy_state(c, inhash, hash_desc);
74 
75 		err = crypto_shash_final(hash_desc, hash);
76 		if (err)
77 			return err;
78 	}
79 
80 	err = ubifs_hash_calc_hmac(c, hash, auth->hmac);
81 	if (err)
82 		return err;
83 
84 	auth->ch.node_type = UBIFS_AUTH_NODE;
85 	ubifs_prepare_node(c, auth, ubifs_auth_node_sz(c), 0);
86 	return 0;
87 }
88 
89 static struct shash_desc *ubifs_get_desc(const struct ubifs_info *c,
90 					 struct crypto_shash *tfm)
91 {
92 	struct shash_desc *desc;
93 	int err;
94 
95 	if (!ubifs_authenticated(c))
96 		return NULL;
97 
98 	desc = kmalloc(sizeof(*desc) + crypto_shash_descsize(tfm), GFP_KERNEL);
99 	if (!desc)
100 		return ERR_PTR(-ENOMEM);
101 
102 	desc->tfm = tfm;
103 
104 	err = crypto_shash_init(desc);
105 	if (err) {
106 		kfree(desc);
107 		return ERR_PTR(err);
108 	}
109 
110 	return desc;
111 }
112 
113 /**
114  * __ubifs_hash_get_desc - get a descriptor suitable for hashing a node
115  * @c: UBIFS file-system description object
116  *
117  * This function returns a descriptor suitable for hashing a node. Free after use
118  * with kfree.
119  */
120 struct shash_desc *__ubifs_hash_get_desc(const struct ubifs_info *c)
121 {
122 	return ubifs_get_desc(c, c->hash_tfm);
123 }
124 
125 /**
126  * ubifs_bad_hash - Report hash mismatches
127  * @c: UBIFS file-system description object
128  * @node: the node
129  * @hash: the expected hash
130  * @lnum: the LEB @node was read from
131  * @offs: offset in LEB @node was read from
132  *
133  * This function reports a hash mismatch when a node has a different hash than
134  * expected.
135  */
136 void ubifs_bad_hash(const struct ubifs_info *c, const void *node, const u8 *hash,
137 		    int lnum, int offs)
138 {
139 	int len = min(c->hash_len, 20);
140 	int cropped = len != c->hash_len;
141 	const char *cont = cropped ? "..." : "";
142 
143 	u8 calc[UBIFS_HASH_ARR_SZ];
144 
145 	__ubifs_node_calc_hash(c, node, calc);
146 
147 	ubifs_err(c, "hash mismatch on node at LEB %d:%d", lnum, offs);
148 	ubifs_err(c, "hash expected:   %*ph%s", len, hash, cont);
149 	ubifs_err(c, "hash calculated: %*ph%s", len, calc, cont);
150 }
151 
152 /**
153  * __ubifs_node_check_hash - check the hash of a node against given hash
154  * @c: UBIFS file-system description object
155  * @node: the node
156  * @expected: the expected hash
157  *
158  * This function calculates a hash over a node and compares it to the given hash.
159  * Returns 0 if both hashes are equal or authentication is disabled, otherwise a
160  * negative error code is returned.
161  */
162 int __ubifs_node_check_hash(const struct ubifs_info *c, const void *node,
163 			    const u8 *expected)
164 {
165 	u8 calc[UBIFS_HASH_ARR_SZ];
166 	int err;
167 
168 	err = __ubifs_node_calc_hash(c, node, calc);
169 	if (err)
170 		return err;
171 
172 	if (ubifs_check_hash(c, expected, calc))
173 		return -EPERM;
174 
175 	return 0;
176 }
177 
178 /**
179  * ubifs_sb_verify_signature - verify the signature of a superblock
180  * @c: UBIFS file-system description object
181  * @sup: The superblock node
182  *
183  * To support offline signed images the superblock can be signed with a
184  * PKCS#7 signature. The signature is placed directly behind the superblock
185  * node in an ubifs_sig_node.
186  *
187  * Returns 0 when the signature can be successfully verified or a negative
188  * error code if not.
189  */
190 int ubifs_sb_verify_signature(struct ubifs_info *c,
191 			      const struct ubifs_sb_node *sup)
192 {
193 	int err;
194 	struct ubifs_scan_leb *sleb;
195 	struct ubifs_scan_node *snod;
196 	const struct ubifs_sig_node *signode;
197 
198 	sleb = ubifs_scan(c, UBIFS_SB_LNUM, UBIFS_SB_NODE_SZ, c->sbuf, 0);
199 	if (IS_ERR(sleb)) {
200 		err = PTR_ERR(sleb);
201 		return err;
202 	}
203 
204 	if (sleb->nodes_cnt == 0) {
205 		ubifs_err(c, "Unable to find signature node");
206 		err = -EINVAL;
207 		goto out_destroy;
208 	}
209 
210 	snod = list_first_entry(&sleb->nodes, struct ubifs_scan_node, list);
211 
212 	if (snod->type != UBIFS_SIG_NODE) {
213 		ubifs_err(c, "Signature node is of wrong type");
214 		err = -EINVAL;
215 		goto out_destroy;
216 	}
217 
218 	signode = snod->node;
219 
220 	if (le32_to_cpu(signode->len) > snod->len + sizeof(struct ubifs_sig_node)) {
221 		ubifs_err(c, "invalid signature len %d", le32_to_cpu(signode->len));
222 		err = -EINVAL;
223 		goto out_destroy;
224 	}
225 
226 	if (le32_to_cpu(signode->type) != UBIFS_SIGNATURE_TYPE_PKCS7) {
227 		ubifs_err(c, "Signature type %d is not supported\n",
228 			  le32_to_cpu(signode->type));
229 		err = -EINVAL;
230 		goto out_destroy;
231 	}
232 
233 	err = verify_pkcs7_signature(sup, sizeof(struct ubifs_sb_node),
234 				     signode->sig, le32_to_cpu(signode->len),
235 				     NULL, VERIFYING_UNSPECIFIED_SIGNATURE,
236 				     NULL, NULL);
237 
238 	if (err)
239 		ubifs_err(c, "Failed to verify signature");
240 	else
241 		ubifs_msg(c, "Successfully verified super block signature");
242 
243 out_destroy:
244 	ubifs_scan_destroy(sleb);
245 
246 	return err;
247 }
248 
249 /**
250  * ubifs_init_authentication - initialize UBIFS authentication support
251  * @c: UBIFS file-system description object
252  *
253  * This function returns 0 for success or a negative error code otherwise.
254  */
255 int ubifs_init_authentication(struct ubifs_info *c)
256 {
257 	struct key *keyring_key;
258 	const struct user_key_payload *ukp;
259 	int err;
260 	char hmac_name[CRYPTO_MAX_ALG_NAME];
261 
262 	if (!c->auth_hash_name) {
263 		ubifs_err(c, "authentication hash name needed with authentication");
264 		return -EINVAL;
265 	}
266 
267 	c->auth_hash_algo = match_string(hash_algo_name, HASH_ALGO__LAST,
268 					 c->auth_hash_name);
269 	if ((int)c->auth_hash_algo < 0) {
270 		ubifs_err(c, "Unknown hash algo %s specified",
271 			  c->auth_hash_name);
272 		return -EINVAL;
273 	}
274 
275 	snprintf(hmac_name, CRYPTO_MAX_ALG_NAME, "hmac(%s)",
276 		 c->auth_hash_name);
277 
278 	keyring_key = request_key(&key_type_logon, c->auth_key_name, NULL);
279 
280 	if (IS_ERR(keyring_key)) {
281 		ubifs_err(c, "Failed to request key: %ld",
282 			  PTR_ERR(keyring_key));
283 		return PTR_ERR(keyring_key);
284 	}
285 
286 	down_read(&keyring_key->sem);
287 
288 	if (keyring_key->type != &key_type_logon) {
289 		ubifs_err(c, "key type must be logon");
290 		err = -ENOKEY;
291 		goto out;
292 	}
293 
294 	ukp = user_key_payload_locked(keyring_key);
295 	if (!ukp) {
296 		/* key was revoked before we acquired its semaphore */
297 		err = -EKEYREVOKED;
298 		goto out;
299 	}
300 
301 	c->hash_tfm = crypto_alloc_shash(c->auth_hash_name, 0, 0);
302 	if (IS_ERR(c->hash_tfm)) {
303 		err = PTR_ERR(c->hash_tfm);
304 		ubifs_err(c, "Can not allocate %s: %d",
305 			  c->auth_hash_name, err);
306 		goto out;
307 	}
308 
309 	c->hash_len = crypto_shash_digestsize(c->hash_tfm);
310 	if (c->hash_len > UBIFS_HASH_ARR_SZ) {
311 		ubifs_err(c, "hash %s is bigger than maximum allowed hash size (%d > %d)",
312 			  c->auth_hash_name, c->hash_len, UBIFS_HASH_ARR_SZ);
313 		err = -EINVAL;
314 		goto out_free_hash;
315 	}
316 
317 	c->hmac_tfm = crypto_alloc_shash(hmac_name, 0, 0);
318 	if (IS_ERR(c->hmac_tfm)) {
319 		err = PTR_ERR(c->hmac_tfm);
320 		ubifs_err(c, "Can not allocate %s: %d", hmac_name, err);
321 		goto out_free_hash;
322 	}
323 
324 	c->hmac_desc_len = crypto_shash_digestsize(c->hmac_tfm);
325 	if (c->hmac_desc_len > UBIFS_HMAC_ARR_SZ) {
326 		ubifs_err(c, "hmac %s is bigger than maximum allowed hmac size (%d > %d)",
327 			  hmac_name, c->hmac_desc_len, UBIFS_HMAC_ARR_SZ);
328 		err = -EINVAL;
329 		goto out_free_hmac;
330 	}
331 
332 	err = crypto_shash_setkey(c->hmac_tfm, ukp->data, ukp->datalen);
333 	if (err)
334 		goto out_free_hmac;
335 
336 	c->authenticated = true;
337 
338 	c->log_hash = ubifs_hash_get_desc(c);
339 	if (IS_ERR(c->log_hash)) {
340 		err = PTR_ERR(c->log_hash);
341 		goto out_free_hmac;
342 	}
343 
344 	err = 0;
345 
346 out_free_hmac:
347 	if (err)
348 		crypto_free_shash(c->hmac_tfm);
349 out_free_hash:
350 	if (err)
351 		crypto_free_shash(c->hash_tfm);
352 out:
353 	up_read(&keyring_key->sem);
354 	key_put(keyring_key);
355 
356 	return err;
357 }
358 
359 /**
360  * __ubifs_exit_authentication - release resource
361  * @c: UBIFS file-system description object
362  *
363  * This function releases the authentication related resources.
364  */
365 void __ubifs_exit_authentication(struct ubifs_info *c)
366 {
367 	if (!ubifs_authenticated(c))
368 		return;
369 
370 	crypto_free_shash(c->hmac_tfm);
371 	crypto_free_shash(c->hash_tfm);
372 	kfree(c->log_hash);
373 }
374 
375 /**
376  * ubifs_node_calc_hmac - calculate the HMAC of a UBIFS node
377  * @c: UBIFS file-system description object
378  * @node: the node to insert a HMAC into.
379  * @len: the length of the node
380  * @ofs_hmac: the offset in the node where the HMAC is inserted
381  * @hmac: returned HMAC
382  *
383  * This function calculates a HMAC of a UBIFS node. The HMAC is expected to be
384  * embedded into the node, so this area is not covered by the HMAC. Also not
385  * covered is the UBIFS_NODE_MAGIC and the CRC of the node.
386  */
387 static int ubifs_node_calc_hmac(const struct ubifs_info *c, const void *node,
388 				int len, int ofs_hmac, void *hmac)
389 {
390 	SHASH_DESC_ON_STACK(shash, c->hmac_tfm);
391 	int hmac_len = c->hmac_desc_len;
392 	int err;
393 
394 	ubifs_assert(c, ofs_hmac > 8);
395 	ubifs_assert(c, ofs_hmac + hmac_len < len);
396 
397 	shash->tfm = c->hmac_tfm;
398 
399 	err = crypto_shash_init(shash);
400 	if (err)
401 		return err;
402 
403 	/* behind common node header CRC up to HMAC begin */
404 	err = crypto_shash_update(shash, node + 8, ofs_hmac - 8);
405 	if (err < 0)
406 		return err;
407 
408 	/* behind HMAC, if any */
409 	if (len - ofs_hmac - hmac_len > 0) {
410 		err = crypto_shash_update(shash, node + ofs_hmac + hmac_len,
411 			    len - ofs_hmac - hmac_len);
412 		if (err < 0)
413 			return err;
414 	}
415 
416 	return crypto_shash_final(shash, hmac);
417 }
418 
419 /**
420  * __ubifs_node_insert_hmac - insert a HMAC into a UBIFS node
421  * @c: UBIFS file-system description object
422  * @node: the node to insert a HMAC into.
423  * @len: the length of the node
424  * @ofs_hmac: the offset in the node where the HMAC is inserted
425  *
426  * This function inserts a HMAC at offset @ofs_hmac into the node given in
427  * @node.
428  *
429  * This function returns 0 for success or a negative error code otherwise.
430  */
431 int __ubifs_node_insert_hmac(const struct ubifs_info *c, void *node, int len,
432 			    int ofs_hmac)
433 {
434 	return ubifs_node_calc_hmac(c, node, len, ofs_hmac, node + ofs_hmac);
435 }
436 
437 /**
438  * __ubifs_node_verify_hmac - verify the HMAC of UBIFS node
439  * @c: UBIFS file-system description object
440  * @node: the node to insert a HMAC into.
441  * @len: the length of the node
442  * @ofs_hmac: the offset in the node where the HMAC is inserted
443  *
444  * This function verifies the HMAC at offset @ofs_hmac of the node given in
445  * @node. Returns 0 if successful or a negative error code otherwise.
446  */
447 int __ubifs_node_verify_hmac(const struct ubifs_info *c, const void *node,
448 			     int len, int ofs_hmac)
449 {
450 	int hmac_len = c->hmac_desc_len;
451 	u8 *hmac;
452 	int err;
453 
454 	hmac = kmalloc(hmac_len, GFP_NOFS);
455 	if (!hmac)
456 		return -ENOMEM;
457 
458 	err = ubifs_node_calc_hmac(c, node, len, ofs_hmac, hmac);
459 	if (err) {
460 		kfree(hmac);
461 		return err;
462 	}
463 
464 	err = crypto_memneq(hmac, node + ofs_hmac, hmac_len);
465 
466 	kfree(hmac);
467 
468 	if (!err)
469 		return 0;
470 
471 	return -EPERM;
472 }
473 
474 int __ubifs_shash_copy_state(const struct ubifs_info *c, struct shash_desc *src,
475 			     struct shash_desc *target)
476 {
477 	u8 *state;
478 	int err;
479 
480 	state = kmalloc(crypto_shash_descsize(src->tfm), GFP_NOFS);
481 	if (!state)
482 		return -ENOMEM;
483 
484 	err = crypto_shash_export(src, state);
485 	if (err)
486 		goto out;
487 
488 	err = crypto_shash_import(target, state);
489 
490 out:
491 	kfree(state);
492 
493 	return err;
494 }
495 
496 /**
497  * ubifs_hmac_wkm - Create a HMAC of the well known message
498  * @c: UBIFS file-system description object
499  * @hmac: The HMAC of the well known message
500  *
501  * This function creates a HMAC of a well known message. This is used
502  * to check if the provided key is suitable to authenticate a UBIFS
503  * image. This is only a convenience to the user to provide a better
504  * error message when the wrong key is provided.
505  *
506  * This function returns 0 for success or a negative error code otherwise.
507  */
508 int ubifs_hmac_wkm(struct ubifs_info *c, u8 *hmac)
509 {
510 	SHASH_DESC_ON_STACK(shash, c->hmac_tfm);
511 	int err;
512 	const char well_known_message[] = "UBIFS";
513 
514 	if (!ubifs_authenticated(c))
515 		return 0;
516 
517 	shash->tfm = c->hmac_tfm;
518 
519 	err = crypto_shash_init(shash);
520 	if (err)
521 		return err;
522 
523 	err = crypto_shash_update(shash, well_known_message,
524 				  sizeof(well_known_message) - 1);
525 	if (err < 0)
526 		return err;
527 
528 	err = crypto_shash_final(shash, hmac);
529 	if (err)
530 		return err;
531 	return 0;
532 }
533 
534 /*
535  * ubifs_hmac_zero - test if a HMAC is zero
536  * @c: UBIFS file-system description object
537  * @hmac: the HMAC to test
538  *
539  * This function tests if a HMAC is zero and returns true if it is
540  * and false otherwise.
541  */
542 bool ubifs_hmac_zero(struct ubifs_info *c, const u8 *hmac)
543 {
544 	return !memchr_inv(hmac, 0, c->hmac_desc_len);
545 }
546